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Abstract: We describe the boundary singularity of weighted Bergman ker-
nels on smoothly bounded strictly pseudoconvex domains for weights which
behave, roughly speaking, likely formal power series in defining function
with coefficients which are polynomials in the logarithm of defining func-
tion. The result extends also to weighted Sobolev spaces of holomorphic
functions with respect to such weights. Connections with holomorphic in-
variants are outlined, and some examples presented.
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1. Introduction

Let Ω be a bounded strictly pseudoconvex domain in Cn with smooth bound-
ary, and r a defining function for Ω; thus r is smooth on the closure Ω of Ω, r < 0
on Ω, and r = 0, ‖∇r‖ > 0 on ∂Ω. It is then a celebrated result of Fefferman
[10] and Boutet de Monvel and Sjöstrand [6] that the Bergman kernel of Ω has
the form

(1) K(x, y) =
a(x, y)

ρ(x, y)n+1
+ b(x, y) log ρ(x, y)
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for some functions a, b ∈ C∞(Ω × Ω). Here ρ(x, y) is a function in C∞(Ω × Ω)
which satisfies ρ(x, x) = −r(x) and is almost-sesquianalytic in the sense that
∂ρ(x, y)/∂x and ∂ρ(x, y)/∂y vanish to infinite order on the diagonal x = y. (It is
known that such ρ(x, y) always exists and can be chosen in such a way that
ρ(x, y) = ρ(y, x) and

2Re ρ(x, y) ≥ c|x− y|2 + ρ(x) + ρ(y) ∀x, y ∈ Ω

for some c > 0, so that, in particular, log ρ(x, y) and ρ(x, y)α are well-defined
functions in C∞(Ω× Ω \ diag ∂Ω) for any α ∈ C. We will assume that such
ρ(x, y) has been chosen, from now on.) One has also the explicit formula

(2) a(x, x) =
n!
πn

J [ρ](x), ∀x ∈ ∂Ω,

for the boundary values of the function a, where J [ρ] is the Monge-Ampere de-
terminant

J [ρ] = (−1)n det

[
ρ ∂ρ

∂ρ ∂∂ρ

]

(whose positivity on ∂Ω follows from the strict pseudoconvexity of Ω), and we
are also abusing the notation slightly (and will continue to in the sequel) by using
the same letter ρ also for the single-variable function ρ(x) := ρ(x, x) = −r(x).

If w is a continuous positive weight on Ω, one can consider also the weighted
Bergman spaces L2

hol(Ω, w) of all holomorphic functions in L2(Ω, w), and their
reproducing kernels, namely, the weighted Bergman kernels Kw(x, y). That is,
the function Kw,y := Kw( · , y) belongs to L2(Ω, w) for each y ∈ Ω, and has the
reproducing property that

f(x) =
∫

Ω
f(y) Kw(x, y) w(y) dy

for all x ∈ Ω and f ∈ L2
hol(Ω, w).

From the proof in [6], it is immediate that the formula (1) extends also to
the weighted kernels Kw(x, y) for smooth positive weights on Ω, i.e. for weights
of the form w = eg with g ∈ C∞(Ω). Using an idea going back to Forelli and
Rudin [11] (see also Ligocka [20] and Boas-Fu-Straube [1]), relating a weighted
Bergman kernel of a domain to the unweighted Bergman kernel of a certain
Hartogs domain over it, one can also obtain a generalization of (1) to weights on
Ω of the form

w = ρmeg, m = 1, 2, 3, . . . , g ∈ C∞(Ω).
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The corresponding kernels Kw turn out to be still of the form (1), only with the
exponent n + 1 in the denominator replaced by n + m + 1.

Recently, the current author [9] was able to generalize the formula (1) also to
weights behaving like a fractional power of the defining function — more precisely,
to weights of the form

(3) w = ραeg, α > −1, g ∈ C∞(Ω).

(The restriction on α stems from the fact that for α ≤ −1 the space L2
hol(Ω, w)

reduces to constant zero, and thus Kw ≡ 0 trivially.) The result is

(4) Kw(x, y) =





a(x, y)
ρ(x, y)n+α+1

+ b(x, y) log ρ(x, y) if α ∈ Z,

a(x, y)
ρ(x, y)n+α+1

+ b(x, y) if α /∈ Z,

again with some a, b ∈ C∞(Ω× Ω) (depending on w). There is also an analogue
of (2),

(5) a(x, x) =
Γ(n + α + 1)

πn

J [ρ](x)
eg(x)

, ∀x ∈ ∂Ω.

Finally, it was also shown in [9] that an analogous result holds for the re-
producing kernels of the holomorphic Sobolev spaces W s

hol(Ω) of all holomorphic
functions in the s-th order Sobolev space W s(Ω), for any s ∈ R. (Sometimes
these are called Sobolev-Bergman spaces and kernels, cf. [16].) Namely,

(6) K(s)(x, y) =





a(x, y)
ρ(x, y)n+1−2s

+ b(x, y) if n + 1− 2s /∈ Z,

a(x, y)
ρ(x, y)n+1−2s

+ b(x, y) log ρ(x, y) if n + 1− 2s ∈ Z>0,

a(x, y)
ρ(x, y)n+1−2s

log ρ(x, y) + b(x, y) if n + 1− 2s ∈ Z≤0.

Again, there is also an analogue of (5), except that Γ(n + α + 1) gets replaced
by Γ(n + 1− 2s) if n + 1− 2s is not a nonpositive integer, and by (−1)k+1/k! if
n + 1− 2s = −k, k = 0, 1, 2, . . . ; and instead of eg(x) in the denominator there is
a term whose exact form depends on the choice of the norm in W s(Ω). We refer
to [9] for the details.

While the class of weights covered by (4) is conveniently large, there are still
many interesting cases that it misses. For instance, it does not contain weights
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like uα, α > −1, where u is the solution of the complex Monge-Ampere equation

(7) J [u] = 1 on Ω, u = 0, ‖∇u‖ > 0 on ∂Ω,

because it is known (cf. Lee and Melrose [18]) that u is not of the form (3), but
rather

(8) u ≈ ρ

∞∑

j=0

(ρn+1 log ρ)j ηj , ηj ∈ C∞(Ω),

with η0|∂Ω = J [ρ]−1/(n+1). Here “≈” means that the difference between the left-
hand side and a partial sum of the right-hand side is continuous on Ω together
with as many derivatives and vanishes at ∂Ω to an order as high as the next term
of the series, i.e.

u− ρ

N−1∑

j=0

(ρn+1 log ρ)j ηj ∈ C
(n+1)N
0 (Ω), ∀N = 0, 1, 2, . . . .

Our main result in this paper is the following generalization of Fefferman’s
formula (1), which covers also weights like (8).

Theorem 1. Let Ω be a smoothly bounded strictly pseudoconvex domain in Cn

and w > 0 a smooth weight on Ω of the form

(9) w ≈ ρα
∞∑

k=0

ρk
Nk∑

j=0

(log ρ)jηjk, ηjk ∈ C∞(Ω), α > −1, Nk < ∞,

where N0 = 0 and η00 > 0 on ∂Ω. Then

(10) Kw ≈ ρ−n−α−1
∞∑

k=0

ρk
Mk∑

j=0

(log ρ)jυjk + υ∞

for some Mk < ∞, M0 = 0, and υjk, υ∞ ∈ C∞(Ω× Ω). Furthermore,

(11) υ00(x, x) =
Γ(n + α + 1)

πn

J [ρ](x)
η00(x)

∀x ∈ ∂Ω.

Here the asymptotic expansion in (9) is understood in the same sense as in (8),
and similarly for (10), except that in the latter the continuity of (many) deriva-
tives is meant on Ω × Ω, while the vanishing (to high order) is meant only
at diag ∂Ω. If α is an integer, the term υ∞ can be omitted.
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The numbers Mk depend on the Nk in a somewhat complicated manner which
can be best described as follows. For ε > 0 small enough, the map

Ψ : ∂Ω× (−ε, ε) → Cn, (ζ, t) 7→ ζ + tnζ ,

where nζ is the inward unit normal vector at ζ ∈ ∂Ω, is a diffeomorphism. Since
∂r(ζ + tnζ)/∂t = −‖∇r‖ < 0 for t = 0, it follows from the implicit function
theorem that on a small neighbourhood of ∂Ω in Cn we can use (ζ, r) as local
coordinates. Then (9) becomes

(12) w ≈ ρα
∞∑

k=0

ρk
Nk∑

j=0

(log ρ)j τjk

for some τjk ∈ C∞(∂Ω). Consider now the ring C∞(∂Ω)[log ρ] of all polynomials
in log ρ with coefficients in C∞(∂Ω); and let P = C∞(∂Ω)[log ρ][[ρ]] be the ring
of all formal powers series in ρ with coefficients in C∞(∂Ω)[log ρ]. Then (12) says
that, modulo functions in C∞(Ω) vanishing to infinite order at the boundary,
ρ−αw =: v can be identified with an element of P; and the hypothesis that
N0 = 0 and η00|∂Ω > 0 means precisely that v is a unit of P, i.e. is invertible as
a formal power series. Let v−1 ∈ P be the inverse of v,

(13) v−1 =
∞∑

k=0

ρk
mk∑

j=0

(log ρ)j µjk.

