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On Dominating Sets for Uniform
Algebra on Pseudoconvex Domains
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Abstract: In this article we study the dominating phenomenon for uni-
form algebra on pseudoconvex domains in several complex variables.
We prove that a subset E of a bounded domain D is a dominating set
for A(D) if and only if E contains the Shilov boundary S(D) of A(D).
Keywords: dominating set, uniform algebra, peak function, Shilov
boundary, pseudoconvex domain

1. Introduction

Let D be a bounded pseudoconvex domain in Cn, n ≥ 2, and let ∂D denote
the boundary of D. Denote by O(D) the space of holomorphic functions on D.
Let A(D) be the uniform algebra on D defined by A(D) = O(D) ∩ C(D). As
usual, the norm on A(D) is supremum norm ‖ · ‖∞.

Definition 1.1. A subset E of D is called a dominating set for A(D) with respect
to the supremum norm if every two functions f, g ∈ A(D) with |f(z)| ≤ |g(z)|
for z ∈ E implies ‖ f ‖∞≤‖ g ‖∞.
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In this note we shall study the dominating phenomenon for uniform algebra
on pseudoconvex domains in several complex variables. For some terminology
of several complex variables the reader is referred to any standard texts, for
instance, Krantz[19], Range[21] and Chen and Shaw[6].

First, we recall the definition about peak function.

Definition 1.2. Let p be a boundary point of a domain D in Cn, n ≥ 2. p is
said to be a peak point relative to A(D) if there exists a function f ∈ A(D) such
that f(p) = 1 and |f(q)| < 1 for q ∈ D \ {p}. Such an f is called a peak function
for A(D) at p.

We also recall the definition of the Shilov boundary.

Definition 1.3. A closed subset S(D) of the boundary ∂D of a bounded domain
D is called the Shilov boundary of A(D) if S(D) is the smallest closed subset of
∂D such that every function f ∈ A(D) assumes its maximum modulus on S(D).

When D is a bounded domain in Cn, A(D) is a uniform algebra on D. Clearly,
the Shilov boundary must contains all the peak points. In fact, it is known that
the Shilov boundary S(D) of A(D) on a compact metric space is the closure of
the set of all peak points. For instance, see Gamelin[15].

When n = 1 and D is the open unit disc in the complex plane, Danikas and
Hayman[9] proved the following result. See also Hayman[17].

Theorem 1.4. Let E be a subset of the open unit disc U in the complex plane.
Then E is a dominating set for A(U) if and only if E contains ∂U .

In fact, Theorem 1.4 can be stated on a more general punctured domain in
one complex variable.

Theorem 1.5. Let Ω = D \ ∪∞j=1Dj be a domian in C, where D and Dj are
bounded domains with Jordan curves as their boundaries such that Dj, j ∈ N,
are relatively compact subdomians of D and that Dj ∩Dk = ∅ for j 6= k. Let E

be a subset of Ω. Then E is a dominating set for A(Ω) if and only if E contains
the boundary ∂Ω = ∂D ∪ (∪∞j=1∂Dj), that is, the Shilov boundary S(Ω) = ∂Ω.

Proof. It suffices to show every boundary point is a peak point. For outer bound-
ary ∂D, this can be seen easily by composing a conformal mapping from the open
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unit disc onto D. For any one of the inner boundary ∂Dj , one can pick a point
zj ∈ Dj and apply inversion mapping with respect to zj . This proves the theo-
rem.

Then, we prove the following main result in several complex variables.

Theorem 1.6. Let D be a bounded domain in Cn, n ≥ 2, and let E be a subset
of D. Then E is a dominating set for A(D) if and only if E contains the Shilov
boundary S(D).

Proof. First, suppose that E contains the Shilov boundary S(D), and that f, g ∈
A(D) with |f(z)| ≤ |g(z)| for z ∈ E. Then, by continuity, we have |f(z)| ≤
|g(z)| for all z ∈ S(D). Since S(D) is the Shilov boundary, we have ‖ f ‖∞=‖
f ‖∞,S(D)≤‖ g ‖∞,S(D)=‖ g ‖∞.

On the other hand, if p ∈ ∂D\E is a peak point, then there is a peak function
f(z) at p. Obviously, supz∈E |f(z)| = m < 1. Thus, if we let g(z) ≡ m, it is
easily seen that |f(z)| ≤ |g(z)| for z ∈ E, but ‖ f ‖∞= 1 > m =‖ g ‖∞. This
shows that E can not be a dominating set for A(D). Hence, E must contains
all of the peak points, and hence, by density, the Shilov boundary S(D). This
completes the proof of the theorem.

Thus, from the theory of peak functions we immediately obtain the following
consequences of Theorem 1.6.

