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Abstract: In this article we find closed form formulas for the heat kernels
of the operators 1

2∂2
x + λ

x2 and 1
2(∂2

x + ∂2
y)− λ2

x2+y2 . We are using a geometric
method and the expansion over eigenvalues method.
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1 Introduction

In the first part of this paper we shall obtain the heat kernel for the operator

L =
1
2
∂2

x +
λ

x2
, λ ∈ R, (1.1)

involving a geometric technique presented in [1]. An approach using path inte-
grals can be found in [4]. An extension to a propagator involving time-dependent
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harmonic oscillator was done by using path integrals in [5]. The authors of this
paper have been inspired to work on this problem after getting acquainted with
the problem from [6].

This operator owes its physical significance to its relation to the two body
problem. Consider two unit mass particles described by the coordinates ξ1 and
ξ2 on the real line with an interaction which varies as the inverse square of the
distance between the particles. The problem is characterized by a Lagrangian
which is the difference between the kinetic energy and the gravitational potential

L(ẋ, x) =
1
2
(ξ̇2

1 + ξ̇2
2)−

2λ

(ξ1 − ξ2)2
, (1.2)

where λ > 0 is the strength of the interaction.

With the change of coordinates

x =
ξ1 − ξ2√

2
, y =

ξ1 + ξ2

2

the Lagrangian (1.2) becomes the following sum of two Lagrangians

L(x, y, ẋ, ẏ) = ẏ2 +
(1

2
ẋ2 − λ

x2

)
= L0 + L1.

The momenta associated with the coordinates x and y are

px =
∂L

∂ẋ
=

∂L1

∂ẋ
= ẋ, py =

∂L

∂ẏ
=

∂L0

∂ẋ
= 2ẏ.

Then the associated Hamiltonian is obtained by applying the Legendre transform
on the Lagrangian L

H(px, py, x, y) = pxẋ + pyẏ − L = (pyẏ − L0) + (pxẋ− L1)

= H0(py, y) + H1(px, x),

with

H0(py, y) =
p2

y

4
, H1(px, x) =

1
2
p2

x +
λ

x2
.
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Quantizing the Hamiltonian H = H0 + H1, i.e., replacing px → ∂x and
py → ∂y yields the following operator

P =
1
4
∂2

y +
1
2
∂2

x +
λ

x2
. (1.3)

Separating the variables, the heat kernel of P can be written as

etPδ(x0,y0) = et 1
4
∂2

y+t
(

1
2
∂2

x+ λ
x2

)
δ(x0,y0)

= et 1
4
∂2

yδy0 ⊗ et
(

1
2
∂2

x+ λ
x2

)
δx0

=
1√
16πt

e−
(y−y0)2

16t ⊗ et
(

1
2
∂2

x+ λ
x2

)
δx0 , t > 0.

We need to compute the second term of the above convolution which is the heat
kernel of the operator (1.1). We recall in the following section a geometric method
for computing heat kernels.

In the second part of this paper we shall treat the heat kernel problem for the
operator

L =
1
2
(∂2

x + ∂2
y)− λ2

x2 + y2
. (1.4)

The method is using Laguerre polynomials and the expansion over the eigen-
functions. The exact summation is given by the Hille-Hardy’s formula, see [2].

2 Heat kernels for some operators with potential

The following variational method is related to the geometry generated by the
differential operator. In the following we shall briefly describe the method. This
shows the interrelation between the geometry of an operator and its heat kernel.

In this section the differential operators will be of the form

L =
1
2

d

dx

2

+ U(x) (2.5)

with U(x) at most quadratic. We associate the Hamiltonian function

H(p, x) =
1
2
p2 + U(x). (2.6)
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Hamilton’s equations are

ẋ = Hp = p,

ṗ =−Hx = −U ′(x), and hence ẍ = ṗ = −U ′(x).

For any two given points x0 and x, the geodesic joining them is obtained solving
the equation 




ẍ = −U ′(x),

x(0) = x0,

x(t) = x.