Then

(14) Kw ≈
∞∑

k=0

mk∑

j=0

ρ[−n−α−1+k](log ρ)j υjk + υ∞

where

(15) ρ[β] :=





ρβ , if β ∈ C \ {0, 1, 2, . . . },
ρβ log ρ, if β = 0, 1, 2, . . . .

Thus (10) holds with Mk = max0≤j≤k mj + εk, where εk = 0 if k − n − α − 1 is
not a nonnegative integer and εk = 1 otherwise.

In particular, we have the following corollary. For any integer m ≥ 1, denote
by Am the subspace of all functions v ∈ C∞(Ω) of the form

v ≈
∞∑

j=0

(ρm log ρ)j ηj , ηj ∈ C∞(Ω),



786 Miroslav Englǐs

and let A∗m be the subset of all v ∈ Am with η0|∂Ω > 0, i.e. v|∂Ω > 0. Finally,
abusing notation, we will denote by the same symbol Am also the similar space
on Ω× Ω (with ρ(x) replaced by ρ(x, y)).

Corollary 2. If

w ∈ ραA∗m, α > −1, α /∈ Z,

then

(16) Kw ∈ ρ−n−α−1A∗m + C∞(Ω× Ω),

with

ρn+α+1Kw =
Γ(n + α + 1)

πn

J [ρ]
ρ−αw

on the boundary diagonal.

Since u ∈ ρA∗m by (8), the last corollary applies e.g. to all weights of the form
uαeg, α > −1, g ∈ C∞(Ω).

As in [9], the proof of Theorem 1 relies on Boutet de Monvel’s and Guillemin’s
theory of Toeplitz operators on ∂Ω with pseudodifferential symbols. The main
(and, essentially, the only) difficulty here is that for our present purpose we need
to extend this theory from classical pseudodifferential operators to those with the
more general “log-polyhomogeneous” symbols. This is done, along with a brief
review of the necessary facts from Boutet de Monvel’s and Guillemin’s theory,
in Section 2. After some preparatory work in Section 3, the proof of Theorem 1
appears in Section 4, together with an extension to weighted Sobolev-Bergman
kernels. In the final Section 5, we present some examples, remarks on connections
with holomorphic invariants, and possible further generalizations.

A short comment on notation and terminology: 〈·, ·〉Ω, 〈·, ·〉Ω,w and 〈·, ·〉∂Ω

stand for the inner products in L2(Ω), L2(Ω, w) and L2(∂Ω), respectively; the sub-
scripts are often omitted if there is no danger of confusion. Finally, by a positive
operator on a Hilbert space we mean an operator T such that 〈Tf, f〉 > 0 for all
f 6= 0, f ∈ dom T .
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2. Generalized Toeplitz operators

Denote by η the restriction to ∂Ω of the 1-form Im ∂r = (∂r−∂r)/2i. The strict
pseudoconvexity of Ω guarantees that η is a contact form, i.e. the half-line bundle

Σ := {(x, ξ) ∈ T ∗(∂Ω) : ξ = tηx, t > 0}

is a symplectic submanifold of T ∗(∂Ω). Equip ∂Ω with a measure with smooth
positive density, and let L2(∂Ω) be the Lebesgue space with respect to this mea-
sure. The Hardy space H2(∂Ω) is the subspace in L2(∂Ω) of functions whose
Poisson extension is holomorphic in Ω; or, equivalently, the closure in L2(∂Ω)
of C∞

hol(∂Ω), the space of boundary values of all the functions in C∞(Ω) that
are holomorphic on Ω. We will also denote by W s(∂Ω), s ∈ R, the Sobolev
spaces on ∂Ω, and by W s

hol(∂Ω) the corresponding subspaces of nontangential
boundary values of functions holomorphic in Ω. (Thus W 0(∂Ω) = L2(∂Ω) and
W 0

hol(∂Ω) = H2(∂Ω).)

As usual, by a classical pseudodifferential operator or Fourier integral operator
(ΨDO or FIO for short) on ∂Ω we will mean an operator whose total symbol
(or amplitude) in any local coordinate system has an asymptotic expansion

p(x, ξ) ∼
∞∑

j=0

pm−j(x, ξ),

where pm−j is C∞ in x, ξ, and is positive homogeneous of degree m − j in ξ for
|ξ| > 1. Here j runs through nonnegative integers, but m can be any complex
number; and the symbol “∼” means that the difference between p and

∑k−1
j=0 pm−j

should belong to the Hörmander class SRe m−k, for each k = 0, 1, 2, . . . . The set
of all classical ΨDOs on ∂Ω as above (i.e. of order m) will be denoted by Ψm

cl .
The (larger) class of all (not necessarily classical) ΨDOs whose total symbol in
any local coordinate chart belongs to the Hörmander class Sm = Sm

1,0, m ∈ R,
will be denoted by Ψm; and we set, as usual, Ψcl :=

⋃
m∈C Ψm

cl , Ψ :=
⋃

m∈R Ψm,
and Ψ−∞ :=

⋂
m∈C Ψm

cl =
⋂

m∈R Ψm. The operators in Ψ−∞ are precisely the
smoothing operators, i.e. those given by a C∞ Schwartz kernel; and for any
P, Q ∈ Ψ, we will write P ∼ Q if P − Q is smoothing. Note that Ψm

cl ⊂ ΨRe m,
and if P ∈ Ψm, then P is continuous from W s(∂Ω) into W s−m(∂Ω), for any
s ∈ R.
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For P ∈ Ψm, the generalized Toeplitz operator TP : Wm
hol(∂Ω) → H2(∂Ω) is

defined as
TP = ΠP,

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projection).
Alternatively, one may view TP as the operator

TP = ΠPΠ

on all of Wm(∂Ω). Actually, TP maps continuously W s(∂Ω) into W s−m
hol (∂Ω), for

each s ∈ R, because Π is bounded on W s(∂Ω) for any s ∈ R (see [6]).

Microlocally, generalized Toeplitz operators have the following structure. Let (x, y)
denote the variable in Rn ×Rn−1 ' R2n−1, and let (ξ, υ) be the dual variable.
We identify T ∗Rn with the symplectic cone Σ0 ⊂ T ∗R2n−1 defined by y = υ = 0,
and set

Dj =
∂

∂yj
+ yj |Dx|, j = 1, . . . , n− 1.

Let H0 : C∞
0 (Rn) → C∞(R2n−1) be the Hermite operator

H0φ(x, y) = (2π)−n

∫

Rn

eix·ξ− 1
2
|ξ|y·y

( |ξ|
2π

)(n−1)/4
φ̂(ξ) dξ

where we write x · ξ for
∑

j xjξj , and the hat denotes Fourier transform; one has
DjH0 = 0 for all j and H0 extends to an isometry from L2(Rn) onto the subspace
H0 :=

⋂n−1
j=0 Ker Dj ⊂ L2(R2n−1). Then it follows from [3] and [6] that Π admits

the following microlocal description: for any z0 ∈ ∂Ω, there exists a homogeneous
canonical transformation Φ from a conic open set U ⊂ T ∗R2n−1 \ {0} to a conic
neighbourhood V of (z0, ηz0) ∈ Σ ⊂ T ∗∂Ω \ {0}, whose restriction defines a
symplectic isomorphism χ : Σ0 ∩ U → Σ ∩ V . There exists an elliptic FIO F ,
defined in U modulo smoothing operators, associated with Φ, such that FF ∗ ∼ I

on V and F ∗ΠF ∼ (the projection onto H0) on U , which transforms the left ideal
of ΨDOs generated by the Dj into the left ideal generated by the components
of ∂b. Then FH0 maps, modulo smoothing operators, L2(Rn) (non-isometrically)
onto H2(∂Ω). Set A ∼ H∗

0F ∗FH0 (this is an elliptic positive classical ΨDO) and
H ∼ FH0A

−1/2 (this is a classical FIO with complex phase, cf. [22]). Then
H∗H ∼ I, HH∗ ∼ Π, and for any ΨDO Q on ∂Ω,

TQ = ΠQΠ ∼ HPH∗ near z0, with P ∼ H∗QH ∼ H∗TQH.

