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Global Regularity of ∂̄ on an Annulus between a

Q-pseudoconvex and a P-pseudoconcave Boundary

Heungju Ahn and Giuseppe Zampieri

Abstract: We consider the ∂̄ problem over an annulus Ω ⊂⊂ Cn between
an internal p-pseudoconcave and an external q-pseudoconvex hypersuface
respectively. We prove that the C∞(Ω̄)-cohomology of ∂̄ on antiholomorphic
forms of degree k for q + 1 ≤ k ≤ p− 1 is finite-dimensional.
Keywords: ∂̄-Neumann problem, q pseudoconvex/concave manifolds.

1. Introduction

Let Ω1 and Ω2 be two domains of Cn with Ω2 ⊂⊂ Ω1 ⊂⊂ Cn and let Ω be
the annulus Ω = Ω1 \ Ω̄2. We assume that Ω is q-pseudoconvex at ∂Ω1 and p-
pseudoconcave at ∂Ω2 where the indices q and p satisfy 0 ≤ q + 2 ≤ p ≤ n − 1.
For an antiholomorphic form f in C∞(Ω̄) of degree k with q + 1 ≤ k ≤ p − 1
and which satisfies the compatibility condition ∂̄f = 0, we look for solutions u

of degree k − 1 of the inhomogeneous Cauchy-Riemann equation ∂̄u = f . We
prove solvability of this equation in C∞(Ω̄), modulo harmonic forms H, that
is solutions of (∂̄, ∂̄∗). If one strengthens the hypotheses and assumes strong q-
pseudoconvexity and strong p-pseudoconcavity at ∂Ω1 and ∂Ω2 respectively, it is
classical that local hypoellipticity at the boundary for (∂̄, ∂̄∗) follows: a solution
u which is orthogonal to ker ∂̄ is smooth precisely in the part of ∂Ω where f is.
In particular, when f is in C∞(Ω̄), then the so called “canonical” solution is also
in C∞(Ω̄). The basic tool of the paper is the ∂̄-Neumann method by Kohn. In
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Section 3 we establish the L2 estimates for the weighted ∂̄-Neumann problem.
For any s, by the use of the weight ϕts = (ts +c)|z|2, they guarantee the existence
of a “∂̄-Neumann operator” Nts , the “quasi” inverse of ¤ts = ∂̄∂̄∗ts + ∂̄∗ts ∂̄ in the
Sobolev space Hs weighted by ϕts as it was proved in [1] and [2]. This permits to
solve the ∂̄-problem in the Sobolev spaces Hs, modulo H the finite-dimensional
space of harmonic forms. By a procedure of approximation due to Kohn [10]
this yields the C∞(Ω̄) solution modulo H out of the Hs solutions. In § 4 , we
restrict our discussion to the case where ∂Ω1 and ∂Ω2 are strongly q-pseudoconvex
and p-pseudoconcave respectively. Though the regularity at the boundary of ∂̄ is
classical in this case (cf. e.g. [6]), our appoach carries some novelty and puts the
discussion into a unified frame with § 3. Finally, in § 5, we introduce a criterion
of decomposition of ∂̄-closed forms. By this, we get, in some cases, a better
description of the solution.

We wish to describe in what extent our results are already contained in the
literature. First, the estimates of Section 3 and the boundary regularity of ∂̄ were
already established by Shaw in [14] in case ∂Ω1 and ∂Ω2 are weakly pseudoconvex
and pseudoconcave respectively, which corresponds to q = 0 and p = n − 1 in
our terminology. As for Section 4, we notice that when the assumptions on q-
pseudoconvexity and p-pseudoconcavity are strong, then Ω satisfies Z(k) for any
k s.t. q + 1 ≤ k ≤ p − 1 and hence the ∂̄-problem satisfies the 1

2 - subelliptic
estimates according to Kohn [12], Hörmander [8] and Folland-Kohn [6].

2. Q-pseudoconvexity / P-pseudoconcavity

We consider a bounded annulus of Cn of type Ω = Ω1\Ω̄2 where Ω1 ⊂⊂ Ω2 ⊂⊂
Cn are domains with C∞ boundary. We choose two equations r1 = 0, r2 = 0 for
M1, M2 so that Ω is defined by r1 < 0, r2 > 0. Let TMh h = 1, 2 be the
tangent bundle to Mh, TCMh the complex tangent bundle, T 1,0Mh and T 0,1Mh

the subbundles of C ⊗ TCM of forms of type (1, 0) and (0, 1) respectively. Let
Lrh h = 1, 2, resp. LMh

be the Levi forms of rh, resp. Mh, which are the hermitian
forms represented, in a system of coordinates z of Cn, by the matrices

(
∂zi∂z̄jr

h
)

ij
, resp.

