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It is a great pleasure and a great honor to be a contributor to this volume

celebrating Michael Atiyah and Isadore Singer. The work of Atiyah and Singer,

especially their results on Index Theory, has greatly influenced my own.

Is Singer has been a close friend and colleague since 1982.

It was he who

explained to me the importance of principal bundles and their uses in global

geometry. As a physicist I was “locally trained” in the use of local coordinates

and local frames. It was Is who patiently taught me to think globally. This article
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uses the global geometry of the bundle of lorentzian frames, a principal bundle,
to construct the maximal analytic extension of the Schwarzschild spacetime.

I thank Is for countless hours of discussion and most of all for his friendship.

1. INTRODUCTION

The Schwarzschild solution is probably the most studied nontrivial solution to
the Einstein equations'. The exterior solution represents spherically symmetric
stars and the interior has a black hole. What drives much of the intellectual
curiosity of students of general relativity is the presence of the black hole and its

consequences.

I have taught the general relativity course several times over a 20 year period
and I have not been completely satisfied with the discussions of black holes in the
introductory course. The presentation usually involves deriving the Schwarzschild
metric in standard Schwarzschild coordinates then transforming to Eddington-
Finkelstein coordinates to study what happens as one crosses the horizon and
finally a discussion of the maximal extension in Kruskal-Szekeres coordinates, see
for example [2, 3, 4]. Of course, you could take as a starting point the Kruskal-
Szekeres solution. This is neither physically or mathematically satisfying because
the radius r of the symmetry 2-spheres is implicitly given in terms of the Kruskal-
Szekeres (T, R)-coordinates by

2 2 r r/2GM
T - R :(1—267\4)@/ .

Another approach is to introduce a lot more mathematical machinery [5, 6] and
discuss global causal structures and singularity structures of lorentzian manifolds
but this is overkill if you just want to talk about the Schwarzschild solution.

I wanted to find a middle ground where you could see the whole extended
Schwarzschild solution at once with the geometry and the physics transparent. In
fact I wanted to find a coordinate independent way of describing the Schwarzschild
solution. It began by trying to understand what Birkhoff’s Theorem tells you
about the bundle of Lorentz orthonormal frames. In the process I found such a
coordinate independent geometric approach but unfortunately it is not elemen-
tary at the level of an introductory general relativity course. It requires much

IFor a comprehensive study of known solutions to the Einstein equations see [1].
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more mathematics, especially an understanding of group actions on manifolds,
of principal fiber bundles [7] and of riemannian submersions [8]. It is more than
overkill, nevertheless, I believe the approach to be a new novel and insightful way
of studying the Schwarzschild solution.

This article is not meant to be an exhaustive discussion of the Schwarzschild
spacetime. I will pick and choose several topics that are of interest because of
the mathematical methods I use. One glaring omission is the discussion of the
actual singularity at r = 0. The reason is that I have no new insight to offer.

In brief, the goal is to derive the extended Kruskal-Szekeres spacetime without
ever writing coordinates. Instead of studying the geometry in the Schwarzschild
spacetime N directly, we work “upstairs” in the bundle of orthonormal Lorentz
frames F (V) and indirectly work out the properties of the spacetime. By using
the Einstein equations and some global structures in F(N) we construct the full
spacetime at once. There is no “extension process” where you begin with the
exterior Schwarzschild solution and find the maximal analytic extension.

We begin by discussing the Cartan structural equation for the bundle of or-
thonormal frames of a semi-riemannian manifold. We begin to specialize by
studying the restrictions imposed on the structural equation if the manifold is a
fiber bundle. We do a further specialization to the case that the manifold is a
semi-riemannian submersion. We finally study the case that the semi-riemannian
submersion arises due to a group action. The Schwarzschild spacetime is a man-
ifold of this type. By studying the properties of the structural equations we can
construct the full Kruskal-Szekeres spacetime.

