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Abstract: After defining the concept of generalized almost contact struc-
tures, we examine integrability of such structures from both a Sasakian per-
spective in terms of a cone construction and from a Courant algebroid per-
spective.
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1. Introduction

Contact geometry is a classical subject [15]. It is closely related to complex and
symplectic structures through real hypersurface construction or cone construc-
tion. It has many facets of generalization in the last fifty years. In particular,
there is a notion of almost contact structure and a notion of almost cosymplectic
structure.

In recent years, there has been tremendous development in understanding the
relation and interplay between complex and symplectic geometry beyond classical
Kählerian geometry. In particular, the concept of generalized complex geometry
successfully integrates complex and symplectic structures into a single category of
geometry [9] [11]. Then a notion of generalized almost contact structures emerges
[12]. Its development is based on the theory of Dirac structures and 1-jet bundles
of the underlying manifolds.

In this paper, we consider “generalized almost contact structures of codimension-
1” in the sense of Vaisman as an alternative [23]. Although this definition of a
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generalized almost contact structure is more restrictive than the one given in [12],
it has advantage that it is simply formulated in terms of tensorial objects.

We then investigate different perspectives on “integrability” of generalized al-
most contact structures. One approach is inspired by Sasaki’s method of extend-
ing a given structure from an odd-dimensional manifold to the cone over it, and
then considering integrability of an almost complex structure on even-dimensional
manifolds. Another is inspired by Courant and Weinstein’s approach to Dirac
structures [6] [7].

Historically, there is a distinction between contact structures and the geome-
try determined by a contact 1-form. As on orientable manifolds these concepts
are equivalent [10] (see also [1]), to avoid complication irrelevant to our consid-
erations, throughout this paper all manifolds under considerations are assumed
to be connected and oriented. As an initial investigation, we focus on tensorial
objects, and postpone consideration of equivalent relations to future.

2. Classical geometry

2.1. Contact structures as almost cosymplectic structures. An almost
symplectic structure on a 2n-dimensional manifold is a 2-form ω such that ωn is
non-zero everywhere. As a G-structure, the manifold M has a Sp(n, R)-structure
[4] [13]. The integrability of this G-structure is equivalent to dω = 0. In such
case, we simply address the 2-form ω as a symplectic structure or a symplectic
form.

On odd-dimensional manifolds, contact structures share many common fea-
tures with symplectic structures. They are often studied along with symplectic
structures in the realm of classical mechanics, beginning with S. Lie [15]. Suppose
that M is a (2n + 1)-dimensional manifold with a 1-form η such that η ∧ (dη)n is
non-zero everywhere, then the 1-form η is a contact structure or a contact 1-form.
The kernel of the 1-form ker η is called contact distribution. Note that the re-
striction of the 2-form dη to the associated contact distribution is non-degenerate.
Given a contact one-form, there is a unique vector field F such that ιF η = 1 and
ιF dη = 0. This vector field is known as the Reeb field of the contact form η.
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When studying infinitesimal automorphisms of symplectic structures, Liber-
mann developed the concept of almost cosymplectic structures [14] As a G-
structure, it is a reduction of the structure group of a (2n + 1)-dimensional
manifold from GL(2n + 1, R) to {1} × Sp(n, R) [8] [14]. In terms of tensors,
it is equivalent to the choice of a 1-form η and a 2-from θ such that η ∧ θn 6= 0 at
every point of the manifold. An almost cosymplectic structure (η, θ) is a cosym-
plectic structure if both η and θ are closed [14]. It is immediate that contact
forms constitute a subclass of almost cosymplectic structures with θ = dη.

2.2. Contact structures as almost contact structures. There is an alterna-
tive perspective on generalization of contact structures, stemming from Sasaki’s
study on complex structures. When M is a 2n-dimensional manifold and J

is a real linear bundle map from the tangent bundle TM to itself such that
J ◦ J = −Id, then J is called an almost complex structure. Recall that the
Nijenhuis tensor NJ of an almost complex structure is

NJ(X1, X2) = [JX1, JX2] + J2[X1, X2]− J([JX1, X2] + [X1, JX2]) (1)

for all vector fields X1 and X2. If NJ is equal to zero identically, then J is
called a complex structure. It is well known that the vanishing of the Nijenhuis
tensor is equivalent to the manifold M being a complex manifold. For any almost
complex structure, through an averaging process one could easily construct an
almost Hermitian structure, i.e. an almost complex structure with a Riemannian
metric g such that g(JX1, JX2) = g(X1, X2) for any tangent vectors X1 and X2.

