
Pure and Applied Mathematics Quarterly

Volume 6, Number 3

(Special Issue: In honor of

Joseph J. Kohn, Part 1 of 2 )

693—714, 2010

Conformally Invariant Operators via Curved

Casimirs: Examples
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Abstract: We discuss a scheme for a construction of linear conformally
invariant differential operators from curved Casimir operators; we then ex-
plicitly carry this out for several examples. Apart from demonstrating the
efficacy of the approach via curved Casimirs, this shows that this method
is general in that it applies both in regular and in singular infinitesimal
character, and also that it can be used to construct standard as well as
non–standard operators. (Nevertheless the scheme discussed here does not
recover all operators.) The examples treated include conformally invariant
operators with leading term, in one case, a square of the Laplacian, and in
another case, a cube of the Laplacian.
Keywords: conformally invariant differential operators, curved Casimir op-
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1. Introduction

Curved Casimir operators were originally introduced in [7] in the setting of
general parabolic geometries. For any natural vector bundle associated to such a
geometry, there is a curved Casimir operator which acts on the space of smooth
sections of the bundle. The name of the operator is due to the fact that on the
homogeneous model of the geometry, it reduces to the canonical action of the
quadratic Casimir element. The curved Casimir operators may be expressed by
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a simple (Laplacian like) formula in terms of the fundamental derivative from
[3] and hence share the very strong naturality properties of the fundamental de-
rivative. While on a general natural vector bundle the curved Casimir operator
is of order at most one, it always acts by a scalar on a bundle associated to an
irreducible representation. This scalar can be easily computed from representa-
tion theory data. It was already shown in [7] that using this and the naturality
properties, one can use the curved Casimir operators systematically to construct
higher order invariant differential operators. Namely, [7] contains a general con-
struction of splitting operators, which are basic ingredients in all versions of the
curved translation principle.

Essentially the same construction can be also used to directly obtain invariant
differential operators acting between sections of bundles associated to irreducible
representations. One considers the tensor product of a tractor bundle and an
irreducible bundle. Such a bundle has an invariant filtration such that the quo-
tients of subsequent filtrations components are completely reducible. Adapting
the action of the centre of the structure group (which amounts to tensoring with
a density bundle), one may force a coincidence of curved Casimir eigenvalues
for irreducible components in different subquotients. As we shall see this leads
to an invariant linear differential operator acting between the sections of these
components. A more difficult issue is to prove, in some general context, that the
resulting operator is nontrivial. General tools for doing this systematically are
developed in [5].

The purpose of this article is to carry out the construction of invariant oper-
ators explicitly for a few examples in the realm of conformal structures. First,
this shows that the general ideas can be made explicit rather easily. Secondly, it
shows that the curved Casimir operators can be used to produce both standard
and non–standard operators, and they work both in regular and in singular infini-
tesimal character; this is in contrast to the usual constructions of BGG sequences
as developed in [6, 1].

Finally, we want to indicate how some of the well known and intriguing phe-
nomena concerning conformally invariant powers of the Laplacian show up in
the approach via curved Casimirs. In particular, this concerns the fact that the
critical powers of the Laplacian are not strongly invariant and the non–existence
of supercritical powers of the Laplacian.
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2. Examples of conformally invariant operators

constructed from curved Casimirs

2.1. Conformal structures, tractor bundles, and tractor connections.
We shall use the conventions on conformal structures from [4]. We consider a
smooth manifold M of dimension n ≥ 3 endowed with a conformal equivalence
class [g] of pseudo–Riemannian metrics of some fixed signature (p, q). We use
Penrose abstract index notation, so Ea will denote the tangent bundle TM and
Ea the cotangent bundle T ∗M . Several upper or lower indices will indicate ten-
sor products of these basic bundles, round brackets will denote symmetrisation,
square brackets alternation, and the subscript 0 indicates a tracefree part.

For w ∈ R we denote by E [w] the bundle of (−w
n )–densities on M . For any

choice of metric g in the conformal class, sections of E [w] can be identified with
smooth functions but changing from g to ĝ = f2g (where f is a positive smooth
function on M), this function changes by multiplication by fw. Adding [w] to
the notation for a bundle indicates a tensor product with E [w]. Using these
conventions, the conformal structure can be considered as a smooth section gab

of the bundle E(ab)[2], called the conformal metric. Contraction with gab defines
an isomorphism Ea ∼= Ea[2], whose inverse can be viewed as a smooth section gab

of E(ab)[−2]. We shall use gab and gab to raise and lower tensor indices.
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The standard tractor bundle of (M, [g]) will be denoted by EA. This is a vector
bundle of rank n + 2 canonically associated to the conformal structure. It is
endowed with a canonical bundle metric hAB of signature (p+1, q+1) which will
be used to raise and lower tractor indices. Further, there is a canonical linear
connection ∇T on EA which is equivalent to the conformal Cartan connection.
Finally, there is a canonical inclusion E [−1] ↪→ EA whose image is an isotropic
line subbundle of EA. This can be viewed as a canonical section XA of EA[1]
which satisfies hABXAXB = 0. Next, XA := hABXB can be interpreted as a
projection EA → E [1]. These data fit together to define a composition series
for EA that we shall denote E [1] +̈§ Ea[1] +̈§ E [−1]; the second +̈§ indicates that
E [−1] is a subbundle of EA while the first +̈§ means Ea[1] is (isomorphic to) a
subbundle of the quotient bundle EA/E [−1] and that (EA/E [−1])/Ea[1] ∼= E [1].
(The motivation for the notation is that summands include, while there is a
projection onto direct summands). General tractor bundles then correspond to
SO(p + 1, q + 1)–invariant subspaces in tensor powers of R(p+1,q+1), and we will
also use abstract index notation for tractor indices.

