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Abstract: In J. J. Kohn’s recent paper [5] the operator

Em,k = LmLm + Lm|z|2kLm, L =
∂

∂z
− iz|z|2(m−1) ∂

∂t

was introduced and shown to be hypoelliptic, yet to lose k−1
m derivatives in

L2 Sobolev norms. Christ [3] showed that the addition of one more variable
destroyed hypoellipticity altogether. Here we show that this operator with
an Oleinik-type singularity Em,k + |z|2(p−1) ∂2

∂s2 is Gevrey hypoelliptic Gs for
any s ≥ 2m

p−k , (2m > p > k). A related result is that for the ‘real’ version,
with X = ∂

∂x − ixq−1 ∂
∂t ,

Rq,k + x2(p−1) ∂2

∂s2
= X

∗
X + (xkX)∗(xkX) + x2(p−1) ∂2

∂s2

is Gevrey hypoelliptic Gs for any s ≥ q
p−k , (q > p > k), although the method

of proof is different, and that the result is sharp.
The situation is reminiscent of the Baouendi-Goulaouic example, in which
adding a new variable to a Grushin type analytic hypoelliptic operator de-
stroys the analyticity and drops the regularity to G2 yet prefacing that new
second derivative by a power of the first variable to obtain an Oleinik-type
operator improves the Gevrey index substantially (cf. [1]).
Keywords: Hypoellipticity; Gevrey regularity; Sums of squares of complex
vector fields.
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1. Introduction and statement of theorems

In sharp contrast to the situation with sums of squares of real vector fields
whose iterated brackets span the full tangent space at each point and which
consequently are subelliptic and both C∞ and Gevrey hypoelliptic, the operator
introduced by J.J. Kohn:

Ek = LL + L|z|2kL, L =
∂

∂z
− iz

∂

∂t

surprised analysts and geometers alike. This operator may be viewed as satisfy-
ing the bracket condition at each point but is far from being subelliptic, yet is
hypoelliptic with loss of k−1 derivatives in L2 Sobolev norms. In an Appendix to
Kohn’s paper, Derridj and the second author showed that Ek was even analytic
hypoelliptic and gave an alternative proof of Kohn’s result. Later, in [9], the
same result was proved for the more degenerate operator

Em,k = LmLm + Lm|z|2kLm, Lm =
∂

∂z
− iz|z|2(m−1) ∂

∂t

and further generalized were provided in [2], where the precise loss, namely k−1
m

for Em,k, was established for still more general operators, in higher dimensions,
although these operators seemed to require some radial symmetry in |z|.

Christ observed that the addition of a single new variable changed the situation
dramatically, showing that neither Ek + ∂2

∂s2 nor Rk + ∂2

∂s2 , is hypoelliptic, where

Rk = X
∗
X + (xkX)∗(xkX), X =

∂

∂x
− ix

∂

∂t
.

Inspired by the work of Oleinik and that of Baouendi and Goulaouic, already
generalized in [1], we study here the Gevrey hypoellipticity of the operators

Em,k,p = Em,k + |z|2(p−1) ∂2

∂s2

and, with Xq = ∂
∂x − ixq−1 ∂

∂t ,

Rq,k,p = Xq
∗

Xq + (xkXq)∗(xkXq) + x2(p−1) ∂2

∂s2
,

where q is a positive even integer and k ≥ 0, p ≥ 1 are integers. We point out
that if q is odd then the field Xq is subelliptic because of Theorem 27.1.11 in [4],
and that the operator Rq,k,p behaves like the Oleinik operator no matter what
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the value of k is (see e.g. [1] for the definition and Gevrey hypoellipticity results
for the Oleinik operator.)

Our main result may be stated

Theorem 1. For 2m > p > k (resp. q > p > k), the operator Em,k,p (resp.
Rq,k,p) is Gevrey-s hypoelliptic for any s ≥ 2m

p−k (resp. s ≥ q
p−k ).