In developing a generalization of complex structures for odd-dimensional man-
ifolds, Sasaki discovered what is known as almost contact structure today [1] [19].
Suppose that M is a (2n+1)-dimensional manifold with a vector field F , a 1-form
η and a type (1,1)-tensor ϕ satisfying

ϕ2 = −Id + η ⊗ F and η(F ) = 1. (2)

In his first two publications on this subject in 1961, Sasaki called this triple of
tensors simply a (ϕ, F, η)-structure [19] [21]. With a remark due to Hatakeyama
[19, Page 460], Sasaki provided a proof that the existence of such a structure is
equivalent to the reducibility of the principal bundle of frames from GL(2n+1, R)
to {1}×U(n). To be precise, given the triple (ϕ, F, η), there exists a Riemannian
metric g such that

g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ). (3)
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Such a metric is called “compatible” with the given structure, and it is not unique
[1] [19]. In addition, any quadruple (ϕ, F, η, g) satisfying (2) and (3) is equivalent
to a reduction of the principal bundle of frames to a {1} ×U(n)-bundle.

On the other hand, it is known for a long time that the structure group of a
(2n + 1)-dimensional contact manifold “can” be reduced to {1} × U(n) [3]. In
fact, J. Gray defined an almost contact manifold as a manifold whose principal
bundle of frames “can” be reduced from GL(2n+1, R) to {1}×U(n) [10]. To see
explicitly that a contact structure induces a (ϕ, F, η)-structure in Sasaki’s sense,
one simply finds a Riemannian metric g on the manifold M and an (1, 1)-tensor
ϕ on M such that

η(X) = g(X, F ), dη(X, Y ) = g(X, ϕ(Y )). (4)

Considering Sasaki and Hatakeyama’s observation above as a tensorial real-
ization of Gray’s definition of almost contact structures, many address Sasaki’s
(ϕ, F, η)-structure as an almost contact structure [1]. After all, Sasaki himself
addressed his (ϕ, F, η)-structure as an almost contact structure as soon as 1962
[20] [22]. We shall follow Sasaki’s convention, but caution our readers once again
that a contact structure does not yield Sasaki’s triple of tensors until we choose
a compatible metric as noted in (4). Likewise, an almost contact structure as
given in terms of Sasaki’s triple of tensors is not a {1} ×U(n)-structure until we
choose a compatible metric as defined in (3).

When one does choose a compatible metric g, one may extend the quadruple
of tensors (ϕ, F, η, g) on the odd-dimensional manifold M to obtain an almost
Hermitian structure on the cone over M Sasaki further analyzed the integrability
of this almost complex structure on the cone [21]. The integrability over the cone
yields the concept of “normal contact structures” or “normal almost contact
structures” [1] [21]. If one defines

Nϕ(X1, X2) = [ϕX1, ϕX2] + ϕ2[X1, X2]− ϕ([ϕX1, X2] + [X1, ϕX2]) (5)

for all vector fields X1 and X2, then an almost contact structure (ϕ, F, η) is
normal if and only if

Nϕ = −F ⊗ dη, LF ϕ = 0 and LF η = 0. (6)

With a choice of compatible metric, this line of development yields the theory of
Sasakian geometry, which is considered an odd-dimensional analogue of Kählerian
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geometry. This subject enjoys significant progress in the past ten years. See the
book by Boyer and Galicki [2], and references therein.

2.3. Remarks. The above review demonstrates that to realize a contact struc-
ture as an almost contact structure or Sasaki’s (ϕ, F, η)-structure, we need to
choose a compatible metric. On the other hand, the inclusion of contact forms
as a subclass of almost cosymplectic structure is straightforward and unique.

Therefore, we adopt Libermann’s perspective: the concept of almost cosym-
plectic structures naturally generalizes the concept of symplectic structures from
even to odd-dimension. It includes contact forms as natural examples. We also
adopt Sasaki’s early perspective: the concept of almost contact structures natu-
rally generalizes the concept of complex structures from even to odd-dimension.

In classical geometry, the bridge between these two perspectives is a choice
of compatible metrics. In the rest of this article, we shall see that the concepts
of almost cosymplectic structures and almost contact structures could be unified
without explicit metric geometry. It is due to one’s ability to handle tangent bun-
dle and cotangent bundle simultaneously in “generalized geometry”, as developed
by Hitchin, Gualtieri and many others in the past five years.

3. Some recent developments

In the past few years, a major development in analyzing complex structures
and symplectic structures is to put them within a single category of “generalized
complex structures” [9] [11]. It is best understood in terms of Courant algebroids.

For a manifold M of any dimension, consider the vector bundle TM ⊕T ∗M →
M . Its space of local sections is endowed with two natural R-bilinear operations.

• A symmetric bilinear form 〈·, ·〉 is defined by

〈X + α, Y + β〉 = α(Y ) + β(X). (7)

• The Courant bracket is given by

[[X + α, Y + β]] = [X, Y ] + LXβ − LY α− 1
2
d(ιXβ − ιY α). (8)
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3.1. Generalized complex structures. Suppose that M is even-dimensional.
A generalized almost complex structure on M is a bundle automorphism I :
TM ⊕ T ∗M → TM ⊕ T ∗M such that I2 = −Id and I∗ + I = 0. Due to the last
condition, a generalized almost complex structure I on M can be written in a
matrix form respecting the direct sum decomposition:

I =

(
ϕ π]

θ[ −ϕ∗

)
, (9)

where ϕ is a (1,1)-tensor field, π a bivector field on M , θ a 2-form on M . Here
we adopt the following convention.