(2.7)

We shall assume that U(x) is such that the system (2.7) has a unique solution
x(s). The classical action between x0 and x in time t is obtained integrating the
Lagrangian L = pẋ−H = 1

2 ẋ2 − U(x) along the above geodesic x(s)

Scl(x0, x; t) =
∫ t

0
L

(
ẋ(s), x(s)

)
ds =

∫ t

0

1
2
ẋ2(s)− U

(
x(s)

)
ds.

With these notations the heat kernel of the operator (2.5), which is a path integral,
is given by the formula

K(x0, x; t) = V (t)e−Scl(x0,x;t). (2.8)

If the Lagrangian is at most quadratic, then V (t) =
√

det
(
− 1

2π
∂2Scl
∂x ∂x0

)
is the

Van Vleck determinant. Otherwise, the function V depends on t, x0 and x and
satisfies a transport equation, see section 4.

3 Finding the classical action

The geodesic joining the points x0 and x in time t satisfies the Euler-Lagrange
equation associated with the Lagrangian L1

ẍ =
2λ

x3

x(0) = x0, x(t) = x.
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Since the regions {x < 0} and {x > 0} are separated, in order to have connectiv-
ity, we have to assume that either x0, x > 0 or x0, x < 0. We can show that the
energy is a first integral of motion, so

1
2
ẋ2(s) +

λ

x2(s)
= E, s ∈ [0, t].

Under the assumption x0, x > 0 the above relation becomes

ẋ(s)x(s) =
√

2Ex2(s)− 2λ.

Let u(s) = x2(s), u0 = x2
0, ut = x2(t) = x2. Then u(s) verifies the ODE

u̇ = 2
√

2Eu− 2λ

u(0) = u0, u(t) = ut.

We note that u̇ > 0, so the right side must have positive sign. Integrating yields
∫ ut

u0

du√
2Eu− 2λ

= 2t ⇐⇒

√
2Eut − 2λ−

√
2Eu0 − 2λ = 2Et.

Eliminating the square roots we obtain
(
(u0 + ut)− 2Et2

)2
= 4(u0ut − 2λt2), (3.9)

where we assume the condition

λ <
x2

0x
2

2t2
.

Solving for E in (3.9) yields

E =
x2

0 + x2

2t2
−

√
x2

0x
2 − 2λt2

t2
. (3.10)

The classical action Scl satisfies the following Hamilton-Jacobi equation

∂tScl = −E,
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with E given by (3.10). We can write Scl = S0 + S1, where

∂tS0 =−x2
0 + x2

2t2
=⇒ S0 =

x2
0 + x2

2t
(3.11)

∂tS1 =

√
x2

0x
2 − 2λt2

t2
. (3.12)

We shall solve (3.12) as a homogeneous equation. Let τ =
t

x0x
, and define

S2(τ) = S1( t
x0x). Then

d

dτ
S2(τ) =

√
1− 2λτ2

τ2
.

With the substitution τ = 1√
2λ

sinφ, integrating yields

S2(τ) =
∫ √

1− 2λτ2

τ2
dτ =

√
2λ

∫
cot2 φdφ

=
√

2λ

∫ (− 1− cot′ φ
)
dφ = −

√
2λ(φ + cot φ)

=−
√

2λ
{

sin−1(
√

2λτ) +
√

1− 2λτ2

√
2λτ

}
,

and hence

S1(x0, x, τ) =
−2

√
x2

0x
2 − λt2

2t
−
√

2λ sin−1
(√

2λ
t

x0x

)
. (3.13)

From (3.13) and (3.11) we obtain the classical action

Scl(x0, x, t) =
x2

0 + x2

2t
− 2

√
x2

0x
2 − λt2

2t
−
√

2λ sin−1
(√

2λ
t

x0x

)
. (3.14)

By the general theory, or by a direct computation, the classical action Scl

satisfies the Hamilton-Jacobi equation

∂tScl +
1
2
(∂xScl)2 +

λ

x2
= 0. (3.15)

We also note that for λ → 0 we obtain the Euclidean action

Scl(x0, x, t) =
(x− x0)2

2t
.
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4 The transport equation

We shall assume that the heat kernel of L is of the type

K(x0, x, t) = V (x, t)e−S(x0,x,t).