(
∂zi∂z̄jr

h
)

ij

∣∣
TCM

.

We denote by λh
1 ≤ λh

2 ≤ ..., h = 1, 2, the ordered eigenvalues of LMh
. We pass to

describe our geometric hypotheses on ∂Ω. We start from the “exterior” boundary



Global Regularity of ∂̄ on an Annulus... 649

defined by r1 = 0, fix a boundary point, consider in a neighborhood of this point
an orthonormal basis {ωj}j=1,...,n with ωn = ∂r1, the dual basis {∂ωj}j=1,...,n of
(1, 0) vector fields and denote by (r1

ij(z))i,j=1,...,n the matrix which represents
LM1 in this basis. Following [16] and [1] we introduce the following notion. In
the neighborhood of a boundary point, we suppose that there exists a C2 smooth
bundle V ⊂ T 1,0M1 of rank q, say V = Span {∂ω1 , ...∂ωq}, such that

(2.1)
q+1∑

j=1

λ1
j (z)−

q∑

j=1

r1
jj(z) ≥ 0.

We also consider the situation in which (2.1) holds with strict inequality > 0.

It is evident that (2.1) implies λq+1 ≥ 0; hence (2.1) is still true if we replace
the first sum

∑q+1
j=1 · by

∑k
j=1 · for any k such that q + 1 ≤ k ≤ n − 1. For

ordered multiindices J = j1 < ... < jk of length |J | = k, let us consider k-vectors
w = (wJ)J . We assume that w is tangential to M1, that is, wJ |M1 = 0 when
n ∈ J . If the multiindex is no more ordered, then it is chosen to be alternant: if
J decomposes in jK, then wjK := sign

(
J

jK

)
wJ . Now, (2.1) is equivalent to

(2.2)
∑′

|K|=q

∑

ij=1,...,n−1

r1
ijwiKw̄jK −

∑′

|J |=q

∑

j≤q

r1
jj |wJ |2 ≥ 0

∀w tangential of degree q + 1,

where
∑′ denotes the sum over ordered indices. By what we have remarked after

(2.1), it follows that (2.2) is in fact true for any w tangential of degree k ≥ q + 1.
Sometimes, we also use a variant of (2.2) which is still sufficient for regularity at
the boundary:

(2.3)
∑′

|K|=q

∑

ij=1,...,n−1

r1
ijwiKw̄jK −

∑′

|K|=q

∑

j≤q

r1
jj |wjK |2 ≥ 0

∀w tangential of degree q + 1 .

Again, (2.2) is in fact true for any tangential form of degree k with q + 1 ≤ k ≤
n− 1.

Definition 2.1. M1 is said q-pseudoconvex when in a neighborhood of any
boundary point either of (2.2) or (2.3) is satisfied. M1 is said strongly q-
pseudoconvex when either of (2.2) or (2.3) hold with strict inequality.
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We pass now to the “interior” boundary M2, fix a point, and choose a local
system of smooth forms with ωn = ∂r2: this vector points inside Ω since r2 > 0
on Ω. Let p be an integer ≤ n− 1.

We consider the situation in which, in the neighborhood of a boundary point,
there is a C2-bundle W in T 0,1M2 of rank p, say W = Span {∂ω1 , ..., ∂ωp} such
that

(2.4)
∑

j≤p−1

λ2
j −

∑

j≤p

r2
jj ≥ 0.

We consider also the case in which (2.4) holds with strict inequality > 0.

In the same way as we have seen that (2.1) is equivalent to (2.2), we can see
that (2.4) is equivalent to:

(2.5)
∑′

|K|=p−2

∑

ij=1,...,n−1

r2
ijwiKw̄jK −

∑′

|J |=k

∑

j≤p

r2
jj |wJ |2 ≥ 0

for any tangential form w of degree p− 1.

Similarly as for pseudoconvexity, we also consider the following variant of (2.5)

(2.6)
∑′

|K|=p−2

∑

ij=1,...,n−1

r2
ijwiKw̄jK −

∑′

|J |=k

∑

j≤p

r2
jj |wjK |2 ≥ 0

for any tangential form w of degree p− 1.

