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1. Introduction

Recent work of Schnabl [11], confirming conjectures of Sen [12], has given
strong evidence for string field theory as a candidate for nonperturbative string
theory. This may indicate that string field theory provides a framework for the
advances in nonperturbative string theory which have influenced both mathemat-
ics and physics. In view of this fact, and of the important role of nonperturbative
string theory in mathematics, it seems reasonable to ask to what extent string
field theory can be understood mathematically. In this paper we will show that
in the simple case of closed Bosonic string field theory in light-cone gauge, once
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appropriate cut-offs have been introduced, such a mathematical interpretation is
possible.∗

1.1. Free string field theory for the closed Bosonic string: Formal path
integrals. Free field theory for the closed Bosonic string in light cone gauge
was described by Kaku and Kikkawa [7]. The string field Ψ(t, `, φ) is formally
a complex-valued function of time t ∈ R, string length† ` ∈ (0,∞), and a map
φ : S1 → Rd, which may be thought of as a loop or “string” in Rd (more properly
φ should be considered as a distribution on S1 with values in Rd).‡ In view of
the Schrodinger representation§

L2(S ′(S1,R)⊗ Rd, dµ√−(d2/dx2)+m2) ' F ,

(where m > 0; see Appendix A) which identifies functions on distributions on
S1 with elements of Fock space F , we may formally think of the string field as a
distribution Ψ(t, `) on R× [0,∞) with values in some completion of Fock space.

In these terms a cut-off version of Kaku and Kikkawa’s [7] formal free string
path integral is given by

∫
dΨ e

∫ L∞
L0

d`
∫∞
−∞ dt

〈
Ψ(t,`),

(
i d

dt
−H`,m

)
Ψ(t,`)

〉
F , (1.1)

where H`,m is the Hamiltonian on Fock space of mass m > 0 (see Appendix A)
and L0, L∞, with 0 < L0 < L∞ <∞, correspond to the maximum and minimum
allowed string lengths.

To try to interpret an expression of the type (1.1) as a measure, we compute
correlation functions. If we take t, t′ ∈ (−∞,∞), g, g′ ∈ C∞([L0, L∞]), and
v, v′ ∈ F , and set

Φv,g,t(Ψ) =
∫ L∞

L0

g(`)
〈
Ψ(t, `), v

〉
F
d`,

∗For another mathematical study of string field theory, see Dimock [3].
†In the light cone gauge this string length appears as the momentum conjugate to the light cone

coordinate X+; see [7].
‡This model corresponds to a gauge-fixed theory of strings propagating in Rd+1,1; see e.g. [10].
§In this paper all vector spaces are complex unless specifically denoted otherwise.
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then the expression (1.1) gives rise to the formal computation∫
Φv,g,t(Ψ) Φv′,g′,t′(Ψ) dΨ e

∫ L∞
L0

d`
∫∞
−∞ dt

〈
Ψ(t,`),

(
i d

dt
−H`,m

)
Ψ(t,`)

〉
F

=
∫ L∞

L0

〈
v, e−i(t−t′)H`,mv′

〉
F
θ(t− t′)g(`)g′(`) d`, (1.2)

where the function θ : R → R is defined byθ(x) = 0 if x < 0;

θ(x) = 1 if x ≥ 0.

1.2. Free string field theory for the closed Bosonic string: Mathemati-
cal results. In Section 2 we will prove the following result, which may be viewed
as a mathematical version of (1.2). Choose α > 0 and let Fα = e−α HL0,mF .

Theorem 1. There exists a Banach space B ⊃ H1(R) ⊗ L2([L0, L∞]) ⊗ Fα

and a Gaussian probability measure µ on B such that if v, v′ ∈ F are eigenvec-
tors of H`,m, g, g′ ∈ C∞([L0, L∞]), and t, t′ ∈ R, the function Φv,g,t : H1(R) ⊗
L2([L0, L∞])⊗F → C, given by

Φv,g,t(f ⊗ h⊗ w) = f(t)
∫ L∞

L0

d` h(`)g(`)
〈
w, v

〉
F

extends to an element Φv,g,t ∈ Lp(B, dµ) for all p ≥ 1. Furthermore,∫
B
dµΦv,g,t Φv′,g′,t′ =

∫ L∞

L0

d` g(`) g′(`)
〈
v, e−|t−t′|H`,mv′

〉
F
. (1.3)

Remark 1.4. Note that (1.3) differs from (1.2) by the absence of the function
θ(t − t′) and by the familiar “Wick rotation” i(t − t′) → (t − t′). In physical
language we have replaced the first order Minkowski action by a second order
Euclidean action. This would seem to be necessary to get a reasonable field
theory limit; furthermore the first order theory of Kaku and Kikkawa [7] does
not produce any vacuum-to-vacuum diagrams in either the free or interacting
theories.

Our main technique for producing the measure µ is the abstract Wiener space
construction of L. Gross [6] (see Appendix B).

The path integral description of quantum field theory relates the measure µ to
quantities associated with two dimensional quantum field theory on the Riemann
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surface S1 × R as follows. Let S1
` denote the circle of length `, and let dν`,C be

the Gaussian measure on S ′(S1
` ×R,R)⊗Rd with covariance C = (−∆ +m2)−1.