Then a computation shows

∂tK= e−S
(
∂tV − V ∂tS

)

∂2
xK= e−S

(
∂2

xV − 2∂xV ∂xS + V (∂xS)2 − V (∂2
xS)

)

and hence

(∂t − L)K= (∂t − 1
2
∂2

x −
λ

x2
)K

= e−S
{
− V [∂tS +

1
2
(∂xS)2 +

λ

x2︸ ︷︷ ︸
=0

] (by (3.15))

+∂tV − 1
2
∂2

xV + ∂xV ∂xS +
1
2
V ∂2

xS
}

.

We shall ask V to satisfy the following transport equation

∂tV − 1
2
∂2

xV + ∂xV ∂xS +
1
2
V ∂2

xS = 0. (4.16)

The equation (4.16) might be hard to solve since the action S and its deriva-
tives are complicated. In the following we shall consider a shortcut for these
computations. We note that the action S = S0 + S1, where the term S1 is a
function of x0x

t . Then

e−S = W
(x0x

t

)
e−

x2
0+x2

2t ,

for some function W . Then it makes sense to look now for a heat kernel of the
type

K(x0, x, t) = V (x, t)e−S0 = V (x, t)e−
x2
0+x2

2t ,

where V (x, t) = 1√
t
Z(x0x

t ), for some function Z, satisfies the following extended
transport equation
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∂tV − 1
2
∂2

xV + ∂xV ∂xS0 +
1
2
V (∂2

xS0)− V [∂tS0 +
1
2
(∂xS0)2 +

λ

x2
] = 0. (4.17)

In the following we shall solve the equation (4.17). Let τ =
x0x

t
. Then we

have

V =
1√
t
Z(τ)

∂tV =− 1
t
√

t

(1
2
Z(τ) + τZ ′(τ)

)

∂xV =
1

t
√

t
Z ′(τ) x0

∂2
xV =

1
t
√

t
Z ′′(τ)

x2
0

t
.

Since

∂tS = −x2
0 + x2

2t2
, ∂xS =

x

t
, ∂2

xS =
1
t
,

the equation (4.17) becomes after cancelations

−1
2

1√
t
Z ′′(τ)

(x0

t

)2
− 1√

t
Z(τ)

[ λ

x2
− 1

2

(x0

t

)2]
= 0.

Multiplying by −2x2t
1
2 yields

τ2Z ′′(τ) + Z(τ)[2λ− τ2] = 0. (4.18)

Let U(τ) = τ−
1
2 Z(τ). A computation shows

τ2U ′′(τ) =
3
4

1√
τ
Z(τ)− τ

1
2 Z ′(τ) + τ

√
τZ ′′(τ)

τU ′(τ) =−1
2

1√
τ
Z(τ) +

√
τZ ′(τ),

and using (4.18) we have

τ2U ′′(τ) + τU ′(τ) =
1√
τ

(
τ2Z ′′(τ) +

1
4
Z(τ)

)

=
1√
τ

(
Z(τ)

(
τ2 − 2λ

)
+

1
4
Z(τ)

)

= U(τ)
(
τ2 − 2λ +

1
4
)
.
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Hence U(τ) satisfies the modified Bessel equation

τ2U ′′ + τU ′ + (−τ2 − γ2)U = 0,

with γ = 1
2

√
1− 8λ and λ < 1

8 . The general solution can be written as a linear
combination

U(τ) = αIγ(τ) + βKγ(τ), α, β ∈ R

where Iγ(τ) and Kγ(τ) are the modified Bessel function of the first and second
type. Hence the general solution of (4.18) is

Z(τ) =
√

τU(τ) = α
√

τIγ(τ) + β
√

τKγ(τ),

where

Iγ(τ) ∼
√

1
2πτ

eτ , Kγ(τ) ∼
√

π

2τ
e−τ as τ →∞, (4.19)

see Haberman [3], p. 323.