We would also like to emphasize that the Poisson-Treves stratification associ-
ated to Em,k or Rq,k is symplectic, while the stratification for Em,k,p or Rq,k,p is
not.

2. The a priori estimates

We prefer to work with estimates in the inner product formulation, which are
simple to derive, though require some additional work to yield regularity. (By
contrast, Kohn’s original paper used estimates in norms with explicit localizing
functions, estimates which are far from simple to derive, but which have the
advantage of yielding hypoellipticity at once.)

The estimate for Em,k for v ∈ C∞
0 (R3) is:

‖Lmv‖2
0 + ‖zkLmv‖2

0 + ‖v‖2
− k−1

2m
(t)

. |(Em,kv, v)0|

and hence, for v ∈ C∞
0 (R4),

‖Lmv‖2
0 + ‖zkLmv‖2

0 + ‖zp−1Dsv‖2
0 + ‖v‖2

− k−1
2m

(t)
. |(Em,k,pv, v)0|. (C)

Remark 1. The negative norm need only be in the variable t, and L2 in the other
variables, as the derivation below will show. We note that Dt commutes with every
operator in this paper (and in Kohn’s) which simplifies our computations.

Remark 2. We actually have a stronger estimate when p = 1, i.e., the situation
considered by Christ, since for small support (in s) the L2 norm is bounded by a
small multiple of the one norm in s, whence also

‖Lmv‖2
0 + ‖zkLmv‖2

0 + ‖Dsv‖2
0 + ‖v‖2

0 . |(Em,k,1v, v)0|, v ∈ C∞
0 (R4),

an estimate which appears to be substantially stronger, but is sufficiently far from
the subelliptic case that hypoellipticity still fails.
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Analogously, for the ‘real’ case, the estimate for Rq,k is:

‖Xqv‖2
0 + ‖xkXqv‖2

0 + ‖v‖2
− k−1

q
(t)

. |(Rq,kv, v)0|, v ∈ C∞
0 (R3),

and hence, for v ∈ C∞
0 (R4),

‖Xqv‖2
0 + ‖xkXqv‖2

0 + ‖xp−1Dsv‖2
0 + ‖v‖2

− k−1
q

(t)
. |(Rq,k,pv, v)0|. (R)

Remark 3. All of our operators will have symplectic characteristic varieties for
z 6= 0 (respectively x 6= 0) and thus localizing functions need only depend on the
other variables in view of known results by Tartakoff, Treves and others.

Remark 4. For local real analyticity results, very careful localization of high
powers of ∂/∂t has been required, namely

(T r)ϕ = ϕT r +
∑

W (ϕ)W̃T r−1 +
∑ W 2(ϕ)

2!
W̃ 2T r−2 + . . .

For Gevrey results this is not necessary, and for the local real analyticity of Rq,k

above it appears not even to be possible to construct (T r)ϕ directly. We are
fortunate to be able to complexify from x to z, however, extend all solutions
constant in =z, use the analytic result in the complex case, and then restrict
back.

3. Derivation of the estimate in the ‘Real’ Case

For simplicity, we write the operator as

Rq,k,p = X∗
1X1 + X∗

2X2 + x2(p−1) ∂2

∂s2
=

3∑

j=1

W ∗
j Wj

with

W1 = X1 =
∂

∂x
− ixq−1 ∂

∂t
, W2 = X2 = xkX1, W3 = xp−1 ∂

∂s
,

and denote by W4 the pseudo-differential power of the Laplacian in t

W4 = Λ
− k−1

q

t .