(π]α)(β) = π(α, β), and Y (θ[X) = θ(X, Y ) (10)

for any 1-forms α and β, 2-form θ, bivector field π, and vector fields X and Y .

The condition I ◦ I = −Id could be expressed in terms of the components of
I.

ϕ2 + π]θ[ = −Id, ϕπ] = π]ϕ∗, θ[ϕ = ϕ∗θ[. (11)

The same condition implies that the complexification of the bundle TM ⊕ T ∗M

splits into a direct sum of (±i)-eigenbundles. The condition I∗ + I = 0 implies
that these bundles are maximal isotropic with respect to the bilinear form (7).

Definition 3.1. [9] A generalized almost complex structure I is integrable if it
satisfies the condition NI = 0, where

NI(e1, e2) := [[Ie1, Ie2]] + I2[[e1, e2]]− I([[Ie1, e2]] + [[e1, Ie2]]) (12)

for all sections e1, e2 of the vector bundle TM ⊕ T ∗M over the manifold M .

The integrability of I could be expressed in terms of its components. Consider
the bracket { , }π on 1-forms defined by

{α, β}π = Lπ]αβ − Lπ]βα− d(π(α, β)). (13)

Proposition 3.2. [5] Let I = (ϕ, π, θ) be a generalized almost complex structure
on M . Then I is integrable if and only if the following conditions are satisfied:

(C1) π is a Poisson bivector field, i.e. [π, π] = 0.
(C2) ϕ∗({α, β}π) = Lπ]α(ϕ∗β) − Lπ]β(ϕ∗α) − d(π(ϕ∗α, β)); for all 1-forms α

and β.
(C3) Nϕ(X, Y ) = π](ιX∧Y dθ), for all vector fields X and Y ;
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(C4) dθϕ(X, Y, Z) = dθ(ϕX, Y, Z)+dθ(X, ϕY, Z)+dθ(X, Y, ϕZ), for all vector
fields X, Y and Z, when θϕ(X, Y ) = θ(ϕX, Y ) .

3.2. Generalized almost contact structures. In view of the definition of al-
most contact structures, we modify the definition of the analogues of generalized
complex structures for odd-dimensional manifolds. For another equivalent defi-
nition, see [23].

Definition 3.3. A generalized almost contact structure consists of a bundle en-
domorphism Φ from TM ⊕T ∗M to itself and a section F +η of TM ⊕T ∗M such
that

(1) Φ + Φ∗ = 0,
(2) η(F ) = 1, Φ(F ) = 0 and Φ(η) = 0,
(3) Φ ◦ Φ = −Id + F � η,

where F � η is the bundle map from TM ⊕ T ∗M to itself given by

F � η(X + α) := F η(X) + η α(F ).

In terms of the direct sum decomposition of TM ⊕T ∗M , the first condition in
the definition is equivalent to the existence of a (1, 1)-tensor ϕ, a 2-form θ and a
bivector field π such that

Φ =

(
ϕ π]

θ[ −ϕ∗

)
, (14)

where we use the convention of (10). The other conditions could be expressed in
terms of the components of Φ, the vector field F and the 1-form η.

θ[ϕ = ϕ∗θ[, ϕπ] = π]ϕ∗, (15)

ϕ2 + π]θ[ = −Id + F ⊗ η, and (ϕ∗)2 + θ[π] = −Id + η ⊗ F. (16)

η ◦ ϕ = ϕ∗η = 0, η ◦ π] = π]η = 0, ιF ϕ = 0, ιF θ = 0, ιF η = 1. (17)

In subsequent discussion, we often address a generalized almost contact structure
in terms of its components and denote it by J = (F, η, π, θ, ϕ).
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3.3. Examples. Consider a manifold M with a Sasaki’s triple (ϕ, F, η) as an
almost contact structure. It is apparent that if we set

Φ =

(
ϕ 0
0 −ϕ∗

)
, (18)

we have a generalized almost contact structure, with the 2-form θ and bivector
field π being equal to zero.

Given a manifold M with as an almost cosymplectic structure (η, θ), we could
construct the components of a generalized almost contact structure in terms of η

and θ as follows.

Let F be the unique vector field such that ιF θ = 0 and ιF η = 1. Again, we call
this vector field the Reeb field. Consider the map [ : TM → T ∗M defined by

[(X) := ιXθ − η(X)η. (19)

Since η∧ θn 6= 0 everywhere, [ is an isomorphism. Define a bivector field π by its
contraction with two 1-forms. i.e.

π(α, β) := θ([−1(α), [−1(β)). (20)

In particular, the vector π](α) is defined by

π](α)(β) = π(α, β) = θ([−1(α), [−1(β)). (21)

It is now an elementary computation to verify the next lemma.

Lemma 3.4. When [(X) = α, π](α) = −X + η(X)F . In particular, π](η) = 0
and π](ιXθ) = −X +η(X)F . Moreover, [ is an isomorphism from ker F to ker η,
and −π] is its inverse.