Then if g, g′ ∈ C∞([L0, L∞]), t, t′ ∈ R, and f, f ′ ∈ C∞(S1,R) ⊗ Rd, we may
define for ψ ∈ C∞(S1

` × R,R)⊗ Rd

Φf,g,t(ψ) =
∫ L∞

L0

d` g(`)
∫

S1
`

〈
ψ(s, t),

1√
`
f(s/`)

〉
Rd
ds

Then the map Φf,g,t : C∞(S1
` ×R,R)⊗Rd×[L0, L∞] → C extends to a function

Φf,g,t ∈ Lp(dν`,C × dm[L0,L∞]) for all p ≥ 1,

where m[L0,L∞] is Lebesgue measure on [L0, L∞]. And we have

∫ L∞

L0

d`

∫
S′(S1

`×R,R)⊗Rd

Φf,g,t Φf ′,g′,t′ dν`,C = (1.5)

1
2

∫ L∞

L0

d` g(`) g′(`)
〈
f,
e
−|t−t′|

√
− 1

`2
(d2/dx2)+m2√

− 1
`2

(d2/dx2) +m2
f ′
〉

L2(S1,R)⊗Rd
.

in line with (1.3).

1.3. Interacting String field theory: Formal path integrals. Interacting
string field theory is obtained from a cubic function on the space B. We first
describe a version of the formal construction of [7]. We imagine a string – that
is, a function φ : S1

` → Rd – breaking up into two loops

φ1 : S1
`1 → Rd

φ2 : S1
`2 → Rd

where `1 + `2 = `. In mathematical terms, we have a projection

π`1,`2
` : L2(S1,R)⊗ Rd → (L2(S1,R)⊗ Rd)⊕ (L2(S1,R)⊗ Rd), (1.6)

giving rise to a map¶

π`1,`2
` : F → F ⊗F (1.7)

¶Note that since Fock space is constructed from the symmetric product of square-integrable loops,

which are not continuous, the problem of “gluing” two loops of lengths `1 and `2 to form a loop

of length `1 + `2, which is a cause of concern in the physics literature, does not arise.
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and, if we imagine for a moment that the string field Ψ is a function with values
in Fock space, we formally obtain a cubic interaction term

I(Ψ) =
∫ ∞

−∞
dt

∫ L∞

L0

∫ L∞

L0

d`1 d`2

〈
Ψ(`1, t)⊗Ψ(`2, t), π

`1,`2
` Ψ(`1 + `2, t)

〉
F
. (1.8)

A version of the partition function of the interacting string field theory of [7]
is given formally by

Z(λ) =
∫
dΨ e

∫ L∞
L0

d`
∫∞
−∞ dt

〈
Ψ(t,`),

(
i d

dt
−H`,m

)
Ψ(t,`)

〉
F

+λ Re I(Ψ)
. (1.9)

The expression (1.9) gives rise to a formal power series, each term of which
corresponds to a directed trivalent ribbon graph‖ Γ whose edges are labeled by
two variables te ∈ R, `e ∈ [L0, L∞]. Formally, then,

Z(λ)∼
∑
Γ

|Aut(Γ)|
|vert (Γ)|!

λ|vert (Γ)|
∫ ∞

−∞
. . .

∫ ∞

−∞

∏
e∈e(Γ)

dte

∫ L∞

L0

. . .

∫ L∞

L0

∏
e∈e(Γ)

d`efΓ({te}, {`e}),

where |vert (G)| is the number of vertices in Γ and |Aut(Γ)| is the order of the
group of automorphisms of Γ . Kaku and Kikkawa’s [7] arguments lead one to
expect that

fΓ({te}, {`e}) ∼
(
det(−∆Γ,{te},{`e} +m2)

)−d/2
,

where ∆Γ,{te},{`e} is the Laplacian on a Riemann surface formed by replacing each
edge e of the ribbon graph Γ by a tube of length te and width `e, and gluing the
corresponding tubes to form a two-manifold with conical singularities, and the
determinant of the operator −∆Γ,{te},{`e} + m2 is defined in some appropriate
way.∗∗

1.4. Interacting String field theory: Mathematical results. We now turn
to a mathematical construction of a cut-off version of the function Z(λ). Let
M > 0 and let FM denote the finite-dimensional subspace of Fock space F where
the Hamiltonian HL0,m is bounded above by M . Let pM : F → F denote the
corresponding projection. Let χ ∈ C∞

c (R) satisfy

• χ(−x) = χ(x);

‖Recall that a ribbon graph is a graph along with an assignment to each vertex of a cyclic ordering

of the edges abutting that vertex.
∗∗In Section 1.5 we make a precise conjecture relating string field theory to the construction by

[8] of the determinant of the Laplacian on surfaces with conical singularities.
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• χ ≥ 0;
• suppχ ⊂ [−1, 1];
•
∫ 1
−1 χ(x) dx = 1.

For κ > 0 let δκ(x) = κχ(κx).

Let `, `1, `2 > 0 with `1 + `2 < `. Then there exists a natural projection map

L2([0, `],R)⊗ Rd → (L2([0, `1],R)⊗ Rd)⊕ (L2([`− `2, `],R)⊗ Rd),

which, by appropriate scaling, can be written as a map

π`1,`2
` : L2([0, 1],R)⊗ Rd → (L2([0, 1],R)⊗ Rd)⊕ (L2([0, 1],R)⊗ Rd), (1.10)

which is a bounded operator of norm 1.††

Since ‖π`1,`2
` ‖ = 1, the operator π`1,`2

` induces an operator

π`1,`2
` : F → F ⊗F (1.11)

which we continue to denote by π`1,`2
` .