The a priori estimate to be established (always modulo a term of arbitrary neg-
ative order on the right hand side) is thus

3∑

j

‖Wjv‖2
0 + ‖v‖2

− k−1
q

(t)
. |(Rq,k,pv, v)0|, v ∈ C∞

0 . (R)
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To find the value of ν ≤ 0 (in t) for which

3∑

1

‖Wjv‖2
0 + ‖v‖2

ν . |(Rq,k,pv, v)0|, v ∈ C∞
0 ,

we write ‖v‖2
ν = |([X1, x]v, v)ν |, so that, for x small, since ν ≤ 0,

‖v‖2
ν ≤ |(xX1v, v)ν |+ s.c.‖v‖2

ν + l.c.‖X1v‖2
0

≤ l.c.‖xX1v‖2
ν + s.c.‖v‖2

ν + l.c.‖X1v‖2
0

Here l.c. denotes a “large” positive constant and s.c. an “arbitrarily small” pos-

itive constant. In the first term on the right we raise and lower powers of xΛ
1
q

t ,

then integrate by parts, and finally commute X1 and X1:

l.c.‖xX1v‖2
ν ≤ s.c.‖X1v‖2

ν− 1
q

+ l.c.‖xkX1v‖2
ν+ k−1

q

≤ s.c.‖X1v‖2
ν− 1

q

+ s.c.‖|x| q−2
2 Λ

1
2
− 1

q

t v‖2
ν + l.c.‖xkX1v‖2

0

≤ l.c.
{
‖X1v‖2

0 + ‖xkX1v‖2
0

}
+ s.c.‖|x| q−2

2 Λ
1
2
− 1

q

t v‖2
ν

if ν = −k−1
q ; raising and lowering powers of xΛ

1
q

t once more,

‖|x| q−2
2 Λ

( 1
q
)( q−2

2
)

t v‖2
ν ≤ ‖v‖2

ν + ‖|x| q2−1+kΛ
1
2
+ k−1

q v‖2
ν

= ‖v‖2
ν + ‖|x| q2−1+kΛ

1
2 v‖2

0 = ‖v‖2
ν + |([X1, x

kX1]v, xkv)0|

≤ ‖v‖2
ν + ‖X1v‖2

0 + ‖xkX1v‖2
0 + ‖xk−1v‖2

0,

since the ‘Levi form’ is bounded by the sum of the operators modulo this last
error. However,

‖xk−1v‖2
0 ∼ |([X1, x

2k−1]v, v)0| ≤ |(xk−1v, xkX1v)0|+ (X1v, x2k−1v)0|

which shows that this error is harmless.

Thus, since W2 = xkX1, and including W3 = xp−1 ∂
∂s is trivial,

3∑

1

‖Wjv‖2
0 + ‖v‖2

− k−1
q

(t)
. |(Rq,k,pv, v)0|, (CS)

for v of small support. The same derivation, distinguishing when necessary be-
tween z and z, applies to the Oleinik variant of Kohn’s operator, Em,k,p.
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4. C∞ Hypoellipticity

Microlocally, our operators are elliptic for ξ 6= 0 (or ζ 6= 0), hence even analytic
hypoelliptic there. Hence the challenge is to bound growth of derivatives in s and
t suitably. And since all coefficients are independent of (s, t), in either case
P = Em,k,p or P = Rq,k,p we may multiply the equation Pu = f through by a
pseudodifferential operator Ψ = ΨN with smooth symbol

ΨN (σ, τ) ≡ 1, |σ|+ |τ | ≤ N, ΨN (σ, τ) ≡ 0, |σ|+ |τ | ≥ 2N

where σ is dual to s and τ to t. (Derivatives of Ψ will never enter, since [Ψ, P ] = 0.)
Then for our solution u, we have ΨN ( ∂

∂s ,
∂
∂t)u ∈ C∞ and, making sure that

our estimates are uniform in N, in the end letting N → ∞ we may obtain
corresponding estimates on the solution u itself and the finiteness of the norms
involved. Thus we will work as though the solution u were already smooth.