There are extensive computations in these notes because the methods are not
familiar to most physicists or mathematicians. It makes extensive use of Cartan’s
method of the moving frame beyond what most people use. It is more of an
abstract use of Cartan’s method than the explicit direct computational approach
seen in some relativity textbooks. There are some nice uses of the machinery. For
this reason some sections are expository in nature and are not directly related to
the main topic.
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2. FRAME BUNDLES

We wish to globally study a semi-riemannian manifold [9]. Most of the mathe-
matical framework we will be developing works in both the riemannian case and
in the lorentzian case. The riemannian language is more standard and for sim-
plicity I will phrase the discussion as if the manifold was riemannian. Of course
when we get to black holes we have to work in the lorentzian framework. The
only times we have to be careful is if we have a null vector in a subspace. When
we encounter such a case I will be extra careful.

We assume that we have an orientable riemannian manifold. The metric allows
us to consider the orthonormal bases at each tangent space T, N for x € N. The
collection of all such orthonormal bases gives us a principal fiber bundle F(N),
the bundle of all orthonormal frames. This bundle has structure group SO(n)
where n = dim N. Note that dim F(N) = n + 3n(n — 1). One of the most
important properties of F(N) is that it has a canonical global coframing [7].
There are n tautologically defined global 1-forms? on F(N) that will be denoted
by {6#}. There is the unique Levi-Civita connection on F (V) that gives sn(n—1)
globally defined 1-forms {w",} with wy, = —w,,. Together the $n(n+1) 1-forms
{0",w",} gives a global coframing of F(N). The dual basis of vector fields is
denoted by (e,,e,,). The important observation is that we do not have global
coordinates on F(N) but we have something that is almost as good, a global
coframe. The frame bundle is the global structure that we are going to use to
study the Schwarzschild spacetime.

The Cartan structural equations for the orthonormal frame bundle F(N) of a
riemannian manifold N are [7]
ot = —wy, N0V,
(2.1)

1
dwyy = —wux Nwry + 5 Ryt NO7

Note that these are equations on F (V) and therefore Rffm are globally defined
functions on F(NN) with certain equivariance transformation laws under the group
action. If you consider a local section s : U C N — F(N) then the pullback 1-
forms 9* = s*0* give a local orthonormal coframe on U C N, the pullback 1-forms

$*Wuy = YuwpV” give the connection coefficients 7,,, in the local orthonormal

2These are sometimes called the “soldering forms” in the older mathematical literature and

in some of the physics literature.
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tensor in the local coframe.

coframe, and s*R o s are the components of the Riemann curvature

Assume we have a local orthonormal coframe ¥* on U C N with Levi-Civita
connection I'y, = v,,,0°. Locally we have a trivialization U x SO(n) of F(N).
If (z,9) € U x SO(n) then the coframing of F(N) may be locally expressed in
terms of the trivialization as

oH = g~ Lor
gfl o (2.2)
w=g dg+g Tyg.
If z# are local coordinates on U then (x,g) parametrize U x SO(N) and dz
and ¢~ 'dg are linearly independent on the frame bundle. We physicists usually
work downstairs and we usually think of w,, as I',,,dz”. Do not do this in this
article. The connection lives upstairs! Some formulas look different because we

are working upstairs.

Next we discuss how to think about the covariant derivative. A tensor on the
base is viewed upstairs as an ordinary vector valued function &4 (a column vector)
that has special transformation laws. Assume we are at a frame3 ¢ = (eq,...e,)
and we act on the frame on the right by a rotation matrix g where we find that
¢ = qg then we want £(qg) = o(g) '¢(q) where o is a representation of SO(n).
The differential of £ is a 1-form and we have to specify how £ changes both
along the fiber and transverse to the fiber. We know that d¢ must be expressible
as a linear combination of the coframe (6*,w,,). The question is which linear
combination. Part of the definition of a connection [7] is that w restricted to
the vertical tangent space is the left invariant form on the Lie algebra. In local
formulas (2.2) we see that w = g~'dg when tangent to the fibration (given by
dx = 0). We know how ¢ transforms under the SO(n) action and thus we conclude
that

d§ = —6(w)§ + &§ub" . (2.3)

Here ¢ is the induced Lie algebra representation. The “horizontal” component
of d¢ is denoted by &,,0* and it is called the covariant differential.