We now define mathematically the cut-off version of the function I. Let ε > 0,
T > 0, v ∈ (0, L0/4), and define

Iε,T,v
M,κ : Cc(R)⊗alg L2([L0, L∞])⊗alg F → C

by

Iε,T,v
M,κ (f⊗g⊗w) =

∫
`,`1,`2∈[L0,L∞]

d` d`1 d`2 gκ(`1) gκ(`2) gκ(`) 2δ1/v(`1+`2−`)θ(`−`1−`2)

∫ T

−T
dt f2(t)f(t)

〈
e−ε H`,mπ`1,`2

` pMw, e
−ε H`1,mpMw ⊗ e−ε H`2,mpMw

〉
F
, (1.12)

where gκ = g ? δκ.

Theorem 2. The function Iε,T,v
M,κ extends to a function Iε,T,v

M,κ ∈ Lp(dµ) for all
p ≥ 2. The limit

Iε,T,v := lim
M,κ→∞

Iε,T,v
M,κ

exists in L2(dµ).

††This map of course coincides with the projection of equation (1.7) in the case when `1 + `2 = `3,

so we use the same notation.
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Corollary 3. The function Zε,T,v(λ) =
∫
B dµ e

iλ Re Iε,T,v
is a continuous function

of λ for all λ ∈ R.

Remark 1.13. In fact Iε,T,v ∈ Lp(dµ) for all p ≥ 2, so that the function Zε,T,v(λ)
is smooth.

Remark 1.14. Note Corollary 3 gives the existence of the “Wick-rotated” cut-off
nonperturbative string partition function for pure imaginary values of the string
coupling constant. The parameters ε, T, L0, L∞ may be interpreted in terms
of the Riemann surfaces appearing in the formal power series expansion as in
(1.3). In these terms the parameters require all “tubes” corresponding to edges
of graphs to have length no less than ε and no greater than T , and width lying
in the interval [L0, L∞]. These Riemann surfaces are thus kept away from the
boundary of the moduli space of curves, where Polyakov measure for the Bosonic
string is known to diverge [13].‡‡ Unlike in the case of the superstring, these
cutoffs cannot be removed in Bosonic string theory. It is remarkable that these
cutoffs, which the analysis requires in order to obtain a well-defined non-Gaussian
integral, are precisely those that appear in the geometry of the Polyakov measure.
See Remark 3.5 for a discussion of the cutoff v.

Remark 1.15. Note that finiteness of the limit lim
M,κ→∞

‖Iε,T,v
M,κ ‖2

2, which corre-

sponds to a sum of diagrams of genus two, implies existence of the partition
function for all λ ∈ R. At least in this case, “finiteness in genus two implies
finiteness of the nonperturbative theory.” In view of the recent work of d’Hoker
and Phong [2] on finiteness of the superstring in genus two, this is very encour-
aging.

1.5. Random Surfaces. Formally the partition function Zε,T,v(λ) may be ex-
panded in a power series

Zε,T,v(λ) ∼
∞∑

n=0

(iλ)2n

(2n)!

∫
B
dµ(Re Iε,T,v)2n (1.16)

Since Iε,T,v is a cubic polynomial, each of the terms on the right side of equation
(1.16) may be written as a sum of terms, each of which corresponds to a directed
trivalent ribbon graph Γ with 2n vertices, each of whose edges e is decorated with

‡‡The light cone partition functions we have considered should be [1] equal in the case d = 24 to

the Polyakov measure, so they should diverge as well.
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two real numbers te ∈ [−T, T ], `e ∈ [L0, L∞]. Let G2n denote the set of directed
trivalent ribbon graphs with 2n vertices. Given Γ ∈ G2n let E(Γ) denote the set
of edges of Γ. Thus∫
B
dµ (Re Iε,T,v)2n=

∑
Γ∈G2n

|Aut(Γ)|
∫ T

−T
. . .

∫ T

−T

∏
e∈E(Γ)

dte

∫ L∞

L0

. . .

∫ L∞

L0

∏
e∈E(Γ)

d`efΓ(t1, . . . , t|E(Γ)|; `1, . . . , `|E(Γ)|; v)

where |Aut(Γ)| is the order of the group of automorphisms of the directed ribbon
graph Γ and where the activities fΓ are given by the usual Feynman rules for
Gaussian integrals.

Then we conjecture that the activities fΓ(t1, . . . , t|E(Γ)|; `1, . . . , `|E(Γ)|; v) are
related to Riemann surfaces, as follows.