In fact the map TQ 7→ P ∼ H∗TQH is onto. It follows as a corollary that the
generalized Toeplitz operators TP , P ∈ Ψcl, have the following properties.
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(P1) They form an algebra which is, modulo smoothing operators, locally iso-
morphic to the algebra of classical ΨDOs on Rn.

(P2) In fact, for any TP there exists a ΨDO Q of the same order such that
TP = TQ and QΠ = ΠQ.

(P3) It can happen that TP = TQ for two different ΨDOs P and Q. If ord(P )−
ord(Q) /∈ R, then TP = TR for some R ∼ 0. If ord(P ) − ord(Q) > 0,
then the restriction of the principal symbol σ(P ) of P to Σ identically
vanishes. If ord(P ) = ord(Q), then the restrictions of σ(P ) and σ(Q) to
the cone Σ coincide. Thus we can define unambiguously the order of TQ

as ord(Q) + min{ord(P )− ord(Q) : TP = TQ}, and the symbol of TQ as
σ(TQ) := σ(Q)|Σ if ord(Q) = ord(TQ).

(P4) The order and the symbol are multiplicative: ord(TQTQ′) = ord(TQ) +
ord(TQ′) and σ(TQTQ′) = σ(TQ)σ(TQ′).

(P5) If Re ord(TP ) ≤ 0, then TP is a bounded operator on L2(∂Ω); if Re ord(TP ) <

0, then it is even compact.
(P6) If P ∈ Ψm

cl and σ(TP ) = 0, then there exists Q ∈ Ψm−1
cl with TQ = TP .

In particular, if TP ∼ 0, then there exists a ΨDO Q ∼ 0 such that
TP = TQ.

(P7) We will say that a generalized Toeplitz operator TP of order m is elliptic
if σ(TP ) does not vanish. Then TP has a parametrix, i.e. there exists
a Toeplitz operator TQ of order −m, with σ(TQ) = σ(TP )−1, such that
TP TQ ∼ IH2(∂Ω) ∼ TQTP .

We refer to the book [5], especially its Appendix, and to the paper [4] (which we
have loosely followed in this section) for the proofs and additional information
on generalized Toeplitz operators.

In addition to classical ΨDOs, we will need the more general class Ψlog of
log-polyhomogeneous ΨDOs, whose total symbol in any local coordinates satisfies

(17) p(x, ξ) ∼
∞∑

j=0

pm−j(x, ξ)

where pm−j is of the form

pm−j(x, ξ) =
kj∑

k=0

pm−j,k

(
x,

ξ

|ξ|
)
|ξ|m−j (log |ξ|)k
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for |ξ| > 1, for some (finite) integers kj . We denote the class of ΨDOs of this
form Ψm

log, and we again also set Ψlog =
⋃

m∈C Ψm
log. Note that Ψm

log ⊂ ΨRe m+ε

for any ε > 0; accordingly, the “∼” in (17) now means that p − ∑N−1
j=0 pm−j ∈

ΨRe m−N+ε for any ε > 0 and N = 0, 1, 2, . . . . We will call P pure if k0 = 0,
and pure elliptic if k0 = 0 and pm(x, ξ) 6= 0 for ξ 6= 0. More generally, we will
denote by Ψm,k

log the class of all ΨDOs with symbol of the form (17) where k0 = k;
so pure symbols correspond to Ψm,0

log . For P ∈ Ψm
log such that pm does not vanish

identically, we still call m =: ord(P ) the order of P (as before, this can be any
complex number), and pm =: σ(P ) the (principal) symbol of P ; this clearly agrees
with the corresponding notions for classical ΨDOs.

The standard reference for log-polyhomogeneous ΨDOs is Schrohe [26]; see also
Lesch [19], Okikiolu [23], Grubb [13], and Paycha and Scott [25]. For the various
closely related topics like complex powers and logarithms of ΨDOs, holomor-
phic families of ΨDOs, etc., see also Ouedraogo and Paycha [24], Grubb [13],
Bucicovschi [7], and the book by Shubin [28].

The properties (P1)–(P7) above were established in the [5] and [4] only for clas-
sical ΨDOs. To extend them also to the present setting of log-polyhomogeneous
symbols, one could in principle go through and check all the relevant techni-
cal details in those two references; but it is easier to use instead the fact that
operators in Ψlog are, essentially, the logarithms of complex powers of classi-
cal ΨDOs. More precisely, each operator in Ψm,k

log arises, modulo lower order
terms, as ( ∂

∂z )kAz for some A ∈ Ψm
cl .

Recall that if A is a positive selfadjoint elliptic classical ΨDO of order m > 0
on ∂Ω, then A−1 is compact, hence its spectrum consists of isolated eigenvalues
0 < λ1 < λ2 < . . . of finite multiplicity. We can therefore define for any z ∈ C
the operator Az by the spectral theorem, i.e.

Az =
∑

j

λz
j Pj

where Pj is the projection onto the eigenspace corresponding to λj . Alternatively,
one can define Az for Re z < 0 by the contour integral

Az =
∮ λ1/2+i∞

λ1/2−i∞
λz (A− λ)−1 dλ
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(with the branch of λz defined in the right half-plane so that 1z = 1). For Re z ≥
0, one then sets

Az = AkAz−k, k > Re z;

this is unambiguous since AAz = Az+1 for Re z < −1. For a positive self-adjoint
elliptic classical ΨDO of degree m < 0, one then defines Az as (A−1)−z, the right-
hand side being defined as above. In both cases (m < 0 and m > 0), the operator
Az so defined is normal for any z ∈ C, and self-adjoint and positive if z is real.

It is then a result going back to Seeley [27] (see also Shubin [28], Bucicovschi [7]
or Schrohe [26]), that the operator Az defined as above is again a classical ΨDO,
of order mz, and with symbol σ(A)z. Furthermore, the total symbol of Az,
in any local coordinate system, depends holomorphically on z (i.e. each (mz− j)-
th homogeneous component does).

Differentiating with respect to z, we also see that for any k = 0, 1, 2, . . . ,

Az(log A)k =
∑

j

λz
j (log λj)k Pj

is an operator in Ψmz,k
log , with principal symbol σ(A)z(log σ(A))k.

Proposition 3. Generalized Toeplitz operators TP with log-polyhomogeneous P ∈
Ψlog have the seven properties listed right below.

(P1) They form an algebra which is, modulo smoothing operators, locally iso-
morphic to the algebra of log-polyhomogeneous ΨDOs on Rn.

(P2) In fact, for any TP , P ∈ Ψm,k
log , there exists Q ∈ Ψm,k

log such that TP = TQ

and QΠ = ΠQ.
(P3) It can happen that TP = TQ for two different ΨDOs P and Q. If ord(P )−

ord(Q) /∈ R, then TP = TR for some R ∼ 0. If ord(P ) − ord(Q) > 0,
then the restriction of the principal symbol σ(P ) of P to Σ identically
vanishes. If ord(P ) = ord(Q), then the restrictions of σ(P ) and σ(Q) to
the cone Σ coincide. Thus we can define unambiguously the order of TQ

as ord(Q) + min{ord(P )− ord(Q) : TP = TQ}, and the symbol of TQ as
σ(TQ) := σ(Q)|Σ if ord(Q) = ord(TQ).

(P4) The order and the symbol are multiplicative: ord(TQTQ′) = ord(TQ) +
ord(TQ′) and σ(TQTQ′) = σ(TQ)σ(TQ′).

(P5) If Re ord(P ) = 0 and P is pure, then TP is a bounded operator on L2(∂Ω);
if Re ord(TP ) < 0, then it is even compact.
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(P6) If P ∈ Ψm
log and σ(TP ) = 0, then there exists Q ∈ Ψm−1

log with TQ = TP .
In particular, if TP ∼ TQ, then there exists a ΨDO R ∼ 0 such that
TP − TQ = TR.