5. Gevrey Hypoellipticity, Real Case

Since q > p, the critical direction is T = ∂/∂t. And while strictly speaking
we should introduce localization in all variables, any localizing function in x will
be merely passively dragged along - when it is differentiated we land in a region
bounded away from x = 0, and the result is known there, so we will suppress
localization in x. Further, while T will occur with non-integral powers, we should
strictly speaking localize on both the left and the right of T, with the function
on the right identically equal to one near that on the left. But again, when
this function on the right is differentiated we wind up with a pseudo-differential
operator with symbol identically equal to zero, hence sufficiently smoothing if
the localizing functions are in the Enrenpreis class. Thus we will suppress this
second localization to the right of T as well. In fact, derivatives in S = ∂

∂s will
grow analytically, since the exponent p− 1 satisfies p < q (resp. p < 2m.) and all
errors which arise will still contain the coefficient xp−1 which may be combined
with one of the powers of S to make a maximally bounded vector field, denoted
W3 in both cases.

Given a solution u, then, assumed to be smooth, to Rq,k,pu = f ∈ Gσ, we will
set v = ϕ(s, t)T ru in the a priori estimate and commute ϕ(s, t)T r past Rq,k,p

with acceptable errors.
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In using (R) with v = ϕ(s, t)T ru, the critical brackets which enter at once are

‖[Wj , ϕT r]u‖2
0, j = 1, 2, 3.

In more detail,

‖[Wj , ϕT r]u‖2
0 = ‖x`jϕ′T ru‖2

0,

with `1 = q − 1, `2 = q + k − 1, `3 = p− 1, and ϕ′ denoting a first derivative of
ϕ in t (j = 1, 2) or in s (j = 3).

To treat these, we use the same techniques as above, since for q, p > 1, we may
always raise and lower powers of (xΛt). When p = 1 (Christ’s example) there is
no x in the third bracket and hence we cannot apply these techniques.

Now, since `3 = p− 1 is the smallest of the `j and hence the hardest to treat,
and for any δ > k−1

q ,

‖[Wj , ϕT r]u‖2
0 = ‖x`jϕ′T r+ k−1

q u‖2
− k−1

q

. ‖ϕ′T r+ k−1
q
−δ

u‖2
− k−1

q

+‖xq+k−1ϕ′T r+ k−1
q

+ δ
p−1

(q+k−1−(p−1))
u‖2
− k−1

q

(5.1)

or, for the complex case below, with q = 2m but `3 still the smallest of the `j ,

we may raise the powers of x (now |z|) less, still writing W c
j now for Lm, zkLm,

or zp−1 ∂
∂s ,

‖[W c
j , ϕT r]u‖2

0≤‖z`jϕ′T r+ k−1
q u‖2

− k−1
q

. ‖ϕ′T r+ k−1
q
−δ

u‖2
− k−1

q

+‖|z| q−2
2

+kT
1
2 ϕ′T r+ k−1

q
+ δ

p−1
( q−2

2
+k−(p−1))− 1

2 u‖2
− k−1

q

(5.2)

For the real case, xk+q−1T can be written as a linear combination of X1 and
X2 = xkX1 since X1 = ∂

∂x − ixq−1 ∂
∂t . This makes the last term in the estimate

for brackets with Wj just above essentially

‖Wϕ′T r+ δ
p−1

(q+k−1−(p−1))−1
u‖2

0,

which gives a gain of 1− δ
p−1(q + k − 1− (p− 1)) for one derivative on ϕ, while

the first term gives a gain of δ − k−1
q . These lead quickly to the Gevrey index.