In all (2.4), (2.5) and (2.6) we can replace p− 1 by any k ≤ p− 1.

Definition 2.2. M2 is said p-pseudoconcave when in a neighborhood of any
boundary point, either of (2.5) or (2.6) are satisfied. M2 is said strongly p-
pseudoconcave when (2.5) or (2.6) hold with strict inequality.

3. uniform estimates up to the boundary for weakly

Q-pseudoconvex/P-pseudoconcave boundaries

For a bounded domain with smooth boundary Ω ⊂ Cn, we consider antiholo-
morphic forms u =

∑′
|J |=k

uJ ω̄J of degree k with coefficients uJ in C∞(Ω̄) where

ω̄J stands for ω̄j1 ∧ ω̄j2 ∧ .... We denote by C∞(Ω̄)k the space of such forms and
consider the ∂̄-complex

(3.1) ...C∞(Ω̄)k−1 ∂̄→ C∞(Ω̄)k ∂̄→ C∞(Ω̄)k+1 ∂̄→ ....
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We extend the action of ∂̄ to forms with coefficients in L2, possibly endowed with
a weight e−ϕ, denote by || · ||H0 the corresponding norm, and by ∂̄∗ the adjoint
operator. We denote by D∂̄∗ the domain of ∂̄∗. If Ω is defined, in a neighborhood
of a boundary point, by r < 0 with ∂r 6= 0, and ω1, ..., ωn is a basis of orthonormal
forms in which ωn = ∂r, we can check that u ∈ D∂̄∗ if and only if uJ |∂Ω ≡ 0
whenever n ∈ J . We call tangential a form which belongs to D∂̄∗ . We suppose
that our domain is an annulus Ω = Ω1 \ Ω̄2, and first define the weight which fits
our needs. For a choice of a constant c which will be clarified later, we want ϕ to
coincide with ϕ1 := c|z|2 at M1 and ϕ2 := −c|z|2 at M2. This can be achieved by
taking, e.g., χ1 and χ2 smooth, with χ1 ≡ 1 at M1, χ2 ≡ 1 at M2, χ1+χ2 ≡ 1, and
putting ϕ = χ1ϕ

1 + χ2ϕ
2. Under this choice of ϕ we obtain our basic estimates

Theorem 3.1. Let M1 be q-pseudoconvex and M2 p-pseudoconcave for 1 ≤ q +
1 ≤ p−1 ≤ n−2. Then, for suitable Ω′ ⊂⊂ Ω and for any u ∈ C∞(Ω̄)k ∩ (D∂̄∗)

k,
we have

(3.2) ||u||2H0(Ω) + ||u||2H1(Ω′) <
∼
||∂̄u||2H0(Ω) + ||∂̄∗u||2H0(Ω) + ||u||2H−1(Ω′)

if q + 1 ≤ k ≤ p− 1.

As usual, “<
∼

” denotes inequality up to a multiplicative constant (independent

of u).

Proof. We take a local “frame” ω1, ..., ωn with ωn = ∂r where r = r1 or r = r2.
We denote by δωj the adjoint of −∂ω̄j in the weighted H0

ϕ inner product; hence
δωj = ∂ωj − ϕj where we have put ϕj := ∂ωjϕ. By using the adjunction relations
between ∂ω̄j and δωj as in [9] ch. IV, we get for any u tangential

(3.3) ||∂̄u||2H0
ϕ

+ ||∂̄∗ϕu||2H0
ϕ

>
∼

∑

ij=1,...,n

∑′

|K|=k−1

∫
e−ϕ

(
δωiuiKδωjujK

−∂ω̄juiK∂ω̄iujK

)
dV +

∑

j=1,...,n

∑′

|J |=k

∫
e−ϕ|∂ω̄juJ |2dV + ...

where dots denote an error term in which never occur products of derivatives
of u. We perform twice integration by parts for all indices ij in the first sum
in (3.3). We make also twice integration by parts in some of the terms of the
second sum whose choice is different in the two components of the boundary and
in the interior. We first remark that by a partition of the unity one can prove
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(3.2) separately for forms which have support in neighborhoods of points of M1,
M2 and in the interior of Ω. The first is done in [1] or [2] and the third is a
consequence of the elliptic estimates in the interior. We will spend later a few
words about these two cases, but first point our attention to forms u with support
in a neighborhood of a point of M2. We assume that W = Span{ω1, ..., ωp} and
remember that ϕ is defined as −c|z|2 in a neighborhood of M2. We suppose that
p-pseudoconcavity holds in the form of (2.5); the variant for (2.6) is obvious. In
this case, we apply double integration by parts to the terms of the second sum
in which j ≤ p and continue the inequality (3.2) by