If a vector field
1
V =Vte, + §V‘“’eu,, (2.4)

3Think of a frame as a row vector.
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on F(N) generates an isometry then .2y 6” = 0. A simple computation shows
that?
0=—-Vub" +w,V+dV, = -V, 0" +V,,0".

We immediately learn two things

0=V + Vo, 25)
1 2.5
Viw = §(VM;V - Vu;u) :

The first of the above are Killing’s equations. The second one determines the
e, component of the vector field V, see (2.4). Next we observe that 0 =
dZLy ot = ZLyv(do*). Using the Cartan structural equation we immediately
see that (v wyu,) A 0¥ = 0. An application of the corollary to Cartan’s lemma,
see Appendix A, yields that .y w,, = 0, i.e., the connection is invariant under

the infinitesimal isometry.

We will be copiously using the differential forms version of the Frobenius The-
orem [10]. To avoid too much terminology we state the theorem in the following
practical way.

Theorem 2.1 (Frobenius). Assume that on a manifold M we have a collection of
k linearly independent non-vanishing 1-forms {p®} with the property that de® =
%% A ©? for some 1-forms §%g. Then through every q € M there exists a unique
mazximal connected submanifold S, containing q with dim Sy, = dim M — k such
that for every vector field X tangent to Sq we have that ¢*(X) = 0.

The integrability conditions on the differential forms are sometimes written as

“dp® =0 mod ¢”.
3. FIBRATION

Let m : N — M be a fiber bundle where N is a riemannian manifold. The
fibers are isomorphic to a manifold F. If x € M then the fiber over x will be
denoted by F,. Vectors tangent to the fiber will be called vertical and vectors
orthogonal to the fiber will be called horizontal. If dim N = n and dim M = p
then the dimension of the fibers is ¢ = n—p. The existence of the fibration allows
for a reduction of the structure group SO(n) of F(N) to SO(p) x SO(q) obtain-
ing a principal sub-bundle Fyeq(N) C F(N). If we introduce indices 14,7, k, . . .

“We use the traditional semi-colon notation to denote covariant derivatives.
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“associated to M” to run from 1,...,p and indices a, b, ¢, d, ... “associated to the
fibers” to run from p+1,...,n then the first structural equation may be written
as
do’ = —wij A\ 67 — Wia N 0%,
b . (3.1)
dO® = —wep NO° — we; NG
Once the structure group is reduced we have that the w,; become torsion:
Wai = abieb — Mijagj . (32)

This requires some explanation and is best understood by looking at local ex-
pression (2.2). Once we are on Fyeq(N) C F(N) we can no longer move along
the group directions that are not tangent to Freq(XN). This means that g~ 'dg
restricted to Freq vanishes in Lie algebra directions orthogonal to so(p) ®so(q) C
s0(n). Thus when restricted to Frq(N) we only get the I' part of w in (2.2).
Schematically we have that I' = v = g6 and this is how (3.2) arises. With this
in mind we see that the first of (3.1) becomes

. . . 1
d0" = —wi; N7 — Mot N O* — i(Kabi — Kpai)02 N6 (3.3)

The pfaffian equations 6 = 0 determine an integrable vertical distribution that

defines the fibration and therefore the Frobenius theorem requires
Kapi = Kpai - (3.4)

This is the statement that the second fundamental form for the submanifolds
associated with the fibration is symmetric. It is worthwhile to consider the sym-
metric and anti-symmetric parts of M:
1
Sija = 5(Mija + Mjia) ,
1

5 Mija = Mjia) .

The structure equation may be written as

o’ = —wij A 6’ + Aijaea NG — Sz-jaﬁj ABO%.