Any choice of a metric g in the conformal class gives rise to a splitting EA ∼=
E [1]⊕Ea[1]⊕E [−1] of the composition series. The change of this splitting caused
by a conformal rescaling of the metric can be easily described explicitly, see [2],
but we will not need these formulae here. What we will need is the expression of
the tractor connection in the splitting associated to g in terms of the Levi–Civita
connection∇ of g. To formulate this efficiently, we need the adjoint tractor bundle
of (M, [g]). By definition, this is the bundle so(EA) ∼= E[AB] of endomorphisms of
EA which are skew symmetric with respect to the tractor metric. By definition,
this bundle naturally acts on EA and hence (tensorially) on any tractor bundle.

Now the composition series of EA gives rise to a composition series E[AB] =
Ea +̈§ (E[ab][2]⊕E [0]) +̈§ Ea, so the adjoint tractor bundle contains T ∗M as a natural
subbundle and has TM as a natural quotient. A choice of metric in the conformal
class also splits this composition series, so we obtain an isomorphism E[AB]

∼=
Ea⊕ (E[ab][2]⊕E [0])⊕Ea depending on the choice of metric. In particular, we can
view elements of T ∗M naturally as elements of the adjoint tractor bundle and,
choosing a metric in the conformal class, we can also view elements of TM as
elements in the adjoint tractor bundle.
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There are explicit formulae showing how the identifications of tractor bundles
behave under a conformal change of metric, see e.g. Theorem 1.3 of [2]. However,
we will not need this formulae here, since we will always deal with operations
which are known to be invariant in advance and use the splittings only to compute
explicit formulae for these operations. We shall only need the formula for the
canonical tractor connection in a splitting, which also can be found in Theorem
1.3 of [2]. This formula is given in the proposition below. Note that, comparing
with [2], the difference in the sign of the term involving the Rho tensor (also
sometimes called the Schouten tensor) is due to the fact that [2] uses a different
sign convention for the Rho–tensor than [4].

Proposition. Consider a tractor bundle T → M for a conformal structure [g]
on M , and let ∇T be the canonical tractor connection on T . Choose a metric g

in the conformal class with Rho tensor P and let ∇ be its Levi Civita connection,
acting on T via the isomorphism with a direct sum of weighted tensor bundles
induced by the choice of metric. Further let us denote by • both the actions of
T ∗M and of TM (the latter depending on the choice of metric) coming from the
inclusion of the bundles into the adjoint tractor bundle. Then for any vector field
ξ ∈ X(M) and any section s ∈ Γ(T ) we have

∇Tξ s = ∇ξs + ξ • s− P(ξ) • s.

2.2. A formula for the curved Casimir operator. The main tool used to
efficiently treat examples is a new formula for the curved Casimir operator acting
on the tensor product of a tractor bundle and an irreducible bundle. Consider
the group G := SO(p + 1, q + 1) and let P ⊂ G be the stabiliser of an oriented
isotropic line in the standard representation R(p+1,q+1) of G. Then it is well
known that P is the semidirect product of the (orientation preserving) conformal
group CSO(p, q) and a normal vector subgroup P+

∼= Rn∗. It is also well known
that a conformal structure of signature (p, q) on a smooth manifold M determines
a canonical Cartan geometry of type (G,P ), so in particular there is a canonical
principal bundle on M with structure group P . Forming associated bundles, any
representation of the group P gives rise to a natural vector bundle on conformal
manifolds.

The conformal group CSO(p, q) is naturally a quotient of P , so any represen-
tation of CSO(p, q) gives rise to a representation of P . The resulting represen-
tations turn out to be exactly those representations of P which are completely
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reducible, so they split into direct sums of irreducibles. The corresponding bun-
dles are called completely reducible bundles and they split into direct sums of
irreducible bundles. The completely reducible bundles are exactly the usual ten-
sor and density bundles. On the other hand, one can look at restrictions to P of
representations of G, and these give rise to tractor bundles. The standard trac-
tor bundle EA and the adjoint tractor bundle E[AB] from 2.1 above correspond
to the standard representation R(p+1,q+1) respectively the adjoint representation
so(p + 1, q + 1) of G in this way.

Now recall first from Theorem 3.4 of [7] that the curved Casimir operator on an
irreducible bundle W → M acts by a real multiple of the identity, and we denote
the corresponding scalar by βW . This scalar can be computed in terms of weights
of the representation which induces W . If the lowest weight of this representation
is −ν, then βW = 〈ν, ν + 2ρ〉, where ρ is half the sum of all positive roots. On
a completely reducible bundle, the action of the curved Casimir is tensorial and
can be obtained by decomposing the bundle into irreducible pieces, multiplying
each piece by the corresponding factor and then adding back up.

Proposition. Let (M, [g]) be a conformal manifold of signature (p, q) and let
T → M be a bundle which can be written as the tensor product of a tractor
bundle and an irreducible bundle. Choose a metric g in the conformal class and
let ∇ be its Levi–Civita connection, acting on T via the identification with a
completely reducible bundle induced by the choice of g. Further, let β : T → T be
the bundle map which, in this identification, acts on each irreducible component
W ⊂ T by multiplication by βW . Let • denote the action of T ∗M on T coming
from the natural action on the tractor bundle. Then for a local orthonormal frame
ξ` for TM with dual frame ϕ` for T ∗M , the curved Casimir operator C acts on
s ∈ Γ(T ) by

C(s) = β(s)− 2
∑

` ϕ` • (∇ξ`
s− P(ξ`) • s)

Proof. We use the formula for C in terms of an adapted local frame for the adjoint
tractor bundle from Proposition 3.3 of [7]. Having chosen the metric g, the adjoint
tractor bundle splits as TM ⊕ so(TM)⊕ T ∗M , and for any local frame {Ar} for
so(TM), the local frame {ξ`, Ar, ϕ

`} for the adjoint tractor bundle is evidently
adapted. According to Proposition 3.3 of [7], one may write C(s) as the sum of
−2

∑
` ϕ` • Dξ`

s (with D denoting the fundamental derivative) and a tensorial
term, in which only actions of elements of so(TM) show up. Hence the latter
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term preserves any irreducible summand of T , and the proof of Theorem 3.4 of
[7] shows that, on such a summand W , C(s) acts by multiplication by βW . To
complete the proof, it thus suffices to show that

Dξ`
s = ∇ξ`

s− P(ξ`) • s.