(3.4)

>
∼


 ∑

ij=1,...,n

∑′

|K|=k−1

∫
e−ϕ[δωi , ∂ω̄j ]uiK ūjKdV −

∑

j≤p

∑′

|J |=k

∫
e−ϕ[δωj∂ω̄j ]|uJ |2dV




+


∑

j≤p

∑′

|J |=k

∫
e−ϕ|δωjuJ |2dV +

∑

j≥p+1

∑′

|J |=k

∫
e−ϕ|∂ω̄juJ |2dV


 + ...

We denote by S the second line of (3.4). Now, we can express the commutators
as

[δωi , ∂ω̄j ] = ϕij + rij(δωn − ∂ω̄n) + ...

We interchange δωn and ∂ω̄n and get
∫

Ω
e−ϕrijδωnuJ ūIdV =

∫

+∂Ω
e−ϕrijrnuJ ūIdV

−
∫

Ω
e−ϕrijuJ∂ω̄nuIdV + ...

Thus we continue our estimates by

(3.5)


 ∑′

|K|=k−1

∑

ij=1,...,n−1

∫

∂Ω
e−ϕrijuiK ūjKdS −

∑′

|J |=k

∑

j≤p

∫

∂Ω
e−ϕrjj |uJ |2dV




+


 ∑

ij=1,...,n

∑′

|K|=k−1

∫

Ω
e−ϕϕijuiK ūjKdV −

∑

j≤p

∑′

|J |=k

∫

Ω
e−ϕϕjj |uJ |2dV




+ S + ...

The first line is≥ 0 because k ≤ p−1 and by the assumption of p-pseudoconcavity.
The second is ≥ (p−k)c||u||2H0

ϕ
=: c′||u||2H0

ϕ
since k ≤ p−1. As for the error terms
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denoted by dots, they can be estimated by lc||u||2H0
ϕ

+sc S where lc and sc denote
a large and a small constant respectively. Thus, for sc≤ 1 and if c is chosen so
large that c′ >lc, (3.5) is >

∼
||u||2H0

ϕ
which completes the proof of (3.2) for forms

supported in neighborhoods of points of M2.

At points of M1 we choose our frame ω1, ..., ωn so that ωn = ∂r1 and V =
Span{ω1, ..., ωq} and the weight ϕ such that ϕ = c|z|2. We suppose that (2.1) or
(2.2) hold. We interchange in the second sum of (3.3) the derivatives ∂ω̄j with
δωj for 1 ≤ j ≤ q and get (3.5) with p replaced by q. Since k ≥ q + 1 and M1 is
q-pseudoconvex, the first line is ≥ 0. The second is ≥ (k − q)c||u||2H0

ϕ
=: c′||u||2H0

ϕ

and the error can be estimated as above by lc||u||2H0
ϕ

+ sc S. For sc≤ 1 and by
choosing c s.t. c′ >lc, we get (3.2) at M1.

As for the points in the interior of Ω, we observe that no boundary integrals
occur. Also, terms involving ϕij can be regarded as error terms. We interchange
1
2 ||∂ω̄juJ ||2 with 1

2 ||δωjuJ ||2 for all j = 1, ..., n in (3.3). In this case S turns into
1
4 |||u|||2H1 where |||u|||H1 is the L2 norm of the derivatives. On the other hand, as
a consequence of the Sobolev inequalities, we have

||u||2H0 ≤ sc||u||2H1 + lc||u||2H−1 .

Now, the first line of (3.5) is missing, the second is >
∼
−||u||2H0 and the third

>
∼
||u||2H1 − ||u||2H0 . The proof of Theorem 3.1 is complete.