Given the above information, it is now straightforward to see that the tensors
J = (F, η, π, θ, ϕ), with ϕ = 0, define a generalized almost contact structure. The
associated bundle map Φ is given by

Φ =

(
0 π]

θ[ 0

)
. (22)

Since every contact form η determines an almost cosymplectic structure (η, dη),
it uniquely determines a generalized almost contact structure. We will study
contact forms from such perspective.
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3.4. Alternative approach. Before we investigate the integrability of gener-
alized almost contact structures, we briefly review its relation with a different
definition due to the second author and her collaborator [12].

On an odd-dimensional smooth manifold M , set E1(M) = (TM×R)⊕(T ∗M×
R). One may consider a bundle map Ĩ : E1(M) → E1(M) such that Ĩ ◦ Ĩ = −Id
and Ĩ + Ĩ

∗
= 0. Such object is used to be called generalized almost contact

structure [12]. This definition is equivalent to the one given in [12, Definition
4.1], in terms of maximal isotropic subbundles of E1(M) with respect to a natural
symmetric pairing. With respect to the direct sum decomposition of E1(M), the
map Ĩ decomposes as follows:

Ĩ =

(
N P ]

Θ[ −N∗

)

where the four components of Ĩ are:

• a bundle map N : TM × R → TM × R;
• a skew-symmetric bundle map P ] : T ∗M × R → TM × R given by a

bivector field π and a vector field F such that for any 1-form α and
function g on the manifold M , P ](α, g) = (π]α− gF, ιF α);

• a skew-symmetric bundle map Θ[ : TM × R → T ∗M × R given by a
2-form θ and a 1-form η such that for any vector field X and function f

on the manifold M , Θ[(X, f) = (ιXθ − fη, ιXη).

When J = (F, η, π, θ, ϕ) is a generalized almost contact structure as given in
Definition 3.3, we set

N =

(
ϕ 0
0 0

)
, P ] =

(
π] −F

F 0

)
, Θ[ =

(
θ[ −η

η 0

)
. (23)

This construction makes every generalized almost contact structure as given in
Definition 3.3 a generalized almost contact structure in the sense of Wade et. al.
[12]. From now on, we adopt Definition 3.3 as our definition of generalized almost
contact structures.
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4. Integrability, a Sasakian approach

Next we explore possible definitions for integrability of generalized almost con-
tact structures. In this section, we examine an approach similar to the develop-
ment of “normal contact structures” as found in [21] [22] (see also [1]).

4.1. Integrability over a cone. Let M be a smooth odd-dimensional manifold.
Consider the cone C(M) = M × R+, where R+ is the positive half-line with its
unit parameter t. Given a generalized almost contact structure J = (F, η, π, θ, ϕ),
define the following tensors on C(M):

P̃ =
1
t2

π +
1
2t

F ∧ ∂

∂t
, Θ̃ = t2θ + 2tη ∧ dt.

We extend ϕ by setting

Ñ|TM = ϕ, Ñ(
∂

∂t
) = 0.

Consider the map J̃ : TC(M)⊕ T ∗C(M) → TC(M)⊕ T ∗C(M) defined by:

J̃ =

(
Ñ P̃

Θ̃ −Ñ∗

)
.

It becomes a generalized almost complex structure on the cone C(M).

Definition 4.1. A generalized almost contact structure J on M is said to be
integrable on the cone over M if the corresponding generalized almost complex
structure J̃ on the cone C(M) is integrable as a generalized almost complex struc-
ture.

Theorem 4.2. A generalized almost contact structure J = (F, η, π, θ, ϕ) on a
manifold M is integrable on the cone over M if and only if its components satisfy
the following conditions.

(A1) [π, π] = 2F ∧ π, and [F, π] = 0.
(A2) LF ϕ = 0, LF θ = 0, and LF η = 0.
(A3) For any 1-forms α and β, ϕ∗{α, β}π = Lπ]α(ϕ∗β)−Lπ]β(ϕ∗α)−dπ(ϕ∗α, β).
(A4) For any vector fields X and Y , π](ιXdη − ιXθ) = 0 and

Nϕ(X, Y ) = π](ιX∧Y dθ) + (θ(X, Y )− dη(X, Y ))F.

(A5) For any vector fields X, Y, Z, define θϕ(X, Y ) := θ(ϕX, Y ). Then

dθϕ(X, Y, Z) = dθ(ϕX, Y, Z) + dθ(X, ϕY, Z) + dθ(X, Y, ϕZ).
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Proof: Property (C1) of Proposition 3.2 says that [P̃ , P̃ ] = 0. But, [P̃ , P̃ ] = 0
if and only if [π, π] − 2F ∧ π = 0 and [F, π] = 0. From Property (C2), one
gets Ñ∗({2tdt, β}

P̃
) = LF (ϕ∗β). Since ϕ∗(LF β) = LF (ϕ∗β) for any 1-form β,

integrability implies that LF ϕ = 0. Property (C3) ensures that for any vector
fields X and Y ,

0 = 〈N
Ñ

(X, Y ), 2tdt〉 = t2〈F, ιX∧Y dθ〉.