If T is a tractor bundle, then this follows immediately from the formula for
the fundamental derivative in section 1.7 of [2]. The formula there (applied to
standard tractors) shows that Dξ`

equals ∇ξ`
on the tangent bundle and on a

non–trivial density bundle. By naturality, this is true for arbitrary irreducible
bundles, and the result follows. ¤

This formula shows that to compute explicitly the curved Casimir on the tensor
product of a tractor bundle with an irreducible bundle, only two ingredients are
needed: first we need to systematically compute the numbers βW , and second we
need an explicit formula for the action of T ∗M on the tractor bundle, since this
can be first used to compute P(ξ) • s and then the action of ϕ`.

2.3. The construction principle. The construction principle we use is actu-
ally very close to the construction of splitting operators in section 3.5 of [7]. Let
T be the tensor product of a tractor bundle and a tensor bundle. The natu-
ral filtration of the tractor bundle (inherited from the filtration of the standard
tractor bundle from 2.1) induces a natural filtration of T , which we write as
T = T 0 ⊃ T 1 ⊃ · · · ⊃ T N . Each of the subquotients T i/T i+1 splits into a di-
rect sum of irreducible tensor bundles. On sections of each of these bundles, the
curved Casimir operator acts by a scalar by Theorem 3.4 of [7], and this scalar
is computable from the highest (or lowest) weight of the inducing representation.
We denote by β1

i , . . . , βni
i the different scalars that occur in this way.

Now define Li :=
∏ni

`=1(C − β`
i ). This can be viewed as a differential operator

of order ≤ ni acting on sections of T . Moreover, naturality of the curved Casimir
operator implies that Li preserves each of the subspaces formed by sections of
one filtration component. Moreover, for each j, the operator induced on sections
of T j/T j+1 is given by the same formula, but with C being the curved Casimir
operator for that quotient bundle. In particular, this implies that Li induces the
zero operator on Γ(T i/T i+1) and hence Li(Γ(T i)) ⊂ Γ(T i+1).
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Now fix indices i < j and an irreducible component W ⊂ T i/T i+1. Consider
the composition πj ◦ Lj ◦ . . . ◦ Li+1, where πj is the tensorial operator induced
by the projection T i → T i/T j+1. Evidently, this composition defines a differ-
ential operator mapping sections of T i to sections of T i/T j+1. However, by
construction, sections of T i+1 are mapped to sections of T i+2 by Li+1, which
are mapped to sections of T i+3 by Li+2, and so on. Hence our operator factors
to sections of T i/T i+1 and restricting to sections of W , we obtain an operator
L : Γ(W ) → Γ(T i/T j+1).

In section 3.5 of [7], it is then assumed that the Casimir eigenvalue β corre-
sponding to the irreducible bundle W is different from all the βk

` for i < k ≤ j

and all `. In that case, composing the projection T i/T j → T i/T i+1 with L, one
obtains a non–zero multiple of the identity, and hence L is a splitting operator.

But now let us assume that (with appropriate numeration) β = β1
j , and let

W̃ ⊂ T j/T j+1 be the sum of the irreducible components corresponding to this
eigenvalue. Then we can write Lj as (C−β)◦L̃j where operator L̃j is a polynomial
in C. Next, since all polynomials in C commute, we can also write the composition
πj ◦ Lj ◦ . . . ◦ Li+1 as πj ◦ L̃j ◦ . . . ◦ Li+1 ◦ (C − β). But the latter composition
evidently maps a section of T i, whose image in T i/T i+1 has values in W to a
section of T j/T j+1. Hence in this case, L has values in sections of T j/T j+1.
Moreover, since

(C − β) ◦ πj ◦ Lj ◦ . . . ◦ Li+1 = πj ◦ Lj ◦ . . . ◦ Li+1 ◦ (C − β)

evidently induces the zero operator on Γ(W ), we conclude that L actually has
values in Γ(W̃ ), so we have obtained an operator L : Γ(W ) → Γ(W̃ ).

2.4. Computing the Casimir eigenvalues. We need a systematic notation for
weights and their relation to irreducible bundles. Since these issues are slightly
different in even and odd dimensions, we will restrict our attention to the case
of even dimension n = 2m from now on; in many senses conformally invariant
powers of the Laplacian are more interesting in even dimensions. Note that the
weights involved are actually defined on the complexification gC = so(2m + 2,C)
of g = so(p + 1, q + 1). The process of assigning weights to real representations
of g and g0 = co(p, q) is discussed in section 3.4 of [7].

We use the notation from chapter 19 of [9] for weights for gC = so(2m + 2,C).
Hence weights will be denoted by tuples (a1, a2, . . . , am+1), and the (highest
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weights of) irreducible tensor representations (we will not require any spin rep-
resentations) correspond to tuples in which all the ai are integers and a1 ≥
a2 ≥ · · · ≥ an−1 ≥ ±an. For example, for i < m, the ith exterior power
ΛiC2m+2 is irreducible and corresponds to the tuple a1 = · · · = ai = 1 and
ai+1 = · · · = am+1 = 0. In this notation, the half sum of all positive roots is
given by ρ = (m,m− 1, . . . , 1, 0).