(3.5)
Aija =

Following Cartan we try to absorb as much torsion as possible by defining a new
connection
T = Wij — Aijaea . (36)

The structural equation becomes

do" = —mij AT — Sijaf NGO
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Similarly, the second of (3.1) becomes
dO% = —wap A 0° — Kopi0® AN O — Aijal NG (3.7)

The vanishing of the tensor A;j, is the integrability condition for the distribution
defined by 8% = 0. You cannot absorb the torsion in df® because K, is symmetric

under a < b.

Finally we make the following useful remark. If X is a horizontal vector field
,i.e., tx0% =0 then

Lx(0°®0%) = 2X K 0° ® 60" — 2X A0 (07 @ 0% + 0% @ 7). (3.8)
If the horizontal distribution is integrable then A;;, = 0 and the equation
above simplifies to
Lx(0°®0%) = 2X Ky 0° ® 6°. (3.9)
If nF is the volume element on the fiber then

Lxnp=X'Kinp. (3.10)

SUMMARY: The structural equations for a fibration are

Kapi = Kpai )
Mija = Sija + Aija , see (3.5),
wai = Kapit® — Mijat ,

(3.11)
Tij = wij — Aijad®
dot = —mij N\ 07 — Sz'jaﬂj A6,
0% = —wap N 0" — Kopit® A O — Aijab' A 67 .

3.1. Local Description. Assume our total space N is euclidean space E™ and
that after a rotation we locally describe the fibers near the origin as the level sets
of the p functions

. 1
fiz) =2'+ §habi 2z’ + O(z3), (3.12)

where we use cartesian coordinates (xi,x“). We know that Dé\i e; = epKapi +
ejw’;(eq). Taking the gradient of the function that defines the level sets we see
that the normals (to leading order) are given by

0 , 0
€= gg Thai® 55
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Comparing with the connection definition of the extrinsic curvatures we see that
at the origin we have that K,p; = hgp. Notice that Ky, is a first order invariant
of the metric, i.e., K ~ 0g, while the curvature is second order R ~ 0?g.

For the special case Ky = 0405; we see that locally our embedded p-surface
looks like a surface of revolution about the normal S direction.

3.2. Totally Geodesic Fibration. Let’s forget the frame bundle and work on
the base manifold N. The extrinsic curvature tensor (second fundamental forms)
is defined by K(V,W,X) = (V,D}.X) where V, W are vertical vectors and
X is a horizontal vector. In a local frame we have K,; = (ea,Dé\gei). A ge-
odesic with tangent vector field V' that is tangent to a fiber will satisfy the
geodesic equation Dg V = 0 and tangentiality condition (V,X) = 0 for all
horizontal vectors X. Since the connection DV is metric compatible we have
0=DY(V,X) = (DYV.X) + (V,DYX) = K(V,V, X) for all possible V. This
implies that the second fundamental form must vanish if all geodesics are tangent
to the fibration.

3.3. Gauss and Codazzi Equations. The integrability of the vertical distri-
bution allows us to consistently substitute #* = 0 into the equations above by
restricting to F, the fiber over x € M.

Kapi = Kbpa;
Mija = Sija + Aija, see (3.5),
wai = Kapit”
Ti; = wij — Aijad®,
0" = —wap N O°.
Note that
9%\, = —wap A 0°| R,

which tells us that wyp|r, is the torsion free riemannian connection on F,. To
work out the curvature we observe that

1
§sz\l[wu‘9u NO” = dwap + Wae N Weh — Wai A Wy; -
Restricting to F, we get the Gauss equation

1 1 1
5RN 20N 0% = §R§gc J0° N 0% — 5 KaciEai = KadiFiei )0 A e (3.13)

abc
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This is often written

Ry = ngcd — (KaciKpdi — KaaiKpei) - (3.14)

Next we derive the Codazzi equation. Note that we; = Kgp;0° when restricted
to F,. We have

aicd aiuy

%RN 0° N0 = %RN 0" A OM|F,
= (dwaqi + Wap A Wy + waj A wji)|F,
= (dwa; + Wap A Wi + Waj A Tji) | F, 4+ Waj A Ajidgd ;
= D(Kaai0)|F, + KacjAjiah° A 07