(P7) We will say that a generalized Toeplitz operator TP is pure elliptic if P

is pure and σ(TP ) does not vanish. (Note that, by (P3), this implies
ord(TP ) = ord(P ) 6= −∞.) Then TP has a parametrix, i.e. there exists
a pure elliptic Toeplitz operator TQ of order − ord(TP ), with σ(TQ) =
σ(TP )−1, such that TP TQ ∼ IH2(∂Ω) ∼ TQTP .

Proof. All these are similar and we will just look at (P2). Consider first P ∈ Ψm
log

such that pm(x, ξ) = pm,l(x, ξ
|ξ|)|ξ|m(log |ξ|)l for |ξ| > 1. Let P1 ∈ Ψm

cl be any

classical ΨDO whose principal symbol is pm,l(x, ξ
|ξ|)|ξ|m for |ξ| > 1. By the

property (P2) for classical operators, there exists Q1 ∈ Ψm
cl such that TP1 = TQ1

and [Q1,Π] = 0; also, σ(P1) = σ(Q1) on Σ. Similarly, there exists Υ ∈ Ψ1
cl such

that [Υ,Π] = 0 and σ(Υ) = |ξ| on Σ. Arguing as in the proof of Proposition 16
in [9], we can in fact assume that Υ is in addition elliptic, selfadjoint and injective.
Thus it has complex powers Υz, z ∈ C, and

TP1Υz = ΠP1ΥzΠ = ΠP1ΠΥz = ΠQ1ΠΥz = ΠQ1ΥzΠ = TQ1Υz .

Differentiating l times with respect to z and setting z = 0, we get

PP1(log Υ)l = TQ1(log Υ)l ,

where [Q1(log Υ)l,Π] = 0 and σ(Q1(log Υ)l)|Σ = σ(P1(log Υ)l)|Σ.

Doing this for each l = 0, 1, . . . , km and proceeding inductively over m, we thus
construct an operator R ∈ Ψm,k

log such that [R, Π] = 0 and TQ − TR ∼ 0. By the
second part of the property (P6) (which in fact means the same for classical and
log-polyhomogeneous operators, since Ψ−∞

cl = Ψ−∞
log ) and by the property (P2)

applied to the smoothing (hence, again, classical) operator TQ−R, there exists
S ∼ 0 such that [S, Π] = 0 and TS = TQ−R. Set P := R + S. ¤

3. Reproducing kernels on the Hardy space

The Hardy space H2(∂Ω) also has a reproducing kernel, namely the Szegö
kernel S(x, y) ≡ Sy(x) = Sx(y), x, y ∈ Ω, which satisfies Sy ∈ H2(∂Ω) ∀y ∈ Ω
and

f(x) = 〈f, Sx〉∂Ω =
∫

∂Ω
f(y)S(x, y), ∀x ∈ Ω, f ∈ H2(∂Ω),
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where, abusing the notation slightly, we are denoting by f(x) the value at x ∈ Ω
of the Poisson extension of f from ∂Ω into the interior of Ω. It turns out that S

again extends to be smooth up to the boundary of Ω× Ω except for the boundary
diagonal diag ∂Ω = {(x, x) : x ∈ ∂Ω}; more precisely, one has the analogue

(18) S(x, y) =
a(x, y)
ρ(x, y)n

+ b(x, y) log ρ(x, y)

of Fefferman’s formula (1) (again with a, b ∈ C∞(Ω × Ω)), except the exponent
n + 1 in (1) is replaced by n. (See [6].)

It is convenient to view the boundary values S|∂Ω×∂Ω of S(x, y) on ∂Ω × ∂Ω
also in the distributional sense, i.e. as the limit for ε ↘ 0 of S(x, y)|r(x)=r(y)=−ε in
C∞(∂Ω×∂Ω)′. In this sense, S|∂Ω×∂Ω is a (classical) Fourier integral distribution
which is the distributional kernel of the Szegö projector Π : L2(∂Ω) → H2(∂Ω).

The following theorem is modelled on Theorem 17 in [9].

Theorem 4. Let T be a positive selfadjoint operator on H2(∂Ω) such that T ∼ TP

where σ(TP ) > 0 and P ∈ Ψ2s,0
log is pure elliptic and commutes with Π. Let W T

hol

be the completion of C∞
hol(∂Ω) with respect to the norm

‖u‖2
T := 〈Tu, u〉∂Ω.

Then

(a) W T
hol = W s

hol(∂Ω), with equivalent norms;
(b) the reproducing kernel KT (x, y) ≡ KT,y(x) of W T

hol satisfies

KT |∂Ω×∂Ω ∼ (P−1 ⊗ I)S|∂Ω×∂Ω,

where P−1 ⊗ I means that P−1 applies to the first variable.

Here and below, “f ∼ g” for two elements of C∞(∂Ω× ∂Ω)′ means that f − g

belongs to C∞(∂Ω× ∂Ω).

Note that the existence of the complex powers P z, z ∈ C — hence, in par-
ticular, of the P−1 above and the P−1/2 in the proof below — follows from the
generalization of Seeley’s theorem to Ψ2s,0

log due to Schrohe [26]. (In the case
of P−1, we can, alternatively, since we are interested in KT only modulo smooth
functions, also take instead of the inverse P−1 any parametrix of P guaranteed
by the property (P7).)



794 Miroslav Englǐs

Proof. For any u ∈ C∞
hol(∂Ω) (⊂ dom T ),

‖u‖2
T = 〈Tu, u〉∂Ω = ‖T 1/2u‖2

H2(∂Ω).

From T ∼ TP we have T 1/2 ∼ TP 1/2 = P 1/2|H2(∂Ω), where P 1/2 ∈ Ψs,0
log is pure

elliptic, commutes with Π and σ(P 1/2) > 0. By (P7), TP 1/2 has a parametrix,
hence is Fredholm as an operator from W s

hol(∂Ω) into H2(∂Ω). The same is
therefore true for T 1/2; since we know T , and, hence, T 1/2 to be positive (hence,
injective) and selfadjoint as an operator on H2(∂Ω), it follows that T 1/2 is an
isomorphism of W s

hol(∂Ω) onto H2(∂Ω). This proves (a).

For (b), note that for each y ∈ Ω and f ∈ C∞
hol(∂Ω),

〈f, T−1Sy〉T = 〈Tf, T−1Sy〉 = 〈f, Sy〉 = f(y) = 〈f,KT,y〉T .

Here the ultimate left-hand side makes sense since T−1Sy ∈ C∞
hol(∂Ω) ⊂ W T

hol by
the preceding paragraph. It follows that KT,y|∂Ω = T−1(Sy|∂Ω) for each y ∈ Ω.
Passing again to the boundary values in the distributional sense, this means that
KT |∂Ω×∂Ω is the distributional kernel of the operator T−1Π. As T−1Π ∼ P−1Π,
part (b) follows. ¤

Theorem 5. Let T be a positive self-adjoint operator on H2(∂Ω) such that T ∼
TQ where Q ∈ Ψ2s,0

log and σ(TQ) > 0, and let W T
hol and KT have the same meaning

as in the preceding theorem. Then KT has the form

(19) KT ≈
∞∑

k=0

ρ[k+2s−n]
Mk∑

j=0

(log ρ)j υjk + υ∞,

where Mk < ∞, M0 = 0, υjk, υ∞ ∈ C∞(Ω × Ω), and ρ[β] has the same meaning
as in (15). Furthermore,
(20)

υ00(x, x) =





Γ(n− 2s)
πn

J [ρ](x)
σ(TQ)(x, ∂r(x))

if n− 2s ∈ C \ {0,−1,−2, . . . },
(−1)k+1

k!πn

J [ρ](x)
σ(TQ)(x, ∂r(x))

if n− 2s = −k, k = 0, 1, 2, . . . .

Proof. By (P2), we have TQ = TP for some P which has the same properties as Q

and moreover commutes with Π; to this P , the preceding theorem applies. Using
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the well-known formulas

(21)
∫ ∞

1
e−tpts dt =





Γ(s + 1)
ps+1

+O(p), s ∈ C \ {−1,−2, . . . },
(−1)k+1

k!
pk(log p +O(p)), s = −1− k, k ∈ Z≥0,

valid for Re p > 0, where O(p) denotes a function of p which is smooth (in fact
— holomorphic) in a neighbourhood of the origin, the boundary singularity (18)
of S can also be rewritten as

(22) S(x, y) ∼
∫ ∞

0
e−tρ(x,y) b(x, y, t) dt, x, y ∈ Ω,

where b is a classical symbol in Sn−1(Ω× Ω×R+) with asymptotic expansion

b(x, y, t) ∼
∞∑

j=0

tn−1−j bj(x, y) for t > 1,

with some functions bj ∈ C∞(Ω× Ω). In other words,

S ≈
∫ ∞

0

∞∑

j=0

tn−1−j e−tρ bj dt,

where “≈” has the same meaning as in the Introduction. Thus on ∂Ω× ∂Ω

(23) (P−1 ⊗ I)S ∼
∫ ∞

0

∞∑

j=0

tn−1−j (P−1 ⊗ I)[e−tρ bj ] dt.