Weights for the complexification of g0 can be viewed as functionals on the same
space, the conditions on dominance and integrality are different, however. Since
this difference concerns the first entry only, we use the notation (a1|a2, . . . , am+1)
for these weights.

The formula for the Casimir eigenvalues is in terms of lowest weights. For
weights of tensor representations of gC this coincides with the highest weight
since any such representation is isomorphic to its dual. It will be helpful to
keep in mind that the lowest weight of a representation of gC coincides with the
lowest weight of the irreducible quotient representation of (g0)C. This is sufficient
to understand the correspondence between weights and irreducible bundles. For
example, the standard representation of gC corresponds to the weight (1, 0, . . . , 0)
and the standard tractor bundle EA, whose irreducible quotient is E [1]. Hence
E [1] corresponds to the weight (1|0, . . . , 0) and therefore E [w] corresponds to
(w|0, . . . , 0) for w ∈ R.

More generally, for i < m, the ith exterior power of the standard representation
corresponds to (1, . . . , 1, 0, . . . , 0) (with i entries equal to 1) and is also a notation
for ΛiEA, which clearly has Λi−1Ea ⊗ E [i] as an irreducible quotient. Hence Ea

and Ea correspond to (−1|1, 0, . . . , 0) and (1|1, 0, . . . , 0), respectively, and E[ab][w]
corresponds to (w − 2|1, 1, 0 . . . , 0). The highest weight of Sk

0Ea is just k times
the highest weight of Ea, so Sk

0Ea[w] corresponds to (w−k|k, 0, . . . , 0), and so on.

The final ingredient needed to apply the formula for Casimir eigenvalues is the
inner product on weights. Taking as our invariant bilinear form half the trace form
on the Lie algebra (which leads to the nicest conventions), one simply obtains
the standard inner product. For example, for W = Sk

0Ea[w] the corresponding
weight λ = (w − k|k, 0, . . . , 0) and

βW = 〈λ, λ + 2ρ〉 = (w − k)(w + 2m− k) + k(2m + k − 2).
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2.5. Standard tractors twisted by one–forms. We now have all the technical
input at hand, so we look at the first example. Consider the tensor product
Ea[w] ⊗ EA of the standard tractor bundle with the bundle of weighted one–
forms. We will describe the curved Casimir operator on this bundle and find basic
splitting operators and all the invariant differential operators between irreducible
bundles that can be constructed from this curved Casimir. From the composition
series for EA from 2.1 we get a composition series Ea[w+1] +̈§ Eab[w+1] +̈§ Ea[w−1]
for our bundle. We use the convention that in the middle slot the first indices
come from Ea[w] and the second ones from the tractor bundle. The middle term
decomposes as E(ab)0 [w + 1] ⊕ E [w − 1] ⊕ E[ab][w + 1], and if n ≥ 6 then each of
the summands is irreducible. For n = 4, the bundle E[ab][w + 1] splits into the
sum of self–dual and anti–self–dual two forms, which then are irreducible. As
we shall see below, however, this does not cause any change, so we can treat
all even dimensions ≥ 4 uniformly. According to these decompositions, sections
Ea[w]⊗ EA will be written as vectors of the form




σa

Aab | α | Bab

ρa




with Aab = A(ab)0 and Bab = B[ab]. Following the usual conventions the top slot is
the projecting slot, so σa has weight w +1 while ρa has weight w− 1. The action
of ϕi ∈ Ω1(M) on the standard tractor bundle can be immediately computed
from the matrix representation of g, and using this, we obtain

ϕi·




σa

Aab | α | Bab

ρa


 =




0
−σ(aϕb)0 | − σiϕi | − σ[aϕb]

Aabϕ
b + 1

nαϕa + Babϕ
b


 .

The Casimir eigenvalues βW for the irreducible components in our bundle can
be computed using the formulae from 2.4. In dimension four, the self–dual and
anti–self–dual parts in E[ab][w + 1] correspond to the weights (w − 1|1, 1) and
(w − 1|1,−1), respectively. This shows that, for any choice of the weight w, the
curved Casimir operator acts by the same scalar on sections of the two bundles.
Hence in our constructions schemes for operators we may always treat the sum
of these two bundles as if it were a single irreducible component, which shows
that the general discussion applies to dimension four as well. The numbers βW
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are given by

(1)




a0 + n− 1
a0 − 2w + n + 1 | a0 − 2w − n + 1 | a0 − 2w + n− 3

a0 − 4w − n + 3


 ,

where a0 = w(w+n). We will denote the eigenvalue in the top slot by β0, the one
in the bottom slot by β2, and the three middle ones by β1

1 , β2
1 and β3

1 . Using this,
we can now write out the curved Casimir operator explicitly. Acting by ∇− P•
on a typical element, we get




∇aσb

∇aAbc + Pa(bσc)0 | ∇aα + Pa
dσd | ∇aBbc − Pa[bσc]

∇aρb − Pa
dAdb − 1

nαPab + Pa
dBdb


 .

Via Proposition 2.2 we can compute C by applying to this the action of the
index a, multiplying the result by −2, and adding the components of the original
element multiplied by the appropriate scalar. This gives




β0σa

β1
1Aab + 2∇(aσb)0 | β2

1α + 2∇cσc | β3
1Bab + 2∇[aσb]

β2ρa − 2∇cAca − 2Pc
(cσa)0 − 2

n∇aα− 2
nPa

cσc − 2∇cBca − 2Pc
[cσa]


 .