Suppose we are given a directed trivalent ribbon graph Γ, each of whose edges
e ∈ E(Γ) is labeled by real numbers te, `e. Each vertex of Γ abuts three edges
ei, ej , ek with

`i = `j + `k. (1.17)

We construct a Riemannian two-manifold with conical sigularities, which we de-

ε

`i

`k `j

ε

Figure 1. A ”plumbing fixture”
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note by Σ(Γ, t1, . . . , t|E(Γ)|; `1, . . . , `|E(Γ)|), by associating to each vertex of Γ abut-
ting edges ei, ej , ek a “plumbing fixture” consisting of three cylinders C1, C2, C3

of widths `i, `j , `k with `i = `j +`k and each of length ε, attached by gluing one of
the boundary circles of each of Cj and Ck to one of the boundary circles of Ci (see
Figure 1). We associate to each edge e of Γ a cylinder of length te and width `e,
and we form a Riemann surface with conical singularities by gluing the cylinders
corresponding to each edge to the “plumbing fixtures” of the vertices abutting
e. Given a connected trivalent ribbon graph Γ, with edges labeled as above, let
detKK(−∆Σ(Γ,t1,...,t|E(Γ)|;`1,...,`|E(Γ)|)) denote the determinant of the Laplacian on
Σ(Γ, t1, . . . , t|E(Γ)|; `1, . . . , `|E(Γ)|) as defined by Kokotov and Korotkin [8]. Then

Conjecture 4. Let Γ be a connected directed trivalent ribbon graph with 2n
vertices. Suppose each edge e of Γ is labeled with real numbers te, `e satisfying the
condition (1.17). Then

lim
v→0

lim
m→0

vmdfΓ(t1, . . . , t|E(Γ)|; `1, . . . , `|E(Γ)|; v) =

det−d/2
KK (−∆Σ(Γ,t1,...,t|E(Γ)|;`1,...,`|E(Γ)|)).

Remark 1.18. Conjecture 4 may be interpreted as saying that the Feynman
diagrams of interacting string theory are partition functions of two dimensional
quantum field theories on Riemann Surfaces. Thus the partition function Zε,T,v

would serve as a generating function for the partition functions of these quantum
field theories (and, according to [1], for Polyakov measure on the moduli of curves
in the case d=24) just as the finite-dimensional integrals of Kontsevich [9] serve
as generating functions for intersection numbers on the moduli of curves. We
should add that the interacting string measure contains much more information
than just the partition function; one should be able to find similar conjectures
about correlations of vertex operators.

2. Free String Field Theory

In this section we prove Theorem 1 by constructing the free string measure µ.

For α ≥ 0, let Fα = e−α HL0,mF , equipped with the inner product〈
·, ·
〉

α
=
〈
eα HL0,m ·, eα HL0,m ·

〉
F
.
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Consider the Hilbert space

Hα = H1(R)⊗ L2([L0, L∞])⊗Fα

The quadratic form C : Hα ×Hα → C given by

C(f ′ ⊗ g′ ⊗ v′, f ⊗ g ⊗ v) =
∫ L∞

L0

d`g(`)g′(`)
〈(− d2

dt2
+ H2

`,m

2 H`,m

)1/2

v′ ⊗ f ′ ,

(
− d2

dt2
+ H2

`,m

2 H`,m

)1/2

v ⊗ f
〉
F⊗L2(R)

gives rise to an inner product
〈
,
〉

C
on Hα for all α > 0. Denote by H the Hilbert

space completion of Hα in the norm corresponding to
〈
,
〉

C
; this is independent

of α as long as α > 0.

Let HM = H1(R) ⊗ L2([L0, L∞]) ⊗ FM . Then the bounded operator PM :
HM → HM given by

PM =
(− d2

dt2
+ H2

`,m

2 H`,m

)−1/2
◦
(
− d2

dt2
+ 1
)1/2

extends to an isometry P : H0 → H.

Let δ > 0. The operator A = e−δ HL0,m : F → F is positive and trace class.
By Example B.3, the Sobolev norm ‖ ‖−1 is a measurable norm on L2([L0, L∞]),
given by the positive trace class operator B = (−∆ + 1)−1 on L2([L0, L∞]). It
follows by Example B.5 that the norm ‖ ‖0 given by

‖f‖0 = supt∈R‖f(t)‖A⊗B

is a measurable norm on H0. The completion of H0 in this norm is a subspace of
C(R;H−1 ((L0, L∞))⊗FA).

Since P : H0 → H is an isometry, the norm ‖ ‖ on H given by

‖x‖ = ‖P−1x‖0

is a measurable norm on H. Let B denote the completion of H in the norm ‖ ‖.
The projection πM : H → HM induces a projection on B, which we continue to
denote by πM . Note that since PM is bounded, the norm ‖ ‖0 is a measurable
norm on HM , considered as a subspace of H. Thus, although elements Ψ ∈ B
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are typically not continuous functions with values in H−1 ((L0, L∞)) ⊗ F , the
projections πMΨ almost surely do lie in C(R;H−1 ((L0, L∞))⊗F).

Gross’ Theorem (Theorem B.1 of Appendix B) then implies the following re-
sult, which is a slight restatement of Theorem 1:

Theorem 1. Let B denote the completion of H in the norm ‖ ‖. There exists
a Gaussian Borel probability measure µ on B extending the natural cylinder set
measure on H.

