
Pure and Applied Mathematics Quarterly

Volume 6, Number 2

(Special Issue: In honor of

Michael Atiyah and Isadore Singer)

545—554, 2010

Whitehead’s Integral Formula, Isolated Critical

Points, and the Enhancement of the Milnor Number

Lee Rudolph

for Is Singer on his 85th birthday

Abstract: J. H. C. Whitehead gave an elegant integral formula for the Hopf
invariant H(p) of a smooth map p) from the 3-sphere to the 2-sphere. Given
an open book structure b on the 3-sphere (or, essentially equivalently, an
isolated critical point of a map F from R4 to R2), Whitehead’s formula can
be “integrated along the fibers” to express H(p) as the integral of a certain
1-form over S1. In case p is geometrically related to b (or F )—for instance,
if p is the map (one component of the fiberwise generalized Gauss map of
F ) whose Hopf invariant λ(K) is the “enhancement of the Milnor number”
of the fibered link K ⊂ S3 associated to F (or b), previously studied by
the author and others—it might be hoped that this 1-form has geometric
significance. This note makes that hope somewhat more concrete, in the
form of several speculations and questions.
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1. Whitehead’s integral formula and isolated critical points

Let p : S3 → S2 be smooth. According to Whitehead [21] (see also [22, 2]),
the Hopf invariant H(p) of p can be calculated as follows. Let Ω be the volume
2-form on S2, normalized to give S2 volume 1. Since Ω is closed, so is its pull-
back Ωp = p∗(Ω); since H2(S3; R) = {0}, Ωp is in fact exact. Let ηp be a 1-form
on S3 with dηp = Ωp. If g is any 0-form on S3, then also d(ηp + dg) = Ωp, and
since H1(S3; R) = {0}, every solution η of dη = Ωp is of the form ηp + dg. Thus,
pointwise, the 3-form ηp ∧Ωp depends strongly on the choice of ηp. Nonetheless,
Whitehead showed that its integral is independent of this choice:∫

S3

ηp ∧ Ωp = H(p). (WIF)

It is clear that (WIF) remains valid, mutatis mutandis, if subjected to any of
various modifications: the target of p could be R3 \ {0} or (R3 \ {0}) × R, the
domain of p could be a punctured neighborhood of 0 in R4, and (in the latter
case) the integration in (WIF) could be over any 3-cycle in the domain of p dual
to the puncture at 0.

Let U be a neighborhood of 0 in R4, F = (f, g) : U → R2 a map with F (0) = 0
such that F is smooth on U \ {0} and F is continuous at 0. We will say that
0 is an isolated critical point of F provided that there exists δ > 0 such that, if
0 < ‖x‖ ≤ δ, then the derivative DF (x) has rank 2; and (following Kauffman &
Neumann [8]) we will say that 0 is a tame isolated critical point of F if, further,
for all sufficently small δ > 0, (a) F−1(0) and δS3 intersect transversely, and
(b) there exists ε(δ) > 0 such that, if 0 < ε ≤ ε(δ), then F−1(εD2) ∩ δD4 is a
topological 4-disk that is smooth except for corners along F−1(εS1) ∩ δS3.

Examples. (a) If F is smooth at 0 and 0 is a regular point of F , then 0 is
a tame isolated critical point of F . (b) If F is (the real-polynomial mapping
underlying) a complex-polynomial mapping (C2,0) → (C, 0) without repeated
factors, then 0 is a tame isolated critical point of F . The differential topology of
this case (and its higher-dimensional generalization), first studied by Milnor [14],
continues to be a lively topic of investigation. (c) Let F : (R4,0) → (R2,0) be a
real-polynomial mapping. For a generic such F , the real-algebraic set of critical
points of F is 1-dimensional at each of its points, so 0 is an isolated critical
point of F if and only if it is a regular point. Nonetheless, there exist many
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real-polynomial mappings F for which 0 is a non-regular isolated critical point
(necessarily tame, [8]). Among these mappings, those that underlie complex-
polynomial mappings are neither the only, nor necessarily the most interesting,
examples. (A wide variety of essentially non-complex examples are known; see
[13, 16, 19, 18, 17, 1, 6].)