In the above D is the covariant differential with connection (wqp, ;). If we write
DKy = Kabz-;jGj + Kapi:c0¢ then the last line of the above may be written as

Kadi;cgc A ed + Kachjidec VAN Gd .
We have derived the Codazzi equation

aicd —

RN (Kadize — Kaciza) + (KacjAjia — KagjAjic) - (3.15)

4. RIEMANNIAN SUBMERSION

Many of the spacetimes studied by physicists are semi-riemannian submersions.
A submersion 7 : N — M of riemannian manifolds is called a riemannian sub-
mersion if dm preserves the inner product of vectors orthogonal to the fibers [8].
A tangent vector is horizontal if it is orthogonal to the fibers. A riemannian
submersion implies a very specific form for the metric. If 2% are local coordinates
on the base M and if y® are local coordinates on the fiber F' then (x,y) are local
coordinates on N. The fibers are the submanifolds with x fixed. The metric of a
submersion is locally of the form

ds% = gij(x)dazi dz' 4 gap(z,y) (dy“ + C%(x, y)dazl) (dyb + ij(x, y)d:cj> )

Sometimes in the physics literature this is referred to as a metric of Kaluza-
Klein type. If we fix 2 then the metric on a fiber gqp(w,y)dy® dy® varies as we
move along the base. In general curves of constant x will not be orthogonal
to curves of constant y. On the other hand we have that 9/0y® is orthogonal
to the horizonal vector field 9/9z" — C?%; 8/0y®. The metric on the horizontal
space is g;j(«) which is the metric on the base and is independent of choice of
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1. O’Neill studied the properties of riemannian submersions and discovered that
the geometry was governed by two tensor fields. One tensor field is the second
fundamental form (the extrinsic curvature) of the embedding of the fibers in N
and the other tensor field is the integrability tensor for the horizontal spaces. We
present here a formulation that is equivalent to O’Neill’s except that everything
is expressed in terms of orthonormal frames adapted to the fibration.

We first do some local analysis. Locally pull back the 6s from Feq(N) to
N via a section. If V is a vertical vector field on N, i.e., tangential to the
fibration w : N — M, the condition of a riemannian submersion can be written
as Ly (0° ® 0°) = 0. This is simply the statement that §° ® #° descends to the
base. A vertical vector field satisfies 1y/6° = 0. A simple computation shows that

Ly @60 = —(mi;(V) + 15:(V)0' @67 +2V°S;,0" @ 67,
=2V"S,j0" ® 607 .

The degenerate quadratic form 6 ® #* on N descends to a positive definite qua-
dratic form on the base M if

Sija=0. (4.1)

We can do the same analysis on Feq(/V) but the equations look different. The
vector field in this case is a vector field on Fyeq(/N) and will be of the form

1 1 ..
V =V%,+ §V“beab + ngeij .

Here (eq, €;, €ap, €;5) is the basis dual to (6%, 6%, wep, m;j). We want Ly 0" =
and a brief computation leads to the equation 0 = —V;;67 + SiijbGj . From this
we learn that V;; = 0 and S;j, = 0. Note that the vector field

1
V=V, + 5vabeab.

is of the type that is associated intrinsically with the fibers of the fibration 7 :
N — M. Finally we note that the conditions arising from £y #* =0 at z € N
do not depend on the derivatives of the components of V' and therefore depend
only on V(z) and not its extension to a neighborhood of z.
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The structural equations for a riemannian submersion are
Koy = Kpei and  Ajjg = —Ajia,
wai = Kapit® — Aijat’
Tij = wij — Aijad” (4.2)
o’ = —mij A 7
dO% = —wap NO° — Kapi® N O — Aijl' A 6T .