In particular, if v, v′ ∈ F are eigenvectors of H`,m, g, g′ ∈ C∞([L0, L∞]),
t, t′ ∈ R, the linear functional

Φv,g,t : HM → C

given by

Φv,g,t(f ⊗ h⊗ w) = f(t)
〈
h, g
〉

L2([L0,L∞])

〈
w, v

〉
F

extends to an element

Φv,g,t ∈ L2(dµ);

and∫
B
dµΦv,g,t Φv′,g′,t′ =

∫ L∞

L0

d`g(`)g′(`)
〈( 2 H`,m

− d2

dx2 + H2
`,m

)1/2

v⊗δ(·−t′),

(
2 H`,m

− d2

dx2 + H2
`,m

)1/2

v′⊗δ(·−t)
〉
F⊗L2(R)

=
∫ L∞

L0

d` g(`)g′(`)
〈
v, e−|t−t′|H`,mv′

〉
F
.

3. The interaction term

In this section we define the interaction term Iε,T,v
M,κ and prove the existence

of the limit lim
M,κ→∞

Iε,T,v
M,κ in L2(dµ). The existence of the partition function

Zε,T,v(λ) =
∫
dµeiλ Re Iε,T,v

follows.
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3.1. The projection. We begin with some technical results on the projection
π`1,`2

` .

Proposition 3.1. Let `, `1, `2 > 0 with `1 + `2 < `, α1, α2, α3,m1,m2,m3 > 0.
Let π`1,`2

` : L2([0, 1],R) ⊗ Rd → (L2([0, 1],R) ⊗ Rd) ⊕ (L2([0, 1],R) ⊗ Rd) denote
the projection (see equation (1.10)). Then the family of operators

Θ(αi,mi, `1, `2, `) ∈ L
(
L2([0, 1],R)⊗ Rd, (L2([0, 1],R)⊗ Rd)⊕ (L2([0, 1],R)⊗ Rd)

)
given by

Θ(αi,mi, `1, `2, `) :=(
e−α1

√
−(d2/dx2)+m2

1 ⊕ e−α2

√
−(d2/dx2)+m2

2

)
◦ π`1,`2

` ◦ e−α3

√
−(d2/dx2)+m2

3

is a continuously differentiable family of bounded operators.

Proof Differentiability in the αi,mi is clear; we compute the derivative with
respect to `1. We have

1
ε
(π`1+ε,`2

` f − π`1,`2
` f)(x) =

(
1
ε

(√`1 + ε

`
f
(`1 + ε

`
x
)
−
√
`1
`
f
(`1
`
x
))
, 0

)
.

Thus
1
ε

((
e−α1

√
−(d2/dx2)+m2

1 ⊕ e−α2

√
−(d2/dx2)+m2

2
)
(π`1+ε,`2

` − π`1,`2
` )f

)
(y)

=

(
1
ε

∫ 1

0

Kα1,m1(y − x)
(√`1 + ε

`
f
(`1 + ε

`
x
)
−
√
`1
`
f
(`1
`
x
))
dx, 0

)

=

(
1
ε

[∫ `1+ε
`

0

Kα1,m1(y −
`1 + ε

`
η)f(η)

√
`

`1 + ε
dη −

∫ `1
`

0

Kα1,m1(y −
`1
`
η)f(η)

√
`

`1
dη

]
, 0

)
,

where Kα,m(x− y) is the smooth kernel of the operator e−α
√
−(d2/dx2)+m2 .

Differentiability now follows from the smoothness of Kα,m. Derivatives with
respect to `2 and ` are similar. �

Corollary 3.2. Let `, `1, `2 > 0 with `1 + `2 < `, let mi, αi > 0, and let π`1,`2
` :

F → F ⊗ F denote the operator defined in equation (1.11). Then the family of
operators given by

Θ̂(αi,mi, `1, `2, `) := (e−α1 H`1,m1 ⊗ e−α2 H`2,m2 ) ◦ π`1,`2
` ◦ e−α3 H`3,m3
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is a continuous family of operators in L(F ,F ⊗ F).

3.2. Definition of the interaction vertex and the proof of Theorem 2. To
define the interaction vertex, we first cut off the string field Ψ. Let M > 0. As we
noted, elements of πMB almost surely lie in C(R;H−1 ((L0, L∞))⊗F).We smooth
in the second variable by the convolution ?δκ : C(R;H−1 ((L0, L∞)) ⊗ F) →
C(R;H1 ((L0, L∞)) ⊗ F) defined as follows. For g ⊗ v ∈ H−1 ((L0, L∞)) ⊗ F),
define

(δκ ⊗ 1) ? (g ⊗ v) = (δκ ? g)⊗ v.

Now given f ∈ C(R;H−1 ((L0, L∞))⊗F), let

(?δκ(f))(t) = (δκ ⊗ 1) ? f(t).

Then for Ψ ∈ B, and M,κ > 0, define the cut-off string field ΨM,κ by

ΨM,κ = ?δκ(πMΨ).

Let ε, T,M, κ > 0, v ∈ (0, L0/4). The cut-off interaction vertex Iε,T,v
M,κ is defined

as follows.

Given Ψ1,Ψ2,Ψ3 ∈ C(R;H1 ((L0, L∞))⊗F), let

J(Ψ1,Ψ2,Ψ3) :=
∫ T

−T
dt

∫ L∞

L0

d`1

∫ L∞

L0

d`2

∫ L∞

L0

d`2δ1/v(`1+`2−`)θ(`−`1−`2)〈
e−εH`,mπ`1,`2

` Ψ1(`, t), e−εH`1,m Ψ2(`1, t)⊗ e−εH`2,m Ψ3(`2, t)
〉
F
. (3.1)

Let

Iε,T,v
M,κ (Ψ) = J(ΨM,κ,ΨM,κ,ΨM,κ).