¤

Theorem 3.1 implies C∞(Ω̄) solvability of ∂̄ as stated in the subsequent The-
orem 3.2. For the convenience of the reader we give the outline of the proof for
whose full detail we cite [10] and [13]. First, the estimate (3.2) can be transfered
from L2 to Hs. For this, we remark that the derivatives which are tangential to
the boundary, that we denote by Ti, preserve tangentiality of forms: if u ∈ D∂̄∗

then T j
i u ∈ D∂̄∗ . For the normal derivative, say N , we have the estimate

||Nu||2H0 <
∼
||∂̄u||2H0 + ||∂̄∗u||2H0 +

∑

i

||Tiu||2H0 + ||u||2H0 ,

because of the “non-characteristicity” of the boundary for (∂̄, ∂̄∗). So, what is
really needed for the control of the Hs norm, is to estimate the ||T s

i u||H0 ’s.
For this, we apply (3.2) to the T s

i u’s and consider the commutators [∂̄, T s
i ] and

[∂̄∗, T s
i ]. Now, the part of order s is independent of t which only enters in the
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lower order term. By taking t = ts large enough to compensate the first term, we
get

(3.6) ||u||2Hs <
∼
||∂̄u||Hs + ||∂̄∗u||Hs + cs||u||2Hs−1 .

We define now the space of harmonic forms of degree k, Hs = Hs
k, as the space

of u ∈ (Hs)k such that ∂̄u = 0, ∂̄∗u = 0, denote by Hs⊥ the orthogonal com-
plement and by T : Hs → Hs the orthogonal projection respectively. (Remark
that all these definitions depend in fact on the weight ϕ which is omitted in the
notations.) If we restrict (3.2) to Hs we get in particular ||u||Hs <

∼
||u||Hs−1 . Thus,

when Ω is an annulus which satisfies the assumptions of Theorem 3.1 and k has
the restraints q + 1 ≤ k ≤ p− 1, we obtain, by Rellich’s theorem, dim(Hs

k) < ∞.
If, instead, we restrict (3.2) to Hs⊥

k , we get

(3.7) ||u||2Hs <
∼
||∂̄u||2Hs + ||∂̄∗u||2Hs ∀u ∈ Hs⊥

k .

Otherwise, there is a sequence {uν}ν in Hs⊥
k such that

(3.8)
1
ν
||uν ||Hs ≥ ||∂̄uν ||2Hs + ||∂̄∗uν ||2Hs .

If we plug (3.8) into (3.2), we get ||uν ||2Hs <
∼
||uν ||2Hs−1 and hence, by the com-

pactness of the embedding Hs ↪→ Hs−1, there is a convergent subsequence
uνj

||uνj ||Hs−1
→ uo in (Hs−1)k. Now, ||uo||Hs−1 = 1, uo ∈ Hs⊥

k and also uo ∈ Hs
k by

(3.8). This is a contradiction.

Let ¤ts+∂̄∗ts ∂̄+∂̄∂̄∗ts . (3.7) is equivalent to ||u||2Hs <
∼
〈¤tsu, u〉Hs for any u ∈ Hs⊥

k

and this implies ||u||Hs <
∼
||¤tsu||Hs for any u ∈ Hs⊥

k . Thus ¤ts has a “quasi”

Hs-inverse. It fails to be an exact inverse because of the constraint u ∈ Hs⊥
k . In

other terms, there is defined an operator Nts which satisfies I = ¤tsNts + T . It
satisfies also the commutation relations ∂̄Nts = Nts ∂̄ and ∂̄∗tsNts = Nts ∂̄

∗
ts . By

means of Nts , we get that if ∂̄f ∈ Hs⊥
k , then uts := ∂̄∗tsNtsf is a solution of the

equation ∂̄u = f modulo Hs
k. By a procedure of approximation (cf. [10]), we get

a C∞(Ω̄)k solution u from the (Hs)k solutions uts , though it is not clear whether
it is canonical. In particular it is not clear whether it is orthogonal to harmonic
forms. Let H = H0; what we have obtained is the content of the following

Theorem 3.2. Let Ω = Ω1 \ Ω̄2 be an annulus q-pseudoconvex at M1 and p-
pseudoconcave at M2. Then, for any k satisfying q + 1 ≤ k ≤ p− 1, the following
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holds. For any f ∈ C∞(Ω̄)k which is orthogonal to Hk and with ∂̄f ∈ Hk−1, there
is u ∈ C∞(Ω̄)k−1 such that ∂̄u = f modulo Hk.

Since dim(Hk) < ∞, Theorem 3.2 implies that the cohomology of ∂̄ over
C∞(Ω̄) forms is finite-dimensional for any k such that q + 1 ≤ k ≤ p− 1.