Proposition 1. If F = (f, g) : U → R2 has a tame isolated critical point at 0,
and p : U \{0} → R3 \{0} is a smooth map, then for all sufficiently small δ > 0,

H(p) =lim
ε→0

∫
εS1

∫
F−1(εu) ∩ δD4

ηp ∧ Ωp (1)

Proof. By hypothesis (b) in the definition of tameness, the 3-manifold-with-
corners ∂(F−1(εD2)∩δD4) (with its natural orientation) is a 3-cycle homologous
to δS3 in U \ {0}, provided that δ and ε are sufficiently small. As a 3-cycle,
∂(F−1(εD2) ∩ δD4) is the sum of two 3-chains, C1(δ, ε) = F−1(εS1) ∩ δD4 and
C2(δ, ε) = F−1(εD2)∩δS3; the latter, by hypothesis (a) in the definition of tame-
ness, is a neighborhood of a smooth link L = δS3 ∩F−1(0) in δS3, and it is clear
that for a fixed δ this neighborhood shrinks down to L as ε goes to 0. By the
comments after (WIF),

H(p) =
∫

C1(δ, ε)

ηp ∧ Ωp +
∫

C2(δ, ε)

ηp ∧ Ωp,

so

H(p) = lim
ε→0

∫
C1(δ, ε)

ηp ∧ Ωp;

this becomes (1) after integration along the fiber. �

2. Whitehead’s integral formula and open books

Tame isolated critical points are closely related to open-book structures. Here,
an open book on S3 is a smooth map b : S3 → R2 such that 0 is a regular value
of b and b/‖b‖ : S3 \ b−1(0) → S1 is a fibration. Given an open book b, it is
easy to check that 0 is a tame isolated critical point of co(b) : R4 → R2, where
co(b)(tx) = tb(x) for all x ∈ S3 and t ≥ 0. Conversely [8], if 0 is a tame isolated
critical point of F : (U,0) → (R2,0), then there is an open book bF (unique up
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to an obvious equivalence relation) such that the isolated critical points at 0 of
F and of co(bF ) are equivalent (again, in an obvious sense).

The binding of the open book b is Lb = b−1(0). The θth page of b is Sb(θ) =
b−1({t(cos(θ), sin(θ)) | t ≥ 0}). It is immediate from the definitions that Lb is a
smooth link (naturally oriented by the orientations of S3 and S2) and that each
Sb(θ) is a Seifert surface bounded by Lb. In fact, the binding of an open book is
a fibered link, and each page is a fiber surface for that link.

Proposition 2. If b : S3 → R2 is an open book, and p : S3 → S2 is a smooth
map, then

H(p) = lim
ε→0

∫
S1

∫
Sb(θ) \ b−1(ε(IntD2))

ηp ∧ Ωp (2)

Proof. This is entirely analogous to Proposition 1. �

3. The enhancement of the Milnor number

As in §1, let F = (f, g) : (U,0) → (R2,0) be smooth on U \ {0} ⊂ R4 and
continuous at 0. Easily, 0 is an isolated critical point of F if and only if there
exists δ > 0 such that, if 0 < ‖x‖ ≤ δ, then (df∧dg)(x) 6= 0. In this case, the self-
dual (resp., anti-self-dual) 2-form df ∧dg +?(df ∧dg) (resp., df ∧dg−?(df ∧dg)),
where ? is the Hodge star operator with respect to the flat metric on R4, is
non-degenerate; writing

df ∧ dg ± ?(df ∧ dg) = A±(dx ∧ dy +±du ∧ dv)

+ B±(dx ∧ du∓ dy ∧ dv) + C±(dx ∧ dv ± dy ∧ du), (3)

in terms of linear coordinates (x, y, u, v) on R4, non-degeneracy means that
(A±, B±, C±) : δD4 \ {0} → R3 avoids 0, and so has a well-defined Hopf in-
variant. Define λ(F ) = H(A+, B+, C+), ρ(F ) = H(A−, B−, C−).

Lemma. λ(F ) and ρ(F ), so defined, equal λ(F ) and ρ(F ) as defined in [19].