As we mentioned before K, are the second fundamental forms (extrinsic
curvatures) of the fibration. The tensor A;j, measures the integrability of the
horizontal tangent spaces. We use the basic relation that if £ is a 1-form then
d¢(X,Y) = X(&(Y)) - Y(E(X)) — &([X,Y]). First we take a section and we
pullback the structural equation. We have that e; is a basis for the horizon-
tal spaces of the submersion. If the horizontal spaces are to be integrable then
the bracket of two horizontal vector fields must be horizontal. We compute the
vertical component of the bracket as follows:

0%(lei, €5]) = ei(0%(e;)) + €;(6%(e:)) — (d6%)(ei, ) = 2Aija -

Thus we see that the horizontal distribution is integrable if and only if the inte-
grability tensor A;;, vanishes.

We note that d?6° = 0 and therefore
M A6’ =0, (4.3)

where
Hij = dﬂ'z‘j + Tk N\ Tkj - (4.4)
Wedging (4.3) with %1 A- - A@*»-1 we conclude that II;; = 0 mod 6*. So we can
write 11;; = Wy, A 0% for some 1-forms U, that are skew in the indices i < j.
From (4.3) we see that W;;x A 67 A 6% = 0. This tells us that (¥;;5 — Wsxi) = 0
mod 6. Since W,k is symmetric in j < k£ modulo 0" but is it skew in i < j we
conclude that W¥;;, = 0 mod 0. This tells us that Uik = Pijklel. Putting this
all together we conclude that
1

IL;; = dﬂ'ij + ik N\ Ty = in\fklek N (4.5)
Note that the right hand side is horizontal! This would not be true if we had
used the w;; connection.
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In the same way we see that the structural equation for wgy, is given by

dwap = —Wae A Wep, + %RFI abed® N 0°
+ (RN apej — AijoKaci + AijaKpei) 0 N 07 (4.6)
+ % (RN apjis + AijaAiry — AigaAijp) 0 N o

where Rf+ is given by the Gauss equation (3.14).

Next we compute the riemannian curvature of the base M by using the rie-
mannian data on the bundle N. Note that
1 N " v
iR ij;we ANGY = dwij + Wik N\ Wij — Wai N\ Waj -

Substituting the appropriate expressions we find

RYiiri = RM iy + AiaAjk® — AiraAj® — 24550 AR . (4.7)

We explicitly state the submersion curvature relations in Table 1 using the
O’Neill notation [9] where {n} denotes the number of base indices. If you take
ai—{3} and use the Bianchi identities B—-{3} you get ij—{3}. The term B-{2} is
not skew under a <+ b. From the fact that RNabjk + RNbajk = 0 we learn that

Ajka;b + Ajkb;a = _Kabj;k + Kabk;j . (48)

This relationship is also necessary to ensure that RN aibj = RN bjai- 1f you insert
this relationship into B—{2} you obtain ij—{2}. Finally we observe that using the
above relationship we can write a manifestly symmetric expression for RV aibj-
We note that by (4.8), the term between parentheses in the expression R aibj =
AikbAjka—KaciKbcj —(Ajjap+Kapizj) is symmetric under the interchange ai < bj.
Therefore we have

RY v = AipAj¥ o — Koo K% — %(Az‘ja;b + Ajivia + Kapisj + Kpajii) - (4.9)
Using these relations the structural equation (4.6) may be rewritten as
dwap = —Wae N wep + %Ranbcdac A 67
+ (= Keajip + Kevja) 0° N6 (4.10)
+

1 .
5 (“Ajka + Ajitia = Kacj Kok + Koej Ka"%) 07 N 0"
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plane {n} Curvature
ab {0} RNapea = Rijy — (Kacild' — Kaaifo.') [Gauss eq ]
at or B {1} RNaibc = _Kabi;c + Kaci;b - Ak:ibKack + AkicKabk [COdaZZi eq']
ai {2} RNaij = AipAi¥a — Asjap — Kabiyj — Kaci K
ai {3} RNuijk = Aijak — Aikaj — 2A56K4"%
ij {2} RNijab = AuvA¥a — AikaAjFy — Aijap + Aijia + Kaej K% — Kaci K
ij {3} RNz’jk:b = Aijoeke — AjraK % + Aipa K + Ajjo K% [dual Codazzi eq.]
1] {4} RNijkl = Ri\ijl + A Ajr® — Aika A1 — 24450 A" [dual Gauss eq.]
5 2 RN ik = —AijaA'kp + Aijp A'ka — 245030
— Kapjir + Kavkyj — Kpek K05 + Kpej K,
0= —Ajrag — Aktaj — Atjak
B {3} JrRa as) Ja