Now by [26], P−1 is an element of Ψ−2s,0
log , i.e. in any local coordinates has total

symbol with asymptotic expansion

(24)
∞∑

j=0

Mj∑

m=0

a−2s−j,m(x, ξ
|ξ|) |ξ|−2s−j (log |ξ|)m for |ξ| > 1,

with M0 = 0 and a−2s,0(x, ξ
|ξ|)|ξ|−2s = σ(P−1)(x, ξ) = σ(P )(x, ξ)−1. On the other

hand, by the standard symbol calculus for ΨDOs (see, for instance, Theorem 4.2
in Hörmander [17]), we have quite generally for any classical ΨDO A of order α

(25) tn−1−j (A⊗ I)[e−tρ bj ] ∼ tn−1−j+αe−tρ
∞∑

l=0

bj,l t
−l

with some bj,k ∈ C∞(∂Ω× ∂Ω), where in particular

bj,0(x, x) = t−αbj(x, x)σ(P )(x,−t∇xρ(x, y)|y=x) = bj(x, x) σ(TP )(x, ∂r(x)).
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By a similar argument as in the proof of Proposition 3 (i.e. invoking the complex
powers Υz and taking logarithm), the formula (25) remains in force also for
A ∈ Ψα,k

log instead of A ∈ Ψα
cl, except that one gets also factors of (log t)m, m =

0, 1, . . . , k. Thus (23) equals (modulo smooth functions on ∂Ω× ∂Ω)

∫ ∞

0
e−tρ

∞∑

j=0

tn−1−j−2s

Mj∑

m=0

(log t)m b̃j,m dt,

with the Mj from (24) and some b̃j,m ∈ C∞(∂Ω× ∂Ω), where in particular

b̃0,0(x, x) = b0,0(x, x) = b0(x, x) σ(P−1)(x, ∂r(x)).

Combining this with the generalization of the formulas (21) in the next lemma,
and with the fact that b0(x, x) = J [ρ](x)/πn ∀x ∈ ∂Ω (cf. [6]), (19) and (20)
follow. ¤

Lemma 6. Let m be a nonnegative integer. Then on Re p > 0,

(26)
∫ ∞

1
e−tp ts (log t)m dt = O(p) +

m∑

j=0

(
m

j

)
Γ(m−j)(s + 1)

ps+1
(− log p)j

for s ∈ C \ {−1,−2, . . . }, and

(27)
∫ ∞

1
e−tp ts (log t)m dt = O(p) + pk

m+1∑

j=1

cjkm (log p)j

for s = −k − 1, k = 0, 1, 2, . . . , with some constants cjkm ∈ R.

Proof. Let us denote the integrals on the left-hand side by Gs,m(p), and set
Gs(p) := Gs,0(p). Clearly

(28) Gs,m(p) =
( d

ds

)m
Gs(p)

and

(29)
d

dp
Gs,m(p) = −Gs+1,m(p).
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For Re s > −1, we have

Gs(p) =
1

ps+1

∫ ∞

p
e−tts dt

=
1

ps+1

[
Γ(s + 1)−

∫ p

0
e−tts dt

]

=
1

ps+1

[
Γ(s + 1)−

∞∑

j=0

pj+s+1(−1)j

j!(j + s + 1)

]

=
Γ(s + 1)

ps+1
−

∞∑

j=0

(−p)j

j!(j + s + 1)
.

Applying (28) to both sides yields

Gs,m(p) =
( d

ds

)m Γ(s + 1)
ps+1

−
∞∑

j=0

(−p)j(−1)mm!
j!(j + s + 1)m+1

,

for Re s > −1 and m = 0, 1, 2, . . . . The left-hand side is an entire function of s,
while the right-hand side is holomorphic for s ∈ C \ {−1,−2, . . . }. By analytic
continuation, the last equality thus remains in force for all s 6= −1,−2, . . . , and
applying the Leibniz rule to the first summand proves (26).

On the other hand, for k = 0, 1, 2, . . . , (29) gives

G−k−1,m(p) = (−1)k+1

∫
. . .

∫

︸ ︷︷ ︸
k+1

G0,m(p) dp . . . dp

= O(p) + (−1)k+1

∫
. . .

∫

︸ ︷︷ ︸
k+1

m∑

j=0

(
m

j

)
Γ(m−j)(1)

p
(− log p)j dp . . . dp

= O(p) + (−1)k+1
m∑

j=0

(
m

j

)
Γ(m−j)(1)(−1)j

j + 1

∫
. . .

∫

︸ ︷︷ ︸
k

(log p)j+1 dp . . . dp.

Appealing to the recursion formula

(30)
∫

pk(log p)j dp =
pk+1

k + 1

j∑

l=0

(−1)jj!/(k + 1)j

(−1)ll!/(k + 1)l
(log p)l,

which is easily proved by integrating by parts, (27) follows. ¤

Remark. We have not tried to compute the constants cjkm, although it is in
principle possible from (30). ¤
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4. Weighted Bergman and Sobolev-Bergman kernels

Let K denote the Poisson extension operator, i.e. K solves the Dirichlet prob-
lem

(31) ∆Ku = 0 on Ω, Ku|∂Ω = u.

(Thus K acts from functions on ∂Ω into functions on Ω. Here ∆ is the ordi-
nary Laplace operator.) By the standard elliptic regularity theory (see e.g. [21]),
K acts continuously from W s(∂Ω) onto the subspace W

s+1/2
harm (Ω) of all harmonic

functions in W s+1/2(Ω). In particular, it is continuous from L2(∂Ω) into L2(Ω),
and thus has a continuous Hilbert space adjoint K∗ : L2(Ω) → L2(∂Ω). The com-
position

K∗K =: Λ

is known to be an elliptic positive classical ΨDO on ∂Ω of order −1. We have

(32) Λ−1K∗K = IL2(∂Ω),

while

(33) KΛ−1K∗ = Πharm,

the orthogonal projection in L2(Ω) onto the subspace L2
harm(Ω) of all harmonic

functions. (Indeed, from (32) it is immediate that the left-hand side acts as the
identity on the range of K, while it trivially vanishes on KerK∗ = (RanK)⊥.)
Comparing (32) with (31), we also see that the restriction of Λ−1K∗ to L2

harm(Ω)
is the operator γ of “taking the boundary values” of a harmonic function. Again,
by elliptic regularity, γ extends to a continuous operator from W s

harm(Ω) onto
W s−1/2(∂Ω), for any s ∈ R, which is the inverse of K.

The operators

Λw := K∗wK,

with w a smooth function on Ω, are governed by a calculus developed by Boutet
de Monvel [2]. It was shown there that for w of the form

(34) w = ραeg, α > −1, g ∈ C∞(Ω),

Λw is an elliptic classical ΨDO on ∂Ω of order −α− 1, with symbol

(35) σ(Λw)(x, ξ) =
Γ(α + 1)
2|ξ|α+1

eg(x) ‖∂r(x)‖α.
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In fact, [2] covered only the case of integer α > −1, but the case of noninteger α

can be treated in the same manner with no new difficulties, cf. the computation
on the bottom of p. 256 and the remarks on the top of p. 257 in [4]. It is also
immediate from this last computation that everything remains true in fact for
any complex α, Re α > −1, and moreover the total symbol of Λw in any local
coordinate system depends holomorphically on α. Differentiating with respect to
α we thus see that for

w = ρα (log ρ)m eg, α > −1, g ∈ C∞(Ω), m = 0, 1, 2, . . . ,

we have
Λw ∈ Ψ−1−α,m

log ,

with symbol

(36) σ(Λw)(x, ξ) =
Γ(α + 1)
2|ξ|α+1

eg(x) ‖∂r(x)‖α

(
log

‖∂r(x)‖
|ξ|

)m

.

With all these prerequisites in hand, we are ready to prove our main result.