Consequently, the solution of the extended transport equation (4.17) will be
given by

V (x0, x, t) = t−
1
2 Z(τ) =

√
xx0

t

(
αIγ

(xx0

t

)
+ βKγ

(xx0

t

))
, (4.20)

with α, β ∈ R.

5 The heat kernel for L = 1
2∂

2
x + λ

x2

In this section we shall state and prove the first main result of the paper.

Theorem 5.1. The heat kernel for the operator L = 1
2∂2

x + λ
x2 , with λ < 1

8 and
x0, x > 0 is

K(x0, x; t) =
√

x0x

t
Iγ

(x0x

t

)
e−

x2
0+x2

2t , t > 0, (5.21)

where Iγ is the nonsingular modified Bessel function of order γ = 1
2

√
1− 8λ.
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Proof. We have shown already in the previous section that

(∂t − L)K(x0, x, t) = 0, t > 0,

with
K(x0, x, t) = V (x0, x, t)e−

x2
0+x2

2t , (5.22)

and V given by (4.20). We need to choose the constants α and β such that

lim
t↘0

K(x0, x, t) = δx0

in the distributions sense. Let K = K1 + K2 with

K1(x0, x, t) = α

√
xx0

t
Iγ

(xx0

t

)
e−

x2+x2
0

2t

K2(x0, x, t) = β

√
xx0

t
Kγ

(xx0

t

)
e−

x2+x2
0

2t .

Then

lim
t↘0

K1(x0, x, t) = lim
t↘0

α

√
xx0

t
Iγ

(xx0

t

)
e−

xx0
t e−

(x−x0)2

2t

= α lim
τ→∞

√
τIγ(τ)e−τ lim

t↘0

1√
t
e−

(x−x0)2

2t

= α
1√
2π

lim
t↘0

1√
t
e−

(x−x0)2

2t

= αδx0 ,

where we have used the first relation of (4.19). Hence we shall choose α = 1.

A similar computation, using the second relation of (4.19) yields

lim
t↘0

K2(x0, x, t) = lim
t↘0

β

√
xx0

t
Kγ

(xx0

t

)
e−

xx0
t e−

(x−x0)2

2t

= β lim
τ→∞

√
τKγ(τ)e−τ lim

t↘0

1√
t
e−

(x−x0)2

2t

= β
√

π lim
τ→∞ e−2τ lim

t↘0

1√
2πt

e−
(x−x0)2

2t

= 0.

Hence
lim
t↘0

K(x0, x, t) = lim
t↘0

K1(x0, x, t) + lim
t↘0

K2(x0, x, t) = αδx0 ,
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so we need to choose α = 1. In order to find β we shall consider the limit λ → 0,
case in which we recover the Gaussian kernel

1√
2πt

e−
(x−x0)2

2t = lim
g↘0

K(x0, x, t)

=
1√
t

√
τI 1

2
(τ)e−τe−

(x−x0)2

2t + β
1√
t

√
τJ 1

2
(τ)e−τe−

(x−x0)2

2t

=
1√
2πt

e−
(x−x0)2

2t + β
1√
t

√
τJ 1

2
(τ)e−τe−

(x−x0)2

2t ,

since we take γ = 1
2 in

Iγ(τ) =
1√
2πτ

eτ−
1
2 (γ2− 1

4 )

τ
+O(τ−2).

Hence we need to choose β = 0. Then (4.20) becomes

V (x0, x, t) =
√

xx0

t
Iγ

(xx0

t

)
,

and hence (5.22) provides the heat kernel (5.21).

Remark 5.2. Since Iγ > 0 it follows that the heat kernel K(x0, x; t) > 0 for
t > 0.

6 The two dimensional case

We shall extend the above results in the case of two variables, where the operator
becomes

L =
1
2
(∂2

x1
+ ∂2

x2
)− λ2

x2
1 + x2

2

.

We note that in this case the constant λ2 ≥ 0. In order to find the heat kernel of
L we shall recall first a few basic properties of special functions.