From this formula, we can immediately read off a number of invariant first order
splitting operators as well as invariant first order operators between irreducible
bundles. For example, elements with σa = α = Bab = 0 form a natural subbundle
of EA⊗Ea[w] for each w. On sections of this natural subbundle, C − β2 id defines
a natural operator given by




0
Aab | 0 | 0

ρa


 7→




0
(β1

1 − β2)Aab | 0 | 0
−2∇cAca.




Since the value is independent of ρa, it descends to a natural operator defined
on E(ab)0 [w + 1]. If β1

1 − β2 6= 0 or equivalently w 6= 1 − n, this is the splitting
operator Γ(E(ab)0 [w + 1]) → Γ(EA

a [w]) as constructed in [7]. However, for w =
1 − n, the operator has values in the natural subbundle Ea[−n] ⊂ EA

a [1 − n], so
we obtain a natural differential operator Γ(E(ab)0 [2 − n]) → Γ(Ea[−n]) given by
Aab 7→ −2∇bAba. This is the adjoint of the conformal Killing operator.

In the same way, one obtains splitting operators for the other middle slots,
and first order operators E [0] → Ea[0] (the exterior derivative from functions to
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one–forms) and E[ab][4−n] → Ea[2−n] (the divergence or equivalently the exterior
derivative from (n− 2)–forms to (n− 1)–forms).

To construct invariant operators defined on the quotient bundle Ea[w + 1],
consider the differences of the β’s from β0, which are given by




0
c1
1 | c2

1 | c3
1

c2


 :=




0
2w − 2 | 2w + 2n− 2 | 2w + 2

4w + 2n− 4




From the formula for C from above, we can read off the three first order invariant
operators obtained in the case that ci

1 = 0. For c1
1 = 0, i.e. w = 1 we get the

conformal Killing operator Ea[2] = Ea → E(ab)0 [2]. For c2
1 = 0 we get w = 1 − n

and we obtain the divergence Ea[2 − n] → E [−n] (or equivalently the exterior
derivative from (n−1)–forms to n–forms). Finally, c3

1 = 0 corresponds to w = −1
as this gives the exterior derivative from one–forms to two forms.

To construct the full splitting operator defined on Ea[w + 1] respectively an
operator from this bundle to Ea[w− 1] (for a special value of w), we have to form
(C−β2)◦(C−β1

1)◦(C−β2
1)◦(C−β3

1). This gives a splitting operator provided that all
ci
1 and c2 are nonzero by Theorem 2 of [7]. For c2 = 0, i.e. w = 1− n

2 , we see from
2.3 that we obtain an invariant differential operator Γ(Ea[2− n

2 ]) → Γ(Ea[−n
2 ]) of

order at most two. We can immediately calculate this operator using the above
formula for C. Its value on σa reads as




c2c
1
1c

2
1c

3
1σa

2c2c
2
1c

3
1∇(aσb)0 | 2c2c

1
1c

3
1∇iσi | − 2c2c

1
1c

2
1∇[aσb]

Aa(σ)


 ,

where

Aa(σ) = −2c2
1c

3
1(2∇i∇(iσa)0 + c1

1P
i
(iσa)0)− 2

nc1
1c

3
1(2∇a∇iσi + c2

1Pa
iσi)

+2c1
1c

2
1(2∇i∇[iσa] − c3

1P
i
[aσi])

In particular, we see that for c2 = 0, only the bottom slot is non–zero, and, as
expected, we obtain an invariant operator σ 7→ Aa(σ). We can easily compute
the principal part of this operator by looking only at the second order terms and
commuting derivatives. This shows that, up to a non–zero factor, the principal
part is given by

σa 7→ (n− 2)
(
n∆σa − 4∇a∇iσi

)
.
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In particular, except for the case n = 2, which is geometrically irrelevant, we
obtain a true second order operator.

Collecting our results, we see that from curved Casimirs on the bundle Ea[w]⊗
EA we obtain seven invariant operators between irreducible bundles. Six of these
are first order, while one is of order two. The first order operators belong to two
different BGG sequences. The two exterior derivatives and the two divergences
are part of the de–Rham sequence, i.e. the BGG sequence of the trivial represen-
tation. The conformal Killing operator and its adjoint are well known to be part
of the BGG sequence corresponding to the adjoint representation. Finally, for
n ≥ 6 the second order operator Γ(Ea[2− n

2 ]) → Γ(Ea[−n
2 ]) is not part of any BGG

sequence, since the corresponding representations (or rather the Verma modules
associated to their duals) have singular infinitesimal character. Moreover, the
resulting operator is a non–standard operator. Hence we see that even for this
simple example, we obtain both standard and non–standard operators both in
regular and singular infinitesimal character. In dimension four, the situation is
slightly different, since the two critical weights w = −1 and w = 1− n

2 coincide.
This means that the second order operator is obtained as the composition of the
divergence and the exterior derivative. Hence for n = 4, we obtain the Maxwell
operator, which is a standard operator in the BGG–sequence of the trivial rep-
resentation.

3. Conformally invariant powers of the Laplacian

In this section, we show how to construct the conformally invariant square and
cube of the Laplacian from curved Casimir operators. There are some well known
subtle phenomena concerning these operators. As shown in [11] in dimension
four and in [10] in general, there are no conformally invariant powers of the
Laplacian in even dimensions n = 2m whose order exceeds n. Moreover, the mth
power (called the critical power) is of much more subtle nature than the lower
powers. As shown in [8], for all lower powers of the Laplacian (as well as all
operators occurring in BGG–sequences) there are formulae which are strongly
invariant (induced from homomorphisms on semi–holonomic jet modules), while
the critical powers do not have this property. As we shall see, these phenomena
are reflected very nicely in the constructions via curved Casimir operators. For
the square of the Laplacian, a different construction has to be used in the critical
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dimension four. On the other hand, the construction for the cube of the Laplacian
completely breaks down in dimension four.