Proof of Theorem 1. Let now w be as in (9). For any u, v ∈ C∞
hol(∂Ω),

(37)

〈Ku,Kv〉Ω,w = 〈wKu,Kv〉Ω
= 〈K∗wKu, v〉∂Ω

= 〈Λwu, v〉∂Ω

= 〈ΠΛwu, v〉∂Ω

= 〈TΛwu, v〉∂Ω.

Combining this with the findings from the previous paragraph, we see that u 7→
Ku sets up a Hilbert space isomorphism between L2

hol(Ω, w) and the space W T
hol

of Theorem 4, where T = TΛw , Λw ∈ Ψ−α−1,0
log and

σ(Λw) =
Γ(α + 1)
2|ξ|α+1

‖∂r(x)‖α η00(x) > 0,

i.e. Λw (hence, a fortiori, also TΛw) is pure elliptic. It remains to apply Theorem 5;
this gives (14) and, hence, (10). Finally, (20) yields (11). ¤

Remark. In more detail, the derivation of the exact form of (14) (with the numbers
mk from (13)) goes as follows. If w is of the form (12), i.e.

(38) w ≈ ρα
∞∑

k=0

ρk
Nk∑

j=0

(log ρ)j



800 Miroslav Englǐs

(we momentarily omit the various factors of τjk ∈ C∞(∂Ω), for brevity), then the
Boutet de Monvel calculus says that Λw has total symbol of the form

(39) σtotal(Λw) ∼ |ξ|−1−α
∞∑

k=0

|ξ|−k
Nk∑

j=0

(log |ξ|)j

(again, we temporarily omit the various factors of a−α−1−k,m(x, ξ
|ξ|) and indicate

just the orders of homogeneity in ξ). This is of the same form as the expansion
(38) for ρw if we replace ρ by |ξ|−1. Now the standard construction of the
parametrix amounts essentially to inverting (39) as a formal power series in |ξ|;
consequently, if, by (13),

w−1 ≈ ρ−α
∞∑

k=0

ρk
mk∑

j=0

(log ρ)j ,

then Λ−1
w must have total symbol of the form obtained from this by multiplying

by ρ−1 and substituting |ξ|−1 for ρ:

(40) σtotal(Λ−1
w ) ∼ |ξ|α+1

∞∑

k=0

|ξ|−k
mk∑

j=0

(log |ξ|)j .

The same thus holds for the operator P−1 in the proof of Theorem 5; and in
terms of the integral representation (22) for the Szegö kernel, we get by the proof
of Theorem 5

(P−1 ⊗ I)S ∼
∫ ∞

0
e−tρB(t) dt

where B is of the same form, as far as degrees of (log-)homogeneity in t are
concerned, as when the b(t) =

∑∞
l=0 tn−1−lbl from (22) is multiplied by the right-

hand side of (40) with |ξ| substituted by t. By the formulas in Lemma 6, (14) fol-
lows. ¤

The extension to weighted Sobolev spaces of holomorphic functions is now
straightforward. We present just one result of this kind; others can be obtained
along the lines of Theorem 9, Corollary 14, Corollary 19 and Corollary 21 in [9].

Theorem 7. Consider the space W#
hol(Ω) of all holomorphic functions on Ω hav-

ing finite norm

‖f‖2
# :=

∑

|ν|=m

(
m

ν

)
‖∂νf‖2

Ω,w +
∑

|ν|<m

|∂νf(x0)|2,
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with w as in (9), and x0 some fixed point of Ω; here the first sum extends over all
multiindices ν = (ν1, . . . , νn) ∈ Zn

≥0 with |ν| := ν1 + · · ·+ νn = m, and similarly

for the second sum. Then W#
hol(Ω) = W

m−1/2
hol (Ω) with equivalent norms, and

the reproducing kernel K#(x, y) of W#
hol(Ω) has the form (14) with α replaced by

α− 2m, and with some nonnegative finite integers mk, m0 = 0.

Proof. For any u, v ∈ C∞
hol(∂Ω), we have

〈Ku,Kv〉# =
∑

|ν|=m

(
m

ν

)
〈∂νKu, ∂νKv〉Ω,w +

∑

|ν|<m

∂νKu(x0)∂νKv(x0)

≡ 〈Θ′u, v〉+ 〈Θ′′u, v〉.

There exist differential operators Zk, k = 1, . . . , n, on ∂Ω such that

γ∂kf = Zkγf, ∀f ∈ C∞
hol(Ω)

(or ∂kKu = KZku ∀u ∈ C∞
hol(∂Ω)). Explicitly, one has

Zk = ∂k −
n∑

j=1

rjrk

‖∂r‖2
∂j ,

where for brevity we have introduced the notation

rj := ∂jr.

Thus we can write

(41)

〈∂νKu, ∂νKv〉Ω,w = 〈w∂νKu, ∂νKv〉Ω
= 〈wKZνu,KZνv〉Ω
= 〈Z∗νK∗wKZνu, v〉∂Ω

= 〈ΠZ∗νΛwZνu, v〉∂Ω.

Summing over ν we conclude that

Θ′ = TQ,

where

Q =
∑

|ν|=m

(
m

ν

)
Z∗νΛwZν
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belongs to Ψ−α−1+2m,0
log , and its principal symbol satisfies

σ(Q)|Σ =
∑

|ν|=m

(
m

ν

)
σ(Z)ν σ(Z)ν σ(Λw)|Σ

= |ξ|2m σ(Λw)|Σ,

since σ(Zk)|Σ = |ξ|
‖∂r(x)‖rk (see [9], the proof of Theorem 8).

On the other hand,

Θ′′ =
∑

|ν|<m

〈 · , P ν
x0
〉P ν

x0
,

where P ν
x0

(ζ) := ∂νP (ζ, · )|x0 is the derivative at x0 of the Poisson kernel P (ζ, x).
Since P is known to be C∞ on ∂Ω× Ω, Θ′′ is a smoothing operator.

Thus

T := Θ′ + Θ′′ = TQ + Θ′′ ∼ TQ

satisfies 〈Ku,Kv〉# = 〈Tu, v〉∂Ω, and since Θ′ and Θ′′ are both self-adjoint and
nonnegative (being sums of operators of the form A∗A, A = ∂νK : H2(∂Ω) →
L2(Ω, w), and 〈 · , f〉f , f ∈ H2(∂Ω), respectively), while Ker Θ′ = {polynomials
of degree < m} whereas Ker Θ′′ = {functions vanishing at x0 to order at least m},
T is positive. It follows that T ∼ TQ satisfies the hypothesis of Theorem 5, and
an application of the latter concludes the proof. ¤

Remark. For w of the form (34), the last theorem (and similar ones that can be
obtained along the same lines) gives a strengthening of Theorem 8 of [9] (which
required that w have no logarithmic terms, and also required that the integer m

in our Theorem 7 be < α + 1), with a simpler proof. ¤

Appendix

Let Π : L2(Ω) → L2
hol(Ω) be the Bergman projection. For any w ∈ L∞(Ω),

Tw := Πw|L2
hol(Ω)

is the Toeplitz operator on the Bergman space L2
hol(Ω) with symbol w; it can

alternatively be also viewed as the operator ΠwΠ on the whole L2(Ω) (upon ex-
tending by zero on L2(Ω) ª L2

hol(Ω)). The operator Tw also makes sense, as a
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densely defined (possibly unbounded) closable operator, even for any w ∈ L1(Ω),
by the recipe

Twf(x) :=
∫

Ω
w f Kx, ∀f ∈ C∞

hol(Ω);

see Section 2 of [9].

It was established by Guillemin [14] and Boutet de Monvel [4], and used ex-
tensively e.g. in [9], that for w of the form (34), the operator

Tw := γΠwK|H2(∂Ω)

obtained upon “transferring” Tw = Πw|L2
hol(Ω) to H2(∂Ω) by means of the oper-

ators K and γ, is actually (modulo smoothing operators) a generalized Toeplitz
operator TQ with Q a classical ΨDO on ∂Ω of order −α whose symbol can be
explicitly computed. We show that this remains true also for our more general
weights of the form (9), provided one allows for Q log-polyhomogeneous ΨDOs.
We begin with an auxiliary result.

Proposition 8. γΠK = T−1
Λ ΠΛ.