We turn now our attention to the domain Ω1 with q-pseudoconvex boundary.
If our interest is confined to the ∂̄-problem over Ω1, the estimate (3.2) can be
improved. For this purpose, we have to adapt the weight and choose a single
positive function ϕ = (t + c)|z|2 where c is used as before to control error terms,
and t is a big parameter which raises the left side (3.2). We get in this case

Theorem 3.3. Let Ω1 be q-pseudoconvex. Then, for any u ∈ C∞(Ω̄)k ∩ (D∂̄∗)
k,

we have

(3.9) t||u||2H0 ≤ ||∂̄u||2H0 + ||∂̄∗u||H0 if k ≥ q + 1.

Proof. In (3.3), we interchange ∂ω̄j with δωj for 1 ≤ j ≤ q. The first line of (3.5)
is still ≥ 0 by q-pseudoconvexity. The second is ≥ (k− q)(c+ t)||u||2H0 . Errors are
controlled by c||u||2H2 +Su. This yields (3.9) at the boundary ∂Ω1. At the interior
points we do not perform any commutation of ∂ω̄j with δωj , and just notice that∑′
|K|=k−1

∑
ij

ϕijuiK ūjK ≥ k(c + t)|u|2.

¤

We then follow the same argument as the one which led to Theorem 3.2 but
without the constraint u ∈ Hs⊥

k in our estimates and obtain

Theorem 3.4. ([1], [16]) Let Ω1 be q-pseudoconvex and let k ≥ q + 1. Then for
any f ∈ C∞(Ω̄)k with ∂̄f = 0, we can find u ∈ C∞(Ω̄)k−1 such that ∂̄u = f .

Thus the cohomology of ∂̄ over C∞(Ω̄) forms for k ≥ q + 1 is 0 in the present
case.

4. Subelliptic estimates for a strongly q-pseudoconvex and

p-pseudoconcave annulus

When the boundary of the annulus satisfies conditions of strong convex-
ity/concavity, then we have 1

2 -subelliptic estimates for (∂̄, ∂̄∗).
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Theorem 4.1. Let Ω = Ω1 \ Ω̄2 be an annulus such that M1 is strongly q-
pseudoconvex and M2 is strongly p-pseudoconcave for 1 ≤ q + 1 ≤ p− 1 ≤ n− 2.
Then, for suitable Ω′ ⊂⊂ Ω and for any u ∈ C∞(Ω̄)k ∩ (D∂̄∗)

k, we have

(4.1) ||u||2
H

1
2 (Ω)

<
∼
||∂̄u||2H0(Ω) + ||u||2H0(Ω) + ||u||2

H− 1
2 (Ω′)

, if q + 1 ≤ k ≤ p− 1.

Proof. We need to modify the proof of Theorem 3.1. We still use a weight ϕ which
is c|z|2 at M1 and −c|z|2 at M2 and first turn our attention to a neighborhood
of M2: thus, we consider forms u with support in a neighborhood of a point of
M2. By double integration by parts, we interchange the terms ||∂ω̄ju||2 in the
following manner
(4.2)




||∂ω̄ju||2 = (1− ε)||δωju||2 + ε||∂ω̄ju||2−(1− ε)
∫

Ω
e−ϕ[∂ωj , ∂ω̄j ]|u|2dV + ...

for 1 ≤ j ≤ p,

||∂ω̄ju||2 = ε||δωju||2 + (1− ε)||∂ω̄ju||2−ε

∫

Ω
e−ϕ[∂ωj , ∂ω̄j ]|u|2dV + ...

for p + 1 ≤ j ≤ n− 1.

Hence, the estimate (3.5) turns into

||∂̄u||2H0 + ||∂̄∗u||2H0 ≥

 ∑

ij≤n−1

∫

∂Ω2

· − (1− ε)
∑

j≤p

∫

∂Ω
· − ε

∑

p+1≤j≤n−1

∫

∂Ω
·



+


 ∑

ij=1,...,n

∫

Ω
· − (1− ε)

∑

j≤p

∫

Ω
· − ε

∑

p+1≤j≤n−1

∫

Ω
·



+


 ∑

ij=1,...,n−1

||∂ωju||2H0 +
∑

ij=1,...,n

||∂ω̄ju||2H0


 + ...