It is clear that this function coincides with the function given by equation
(1.12). Since Iε,T,v

M,κ is a polynomial cylinder function, Iε,T,v
M,κ ∈ Lp(dµ) for all p ≥ 1.

To prove Theorem 2, we must show that

lim
M,M ′,κ,κ′→∞

‖Iε,T,v
M,κ − Iε,T,v

M ′,κ′‖
2
2 = 0.

Now

‖Iε,T,v
M,κ − Iε,T,v

M ′,κ′‖
2
2 =

∫
B
dµ
(
|Iε,T,v

M,κ |
2 + |Iε,T,v

M ′,κ′ |
2 − 2 Re

(
(Iε,T,v

M,κ )∗ Iε,T,v
M ′,κ′

))
. (3.2)
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Let δΨ = ΨM ′,κ′ −ΨM,κ. Then by rearranging terms in the expression on the
right hand side of (3.2) we have:

‖Iε,T,v
M,κ − Iε,T,v

M ′,κ′‖
2
2 =

∫
B
dµ(Ψ)

[
J(ΨM ′,κ′ ,ΨM ′,κ′ ,ΨM ′,κ′)− J(ΨM,κ,ΨM,κ,ΨM,κ)

]
[
J(δΨ,ΨM ′,κ′ ,ΨM ′,κ′) + J(ΨM,κ, δΨ,ΨM ′,κ′) + J(ΨM,κ,ΨM,κ, δΨ)

]
(3.3)

Consider a typical term in (3.3), given by∫
B
dµ(Ψ)J(ΨM ′,κ′ ,ΨM ′,κ′ ,ΨM ′,κ′) J(δΨ,ΨM,κ,ΨM,κ).

If κ, κ′ are sufficiently large, the condition v < L0/4 guarantees that this
integral is given by a sum of terms corresponding to two ribbon graphs. We have∫

B
dµ(Ψ)J(ΨM ′,κ′ ,ΨM ′,κ′ ,ΨM ′,κ′) J(δΨ,ΨM,κ,ΨM,κ) =∫ T

−T

∫ T

−T

dtdt′
∫ L∞

L0

. . .

∫ L∞

L0

d`1 d`2 d` d`
′
1 d`

′
2 d`

′ dλ1 dλ2 dλ

4θ(`−`1−`2) θ(`′−`′1−`′2)δ1/v(`1+`2−`) δ1/v(`′1+`
′
2−`′)δκ′(λ−`′) δκ′(λ1−`1) δκ′(λ2−`2){

(δκ′(λ− `)− δκ(λ− `)) tr
[
(πM ′πM ) e−(|t−t′|Hλ,m +ε H`,m +ε H`′,m)

(
π`1,`2

`

)∗
(
δκ′(λ1−`′1) δκ′(λ2−`′2)e

−
(
|t−t′|Hλ1,m +ε H`1,m +ε H`′1,m

)
⊗e−

(
|t−t′|Hλ2,m +ε H`2,m +ε H`′2,m

)
+

δκ′(λ1−`′2) δκ′(λ2−`′1)E
(
e
−

(
|t−t′|Hλ1,m +ε H`1,m +ε H`′2,m

)
⊗e−

(
|t−t′|Hλ2,m +ε H`2,m +ε H`′1,m

)))
(πM ′ ⊗ πM ′)

(
π

`′1,`′2
`′

)]
+δκ′(λ−`) tr

[
πM ′ (πM ′ − πM ) e−(|t−t′|Hλ,m +ε H`,m +ε H`′,m)

(
π`1,`2

`

)∗
(
δκ′(λ1−`′1) δκ′(λ2−`′2)e

−
(
|t−t′|Hλ1,m +ε H`1,m +ε H`′1,m

)
⊗e−

(
|t−t′|Hλ2,m +ε H`2,m +ε H`′2,m

)
+

δκ′(λ1−`′2) δκ′(λ2−`′1)E
(
e
−

(
|t−t′|Hλ1,m +ε H`1,m +ε H`′2,m

)
⊗e−

(
|t−t′|Hλ2,m +ε H`2,m +ε H`′1,m

)))
(πM ′ ⊗ πM ′)

(
π

`′1,`′2
`′

)]}
(3.4)

where E : F ⊗ F → F ⊗F is the exchange map E(a⊗ b) = b⊗ a.

The vanishing of this expression in the limit κ, κ′,M,M ′ → ∞ follows by
the trace class property of the heat kernel e−t H`,m and the differentiability of
Corollary 3.2. The other terms in equation (3.3) are similar.
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Remark 3.5. Note that it is not possible to take the limits ε, T → ∞, v → 0
in the same way. The cutoffs ε, T would appear to be necessary since in the
formal power series expansion of Zε,T,v(λ) =

∫
B dµ exp(iλRe Iε,T,v) they prevent

the Riemann surfaces that appear from approaching the boundaries of the moduli
space of Riemann surfaces. The role of the cut-off v is more obscure. In the formal
power series expansion of Zε,T,v(λ), each activity fΓ grows as

fΓ(. . . ; v) ∼ v−|H0(Γ)|

as v → 0 (This can be seen explicitly in the integral (3.4) which corresponds to
the sum of two connected graphs). Standard considerations lead us to expect
that log Zε,T,v(λ) ∼ v−1F ε,T (λ), where F ε,T (λ) is an analog of the free energy.
The behavior of this cutoff is therefore similar to that of the finite volume cutoff
in quantum field theory, with v−1 playing the role of the volume. In the case
of quantum field theory, without such a finite volume cutoff, interacting field
measures are not perturbations of Gaussian measures. In that case, the finite
volume cutoff can often be removed by methods of Statistical Mechanics. I do
not know if such methods will work for string field theory.