Choosing δ suitably will minimize the Gevrey index.
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6. Gevrey Hypoellipticity, Complex Case

For the complex case of

Em,k,p = Em,k + |z|2(p−1) ∂2

∂s2
=

∑

j

W c
j
∗W c

j ,

we use the estimate for brackets with W c
j just above, since now the operators

L and L are not sufficiently similar to permit the T term to be written as their
linear combination ( ∂

∂z and ∂
∂z will not cancel as in the real case) so we have to

consider the second term in (5.2) as a Levi form, and bound it by the vector fields
with additional loss. That is, this term, in complex form, is estimated by

‖|z| q−2
2

+kT
1
2 ϕ′T r+ k−1

q
+ δ

p−1
( q−2

2
+k−(p−1))− 1

2 u‖2
− k−1

q

.
∑

j

‖W c
j ϕ′T r+ δ

p−1
( q−2

2
+k−(p−1))− 1

2 u‖2
0

leading to a gain of 1
2 − δ

p−1( q−2
2 + k − (p− 1)) for each derivative on ϕ. Again,

the Gevrey index is rapidly computed.

7. And the Real Answer Is . . .

For the ‘real’ case, the condition was - with δ > k−1
q , Gevrey hypoellipticity

held in Gσ with

σ = min
δ> k−1

q

max

(
1

δ − k−1
q

,
1

1− δ
p−1(q + k − p)

)

and this occurs when the denominators are equal, namely for δ = p−1
q , yielding

min
δ> k−1

2m

max

(
1

δ − k−1
q

,
1

1− δ
p−1(q + k − p)

)
=

q

p− k
,

(q > p > k).

8. And the Complex Answer Is . . .

For the ‘complex’ case, the condition is - with δ > k−1
2m , Gevrey hypoellipticity

held in Gσ with

σ = min
δ>0

max

(
1

δ − k−1
2m

,
1

1
2 − δ

p−1(2m
2 + k − p)

)
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and this occurs when the denominators are equal, namely for δ = p−1
2m , yielding

min
δ>0

max

(
1

δ − k−1
2m

,
1

1
2 − δ

p−1(2m
2 + k − p)

)
=

2m

p− k
,

(2m > p > k).

9. Sharpness

We want to show that the Gevrey regularity for Rq,k,p given above is sharp
and cannot be improved. As a preliminary fact, we need to show that there is a
suitable value of the parameter λ such that the ordinary differential equation

R̂q,k(τ)u + λτ
−2 k

q x2(p−1)u = 0 (9.1)

has a non-zero solution in S (R). Here τ is a large positive parameter and R̂q,k(τ)
denotes the operator

R̂q,k(τ) = X∗X + τ
−2 k

q (xkX∗)∗xkX∗,

where

X = Dx − ixq−1, Dx = i−1∂x,

so that X∗ = Dx + ixq−1.

This is accomplished in two steps:

• Show that for u ∈ S (R) we have the following estimate

〈R̂q,ku, u〉 ≥ cτ
−2 k

q ‖u‖2, (9.2)

with a positive constant c independent of τ and u.
• Argue as in Lemma 1 of [7] to reach the conclusion.

We shall actually need an estimate slightly different from (9.2) but which will
follow from it.

Lemma 9.1. Let q and k be positive integers. Then for every u ∈ S (R) we have

〈R̂q,ku, u〉 ≥ cτ
−2 k

q ‖u‖2,

with a positive constant c independent of τ and u. Here ‖ · ‖ and 〈·, ·〉 denote the
L2 norm and scalar product in R.
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Proof. We start off by noting that

τ
−2 k

q ‖u‖2 = τ
−2 k

q 〈[X∗, x]u, u〉 = τ
−2 k

q {〈xu,Xu〉 − 〈xX∗u, u〉} .

We estimate each of the two terms above. We have, since

|x| ≤ ε + Cε,m|x|m

for any ε and m,

|〈xX∗u, u〉| ≤ s.c.‖u‖2 + l.c.‖xX∗u‖2

≤ s.c.‖u‖2 + s.c.‖X∗u‖2 + l.c.‖xkX∗u‖2.

The first term in the second line above can be absorbed on the left. The last term
is good when combined with the power of τ in front of it. We have to examine
the second term.