Proof. Let G be the Grassmann manifold of oriented 2-planes in (oriented) R4.
In [19], (λ(F ), ρ(F )) is defined to be the homotopy class of the field of oriented
2-planes ker(DF ), identified with a pair of integers via a standard choice of
homeomorphism between G and S2 × S2. The Plücker coordinates of ker(DF )
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are the 2 × 2 minor determinants of the 2 × 4 matrix that represents DF in
coordinates (x, y, u, v), and each of the two factors of the map ker(DF ) from
a punctured neighborhood of 0 to S2 × S2 is a certain sum or difference of
two Plücker coordinates. For instance, the factor whose Hopf invariant is λ has
coordinates fxgy − fygx + fugv − fvgu, fxgu − fygv − fugx + fvgy, and fxgv +
fygu − fugy − fvgx, which by inspection are identical, respectively, to A+, B+,
and C+; and similarly for ρ. �

In particular, if F is tame, then by [19]

λ(F ) + ρ(F ) = µ(LbF
) (4)

is the Milnor number of the fibered link LbF
associated to F , that is, the first

Betti number of its fiber surface. Thus λ, ρ, and µ are, among them, only two
independent invariants; following [15], we put ρ aside, calling λ(F ) the enhance-
ment of the fibered link LbF

(or of its Milnor number), and writing λ(L) for
λ(F ).

The enhancement of a fibered link has been shown to have a number of inter-
esting and useful properties, summarized in the following proposition. For proofs,
see [20] and references cited therein.

Proposition 3. Let S be a fiber surface in S3, L the fibered link ∂S.

(A) The enhancement of L is not determined by its homological monodromy,
and in particular it is not determined by the Seifert form of S.

(B) Let Mir(L) denote the mirror image of L. Then λ(Mir(L)) + λ(L) =
µ(L).

(C) Let S be a positive Hopf annulus (so that L is two fibers of a Hopf fibration
S3 → S2, oriented to have linking number +1). Then λ(L) = 0. Equivalently, if
F : C2 → C : (z, w) 7→ zw, then λ(F ) = 0.

(D) As follows immediately from (B) and (C), if S is a negative Hopf annulus,
then λ(L) = 1. Equivalently, if F : C2 → C : (z, w) 7→ zw, then λ(F ) = 1.

(E) More generally than (C), if F : (C2,0) → (C, 0) is a complex polynomial
without repeated factors, then λ(F ) = 0.

(F) If S is a Murasugi sum of fiber surfaces S1 and S2, then λ(L) = λ(∂(S1))+
λ(∂(S2)).
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(G) More generally than (F), if F unfolds into F1 and F2, in the sense of [15],
then λ(F ) = λ(F1) + λ(F2).

(H) As follows immediately from (C), (D), and (F), if S is a Hopf-plumbed
surface, then λ(L) is the number of negative Hopf plumbands; in particular, in
this case 0 ≤ λ(L) ≤ µ(L).

(I) If a contact structure is associated to L by Giroux’s construction [3, 4],
then λ(L) is the Hopf invariant of that contact structure; in particular, λ(L) can
be any integer.

(J) Generalizing (H), λ(L) is the net number of negative Hopf plumbands in
any stable Hopf plumbing of S (which exists, by [3, 4]).

(K) Let e(β) denote the exponent sum of a braid β ∈ Bn. Given any β,
construct a link L by adjoining to the closed braid β̂ the braid axis together with,
for each component K of β̂, a nearby oppositely-oriented longitude −K ′, where
the linking number of K and K ′ is unrestricted. It is a beautiful observation of
Hirasawa (see [6]) that then L is fibered and λ(L) is equal to n − e(β) + 1, the
Bennequin number of β. �

4. Integral formulas for the enhancement

Applying the results in §1 to the definitions in §3, we can obtain integral
formulas for the enhancement.