Note also that the cutoff v > 0 is required even in the field theory limit (which
appears if the Fock space cutoff M is sufficiently small) due to the fact that there
are no derivatives with respect to ` appearing in the action. In mathematical lan-
guage, the free string measure becomes the tensor product of a massive analog of
Wiener measure with a white noise measure, and so is supported on distributions.
Thus the cubic interaction must be regularized even in this limit.

4. Concluding Remarks

4.1. Relation to standard ideas in string theory. It is important to note the
differences in principle between the nonperturbative partition function Zε,T,v(λ)
and ideas arising in physics.

• We work in imaginary time;
• The string coupling constant is pure imaginary;
• We placed an infrared cutoff m > 0 on the propagators;
• We impose a moduli space cutoff given by parameters ε, T, L0, L∞;
• Our action is second order in derivatives in t, unlike the action of [7] which

is first order;
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• We require an additional smoothing of the interaction, given by taking a
nonzero value of the parameter v.

Despite these differences we hope our construction gives some insight into the
mathematics of string theory.

4.2. The field theory limit and promotion. Let πΩ : F → F denote the
projection onto the vacuum Ω ∈ F . This map induces a projection on B which
we also denote by πΩ. The string field theory we have constructed has a quantum
field theory limit obtained by replacing the interaction term Iε,T,v(Ψ) by the
projected interaction Iε,T,v(πΩΨ). In this limit our string field theory is essentially
a quantum field theory in d+ 1 dimensions.

On the other hand, one can imagine “promoting” the parameter t to a field—
that is, to a distribution in S ′(S1)—and replacing the operator (−d2/dt2+1) with
the quantum mechanical Hamiltonian H`,m. It would be interesting to construct
the corresponding measure. I do not know if this construction would shed any
light on the relation between superstrings and M theory.

4.3. Twists and the moduli space of curves. In Section 1.5 we conjectured
that the activities fΓ(t1, . . . , `1, . . . ; v) are related to determinants of Laplacians
on Riemann surfaces. It is expected [1] that those determinants should in turn,
in the case when d = 24, be related to Polyakov measure. With this in mind
it is natural to ask whether the surfaces Σ(Γ, t1, . . . , `1, . . . ) form a cover of the
moduli of curves of genus n + 1 as Γ varies over G2n and the parameters te, `e
vary over [0,∞) (here we are taking the limit as ε→ 0 and T →∞).

A quick dimension count shows that this cannot be the case; the surfaces
formed by our procedure are parametrized by 3n parameters, while the dimension
of the moduli space is 6n. A variant of our construction is the following. For θ ∈
[0, 2π], let R(θ) : S1 → S1 denote the rotation. This map induces a commuting
family of unitary operators on L2(S1), and hence a commuting family RF (θ) of
unitary operators on F . Since ΨM,κ is a function with values in F , we may define

Îε,T,v
M,κ (Ψ) =

∫ 2π

0

∫ 2π

0

∫ 2π

0
dθ1dθ2dθ3 J(RF (θ1) ΨM,κ, RF (θ2) ΨM,κ, RF (θ3) ΨM,κ).
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The existence of the limit of Îε,T,v
M,κ (Ψ) as M,κ → ∞ follows by the methods

used to prove Theorem 2. The analog of Conjecture 4 now includes Riemann
surfaces formed by attaching tubes to plumbing fixtures with twists between 0
and 2π, and those twists give an additional 3n parameters. In view of the work
of Giddings and Wolpert [4], it is possible that these singular surfaces provide a
cover of the moduli space of curves.

4.4. Open Strings, unoriented strings, and analytic semigroups. It should
be possible to repeat our construction in the case of open strings (with Neumann
boundary conditions). Such a construction should be related to moduli spaces
of Riemann surfaces with boundaries, and a conjecture similar to Conjecture 4
should exist, involving an appropriate determinant of the Laplacian on manifolds
with boundary, with Neumann boundary conditions.

Likewise, replacing the complex Banach space B with a real Banach space
should result in unoriented surfaces arising in the formal power series expansion.

It would also be interesting to investigate whether our measures, in the free
case or the interacting case in the limit T → ∞, correspond to a reasonable
semigroup acting on a Hilbert space. In the free case ideas of this type have been
studied in a different context by Dimock [3].

Appendix A. Fock space.

We summarize here some basic information about Fock Space and path inte-
grals. See [5] for more information and proofs.

Let H = L2(S1,R)⊗Rd. The symmetric tensor algebra Sym∗H has a natural
inner product normalized so that

‖f ⊗ . . .⊗ f‖ = ‖f‖n, f ∈ H.