3.1. The square of the Laplacian in dimensions 6= 4. We consider the
tracefree part in the symmetric square of the standard tractor bundle twisted by
a weight, i.e. the bundle E(AB)0 [w]. From the composition series of the standard
tractor bundle in 2.1 we see that

E(AB)0 [w] = E [w + 2] +̈§ Ea[w + 2] +̈§ (E(ab)0 [w + 2]⊕ E [w]) +̈§ Ea[w] +̈§ E [w − 2].

We will again use a vector notation with the projecting slot on top. To compute
the action of p+, one has to represent typical elements in each slot by tensor
products of standard tractors, and then compute the tensorial action. It is obvious
how to get such representatives, except for the two components in the middle.
Using ∨ to denote the symmetric tensor product, the representatives for E [w] are
the multiples of the element

(
1
0
0

)
∨

(
0
0
1

)
− 1

n

∑
j

(
0
ej

0

)
∨

(
0
ej

0

)

for dual bases {ej} and {ej}. On the other hand, typical representatives for the

elements in E(ab)0 [w+2] are given by the sum of
(

0
µa
0

)
∨

(
0
νb
0

)
and an appropriate

multiple of the g–invariant expression representing the tractor metric. Using these
facts, one easily computes that the p+–action as a map Ea ⊗ E(AB)0 → E(AB)0 is
in vector notation given by

ϕi·




σ

µa

Aab | α

νa

ρ




=




0
−2σϕa

−ϕ(aµb)0 | ϕiµi

2ϕiAia − n+2
n αϕa

ϕiνi




.

From this, we can determine the formula for the curved Casimir operator as in
2.5 to obtain

C




σ

µa

Aab | α

νa

ρ




=




β0σ

β1µa + 4∇aσ

β1
2Aab + 2∇(aµb)0 + 4P(ab)0σ | β2

2α− 2∇cµc − 4Pσ

β3νa − 4∇cAca − 4Pc
(cµa)0 + 2n+2

n ∇aα− 2n+2
n Pa

cµc

β4ρ− 2∇cν
c + 4PcdAcd − 2n+2

n Pα



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Computing the Casimir eigenvalues corresponding to the irreducible components
which occur in that formula is straightforward and gives



β0

β1

β1
2 | β2

2

β3

β4




=




w(w + n) + 4w + 2n + 4
w(w + n) + 2w + 2n

w(w + n) + 2n | w(w + n)
w(w + n)− 2w

w(w + n)− 4w − 2n + 4




.

The differences of β0 from these numbers are given by

(2)




0
2w + 4

4w + 4 | 4w + 2n + 4
6w + 2n + 4

8w + 4n




The critical weight for which we can expect an operator from the top slot to the
bottom slot is therefore given by w = −m in dimension n = 2m. Inserting this
into (2), we obtain

(3)




0
4− n

4− 2n | 4
4− n

0




.

This already shows that something special will happen in dimension four, since
there we obtain a coincidence of four (rather than two) of the Casimir eigenval-
ues. There would be another potential speciality (a coincidence of three of the
eigenvalues) in dimension n = 2, but this is not geometrically relevant.

According to 2.3, an operator from the top slot to the bottom slot is induced
by (C−β4)◦ (C−β3)◦ (C−β1

2)◦ (C−β2
2)◦ (C−β1). To compute the principal part

of this induced operator, one can apply this composition to an element for which
only the top component is nonzero. Moreover, observe that any derivative moves
down one level, so terms in lower levels which contain only few derivatives can
be ignored. Finally, one can freely commute derivatives when determining the
principal part. Using this simplifications and computing the composition in the
opposite order as written above, it is easy to verify directly that up to a nonzero
factor, the principal part equals (n−4)∆2σ. In particular, for n 6= 4 the principal
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part is nonzero and we have constructed a conformally invariant square of the
Laplacian.

3.2. The square of the Laplacian in dimension 4. In dimension four, the
operator considered in 3.1 reads as (C − β4)3 ◦ (C − β1

2) ◦ (C − β2
2) because of

the additional coincidences of eigenvalues. From 3.1 we see that the (fourth
order) principal part of the induced operator E → E [−4] vanishes, and indeed
we shall see from the further discussion, that this operator is identically zero.
Still we can obtain a conformally invariant square of the Laplacian in dimension
four from curved Casimirs. Namely, we will show that actually the operator
(C−β4)2◦(C−β1

2)◦(C−β2
2) induces such a square, but this needs some verifications.

Indeed, let us write the natural filtration of the bundle T = E(AB)0 [w] as
T = T 0 ⊃ T 1 ⊃ · · · ⊃ T 4 ⊃ {0}. Now by construction, (C − β1

2) ◦ (C − β2
2) maps

sections of T 2 to sections of T 3, and each occurrence of C − β4 maps sections of
T to sections of T 1, sections of T 1 to sections of T 2, sections of T 3 to sections of
T 4, and sections of T 4 to zero. Thus the composition (C−β4)2◦(C−β1

2)◦(C−β2
2)

vanishes on Γ(T 2), maps Γ(T 1) to Γ(T 4) and all of Γ(T ) to Γ(T 3). In particular,
it induces operators

Γ(E) = Γ(T /T 1) → Γ(T 3/T 4) = Γ(Ea[−2])

Γ(Ea) = Γ(T 1/T 2) → Γ(T 4) = Γ(E [−4]).