Proof. Set ΠΛ := KT−1
Λ ΠΛγ, an operator on L2

harm(Ω); we need to show that
ΠΛ = Π|L2

harm
. Since Λ ∈ Ψ−1

cl is elliptic, we have seen in course of the proof
of Theorem 4 that T−1

Λ maps W s
hol(∂Ω) onto W s−1

hol (∂Ω), for any s ∈ R; since
Π maps each W s(∂Ω) onto W s

hol(∂Ω), it thus follows that the range of ΠΛ is
W 0

hol(Ω) = L2
hol(Ω). Since T−1

Λ ΠΛ acts as the identity on the range of Π, it is fur-
ther immediate that Π2

Λ = ΠΛ; thus ΠΛ is a projection of L2
harm(Ω) onto L2

hol(Ω).
Finally, ΠΛ = KT−1

Λ ΠK∗ = KΠT−1
Λ ΠK∗ is evidently self-adjoint. So, indeed,

ΠΛ = Π. ¤

Corollary 9. Let w be of the form (9), possibly with nonzero N0 = m and with
arbitrary η00 ∈ C∞(Ω). Then Tw ∼ TQ, where Q ∈ Ψ−α,m

log and

σ(TQ) =
Γ(α + 1)
|ξ|α ‖∂r(x)‖α η00(x)

(
log

‖∂r(x)‖
|ξ|

)m

.

Proof. By (32) and (33),

γΠwK = γΠΠharmwK

= γΠKΛ−1K∗wK.
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Using the last proposition, we thus get

γΠwK = T−1
Λ ΠK∗wK = T−1

Λ ΠΛw

and

(42) γΠwK|H2(∂Ω) = T−1
Λ TΛw .

Using (36), in combination with (35) for w = 1 (thus giving the symbol of Λ),
and the property (P4) yields the claim. ¤

5. Examples

Recall that a domain functional is a map Ω 7→ fΩ assigning to each bounded
strictly pseudoconvex domain Ω ⊂ Cn with smooth boundary a function fΩ on Ω.
Examples of domain functionals are

Ω 7→ KΩ(x) := K(x, x),

the restriction to the diagonal of the Bergman kernel of Ω (with respect to the
Lebesgue measure); or

Ω 7→ SΩ(x) := S(x, x),

the restriction to the diagonal of the Szegö kernel of Ω (with respect to the
(2n− 1)-dimensional Hausdorff measure on ∂Ω).

The domain functional is said to be invariant of weight α, α ∈ R, if

fΩ = |Jφ|2α/(n+1) fφΩ ◦ φ

for any biholomorphic map φ : Ω → φΩ; here Jφ denotes the complex Jacobian
of φ. For instance, the Bergman kernel KΩ above is invariant of weight n + 1.
This follows from the well-known transformation rule for the Bergman kernel

(43) KΩ(x, y) = Jφ(x)Jφ(y) KφΩ(φ(x), φ(y)).

The Szegö kernel SΩ as defined above is not invariant, but can be made so upon
using instead of the Hausdorff measure an appropriately chosen “invariant” sur-
face element τ on ∂Ω; namely, τ is uniquely determined by

τ ∧ dρ = J [ρ]1/(n+1) dV on ∂Ω,
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where dV is the Lebesgue volume in Cn. Then SΩ is of weight n. The solution
u = uΩ of the Monge-Ampere equation (7) is an invariant domain functional of
weight −1. The Bergman invariant

βΩ :=
det[∂∂ log KΩ]

KΩ

is an invariant domain functional of weight 0. More generally, if fΩ is a nonvan-
ishing invariant domain functional of any weight α ∈ R, then

Ω 7→ det[∂∂ log fΩ]

is always an invariant of weight n + 1. Hence, for instance, the “Szegö invariant”

βΩ,Sz :=
det[∂∂ log SΩ]

S
(n+1)/n
Ω

(with SΩ the “invariantly” defined Szegö kernel) is of weight 0. Another invariant
of weight 0 is the scalar curvature of the Bergman metric,

RΩ := ∆Berg log det[∂∂ log KΩ],

where ∆Berg is the Laplace-Beltrami operator with respect to the Bergman metric.

One can also get new invariants from old ones by means of weighted Bergman
kernels.

Proposition 10. Let fΩ be a positive domain functional which is invariant of
weight α, α ∈ R. Then the weighted Bergman kernel KfΩ

(x, x) of L2(Ω, fΩ)
restricted to the diagonal is an invariant domain functional of weight n + 1− α.

Proof. If φ : Ω → φΩ is a biholomorphism, then

KΩ
fΩ

= KΩ
|Jφ|2α/(n+1)fφΩ◦φ

= |Jφ|−
2α

n+1 KΩ
fφΩ◦φ

= |Jφ|2−
2α

n+1 KφΩ
fφΩ

◦ φ.

Here the second equality used the fact that

K|g|2w(x, y) = g(x)−1 g(y)−1 Kw(x, y)

for any zero-free holomorphic function g, and the third follows from the general-
ization

KΩ
w◦φ(x, y) = Jφ(x) Jφ(y) KφΩ

w (φ(x), φ(y))
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of the transformation rule (43). ¤

Thus, for instance,

Ω 7→ Kuα
Ω
(x, x), α > −1,

is an invariant domain functional of weight n + 1 + α. Similarly, KβΩ
(x, x) is of

weight n + 1, and so is KRΩ
(x, x); and K

K
1−α/(n+1)
Ω

(x, x) is of weight α, for any
α > n.

For further discussion of invariant domain functionals, we refer to Hirachi and
Komatsu [16] and Hirachi [15].

The boundary behaviour of the kernels from the last proposition for the various
invariants fΩ mentioned above can be obtained from the results in the preceding
section. Recall that we have introduced the notation Am, m = 1, 2, . . . , for the
collection of all smooth functions on Ω of the form

w ≈
∞∑

j=0

(ρm log ρ)j ηj , ηj ∈ C∞(Ω),

with A∗m the subset of those w ∈ Am for which w|∂Ω > 0 (i.e. η0|∂Ω > 0); and
abusing the notation slightly we also used the same symbol for the analogous col-
lection of functions on Ω×Ω (with ρ interpreted then as ρ(x, y) rather than ρ(x)).

Example 11. As was already noted in the Introduction,

u ∈ ρA∗n+1,

with (u/ρ)|∂Ω = J [ρ]−1/(n+1). Thus for α > −1, w = uα is of the form (9), with
v := ρ−αw = (u/ρ)α ∈ A∗n+1.

Since Am is, modulo functions vanishing to infinite order at ∂Ω, isomorphic
to the ring of formal power series C∞(Ω)[[ρm log ρ]], with A∗m corresponding pre-
cisely to the subgroup of its invertible elements, it follows that v ∈ A∗n+1 implies
that also v−1 ∈ A∗n+1. By (14), we thus get

Kuα ≈
∞∑

j,k=0

ρ[−n−α−1+j+(n+1)k](log ρ)k υk + υ∞,

with some υk, υ∞ ∈ C∞(Ω× Ω), where

υ0(x, x) =
Γ(n + α + 1)

πn
J [ρ](x)1+α/(n+1) ∀x ∈ ∂Ω.
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For α noninteger, this means that

(44) Kuα ∈ ρ−n−α−1A∗n+1 + C∞(Ω× Ω),

in full accordance with (16). For α = 0, 1, 2, . . . , we get

Kuα ≈ ρ−n−α−1
( ∑

(n+1)k+j<n+α+1

ρ(n+1)k+j(log ρ)k ηkj

+
∑

(n+1)k+j≥n+α+1

ρ(n+1)k+j(log ρ)k+1 ηkj

)
,

with ηkj ∈ C∞(Ω× Ω). If α = (n + 1)a + b with a, b ∈ Z, a ≥ 0, 0 ≤ b ≤ n, then
we can rewrite (upon a small manipulation) the last formula as

Kuα ∈ ρ−n−α−1
(
A∗n+1 +

a+1∑

k=0

ρn+α+1(log ρ)k+1 τk + ρ(n+1)(a+2)(log ρ)a+3An+1

)
,

with some τk ∈ C∞(Ω× Ω); hence,

(45) Kuα ∈ ρ−α−n−1
(
A∗n+1 + (ρn+1 log ρ)a+1 log ρAn+1

)
.

Example 12. It was shown by the present author [8] that

βΩ ∈ A∗n+1, with βΩ|∂Ω =
(n + 1)nπn

n!
.

Thus for KβΩ
we get the same result as in the preceding example with α = 0, i.e.

KβΩ
∈ ρ−n−1

(
A∗n+1 + ρn+1(log ρ)2An+1

)
,

with

(ρn+1KβΩ
)|∂Ω =

n!2J [ρ]
(n + 1)nπ2n

.