If one combines

Ω(A+,B+,C+) =
A+ dB+ ∧ dC+ + B+ dC+ ∧ dA+ + C+ dA+ ∧ dB+

(A2
+ + B2

+ + C2
+)3/2

(5)

with the formulas for A+, B+, and C+ given in the Lemma, the easily confirmed
formula

A2
+ + B2

+ + C2
+ = (f2

x + f2
y + f2

u + f2
v )(g2

x + g2
y + g2

u + g2
v)

− (fxgx + fygy + fugu + fvgv)2,

and (WIF), then—provided one has a method to produce a 1-form η(A+,B+,C+)

(there is no shortage of such methods, some more explicit than others)—one can
derive a fearsome-looking formula for λ(F ) as the integral of what appears to
me (perhaps wrongly) to be a pointwise-meaningless 3-form, which I forbear to
display here.
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Pressing on, one might take heart from the thought that the 2-form Ω(A+,B+,C+)

seems to be intimately related to the fibers of F over which η(A+,B+,C+)∧Ω(A+,B+,C+)

is integrated in formula (1). Although this formula might be manipulable into
something palatable, I have not yet been able to establish anything along those
lines.

A similarly regrettable situation, of high hopes dashed by intractable compu-
tations, prevails in the case of open books and formula (2).

Question. Are there, in fact, reasonable and meaningful integral formulas for λ

in the general case? Such formulas do exist for µ. For instance, in the complex
case, and in general dimensions, Kennedy [9] defines a “twisted tangent bundle”
Eδ over the fiber F−1(δ) (δ 6= 0), with mth Chern form cm(Eδ), and (simplifying
a formula of Griffiths [5]) proves that

1− µ(L) = lim
ε→0

lim
δ→0

∫
F−1(δ) ∩D2m+2

ε

cm(Eδ).

See also [10, 11, 12]. In all these cases, the integrands are “pointwise-meangingful”
insofar as they can be interpreted as various kinds of “curvatures”. Does some
such curvature interpretation exist for general isolated critical points?

5. Further questions

Even if no “meaningful” integral formula for λ can be found in the general case,
perhaps there are interesting special cases where one exists. In particular, in light
of items (H) and (I) in Proposition 3, it seems natural to ask for a (geometric or
other) characterization of those fibered links L for which 0 ≤ λ(L) ≤ µ(L).

Questions. (a) Can this class of fibered links be characterized using integral
formulas? (b) Is this class of fibered links perhaps exactly those for which a
mapping F can be found such that all fibers of F are minimal surfaces in R4?

Remark. Question (b) is emphatically not a conjecture. The main evidence
for the affirmative answer is that, if F is a complex polynomial (or the mirror
image of a complex polynomial), then all its fibers, being complex curves, are
minimal surfaces. Some reason to think that the techniques of this paper might
at least be relevant is that, according to Hoffman & Osserman [7], a necessary
and sufficient condition for all the fibers of F : (U,0) → (R2,0) to be minimal is



552 Lee Rudolph

that δD4 \ {0} → G : x 7→ ker(df ∧dg) be fiberwise (anti-)conformal, which puts
strong restrictions on (A+, B+, C+) and its anti-self-dual analogue (A−, B−, C−).
There is a considerable literature on topological restrictions of foliations of 3-
manifolds by minimal surfaces, some of which might perhaps be adapted to the
investigation of this question.

In 1988, before Walter Neumann used the calculus of splice diagrams to work
out an example (published in [15]) of a fibered link L with λ(L) < 0—and well
before I noticed that, in fact, such links are plentiful among a family of examples
already introduced in [19]—, it seemed reasonable (particularly in light of item
(H) of Proposition 3) to wonder whether λ(L) might be the dimension of some
vectorspace naturally associated to L. At that time, Isadore Singer suggested
to me that, even if it were never negative, it might nonetheless be better inter-
preted as the Euler characteristic of some complex (or perhaps the index of some
operator), rather than as a dimension. Both suggestions seem even better to
me now than they did then, but in 20 years I have made no progress on them.
I do have, based on little more than wishful thinking, the notion that such a
complex might be constructed by taking note of the complex structures naturally
imposed on the fibers of F by their induced metrics; note the connection to the
Hoffman–Osserman generalized Gauss map.

Question. Can some reader do better with Singer’s suggestions?
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