If we can prove that both these operators vanish, then we get an induced operator
Γ(E) → Γ(E [−4]) as required. Since this is induced by a composition of four
curved Casimirs, it follows immediately that the symbol is induced by the four–
fold action of p+ and hence we have found an invariant square of the Laplacian.

It turns out that we can write the two operators whose vanishing we want to
prove as compositions. Since β0 = β1 = β3 = β4, the operator C − β4 induces
invariant operators Γ(T /T 1) → Γ(T 1/T 2) as well as Γ(T 3/T 4) → Γ(T 4), and
these are just the exterior derivative d mapping functions to 1–forms, respectively
the divergence δ, which is a formal adjoint to this. On the other hand, the
composition (C − β1) ◦ (C − β1

2) ◦ (C − β2
2) induces an invariant operator T :

Γ(T 1/T 2) → Γ(T 3/T 4), so this maps 1–forms to 3–forms. The two operators we
have to study are the compositions T ◦d and δ ◦T , so we have to prove that these
vanish. We do this by showing that T is the Maxwell operator (as expected).
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Using the formula for C from 3.1, a simple direct computation shows that the
operator T maps µa to

−4∇c∇(cµa)0 + 3∇a∇cµc + 8Pc
(cµa)0 + 6Pa

cµc.

Now expanding the definition of the tracefree symmetric part respectively of the
Rho–tensor immediately leads to the identities

−4∇c∇(cµa)0 = −2∇c∇cµa − 2∇c∇aµc +∇a∇cµc

8Pc
(cµa)0 = 4Pµa + 2Pa

cµc

∇a∇cµc = ∇c∇aµc − 2Pa
cµc − Pµa.

Putting this together, we immediately get T (µa) = 2∇c∇[aµc] and this completes
the argument.

While we do not intend to discuss the concept of strong invariance in detail in
this paper, we want to make a brief comment on these issues. The curved Casimir
operators themselves are of course strongly invariant in every sense, since they
are of first order. Consequently, any operator directly induced by a polynomial
in curved Casimirs is strongly invariant, too. In particular, the construction of
3.1 provides strongly invariant squares of the Laplacian in dimensions different
from 4. The construction in dimension four however depends on vanishing of the
compositions T ◦ d and δ ◦ T , which (like the equation d ◦ d = 0) are not valid in
a strong sense. Hence in dimension 4 we cannot conclude that we get a strongly
invariant operator.

3.3. The cube of the Laplacian. To conclude this article, we briefly outline
what happens for the cube of the Laplacian. The relevant bundle to obtain a
cube of the Laplacian is of course S3

0EA, which has composition series

E [w + 3] +̈§ Ea[w + 3] +̈§
(E(ab)0

[w+3]

E[w+1]

)
+̈§

(E(abc)0
[w+3]

Ea[w+1]

)
+̈§

(E(ab)0
[w+1]

E[w−1]

)
+̈§ Ea[w − 1] +̈§ E [w − 3]

We use a vector notation similar as before. Computing the Casimir eigenvalues is
straightforward, and shows that the weight for which one may expect an operator
from the top slot to the bottom slot is again w = −n

2 . For this the differences of
the Casimir eigenvalue for the top slot from the other Casimir eigenvalues form
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the pattern



0
6− n

2(4− n) | 8
6− 3n | 10− n

2(4− n) | 8
6− n

0




,

which shows that additional coincidences of Casimir eigenvalues occur in dimen-
sions 4, 6, and 10. While the special role of dimensions 4 (for which non–existence
of a conformally invariant power of the Laplacian is proved in [11]) and 6 (for
which the cube is the critical power of the Laplacian) has to be expected, the
special role of dimension 10 comes as a surprise.

To compute the curved Casimir, the main input is again the action of g1 which,
viewed as a map Ea ⊗ S3

0EA → S3
0EA, is given by

ϕi·




σ

µa

Aab | α

Φabc | νa

Bab | β

τa

ρ




=




0
−3σϕa

−2ϕ(aµb)0 | ϕiµi

−ϕ(aAbc)0 | − 2n+2
n αϕa + 2ϕiAia

−n+4
n+2ϕ(aνb)0 + 3ϕiΦiab | ϕiνi

−n+4
n βϕa + 2ϕiBia

ϕiτi




.

From this, one easily derives the full formula for the curved Casimir operator on
the bundle S3

0EA[w]. According to 2.3, the operator to consider is

(4) (C − β0) ◦ (C − β1)2 ◦ (C − β1
2)2 ◦ (C − β2

2)2 ◦ (C − β1
3) ◦ (C − β2

3),

where the squares are due to the fact that β5 = β1 and βi
4 = βi

2 for i = 1, 2. To
compute the principal part of the induced operator, one proceeds in a manner
similar to 3.1 above. That is by working through the composition starting with
the factor C − β0 and then working down level by level. One takes only terms
of high enough order in each level, and freely commutes derivatives. This shows
that, up to a nonzero factor, the principal part is given by

σ 7→ (n− 4)(n− 6)(n− 10)∆3σ.
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We want to point out however, that while the factors (n − 4), (n − 6), and
(n − 10) occur as differences of Casimir eigenvalues, the fact that they arise in
the principal part is not at all straightforward, but has to be verified by rather
nasty computations. In all dimensions except for these three critical ones, our
operator directly defines a conformally invariant cube of the Laplacian.

Concerning the critical dimensions, the situation is the following. The easiest
of these cases is dimension 10. Here there is an additional coincidence of Casimir
eigenvalues, since β2

3 = β0. Let us write T = S3
0EA and us denote the canonical

filtration of T by T = T 0 ⊃ · · · ⊃ T 6 ⊃ {0}. Now consider the composition

(C − β2
3) ◦ (C − β1

2) ◦ (C − β2
2) ◦ (C − β1).