Theorem 1.7. The assertion of Theorem 1.6 holds with S(D) = ∂D if D belongs
to one of the following classes:

(1) D is a strictly convex bounded domain with C1 boundary;
(2) D is a smooth bounded pseudoconvex domain such that the peak points

are dense in the boundary.

Proof. First, by strict convexity of D we mean that the tangent hyperplane Hp

of D at the boundary point p intersects the closure of D at exactly one point,
i.e., Hp ∩D = {p}. Thus, following directly from its geometric properties, every
boundary point is a peak point. This proves (1). (2) is obvious. This completes
the proof of the theorem.

Some remarks are in order.
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Remarks. (i) It is possible that some boundary points of domains in class (1)
are of infinite type. Also, class (1) contains smooth bounded convex domains
with real analytic boundary.

(ii) Class (2) contains many important and interesting subclasses that have
been treated independently before. We mention some of them here.

(a) D is a smooth bounded strongly pseudoconvex domain. Hence, every
boundary point is a peak point. See Rossi[22] and Epe[12].

(b) D is a smooth bounded pseudoconvex domain of finite type in C2. Hence,
every boundary point is a peak point. See Fornaess and McNeal[13]. This class
also contains smooth bounded pseudoconvex domains in C2 with real analytic
boundary. See Bedford and Fornaess[5].

(c) D is a smooth bounded pseudoconvex domain of finite type in Cn, n ≥ 2.
Obviously, classes (a) and (b) are special cases of this class. The notion of fi-
nite type was introduced by D’Angelo[8]. Later, Catlin[4] showed that smooth
bounded pseudoconvex domain of finite type satisfies condition (P). Then, Sibony
showed in [23] that condition (P) is equivalent to the notion called B-regularity.
Thus, again from the work of Sibony[23] we see that plurisubharmonic barrier
exists at every boundary point of domains of finite type. Here, by a plurisubhar-
monic barrier at a boundary point p we mean that there is a function u(z) ∈ C(D)
such that u is plurisubharmonic in D and that u(p) = 0 and u(q) < 0 for
q ∈ D\{p}. Therefore, every boundary point p of domains of finite type is in the
closure of strongly pseudoconvex boundary points(see Basener[2]). Finally, by
using Kohn’s global regularity result for ∂(see Kohn[18]), Hakim and Sibony[16]
and Pflug[20] showed that every strongly pseudoconvex boundary point of D is a
peak point. It follows that peak points are dense in the boundary of any smooth
bounded pseudoconvex domain of finite type in Cn.

(d) As noted in (c), (2) can be applied to any smooth bounded pseudoconvex
domains as long as the strongly pseudoconvex points are dense in the boundary.
Thus, a complex variety may exist in the boundary. In particular, it can be
applied to the famous worm domain constructed by Diederich and Fornaess[11]
on which the global regularity of the ∂-Neumann problem fails. For instance, see
Barrett[1] and Christ[7].

In general, the Shilov boundary S(D) might be strictly smaller than the topo-
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logical boundary of the domain as shown by the following examples in several
complex variables.

Theorem 1.8. Let Ω = D\K, where D is one of the domains stated in Theorem
1.7, and K is a compact subset of D. Let E be a subset of Ω. Then E is a
dominating set for A(Ω) if and only if E contains the outer boundary of Ω, i.e.,
the Shilov boundary S(D) = ∂D.

Proof. The assertion follows immediately from Hartogs extension theorem and
Theorem 1.7.

Note that the domain Ω in Theorem 1.8 is not pseudoconvex. For related
results the reader is referred to Bremermann[3].

Another interesting and important example is the Hartogs triangle defined by
Ω = {(z, w) ∈ C2 | |z| < |w| < 1}. Hartogs triangle is a domain of holomorphy
with nontrivial Nebenhülle.

Theorem 1.9. Let Ω be the Hartogs triangle, and let E be a subset of Ω. Then
E is a dominating set for A(Ω) if and only if E contains the torus T = {|z| =
1} × {|w| = 1}, i.e., the torus T is the Shilov boundary S(Ω).

Proof. The key of the proof is to see that for any f ∈ A(Ω), ‖ f ‖∞,Ω=‖ f ‖∞,T .
Let w = zeiθ 6= 0, |z| < 1, for some θ, be a boundary point. Then the complex
disc

4 = {(λz, λzeiθ) | λ ∈ C, |λ| < 1/|z|}
lies in the boundary ∂Ω. Since f ∈ A(Ω), f |∂Ω ∈ A(4). The assertion now
follows from maximum modulus principle. This shows that ‖ f ‖∞,Ω=‖ f ‖∞,T .