+ A Kb+ A Ko + Ay Koy

TABLE 1. Relationship of the bundle curvature to the base geometry

and fiber geometry for a riemannian submersion. Equations associated

with a rotation in the pr-plane, i.e., a consequence of dw,,,, are labeled

by the first column. The second column uses O’Neill’s notation where

{n} denotes the number of horizontal indices. Rows identified with a

“B” are equations that are a direct consequence of the Bianchi identities
that follow from d?6% = 0.

If we now use the structure equation above look for Bianchi identities in d260* = 0
we find (4.8) and B—{3} as the identities in addition to the cyclic identity that
RF= satisfies.



472 Orlando Alvarez

SUMMARY: The full structural equations for a riemannian submersion are
Kapi = Kpai and  Ajjo = —Ajia s
Wai = Kapitl® — Aijat”
Tij = wij — Aijad”,
do" = —mij NG
A0 = —wap A 0° — Kapi® AN O" — Ajjal' N 67

1 (4.11)
dmij = —Tig A Thj + 5RMW 08 A6,
dwap = —Wae N Wep + %RF“abchC Y
+ (—Keajip + Kepja) 0° N 67
+ % (—Ajkasp + Ajkbsa — Kaej Kok + Ko Ko k) 67 A 6
If X,Y are horizontal vectors then the sectional curvature is given by
sectV(X,Y) = sectM(X,Y) -3 (Aiga X'YF)( A" X7V (4.12)

(X, X)(Y,Y)— (X, V)%’
A consequence of the above is O’Neill’s result [8] that in a strictly riemannian
submersion the sectional curvature of the base is “increased” because the second
summand subtracts a manifestly positive semi-definite expression. Note that if
N is flat then the base always has positive sectional curvature.

4.1. The Ricci Tensor and Ricci Scalar. It is straightforward to write down
the Ricci tensor in the case of a submersion:

Ry = RFyg — Kpg'i — K Kpa' + A%y Ajpa,
RNai = —Kbbi;a + Kbai;b + Ajia;j - Aiijabj + AkiaKbbk ) (413)

1
5 (K %ij + K%ajzi) -

RNy = RMj — 2A34a A" — Keai K — 5

The Ricci scalar is easily seen to be
RY = RM 4 R 2K, % — Ky K% — K°, K" — Ajju AU (4.14)
5. THE GROUP ACTION

5.1. Transitive Case and Invariant Tensors. Assume we have a connected
Lie group G acting transitively on a connected manifold M via isometries. Let
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H C G be the isotropy group at x € M. We know that M ~ G/H and that
m: G — M is a principal H-bundle. We assume that the Lie algebra is a reductive
Lie algebra: g = m @ h with [h,m] C m. There is a canonical identification of
T, M with m. It is well known that G-invariant tensors on M ~ G/H are in
a 1-1 correspondence with H-invariant tensors on m, see [9]. The argument is
roughly as follows. Assume S is a G-invariant tensor on M then if y = g - x then
Sy =¢S5z If y=g -z then ¢’ = gh for some h € H. We immediately see that
since g - S; = ¢’ - S; we must have that h-S, =S, for all h € H.

5.2. General Case. Assume we have a connected Lie group G acting on N via
isometries. The orbit of z € N by the G action will be denoted by O,. If G,
is the isotropy group at z then O, ~ G/G,. We assume all the G, C G are
isomorphic as we vary z € N. The orbits will foliate N. Under our assumptions,
the dimensions of the orbits are constant and we have a fibration 7 : N — M
such that if w(z) = x then the fiber at x is isomorphic to the orbit F, ~ O,.