(4.3)

The right side of the first line is ≥ 0 for ε small and k ≤ p − 1 by the strong
p-pseudoconvexity of M2. As for the second line, recall that ϕ = −c|z|2 at M2;
thus, it is ≥ (p−(n−1)ε−k)c||u||2H0 which is positive, for small ε, since k ≤ p−1;
we denote by c′||u||2H0 this positive quantity. We finally denote by Su the term
between parentheses in the third line. In conclusion, the right side of (4.3) is
≥ Su + c′||u||2H0 . Again, by the strong p-pseudoconcavity, the Levi form of M2

has finite type 2: commutators of the ∂ω̄j ’s and ∂ωj ’s for all j ≤ p − 1, generate
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a vector field N ∈ C⊗ TM2 which is transversal to C⊗ TCM2. It is readily seen
that this implies (cf. [11])

||Nu||2
H

1
2

<
∼

Su.

On the other hand, the systems {∂ω̄j}j≤n and {∂ωj}j≤n−1, supplemented by N ,
span all the tangent vector fields. This implies

||u||2
H

1
2

<
∼

Su + ||Nu||2H0

<
∼

Su + ||u||2H0 .

Also, the error terms can be estimated by scSu + lc||u||2H0 . Thus, if sc< 1 and c

and ε are chosen so that c′ >lc, the estimate (4.1) follows at M2.

As for M1, we make the similar commutations as in (4.2) but, this time, for
j ≤ q in the first line and for q + 1 ≤ j ≤ n− 1 in the second. We get the similar
conclusion as in (4.3) but with the first and second terms in the right replaced
by

(4.4)


 ∑

ij=1,...,n−1

∫

∂Ω
· − (1− ε)

∑

j≤q

∫
∂Ω · −ε

∑

q+1≤j≤n−1

∫

∂Ω
·



+


 ∑

ij=1,...,n

∫

Ω
· − (1− ε)

∑

j≤q

∫

Ω
· − ε

∑

q+1≤j≤n−1

∫

Ω
·

 ,

respectively. The first line of (4.4) is ≥ 0 for ε small and k ≥ q + 1 by the strong
q-pseudoconvexity of M1. For the second line, recall that ϕ = c|z|2 at M1; thus
this is ≥ (k−(n−1)ε−q)c||u||2H0 . Again, this is positive, say ≥ c′||u||2H0 , for small
ε, because k ≥ q + 1. The rest of the proof of the estimate at M1 goes through
by the same argument as for M2.

Finally, for the points in the interior, the estimate is the same as in Theo-
rem 3.1.

¤

Remark 4.2. If, instead of the annulus Ω, we consider only the domain Ω1 with
strongly q-pseudoconvex boundary, then we use a single weight ϕ = c|z|2 all over
Ω̄1 and get a much better conclusion. The first part of the above proof yields, for
any u ∈ C∞(Ω̄)k ∩ (D∂̄∗)

k,

||u||2
H

1
2

<
∼
||∂̄u||2H0 + ||∂̄∗u||2H0 if k ≥ q + 1.
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We derive now the main consequences of (4.1). Notice that it implies readily,
(cf. [11]), the hypoellipticity of the system (∂̄, ∂̄∗): u is smooth if ∂̄u and ∂̄∗u
are smooth. In particular, for the harmonic forms Hk, we have Hk ⊂ C∞(Ω̄)k.
We can also restrict (4.1) to u ∈ H⊥k , as we have already seen in Section 3,
and obtain a ∂̄-Neumann operator N in H0

k which satisfies I = ¤N + T where
T : H0

k → Hk is the orthogonal projection. By the above remarks, if f ∈ C∞(Ω̄)k

and ∂̄f ∈ Hk+1, then the canonical solution u := ∂̄∗Nf , which is a priori only
H0, is in fact C∞(Ω̄). This follows from the fact that ∂̄u = f + Tf ∈ C∞(Ω̄)
and ∂̄∗u = 0. Thus u is the C∞(Ω̄) solution of ∂̄u = f , modulo H, orthogonal to
ker ∂̄. We have thus showed

Corollary 4.3. Let Ω = Ω1 \ Ω2 be an annulus such that M1 is strongly q-
pseudoconvex and M2 strongly p-pseudoconcave respectively and let k satisfy q +
1 ≤ k ≤ p − 1. Then for any f ∈ C∞(Ω̄)k with ∂̄f = 0, we have that u = ∂̄∗Nf

is the C∞(Ω̄)k−1 solution, modulo H, of ∂̄u = f which is orthogonal to Hk−1.