Since ιF θ = 0, it follows that LF θ = 0. Equation (A3) is obtained from a direct
computation using (C2). In addition,

0 = N
Ñ

(X,
1
2t

∂

∂t
) = t2π](ιXdη − ιXθ) +

1
2t

dη(X, F )
∂

∂t
,

for all vector field X on M . Therefore,

ιF dη = 0 and π](ιXdη − ιXθ) = 0.

The second part of (A4) is obtained by applying (C3) to vector fields X and Y

on M . Finally, the last relation comes from (C4) when applied to Ñ and θ̃. .

The integrability condition in Theorem 4.2 is, in some sense, more general than
the one given by Vaisman in [23]. For instance, in our case the bivector field π

and the vector field F together form a Jacobi structure, and hence π is a not
necessarily a Poisson structure.

4.2. Examples. Recall that an almost cosymplectic structure (θ, η) could be
realized as a generalized almost contact structure with ϕ = 0. Therefore, the
integrability conditions are reduced.

(1) [π, π] = 2F ∧ π and [F, π] = 0.
(2) LF θ = ιF dθ = 0.
(3) θ, π, η and F satisfy the relations: for all vector fields X and Y

ιF dη = 0, π](ιXdη − ιXθ) = 0, π](ιX∧Y dθ) + (θ(X, Y )− dη(X, Y ))F = 0.

Due to the identity π](ιXdη − ιXθ) = 0 and Lemma 3.4, for any X there
is a function f such that ιXdη − ιXθ = fη. Contracting the last identity with
F , we have −ιXιF dη = f. As the integrability condition requires ιF dη = 0,
f ≡ 0. Therefore ιX(dη − θ) = 0 for all X. It follows that θ = dη and all other
integrability conditions are then fulfilled. Therefore, we have the following.
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Proposition 4.3. The generalized almost contact structure determined by an
almost cosymplectic structure is integrable on the cone if and only if it is a contact
structure in the classical sense.

An almost contact structure (ϕ, η, F ) defines a generalized almost cosymplectic
structure with π = 0 and θ = 0. The integrability conditions are reduced to

LF ϕ = 0, LF η = 0, Nϕ = −F ⊗ dη. (24)

Therefore, the following is immediate.

Proposition 4.4. The generalized almost contact structure determined by a clas-
sical almost contact structure (ϕ, F, η) is integrable on the cone if and only if it
is a normal contact structure in the classical sense.

5. Integrability, a Courant algebroid perspective

With the symmetric pairing in (7), Courant bracket in (8) and the projection
onto the first summand as anchor map, (TM ⊕ T ∗M, 〈·, ·〉, [[·, ·]]) is a Courant al-
gebroid. Given a generalized almost contact structure J = (F, η, π, θ, ϕ), consider
the bundle map Φ on TM⊕T ∗M as defined in (14). Denote by LF (resp. Lη) the
trivial complex line bundle generated by F (resp. η). Let ker η be the subbundle
of TM such that each fiber is the kernel of η. Let kerF be the subbundle of T ∗M

such that each fiber consists of 1-forms whose evaluation on F is equal to zero.
By Definition 3.3, Φ2 = −Id on ker η ⊕ ker F . Therefore, the complexification of
ker η ⊕ ker F is the direct sum of the ±i-eigenbundles. Define

E(1,0) = {e− i Φ(e) | e ∈ Kerη⊕KerF}, E(0,1) = {e+ i Φ(e) | e ∈ Kerη⊕KerF}.
(25)

We have the natural splitting: (TM ⊕ T ∗M)C = LF ⊕ Lη ⊕ E(1,0) ⊕ E(0,1).

In subsequent analysis, the following four different complex vector bundles will
play different roles. Namely,

L := LF ⊕ E(1,0), L := LF ⊕ E(0,1), L∗ := Lη ⊕ E(0,1), L
∗ := Lη ⊕ E(1,0).

(26)
Note that LF is the complexification of a real line bundle, its conjugation is itself.
Therefore, the complex conjugation map sends L to L.
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Definition 5.1. A generalized almost contact structure J = (F, η, π, θ, ϕ) is
Courant-integrable if the space of sections of bundle L is closed with respect to
the Courant bracket.

The condition [[L,L]] ⊆ L could be expressed in terms of the two components
of L. Since LF is a rank-1 bundle, it is apparent that [[LF , LF ]] ⊆ LF . Therefore,
the non-trivial conditions are due to the following two inclusions.

[[LF , E(1,0)]] ⊆ LF ⊕ E(1,0), [[E(1,0), E(1,0)]] ⊆ LF ⊕ E(1,0). (27)

Note that although the closure of the space of sections of L with respect to
the Courant bracket is equivalent to the closure of L by conjugation, a lack of
natural isomorphism between L and L∗ means that the space of sections of L∗ is
not necessarily closed when L is.