On the other hand, it is also easy to see that the torus T is exactly the set
formed by all peak points for A(Ω). This proves the theorem.

2. Convex domains

In this section we shall discuss briefly the problem on smooth bounded convex
domain D. For p ∈ ∂D, denote by Hp the hyperplane tangent to D at p, and
let Tp = Hp ∩D. Note that Tp is a compact convex subset of the boundary ∂D.
Denote also by T o

p the interior of Tp. We shall call p a strictly convex point if
Tp = {p}. Clearly, a strictly convex point is a peak point.
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Due to geometric simplicity of strictly convex points of a convex domain, it
arises a natural question. Namely, is the set of all strictly convex points dense
in the Shilov boundary S(D) on any smooth bounded convex domain D? We
exhibit in the following examples that, in general, this is not true.

Example 2.1. Let D be a bounded convex domain in the complex plane with
C2 boundary. It is well known that S(D) = ∂D. Suppose now that the boundary
∂D of D conatins a line segment L. Clearly, every boundary point p ∈ L is not
strictly convex. Hence, the set of all strictly convex points is not dense in the
Shilov boundary S(D) on this convex domain D.

Next example demonstrates a similar phenomenon in several complex vari-
ables.
Example 2.2. Let D be a smooth bounded convex domain in Cn, n ≥ 2, and
let p = (1, · · · , 1, 0) be a boundary point of D. Suppose that, in some open
neighborhood U of p, D ∩ U is defined by

D ∩ U = {z ∈ U | ρ(z) =
n−1∑

i=1

|zi| − 1
2
(zn + zn)− (n− 1) < 0}.

We may assume that z1 · · · zn−1 6= 0 for z ∈ ∂D∩U . Since the defining function ρ

is independent of t = Imzn, it is not hard to see that dimRT o
z = n for z ∈ ∂D∩U .

A direct calculation of the complex Hessian gives

∂2ρ

∂zi∂zi
(z) =

1
4|zi| > 0, 1 ≤ i ≤ n− 1;

∂2ρ

∂zn∂zn
(z) = 0,

∂2ρ

∂zi∂zj
(z) = 0, i 6= j, 1 ≤ i, j ≤ n,

for z ∈ ∂D ∩ U . Now, choose a basis of tangential type (1,0) vector fields

Li =
∂ρ

∂zn

∂

∂zi
− ∂ρ

∂zi

∂

∂zn
= −1

2
∂

∂zi
− 1

2
zi

|zi|
∂

∂zn
,

for z ∈ ∂D ∩ U and 1 ≤ i ≤ n− 1. This shows that the Levi form at any
z ∈ ∂D ∩ U is positive definite. It follows that all of the boundary points
z ∈ ∂D∩U are strongly pseudoconvex, and hence, peak points. This shows that
the set of all strictly convex points is not dense in the Shilov boundary S(D).

However, under suitable hypothesis we show in the next theorem that the
strictly convex points indeed are dense in the Shilov boundary.
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Theorem 2.3. Let D be a smooth bounded convex domain in Cn, n ≥ 2. Sup-
pose that, for p ∈ ∂D, either p is a strictly convex point or dimRT o

p ≥ n + 1. Let
F be the set of all strictly convex points of the boundary, and let E be a subset
of D. Then E is a dominating set for A(D) if and only if E contains the Shilov
boundary S(D) = F .

Proof. Clearly, F is contained in S(D). Conversely, if p ∈ ∂D \ F , then p is not
a strictly convex point. Observe that p is an interior point of ∂D \ F . Now, if
we apply complex structure to the space T o

p , we see from hypothesis that any
point q ∈ T o

p lies in a complex disc sitting in the boundary. It indicates that
p can not be a strongly pseudoconvex point. Since peak points are all in the
closure of strongly pseudoconvex points, thus F contains all of the peak points.
For instance, see Debiard and Gaveau[10] and Basener[2]. Hence, S(D) = F .
This proves the theorem.

Examples 2.1 and 2.2 show that the hypothesis on dimension of T o
p in Theorem

2.3 is optimal. Convex domains that satisfy the hypothesis of Theorem 2.3 can
be constructed easily. For instance, let Bn be the unit open ball in Cn, and let
Dα = Bn ∩ {z ∈ Cn | yn = Imzn < α} for some 0 < α < 1. Then let D be
obtained from Dα by rounding the edge of Dα. It is not hard to see that D is a
smooth bounded convex domain that is Levi-flat on a real (2n− 1)-dimensional
closed ball V sitting in the hyperplane {z ∈ Cn | yn = α}. We may also assume
that D is strictly convex outside V .