The Laguerre polynomial La
n of degree n and parameter a can be defined

either by the Rodrigues’ formula

La
n =

exx−a

n!
dn

dxn
(e−xxn+a) =

1
n!

(−x)n + . . . ,
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or equivalently, by the generating function formula

∑

n≥0

La
n(x)yn =

1
(1− y)a+1

exy/(y−1). (6.23)

Applying integration by parts several times yields

∫ ∞

0
La

n(x)La
m(x)e−xxa dx =





0, if n 6= m;

Γ(a + n + 1)
n!

, if n = m.

Hence

fn(x) =

√
n!

Γ(a + n + 1)
e−x/2xa/2La

n(x), n = 0, 1, . . . (6.24)

form an orthogonal system for L2(0,∞). One can show that this system is also
complete. Using that y = La

n(x) verifies the Laguerre equation equation

xy′′ + (α + a− x)y′ + ny = 0,

one can show that the functions (6.24) are eigenfunctions for the operator

L = x∂2
x + ∂x − 1

4
(x +

a2

x
), (6.25)

with the corresponding eigenvalue λn = −(
n + α+1

2

)
.

The following result is known under the name of Hille-Hardy’s formula, see
Erdelyi [2], p. 189:

If La
n denotes the Laguerre polynomial, and Ia is the modified Bessel function,

then for |z| < 1 we have

∞∑

n=0

n!
Γ(n + a + 1)

zn(xyz)a/2 La
n(x)La

n(y) =
1

(1− z)
e
− (x+y)z

(1−z) Ia

(2
√

xyz

1− z

)
.

Proposition 6.1. Let a, b ∈ R. The heat kernel of the operator

Lb = x∂2
x + ∂x − 1

4
(b2x +

a2

x
)
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is given by

Kb(x0, x, t) =
b/2

sinh(bt/2)
e−

b
2
(x0+x) coth(bt/2)Ia

( b
√

x0x

sinh(bt/2)

)
, t > 0. (6.26)

Proof. We shall first find the heat kernel of the operator

L1 = x∂2
x + ∂x − 1

4
(x +

a2

x
).

Then using the homogeneity property we shall determine the heat kernel for Lb.

In the following we shall let z = e−t and use that
√

z

1− z
=

1
2 sinh(t/2)

, 1 +
2z

1− z
=

1 + e−t

1− e−t
= coth(t/2).

Then the heat kernel for the operator L1 on (0,∞) is given by the following
expansion over the eigenfunctions (6.24)

K1(x0, x, t) =
∑

n≥0

eλntfn(x0)fn(x)

=
∑

n≥0

e−nte−
a
2
te−

t
2

n!
Γ(a + n + 1)

La
n(x0)La

n(x)xa/2
0 e−x0/2xa/2e−x/2

= e−
1
2
(x0+x)√z

∑

n≥0

n!
Γ(a + n + 1)

zn(x0xz)a/2La
n(x0)La

n(x)

= e−
1
2
(x0+x)

√
z

1− z
e−(x0+x) z

1−z Ia

(
2
√

x0x

√
z

1− z

)
(by Hille-Hardy’s formula)

=
1

2 sinh(t/2)
e−

1
2
(x0+x)(1+ 2z

1−z
)Ia

(√
x0x

1
sinh(t/2)

)

=
1

2 sinh(t/2)
e−

1
2
(x0+x) coth(t/2)Ia

( √
x0x

sinh(t/2)

)
.

In order to compute the heat kernel of the operator Lb, we take x̃ = bx as a
new variable. A computation shows Lb = bL̃1. Then

(etLbf)(x0) = (etbL̃1 f̃)(x̃0) =
∫

K1(bx0, bx, bt)f(x0)bdx0,

and hence the heat kernel of etLb is bK1(tx0, tx, tb), that is

Kb(x0, x, t) =
b/2

sinh(bt/2)
e−

b
2
(x0+x) coth(bt/2)Ia

( b
√

x0x

sinh(bt/2)

)
. (6.27)

Therefore the heat kernel of the operator Lb is given by formula (6.27).
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Corollary 6.2. The heat kernel for L0 = x∂2
x + ∂x − a2

4x
is given by

K0(x0, x, t) =
1
t
e−

1
t
(x0+x)Ia

(2
√

x0x

t

)
, t > 0. (6.28)

Proof. The heat kernel of L0 is obtained making b → 0 in the relation (6.27).