Similar result holds also for KRΩ
, since

RΩ ∈ A∗n+1, RΩ|∂Ω = n,

cf. Theorem 1 (g) in [8].

Example 13. More generally, for any a, b, c ∈ R with b− (n + 1)c > −1,

w = βa
Ωub

ΩKc
Ω

is of the form ραA∗n+1, with α = b− (n + 1)c, and Kw has the form (44) if α /∈ Z
or (45) if α = 0, 1, 2, . . . .
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Example 14. The invariantly defined Szegö kernel SΩ satisfies

SΩ ∈ ρ−nA∗n, (ρnSΩ)|∂Ω =
(n− 1)!

πn
J [ρ]n/(n+1).

A similar analysis as in Example 11 shows that for any α > −1,

K
S
−α/n
Ω

∈ ρ−n−α−1A∗n + C∞(Ω× Ω)

for α noninteger, and

K
S
−α/n
Ω

∈ ρ−n−α−1
(
A∗n + (ρn log ρ)a+1 log ρAn

)

if α = na + b, with a, b integers, a ≥ 0, 0 ≤ b < n.

Example 15. The kernel in this example is not an invariant domain functional,
but involves higher order derivatives in a manner which is very natural from the
geometric viewpoint (cf. the remark after this example). Consider the Hilbert
space H of all holomorphic functions on Ω for which

‖f‖2
H :=

∫

Ω
|f |2 + ∆Berg|f |2

is finite. Here as before

∆Berg =
n∑

j,k=1

gkj∂j∂k

denotes the Laplace-Beltrami operator with respect to the Bergman metric, i.e. gkj

is the inverse matrix to gjk,
n∑

l=1

gklglj = δkj ,

where

gjk(z) :=
∂2

∂zj∂zk
log KΩ(z).

The same computation as in (41) shows that

〈Ku,Kv〉H = 〈TQu, v〉∂Ω,

for any u, v ∈ C∞
hol(∂Ω), where

Q = Λ +
n∑

j,k=1

Z∗kΛ
gkjZj .
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We have seen that Zj , Z∗k are differential operators of order 1, with symbols on
Σ given by |ξ|

‖∂r‖rj and |ξ|
‖∂r‖rk, respectively. On the other hand, it was shown in

Theorem 1 (d) in [8] that

gkj ∈ ρAn+1, with (ρ−1gkj)|∂Ω = − Rkj

n + 1
,

where ρRkj is the inverse matrix to ρjk := ∂j∂k log ρ; further, it transpires from
Lemma 6, Proposition 7 and Lemma 8 in [8], and from the formula after (38) on
page 35 there, that

n∑

j,k=1

gkjrkrj ∈ ρ2An+1, with
(∑n

j,k=1 gkjrkrj

ρ2

)∣∣∣
∂Ω

=
1

n + 1
.

The first of these facts implies that
∑

j,k Z∗kΛ
gkjZj is a ΨDO on ∂Ω of order

ord(Z∗k)+ord(Zj)− 1− (the order of vanishing of gkj at ∂Ω) = 1+1− 1− 1 = 0,
whose symbol restricted to Σ is

|ξ|2
‖∂r‖2

n∑

j,k=1

rkrj
gkj

ρ

∣∣∣
∂Ω

= 0

— that is, the corresponding Toeplitz operator is in fact of order −1; and the
second then implies that the principal symbol of this Toeplitz operator is simply

1
n+1 |ξ|−1. Thus

ord(TQ) = −1, σ(TQ) = 1 +
1

n + 1
,

and the total symbol of Q is of the same form as for Kw in the proof of Theorem 1
with w ∈ C∞(Ω)+ρn log ρAn+1 ⊂ A∗n, where w|∂Ω = n+2

n+1 . Applying Theorem 5,
we thus conclude that H = L2

hol(Ω) is in fact the Bergman space, and using (14)
we get for the corresponding reproducing kernel

KH ∈ ρ−n−1A∗n.

Remark. Note that the norm in H can be written as

‖f‖2
H =

∫

Ω
|f |2 + ‖∇Bergf‖2,

since for f holomorphic, ∆Berg|f |2 =
∑

j,k gkj∂jf∂kf is the norm of the covariant
derivative ∇Bergf with respect to the Bergman metric. Thus, naively, one might
view H as a “covariantly defined” first order holomorphic Sobolev space. That
it turns out to coincide with the Bergman space, as the last example shows,
is therefore perhaps mildly surprising.
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We remark that the same conclusion holds also for the variant when ∆Poinc,
the Laplace-Beltrami operator with respect to the Poincare metric gjk = ∂j∂k log 1

u ,
is used instead of ∆Berg.

At least for Ω the unit ball of Cn, it seems that the same conclusion as in the
last example is also obtained if one uses higher powers ∆m|f |2 of the Laplacian,
m = 2, 3, . . . . ¤

We conclude by mentioning one more extension of our method, namely, to weights
of the form

(46) w ≈
∞∑

j=0

ραj

mj∑

k=0

(log ρ)k ηjk, ηjk ∈ C∞(Ω),

with η00|∂Ω > 0, mj finite integers, m0 = 0, and αj ∈ R satisfying αj ↗ +∞.
In the language of formal series used in the Introduction, this admits the following
description. For any ring R with identity e, let R{{ρ}} stand for the ring of all
“power series with real exponents” over R, i.e. of all formal sums

R =
∞∑

j=0

Rjρ
αj , Rj ∈ R, αj ∈ R,

where αj ↗ +∞. The last condition ensures that there are only finitely many
αj less than any given real number, and thus one can define addition and mul-
tiplication of such formal sums in the usual way. Finally, eρ0 ∈ R{{ρ}} is the
identity for R{{ρ}}, and R is invertible in R{{ρ}} if and only if R0 is invertible
in R. With these notions, (46) can be rephrased as

w is an invertible element of C∞(∂Ω)[log ρ]{{ρ}}
modulo functions in C∞(Ω) that vanish to infinite order at the boundary.

A computation similar to (37) then reveals that for any u, v ∈ C∞
hol(∂Ω),

〈Ku,Kv〉Ω,w = 〈TQu, v〉∂Ω,

where Q is a ΨDO with total symbol of the form
∞∑

j=0

nj∑

k=0

a−βj ,k

(
x,

ξ

|ξ|
)
|ξ|−βj (log |ξ|)k for |ξ| > 1,

where nj < ∞, n0 = 0, a−β0,0 > 0, and βj is the sequence obtained by rearranging
the set {αj +m+1 : j, m ≥ 0} in increasing order. It is easily checked that all the
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proofs in the preceding sections remain valid even for ΨDOs of this “multistep”
form (see e.g. [26] for the complex powers of such operators), and, consequently,
yield an analogue of (14) to the effect that if

(47) w−1 ≈
∞∑

j=0

ργj

kj∑

k=0

(log ρ)k µkj , µkj ∈ C∞(∂Ω),

then

Kw ≈
∞∑

j=0

ρ[−n−1+δj ]

nj∑

k=0

(log ρ)k υkj + υ∞,

where δj is the sequence obtained upon rearranging the set {γj + l : j, l ≥ 0}
in increasing order, nj = max{ki : γi + l = δj}, and υkj , υ∞ ∈ C∞(Ω × Ω).
(These extra shifts by positive integers appear due to the fact that the symbol
b(x, y, t) for the Szegö kernel in (22) contains powers of t increasing by one, and
also the construction of parametrix of an elliptic ΨDO involves induction over
orders going down with step one.) An extension to Sobolev-Bergman kernels is
likewise straightforward.

Example 16. Let w ∈ C∞(Ω) be a positive weight function of the form

w = ραw1 + w2, w1, w2 ∈ C∞(Ω),

where 0 < α < 1 and w2|∂Ω > 0. This is of the form (46) with α2j = j,
α2j+1 = j + α. The inverse w−1 is of the form (47) where γj is obtained upon
rearranging the set {l + kα : l, k ≥ 0} in the increasing order. Consequently,

Kw ≈
∞∑

l,k=0

ρ[l+kα−n−1] υkl, υkl ∈ C∞(Ω× Ω),

or

Kw =
∑

0≤k< n+1
α

ρkα−n−1υk +
∑

n+1
α
≤k<∞

ρkα−n−1υk log ρ

for some υk ∈ C∞(Ω× Ω), with υ0|diag ∂Ω > 0.
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Žitná 25, 11567 Prague 1, Czech Republic
E-mail: englis@math.cas.cz