Next, we consider the problem on convex Reinhardt domains, and show that
the hypothesis on dimension of T o

p can be reduced by one on such domains.
Recall that a domain D is called Reinhardt if z = (z1, · · · , zn) ∈ D implies
(z1e

iθ1 , · · · , zneiθn) ∈ D for all real θj , 1 ≤ j ≤ n.

Theorem 2.4. Let D be a smooth bounded convex Reinhardt domain in Cn,
n ≥ 2. Let F be the set of all strictly convex points of the boundary, and let
E be a subset of D. Suppose that, if p ∈ ∂D \ F , dimR(T o

p ) ≥ n. Then E is a
dominating set for A(D) if and only if E contains the Shilov boundary S(D) = F .

Proof. Let p ∈ ∂D \F , then p is not a strictly convex point. Hence, dimR(T o
p ) ≥

n. If dimR(T o
p ) ≥ n + 1, then we argue as in the proof of Theorem 2.3. Thus, we

may assume that dimR(T o
p ) = n.
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Let q ∈ T o
p . Write q = (r1(q)eiθ1(q), · · · , rn(q)eiθn(q)). We shall denote the

complex line Li = {z ∈ Cn | zj = rj(q)eiθj(q), j 6= i}, and denote

eiθj T o
p = {(z1, · · · , zj−1, e

iθj zj , zj+1, · · · , zn) | z ∈ T o
p }.

We claim that Li∩T o
p contains more than one point for some i. If not, we will

have Li∩T o
p = {q} for 1 ≤ i ≤ n. Since eiθj T o

p lies in the boundary by rotational
symmetry for 1 ≤ j ≤ n, this shows that, in some open neighborhood of q, the
boundary ∂D will have dimension 2n which is not possible.

Thus, we may assume that L1∩T o
p contains more than the point q, say, q1 6= q.

Note that q1 ∈ T o
p , so q1 is also a boundary point. Now, by convexity of D and

q, q1 ∈ Hp, we see that the line segment qq1 lies in the boundary, and hence,
in L1 ∩ T o

p . Then, by rotation in z1 direction, the line segment qq1 generates
an annulus in z1 contained in the boundary. Again, by convexity it will force
a whole complex disc U in z1 centerred at the origin to sit in the boundary.
Obviously, q ∈ U . It indicates that p can not be a strongly pseudoconvex point.
Then, we argue as in the proof of Theorem 2.3, and the proof of the theorem is
now completed.

A related result concerning the peak points on Reinhardt domains can be
found in Gamelin[14].

Again, as shown in the following example, the hypothesis dimR(T o
p ) ≥ n stated

in Theorem 2.4 is optimal on convex Reinhardt domains.

Example 2.5. Let D be a smooth bounded convex Reinhardt domain in Cn,
n ≥ 2. Suppose that a piece of the boundary W is defined by

W = {z ∈ ∂D | ρ(z) =
n∑

i=1

ai|zi| − 1 = 0, ai > 0, 1 ≤ i ≤ n},

where 0 < αi < |zi| < βi < 1/ai for some appropriate positive real αi, βi,
1 ≤ i ≤ n. Obviously, W is an open subset of the boundary, and points in W

are not strictly convex. Note that dimR(T o
p ) = n− 1 for p ∈ W .

Then, a direct calculation of the complex Hessian gives

∂2ρ

∂zi∂zi
(z) =

ai

4|zi| > 0, 1 ≤ i ≤ n;
∂2ρ

∂zi∂zj
(z) = 0, i 6= j, 1 ≤ i, j ≤ n,
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for z in W . This shows that the Levi form at any z in W is positive definite. It
follows that all of the boundary points z in W are strongly pseudoconvex, and
hence, peak points. Thus, the set of all strictly convex points is not dense in the
Shilov boundary S(D).

3. Product domains

For product domains we have the following result.

Theorem 3.1. Let D =
∏k

j=1 Dj be a bounded domain in C
∑k

j=1 nj , where Dj,
j = 1, 2, · · · , k, is a bounded domain in Cnj . Suppose that S(Dj) is the Shilov
boundary of A(Dj). Let E be a subset of D. Then E is a dominating set for
A(D) if and only if E contains the Shilov boundary S(D) =

∏k
j=1 S(Dj) of D.

Proof. First, observe that (p1, · · · , pk) ∈ ∂D is a peak point for A(D) if and only
if pj ∈ ∂Dj , j = 1, 2, · · · , k, is a peak point for A(Dj). Hence, the set of all
peak points of D is dense in S(D) =

∏k
j=1 S(Dj). To see any function f ∈ A(D)

assumes its maximum modulus in S(D), simply observe that the restriction of f

to any coordinate zj is in A(Dj). This proves the theorem.
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