5.1. Integrability of almost cosymplectic structures. As noted in Section
3.3, given an almost cosymplectic structure (η, θ), the corresponding generalized
almost contact structure has ϕ = 0. When X + α is a section of ker η ⊕ ker F ,
Φ(X + α) = π](α) + θ[(X).

To examine when the bundle LF ⊕E(1,0) is closed with respect to the Courant
bracket, we first consider [[LF , E(1,0)]]. When X is a section of ker η,

[[F,X − iΦ(X)]] = [[F,X − iθ[(X)]] = (LF X)− iθ[(LF X) + ιX(LF θ).

Similarly, if α is a section of ker F , let X = [(α). By Lemma 3.4

[[F, α− iΦ(α)]] = [[F, α− iπ](α)]] = i[[F,X − iθ[(X)]]

= i
(
(LF X)− iθ[(LF X) + ιX(LF θ)

)
.

Therefore, the analysis of [[F, α− iΦ(α)]] is identical to the one of [[F,X− iΦ(X)]].

Since θ(F ) = 0, 〈(LF X) − iθ[(LF X) + ιX(LF θ), F 〉 = 0. Since η(X) = 0 and
η(F ) = 1,

〈(LF X)− iθ[(LF X) + ιX(LF θ), η〉 = η(LF X).

It follows that

(LF X)− iθ[(LF X) + ιX(LF θ)− η(LF X)F
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is a section of ker η ⊕ ker F . Therefore, [[LF , E(1,0)]] ⊆ L if and only if the above
tensor is a section of E(1,0). Since ιF θ = 0, the above tensor is equal to

(LF X)− η(LF X)F − iθ[(LF X − η(LF X)F ) + ιX(LF θ)

= (LF X)− η(LF X)F − iΦ(LF X − η(LF X)F ) + ιX(LF θ).

It is a section of E(1,0) if and only if ιX(LF θ) is a section of E(1,0). As ιX(LF θ)
is a real section, it is possible only when ιX(LF θ) = 0 for all X in ker η. Since
θ(F ) = 0, we always have ιF (LF θ) = 0. Therefore,

[[LF , E(1,0)]] ⊆ L if and only if LF θ = 0. (28)

Next we identify the conditions for [[E(1,0), E(1,0)]] ⊆ L. A priori, there are
three cases to consider. If X and Y are sections of ker η, then

[[X − iΦ(X), Y − iΦ(Y )]] = [[X − iθ[(X), Y − iθ[(Y )]]

= [[X, Y ]]− i
(
[[X, θ[(Y )]]− [[Y, θ[(X)]]

)
= [[X, Y ]]− iθ[([[X, Y ]]) + iθ[([[X, Y ]])

−i

(
ιXdθ[(Y ) + dιXθ[(Y )− 1

2
dιXθ[(Y )− ιY dθ[(X)− dιY θ[(X) +

1
2
dιY θ[(X)

)
= [[X, Y ]]− iΦ([[X, Y ]])− i

(
−θ[([[X, Y ]]) + ιXdθ[(Y )− ιY dθ[(X)− d(θ(X, Y ))

)
= [[X, Y ]]− iΦ([[X, Y ]])− iιY ιXdθ.

Suppose that α and β are sections of ker η. Let X and Y be vector fields such
that θ[(X) = [(X) = α and θ[(Y ) = [(Y ) = β. By Lemma 3.4, X and Y are in
ker η, π](α) = −X and π](β) = −Y . It follows that

[[α− iΦ(α), β − iΦ(β)]] = [[α− iπ](α), β − iπ](β)]] = [[α + iX, β + iY ]]

= [[θ[(X) + iX, θ[(Y ) + iY ]] = − ([[X, Y ]]− iΦ([[X, Y ]])) + iιY ιXdθ.

Finally, suppose that X is a section of ker η and β is a section of ker F . Then

[[X − iΦ(X), β − iΦ(β)]]

= [[X − iθ[(X), β − iπ](β)]] = [[X − iθ[(X), θ[(Y ) + iY ]]

= i[[X − iθ[(X), Y − iθ[(Y )]] = i ([[X, Y ]]− iΦ([[X, Y ]])) + ιY ιXdθ.

Therefore, [[E(1,0), E(1,0)]] ⊆ L if and only if for all sections X and Y of ker η,

[[X, Y ]]− iθ[([[X, Y ]])− iιY ιXdθ (29)
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is a section of L. Since θ(F ) = 0,

〈[[X, Y ]]− iΦ([[X, Y ]])− iιY ιXdθ, F 〉 = −i(ιF dθ)(X, Y ) = −iιY ιX(LF θ).

It is equal to zero due to the constraint in (28). Therefore, removing the F

component from (29), we get a section of ker η ⊕ ker F . It is

[[X, Y ]]− iθ[([[X, Y ]])− iιY ιXdθ − 〈[[X, Y ]]− iθ[([[X, Y ]])− iιY ιXdθ, η〉F

= [[X, Y ]]− iθ[([[X, Y ]])− iιY ιXdθ − η([[X, Y ]])F

= [[X, Y ]]− η([[X, Y ]])F − iθ[([[X, Y ]]− η([[X, Y ]])F )− iιY ιXdθ. (30)

It is a section of L if and only if ιY ιXdθ is a section of E(1,0). Since we could
choose X and Y to be any real sections of ker η, ιY ιXdθ could be a section of
E(1,0) only when it is zero. As ιF dθ = 0. The section in (30) is in E(1,0) for any
X and Y in ker η if and only if dθ = 0 everywhere.