In particular, the cohomology of ∂̄ is finite-dimensional in the specified degrees.
If we go back to Remark 4.2, we see that if Ω1 is strongly q-pseudoconvex, then
harmonic forms on Ω1 are 0 and therefore the C∞(Ω̄) cohomology of ∂̄ is 0 for
k ≥ q + 1 which we already know from Theorem 3.4 for a more general weakly
q-pseudoconvex domain. However, what we have more, is that we know now
that the canonical solution is smooth. More generally, we know that (∂̄, ∂̄∗) is
hypoelliptic in degree k ≥ q + 1.

5. An example

We first state a general result on decomposition of ∂̄-closed forms.

Theorem 5.1. Let A1 and A2 be domains of Cn, and define B := A1 ∩ A2,
C := A1 ∪A2. Assume

the C∞(C̄) cohomology of ∂̄ is 0 in degree k + 1(5.1)

(Ā1 \B) ∩ (Ā2 \B) = ∅.(5.2)

Then, for any f ∈ C∞(B̄)k satisfying ∂̄f = 0, we can find fh ∈ C∞(Āh)k, h =
1, 2, satisfying ∂̄fh = 0 and such that

(5.3) f = f1 + f2 in B.
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Proof. We take a pair of functions χ1 and χ2 in C∞(C̄) such that




χ1 + χ2 ≡ 1 in C,

χh ≡ 0 in Ah \B for h = 1, 2.

It follows, for h = 1, 2

(5.4)





χhf ∈ C∞(Āh),

∂̄(χhf) ∈ C∞(C̄),

∂̄(χhf)|C\B ≡ 0.

Because of (5.1) we can find uh such that

∂̄uh = ∂̄(χhf), uh ∈ C∞(C̄)k.

From the third of (5.4) we get

∂̄(u1 + u2)|C\B ≡ 0.

On the other hand

∂̄(u1 + u2)|B = ∂̄(χ1f + χ2f)|B
= ∂̄f |B = 0.

Thus, in conclusion, ∂̄(u1 + u2) ≡ 0 in C. We then put

f1 := (χ1f − u1), f2 := (χ2f − u2) + (u1 + u2),

and get the desired decomposition (5.3).

¤

Remark 5.2. For forms which are smooth in the interior but not at the boundary,
the conclusion of the theorem is still true, even if we release the assumption (5.2).
This is the so called “Mayer-Vietoris” decomposition. However, condition (5.2)
is needed in our Theorem 5.1. In fact, at any point of (Ā1 \ B) ∩ (Ā2 \ B), the
function χ1 + χ2 would be forced to take both the value 0 and 1.

We want to end our discussion by setting up in a different way our ∂̄-problem
for an annulus Ω = Ω1 \ Ω̄2 which is (weakly) q-pseudoconvex at M1 and strongly
p-pseudoconcave at M2. We choose a ball Bn ⊃⊃ Ω1, define Ω3 = Bn \ Ω2 and
remark that Ω = Ω1 ∩ Ω3 and Bn = Ω1 ∪ Ω3. Since ∂Ω1 ∩ ∂Ω3 = ∅, then (5.2)
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follows; also, the C∞(B̄) cohomology of ∂̄ is 0 in any degree k ≥ 1 as it is classical
(and is also ensured, e.g., by Theorem 3.4). Let us consider the equation

(5.5) ∂̄u = f for f ∈ C∞(Ω̄)k satisfying ∂̄f = 0.

We first decompose f = f1 + f3 with ∂̄fh = 0 for h = 1, 3. We denote by u1 the
solution in C∞(Ω̄1)k−1 of ∂̄u1 = f1 whose existence follows from Theorem 3.4. We
denote by N3 the ∂̄-Neumann operator on H0(Ω3) whose existence follows, for
instance, from Theorem 3.1, and also denote by T3 the orthogonal projection T3 :
H0(Ω3) → H(Ω3). (We do not need to use here the full strength of Theorem 4.1.)
We get

f = f1 + f3

= ∂̄u1 + ∂̄(∂̄∗N3f3) + T3f3.

So far, we did not use the advantage of replacing Ω1 \ Ω̄2 by Ω3 \ Ω̄2 which is
strongly q-pseudoconvex at the “exterior” boundary. We do it now and remark
that this implies, by Theorem 4.1, that ∂̄∗N3f ∈ C∞(Ω̄3)k−1. Thus, we have
obtained a C∞(Ω̄)k−1 solution of ∂̄u = f modulo H in the more explicit form
u = u1 + ∂̄∗N3f .
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