The Fock space F is the completion of Sym∗H⊗C in this norm. The vacuum Ω
is given by 1 ∈ Sym∗H. Let e1, . . . , ed be a basis for Rd. For each p ∈ 2πZ, i =
1, . . . , d, we define an annihilation operator ai(p) on a dense subset of F by

ai(p)(f1 ⊗ · · · ⊗ fn) =
n∑

j=1

〈
fj , exp(2πip ·)⊗ ei

〉
f1 ⊗ · · · ⊗ f̂j ⊗ · · · ⊗ fn
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Then

[ai(p), aj(q)] =
[
a∗i (p), a

∗
j (q)

]
= 0 and

[
ai(p), a∗j (q)

]
= δi,jδp,q,

where δa,b is the Kronecker delta.

In terms of these operators, the Hamiltonian H`,m (where `,m > 0) is given by

H`,m =
d∑

i=1

∑
k∈2πZ

√(k
`

)2

+m2

 a∗i (k)ai(k).

The operators H`,m are unbounded self-adjoint positive operators on F , with
compact resolvent. Furthermore, for t > 0 the operator e−t H`,m is a trace class
operator on F , and

e
−t H

`
′
,m ≥ e−t H`,m ,

whenever `
′
> `.

An alternative description of F is given by the Schrodinger (or loop space)
representation: Let dµ`,m denote Gaussian measure on S ′

(S1
` ,R) ⊗ Rd with co-

variance (
− d2

dx2
+m2

)−1/2

.

Then (see [5]), F ' L2(S
′
(S1

` ,R)⊗ Rd, dµ`,m).

The relation to two dimensions is given by the Feynman-Kac formula, of which
the simplest case is the following: Let dν`,C denote Gaussian measure of covari-
ance C = (−∆ +m2)−1 on S ′

(S1
` × R,R)⊗ Rd.

Then if f, f ′ ∈ C∞(S1
` ,R)⊗Rd, t, t′ ∈ R, the function Φf,t : S ′(S1

`×R; Rd) → R,
given by

Φf,t(ψ) = ψ(·, t)(f)

extends to an element of Lp(dν`,C) for all p ≥ 1, and

∫
S′(S1

`×R;Rd)
dν`,C(ψ) Φf,t(ψ) Φf ′,t′(ψ) =

1
2

〈
f,
e−|t−t′|

√
−(d2/dx2)+m2√

−(d2/dx2) +m2
f ′
〉

L2(S1
`×R;R)⊗Rd

.
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Appendix B. Abstract Wiener Spaces

Let H be a separable Hilbert space. If V ⊂ H is a finite-dimensional subspace
of H and πV : H → V is the projection, a cylinder set based on V is a set of
the form π−1

V (U) where U ⊂ V is a Borel set. Similarly, a cylinder function is a
function of the form π∗V f where f : V → C is a Borel measurable function. Since
every finite dimensional Hilbert space V is isometric to Cn for some n, each such
space is equipped with a natural Gaussian probability measure µV . Thus the
Hilbert space H is equipped with a measure µH on cylinder sets given by

µH(π−1
V (U)) = µV (U).

However, this measure does not extend, in the case of infinite-dimensional Hilbert
spaces, to a countably additive measure on the Borel sets of H. Instead, we have
the following construction due to Gross [6].

A norm ‖ ‖1 on a Hilbert space is called measurable if for every ε > 0, there
exists a finite-dimensional space Vε ⊂ H such that whenever W ⊂ H is a finite
dimensional space orthogonal to Vε,

µW ({x ∈W : ‖x‖1 > ε}) < ε.

Let B denote the completion of H in the norm ‖ ‖1. Then Gross’ theorem is

Theorem B.1. The cylinder set measure µH extends to a Borel measure µ on
B. The measure µ is characterized by the following property. Any element Ψ ∈
B∗ ⊂ H, may be considered as a function ΦΨ on B. Then ΦΨ ∈ L2(dµ) and for
Ψ,Ψ′ ∈ B∗ ⊂ H ∫

B
dµΦΨ ΦΨ′ =

〈
Ψ,Ψ′

〉
H
.

Example B.2. [Gaussian measure in one dimension.] Let H = H1(R), and let
‖ ‖∞ denote the uniform norm (recall that by the Sobolev embedding theorem
elements of H1(R) are bounded continuous functions). Then ‖ ‖∞ is a measurable
norm on H, and the resulting Banach space is B = (Cb(R), ‖ ‖∞). This gives a
massive analog of Wiener measure.

Example B.3. [White noise measure in one dimension] Let H = L2([a, b]),
and let ‖ ‖−1 be the Sobolev (−1)-norm. Then ‖ ‖−1 is measurable, and
B = H−1 ((a, b)). The resulting measure is white noise measure on the inter-
val [a, b].
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Example B.4. Let H be a separable Hilbert space and let A be a positive

trace class operator on H. Then the norm given by ‖x‖A =
〈
Ax,Ax

〉1/2

H
is a

measurable norm on H. Denote the completion of H in this norm by HA.

Example B.5. Let H̃ be a separable Hilbert space, and let H = H1(R)⊗H̃. This
is a space of H1-functions on R with values in H̃. Let A be a positive trace-class
operator on H̃. For f ∈ H, define ‖f‖ = supt∈R‖f(t)‖A. Then ‖ ‖ is a measurable
norm on H, and the completion of H is a subspace of the space C(R; H̃A) of
continuous functions f : R → H̃A with supt∈R‖f(t)‖A <∞.
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