Using lim
b→0

bt/2
sinh(bt/2)

= 1 yields (6.28).

Proposition 6.3. The heat kernel of P =
1
2
(∂2

r +
1
r
∂r − a2

r2
) is given by

G(r0, r, τ) =
1
2τ

e−
1
2τ

(r2
0+r2)Ia

(r0r

τ

)
, τ > 0. (6.29)

Proof. Changing of variable x = r2 in L0 yields

L0 = x∂2
x + ∂x − a2

4x
=

1
4
(
∂2

r +
1
r
∂r − a2

r2

)
.

Let τ = t/2. Since the following relation holds among the heat kernels

et(x∂2
x+∂x−a2

4x
) = e

t
4
(∂2

r+ 1
r
∂r−a2

r2 ) = e
τ
2
(∂2

r+ 1
r
∂r−a2

r2 ),

then the heat kernel of 1
2(∂2

r + 1
r∂r − a2

r2 ) is obtained from the heat kernel of
x∂2

x +∂x− a2

4x by making the substitutions x0 = r2
0, x = r2 and τ = t/2 in formula

(6.28).

As an application of formula (6.29) we shall find the heat kernel of the operator

L =
1
2
(∂2

x1
+ ∂2

x2
)− λ2

x2
1 + x2

2

, (6.30)

which in polar coordinates becomes

L =
1
2
(∂2

r +
1
r
∂r +

1
r2

∂2
θ )− λ2

r2
.

If K is the heat kernel of the above operator, then applying a partial Fourier
transform with respect to θ, we obtain that K̂ = FθK is the heat kernel of the
operator

P =
1
2
(∂2

r +
1
r
∂r − 1

r2
ξ2)− 2λ2

2r2
=

1
2
(∂2

r +
1
r
∂r − a2

r2
),
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with a2 = 2λ2 + ξ2. The heat kernel of etP can be obtained from formula (6.29)

K̂(r0, r, τ ; ξ) =
1
2τ

e−
1
2τ

(r2
0+r2)Ia

(r0r

τ

)
.

Applying the inverse Fourier transform yields the heat kernel of the operator
(6.30)

K(r0, θ0, r, θ, τ) =
1
2π

∫
ei(θ−θ0)ξ 1

2τ
e−

1
2τ

(r2
0+r2)I

(2λ2+ξ2)
1
2

(r0r

τ

)
dξ

=
1

4πτ
e−

1
2τ

(r2
0+r2)

∫
ei(θ−θ0)ξI

(2λ2+ξ2)
1
2

(r0r

τ

)
dξ.

To conclude, going back to the variables x0 and x, we obtain:

Proposition 6.4. The heat kernel of the operator (6.30) is given by

K(x0, x, τ) =
1

4πτ
e−

1
2τ

(|x0|2+|x|2)V
(
arg(x0, x),

x0x

τ

)
, τ > 0,

where arg(x0, x) = cos−1
( x · x0

|x| |x0|
)
, and

V (u, ρ) =
∫

eiuξI
(2λ2+ξ2)

1
2

(ρ) dξ.

7 Directions to further studies

We suggest here a few open problems related to this paper. We first ask how
can the method be extended to find the heat kernel for an elliptic operator with
potential

( ∂

∂t
−

∑

i,j=1

aij(x)∂xi∂xj −
λ2

∑
aij(x)xixj

)
K(x0, x, t) = 0, t > 0

lim
t↘0

K(x0, x, t) = δx0 .

In particular, we are interested in the role played by the geometry. Can we
find the heat kernel for L = 1

2

∑
∂2

xk
− λ2

|x|2 , with λ 6= 0 and x ∈ Rn with n ≥ 3?
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Birkhäuser, (2004).
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