Proposition 5.2. The generalized almost contact structure defined by a classical
almost cosymplectic structure (η, θ) is Courant-integrable if and only if dθ = 0.
In particular, any contact structure (η, dη) as an almost cosymplectic structure is
Courant-integrable.

5.2. Integrability of almost contact structures.

Proposition 5.3. The generalized almost contact structure associated to an al-
most contact structure (ϕ, F, η) is Courant-integrable if and only if (LF ϕ)X is
a section of LF and Nϕ(X, Y ) = −dη(X, Y )F for any vector fields X and Y of
ker η.

Proof: As a generalized almost contact structure, a classical almost contact struc-
ture is given by θ = 0 and π = 0. The map Φ in this case is given by (18).

To consider [[LF , E(1,0)]], let X be a section of ker η. Then

[[F,X − iΦ(X)]] = LF X − iLF (ϕX) = LF X − iϕ(LF X)− i(LF ϕ)(X).

It is a vector field. Its LF -component is

η(LF X − iLF (ϕX))F. (31)

After it is removed, we have a section in ker η ⊕ ker F :

LF X − η(LF X)F − iLF (ϕX) + iη(LF (ϕX))F.
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It is a section of E(1,0) if and only if

LF (ϕX)− η(LF (ϕX))F = ϕ(LF X − η(LF X)F ) = ϕ(LF X).

Equivalently, for any section X of ker η,

(LF ϕ)X = η(LF (ϕX))F = η((LF ϕ)X)F (32)

i.e. LF ϕ : ker η → LF .

To derive further constraints on integrability, let α be a section of kerF . Mak-
ing use of the last constraint,

[[F, α− iΦ(α)]] = LF α + iLF (ϕ∗α) = LF α + iϕ∗(LF α) + i(LF ϕ)∗α

= LF α− iΦ(LF α) + i(LF ϕ)∗α = LF α− iΦ(LF α).

Since (LF α)F = 0, LF α − iΦ(LF α) is a section of E(1,0). Combining the above
two cases, we find that

[[LF , E(1,0)]] ⊆ L ⇔ (LF ϕ)X ∈ LF . (33)

For [[E(1,0), E(1,0)]], there are two cases to consider. Suppose that X and Y are
sections of ker η.

[[X − iϕX, Y − iϕY ]] = [[X, Y ]]− [[ϕX,ϕY ]]− i[[X, ϕY ]]− i[[ϕX, Y ]]. (34)

After its LF -component is removed, it is equal to

[[X, Y ]]− [[ϕX,ϕY ]]− i[[X, ϕY ]]− i[[ϕX, Y ]]

−η([[X, Y ]])F + η([[ϕX,ϕY ]])F + iη([[X, ϕY ]])F + iη([[ϕX, Y ]])F. (35)

We require its E(0,1)-component vanishes. i.e.

[[X, Y ]]− [[ϕX,ϕY ]]− i[[X, ϕY ]]− i[[ϕX, Y ]]

−η([[X, Y ]])F + η([[ϕX,ϕY ]])F + iη([[X, ϕY ]])F + iη([[ϕX, Y ]])F

+iϕ
(
[[X, Y ]]− [[ϕX,ϕY ]]− i[[X, ϕY ]]− i[[ϕX, Y ]]

−η([[X, Y ]])F + η([[ϕX,ϕY ]])F + iη([[X, ϕY ]])F + iη([[ϕX, Y ]])F
)

= 0.

Making use of definition of Nϕ and ϕ(F ) = 0, we find the real part being equal
to

[[X, Y ]]− [[ϕX,ϕY ]]− η([[X, Y ]])F + η([[ϕX,ϕY ]])F + ϕ([[X, ϕY ]] + [[ϕX, Y ]])

=−Nϕ(X, Y )− η([[X, Y ]])F.
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We could similarly compute the imaginary part to find that the E(0,1)-part of
[[X − iϕX, Y − iϕY ]] is equal to

−Nϕ(X, Y ) + η([[X, Y ]])F − i (−Nϕ(X, ϕY ) + η([[X, ϕY ]])F ) . (36)

As ϕ sends kernel of η into kernel of η, [[X − iϕX, Y − iϕY ]] is contained in L for
any sections X, Y of ker η if and only if

Nϕ(X, Y ) = η([[X, Y ]])F = −dη(X, Y )F. (37)

Next, suppose that X is a section of ker η and β is a section of ker F .