For the second term we choose a compact set K = [−1
2 , 1

2 ] and split ‖X∗u‖ =
‖X∗u‖K + ‖X∗u‖Kc . We have

‖X∗u‖K ≤ ‖Xu‖K + ‖(X −X∗)u‖K ≤ ‖Xu‖R + 2‖xq−1u‖K

≤ ‖Xu‖R + 2‖u‖R,

while for the region Kc we have

‖X∗u‖Kc ≤ 2k‖xkX∗u‖Kc ≤ 2k‖xkX∗u‖R
so that together,

‖X∗u‖ ≤ ‖Xu‖R + 2‖u‖R + C‖xkX∗u‖R

For the other term, |〈xu,Xu〉|, we write

|〈xu,Xu〉| ≤ l.c.‖Xu‖2 + s.c.‖xu‖2 ≤ l.c.‖Xu‖2 + s.c.‖u‖2 + s.c.‖xq−1u‖2

as before and write

‖xq−1u‖2 =
1
2
‖(X −X∗)u‖2 ≤ {‖Xu‖2 + ‖X∗u‖2

}

and we have treated the last term just above. Note that, unlike [9] and [2],
where we were able to take u to have small support, we can not take ‖xu‖ to be
estimated by a small multiple of ‖u‖.

This completes the proof of the lemma. ¤

The next lemma has the estimate we need.
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Lemma 9.2. Let p, q and k be positive integers such that q > p > k. Then for
every u ∈ S (R) we have

〈R̂q,ku, u〉 ≥ cτ
−2 k

q ‖xp−1u‖2, (9.3)

with a positive constant c independent of τ and u.

Proof. It suffices to observe that since |x|p−1 . 1 + |x|q−1, it suffices to estimate
both ‖u‖ and ‖xq−1u‖ both of which we have done above. This ends the proof
of the lemma. ¤

Lemma 9.3. Under the hypotheses in Lemma 9.2, there exists a positive constant
λ such that the ordinary differential equation

R̂q,k(τ)u + λτ
−2 k

q x2(p−1)u = 0 (9.4)

has a non zero solution in the domain in L2 of R̂q,k(τ).

Proof. This is the same argument as in Lemma 1 of [7], once we point out that
the L2 domain of the operator R̂q,k(τ), τ > 0, is compactly embedded in L2.

The argument of Lemma 1 in [7] is pursued by showing that a minimizing
sequence for the ratio

inf
u∈S (R)

〈R̂q,ku, u〉
τ
−2 k

q 〈x2(p−1)u, u〉
exists and converges with respect to the norm ‖|u‖|2 = 〈R̂q,ku, u〉. Thanks to
Lemma 9.2 we see that the infimum does not depend on τ . We refer the reader
to [7] for the details. ¤

Let us denote by vτ (x) the solution of (9.4) determined by Lemma 9.3. We
point out explicitly that vτ satisfies an estimate of the form

|vτ (x)| ≤ Ce
− |x|q

q

(
1 + O(τ−

k
q )

)
,

when |x| → +∞ (see e.g. [8]); here O(τ−α) denotes a quantity uniformly bounded
w.r.t. the x-variable for |x| → +∞.

Define

u(x, s, t) =
∫ +∞

0
exp

(
iρt + iλ

1
2 ρ
− k

q
+ p

q s− ρθ
)

vρ

(
ρ

1
q x

)
dρ, (9.5)



674 Antonio Bove and David S. Tartakoff

where
θ >

p− k

q
.

It is easily checked that the integral in (9.5) is absolutely convergent and that u

is a null solution of the equation

Rq,k,p(x,Dx, Ds, Dt)u = 0.

It is now straightforward to compute

|∂j
t u(0)| ∼ C

∫ +∞

0
e−ρθ

ρjdρ ∼ Cjj!
1
θ ,

which proves

Theorem 2. The operator Rq,k,p(x,Dx, Ds, Dt) is Gσ hypoelliptic, for σ ≥ q
p−k

and not for any σ < q
p−k .
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