This maps Γ(T ) to Γ(T 3), and if we project to T 3/T 4 and then further to the
component Ea[−4] (which corresponds to the eigenvalue β2

3), then the composition
vanishes on Γ(T 1). Hence it induces an operator from sections of T /T 1 ∼= E [−2]
to sections of Ea[−4]. (It is known from the classification of conformally invariant
operators, that this has to vanish in the conformally flat case.) Now a direct
computation shows that this operator actually is always identically zero. This
shows that

(C − β1
3) ◦ (C − β2

3) ◦ (C − β1
2) ◦ (C − β2

2) ◦ (C − β1)

maps all of Γ(T ) to Γ(T 4). Hence if we further apply (C−β5)◦(C−β1
4)◦(C−β2

4),
the result maps all of Γ(T ) to Γ(T 6).

Similarly, we can consider the composition

(C − β5) ◦ (C − β1
4) ◦ (C − β2

4) ◦ (C − β2
3)

on the space of those sections of T 3 whose image in T 3/T 4 is a section of the
component Ea[−4] only. As before, this clearly maps all such sections to sections
of T 6, and since β2

3 = β6 it vanishes on sections of the subbundle T 4. Hence we
get an induced operator from sections of Ea[−4] to sections of T 6 = E [−8]. Once
again, a direct computation shows that this operator vanishes identically (which
in the conformally flat case follows from the known classification results). Now
on the other hand, the composition

(C − β1
3) ◦ (C − β1

2) ◦ (C − β2
2) ◦ (C − β1)

maps Γ(T 1) to Γ(T 3) and projecting to T 3/T 4 the result lies in Γ(Ea[−4]) only.
Together with the above observation we conclude that if in the composition (4)



712 Andreas Čap, A. Rod Gover and Vladimı́rSouček

we leave out one of the two factors (C − β0), then the result still maps sections
of T to sections of T 6 and vanishes on sections of T 1. Hence we again get an
induced operator mapping sections of T /T 1 ∼= E [−2] to sections of E [−8] ∼= T 6.
Of course, this also implies that the original composition (4) induces the zero
operator in dimension 10.

A similar computation as for general dimensions now shows that the principal
part of this operator is a nonzero multiple of σ 7→ ∆3σ. Hence we have obtained
a cube of the Laplacian in dimension 10, although we cannot conclude that this
is strongly invariant.

Next, let us discuss dimension n = 4, for which there is no conformally invariant
cube of the Laplacian by [11]. Due to the coincidences of Casimir eigenvalues,
the composition (4) here specialises to

(5) (C − β0)3 ◦ (C − β1)2 ◦ (C − β2
2)2 ◦ (C − β1

3) ◦ (C − β2
3).

One might hope that one can define a cube of the Laplacian in dimension four,
at least for a certain class of conformal manifolds, by leaving out one of the three
factors (C − β0). This turns out to work however, only on the subcategory of
locally conformally flat structures.

The pattern is similar to that arising for the square of the Laplacian in dimen-
sion four. The composition (C − β0) ◦ (C − β1

3) ◦ (C − β2
3) is easily seen to induce

a second order operator Φ mapping sections of E(ab)0 [1] ⊂ T 2/T 3 to sections of
E(ab)0 [−1] ⊂ T 4/T 5. Likewise, the composition (C − β0) ◦ (C − β1) induces an
operator Ψ1 mapping sections of E [1] ∼= T /T 1 to sections of E(ab)0 [1] ⊂ T 2/T 3 as
well as an operator Ψ2, which maps sections of E(ab)0 [−1] ⊂ T 4/T 5 to sections
of E [−5] ∼= T 6. To get an induced operator Γ(E [1]) → Γ(E [−5]) after leaving out
one of the three factors (C − β0) in (5), one needs the compositions Φ ◦ Ψ1 and
Ψ2 ◦ Φ to vanish identically. However, it turns out that both these compositions
actually are second order operators with Weyl curvature in the principal symbol
and a tensorial part involving the Bach tensor. Further, from the explicit form
of the principal symbol one may see that it vanishes only in the locally flat case
(where this also follows from the classification results). In the latter case, one
can then compute the principal part similarly as before to see that one indeed
does obtain a conformally invariant cube of the Laplacian on locally conformally
flat 4–manifolds, but not for a larger class.
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Finally, in the critical dimension n = 6 some details remain unresolved. Due
to the coincidences of Casimir eigenvalues, the composition (4) specialises to

(6) (C − β0)3 ◦ (C − β1
2)2 ◦ (C − β2

2)2 ◦ (C − β1
3) ◦ (C − β2

3).

As for the square of the Laplacian in dimension four, the hope would be to leave
out one of the three factors (C − β0) and still get an induced operator. Also, the
verifications to be made are analogous to ones from 3.2. The composition

(C − β0) ◦ (C − β1
2)2 ◦ (C − β2

2)2 ◦ (C − β1
3) ◦ (C − β2

3)

induces a fourth order operator T : Γ(Ea) → Γ(Ea[−4]). On the other hand,
(C−β0) induces the exterior derivative d : Γ(E) → Γ(Ea) as well as the divergence
δ : Γ(Ea[−4]) → Γ(E [−6]). Leaving out one of the three factors (C − β0) in (6),
the result induces an operator Γ(E) → Γ(E [−6]) if and only if the compositions
T ◦ d and δ ◦ T vanish identically. Of course, this is true in the flat case, so there
the construction again works. While we have been able to compute a complete
formula for T in the curved case, computing the two compositions explicitly seems
to be a serious task. To sort out this problem new ideas would be helpful.
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