[[X − iϕX, β + iϕ∗β]] = LXβ + LϕX(ϕ∗β)− iLϕXβ + iLX(ϕ∗β). (38)

Since it is a differential form, it could be a section of L if and only if it is a section
of E(1,0). In particular, it is a section of kerF . Given the nature of X and β,

(LXβ + LϕX(ϕ∗β))F = β(Nϕ(X, F )), (LϕXβ − LX(ϕ∗β))F = β(Nϕ(ϕX,F )).

By definitions, the condition (37) and the fact that ϕ(F ) = 0

Nϕ(X, F ) = ϕ2[[X, F ]]− ϕ[[ϕX,F ]]

= ϕ(−ϕ(LF X) + LF (ϕX)) = ϕ((LF ϕ)X) = 0.

It follows that [[X − iϕX, β + iϕ∗β]] is a section of ker η ⊕ ker F . Finally, the
section [[X − iϕX, β + iϕ∗β]] is in E(1,0) if and only if its E(0,1)-part vanishes. If
one evaluates the E(0,1)-part of [[X − iϕX, β + iϕ∗β]] on a section Y of ker η, it is
equal to

β(Nϕ(X, Y ))− iβ(Nϕ(ϕX, Y )).

It vanishes due to (37) and the definition of β. Therefore, the integrability does
not impose any constraint beyond (37). .

Corollary 5.4. The generalized almost contact structure associated to a normal
contact structure (ϕ, F, η) is integrable.

Proof: A normal contact structure in the classical sense satisfies the following
conditions. Nϕ = −F ⊗ dη, LF ϕ = 0, and LF η = 0. Note that given the other
conditions, the identity Nϕ(X, F ) = −dη(X, F )F is equivalent to LF η = 0. .
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5.3. Alternative approach using Courant algebroids. As noted in Section
3.4, an alternative and more general notion of generalized almost contact struc-
tures is a certain bundle map Ĩ on E1(M). In this context, one may consider the
integrability of Ĩ in terms of the closure of its ±i-eigenbundles with respect to an
extended Courant bracket on E1(M) [24]. We shall address the integrability in
this sense as “E1(M)-integrability”.

It is also noted that if one subjects an almost contact structure to integrability
in this sense, then it is again a normal contact structure. If one subjects an
almost cosymplectic structure (η, θ) to integrability in this sense, then θ = dη,
meaning that it is a contact structure [12].

6. Discussion

Our review on classical geometry in Section 2 indicates that almost cosymplec-
tic structures is a natural and direct generalization of contact structures. On the
other hand, the notion of almost contact structures provides an obvious analogue
to define generalized almost contact structures. Although the generalization is
straightforward, it is broad enough to include both almost contact structures
and almost cosymplectic structures as natural examples. Since our definition of
generalized almost contact structures is defined solely by tensorial objects, we
propose to use it to replace a broader definition given in [12].

To consider integrability of generalized almost contact structures, we compare
Proposition 4.4 and Proposition 5.3 here and Theorem 5.3 in [12] to find that the
notion of integrability on the cone and E1(M)-integrability for almost contact
structures leads to normal contact structures. The Courant-integrability leads to
a technical and slightly weaker requirement.

As demonstrated by Proposition 4.3 and Proposition 5.4 in [12], both integra-
bility on the cone and E1(M)-integrability of an almost cosymplectic structure
(η, θ) imply that it is a contact structure. i.e., θ = dη However, Proposition 5.2
shows that Courant-integrability only requires dθ = 0. In particular, the gen-
eralized almost contact structures associated to classical contact structures are
Courant-integrable. It demonstrates that a Sasakian approach to integrability
does not accommodate cosymplectic structures although cosymplectic structures
are integrable G-structures.
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The relatively weak requirement due to the Courant-integrability interests us
as it allows us to control the geometry as well as to maintain meaningful flexibility.

A feature of the theory of generalized complex structures is a deformation
theory allowing extrapolation between complex and symplectic structures [9] [17].
It is in sharp contrast to the well known fact that deformation of symplectic
structures on compact manifolds are trivial [16].

Deformation of contact structures on compact manifolds is also known to be
trivial [10]. A natural question now is to what extent one could replicate the the-
ory of generalized complex structures to develop a non-trivial deformation theory
for generalized contact structures. Results in Proposition 4.3 and Proposition 5.2
indicate that Courant-integrability provides a relative large class of structures for
analysis. Given Definition 3.3, we expect a deformation theory to allow a contact
structure, as an almost cosymplectic structure, to deform to an almost contact
structure. We will develop such a deformation in a forthcoming paper [18].
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(1962) 167–176.

[23] I. Vaisman, Dirac structures and generalized complex structures on TM ×Rh, Adv. Goem.

7 (2007) 453–474.

[24] A. Wade, Conformal Diract structures, Lett. Math. Phys. 53 (2000) 331–348.

Yat Sun Poon
Department of Mathematics
University of California at Riverside, Riverside CA 92521
U.S.A.
Email: ypoon@ucr.edu

Aı̈ssa Wade
Department of Mathematics
The Pennsylvania State University, University Park, PA 16802
U.S.A.
E-mail: wade@math.psu.edu