Let dim O, = ¢ then the foliation reduces the structure group of the orthonor-
mal frame bundle from SO(n) to SO(p) x SO(q). Let y € O, such that y =g - z
for g € G. If we write T,N = T,0, ® 1,0+ and TyN = T,0, & T,0F then
we have that g € G takes T, O, isometrically to 7,0, and TZ(’)ZL isometrically to
T,0~. The isometric action on the normal bundle to the orbits tells us that we
have a riemannian submersion and therefore structural equations (4.2) are valid.
Additionally we have an isometric action on the fibers. The Killing vector field
is tangential to the orbits therefore its lift to the reduced frame bundle is of the

form

1 1
V =V%, + §Vabeab + 5‘/;3'61']' . (5.1)

Using the invariance conditions .2y ' = 0, £y 6% = 0, and structural equations
(4.2) leads to

VVZ] = Ou

Va;b + %;a = 07
(5.2)

Vab - Va;b = O,

Vi — KapiVP =0,
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where DV, = dV, + wypVp = Va;bﬁb + Va;iﬁi. The first equation tells us that the
G action on T,OF is trivial>. The middle two equations tell us that when we
restrict to the orbit O, then we have the familiar Killing equations. If the orbit
bends, i.e., the second fundamental form is nonvanishing, then the last equation
tell us that the normal derivative of the Killing vector field is nontrivial and is
determined by the second fundamental form.

At z € N we have that GG, acts as an isometry on T,N ~ T,0, & TZOj. Since
O, is the orbit of G, the isotropy subgroup G, acts as an isometry and leaves
invariant the tangent space T,0,. Consequently, G, also acts as an isometry on
the orthogonal complement 7,07 . The action of G is transitive on the orbit O,.
If we look at the structural equations (4.2) we see that the second fundamental
tensor Ky (2) and the integrability tensor A;j, (%) must be invariant tensors under
the G, action by generalizing the arguments given in Section 5.1 to the normal
bundle TZOj-. Also remember K;; and A;j, are ordinary functions on the reduced
frame bundle. The structure equations show that these functions are constants
under the action of GG. To see this consider a Killing vector V' then we note that
Ly (dO*) = d(ZLy 0*) = 0 and therefore

0= —(Lvwap)AO® =V (Kup)0° NO —V(Aija)0 N6

Note there is a unique term that is a form of degree 2 in the horizontal direction
and therefore V(Ag;) = 0 and we conclude that A;j, is constant under the action
of G. This reduces the equation to [ Ly wapy—V (Kapi)0"]A0® = 0. Cartan’s lemma
tells us that

f\/ Wab — V(Kabi>9i = Babcecy

where Bgp. = Bgep. Symmetrizing the displayed equation under a < b we see
that V(K0 = %(Babc + Bpac)0¢. We immediately see that V(Ky;) = 0 and
Bupe = —Bpge. This tells us that Kg; is constant under the action of G. Also
By is skew under a < b but symmetric under b «<— ¢ and therefore By, = 0 and
consequently we also learn as expected £y wq = 0. The same type of statements
will be true for the curvatures. We summarize below.

5This is one of these left-right action confusions. The reader is urged to understand this in
the S% ~ SO(3)/SO(2) example.
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Proposition 5.1. Let u € Frq(N) and let By C Frea(N) be the orbitS of u
under the action of G. The functions Ky, Aija and the curvatures are constant

on B,.

We have some information of the derivatives of various tensors. As an example
we consider the case of the extrinsic curvature. Remember that K; are functions
on Freq(N) and the differential dKp; in the various directions on Feq(N) are
given by

AR api = ~waeKepi — wpeKaci — TijKapj + Kapi:j607 + Kapi0° . (5.3)

If we differentiate along the direction of the Killing vector field we find using (5.2)

and the previous equation that

0= _Vacchi - ‘/chaci + Kabi;cvc . (54)

If the integrability tensor A;;, vanishes then the horizontal distribution is in-
tegrable. Each leaf of the foliation is isometric to the base M and also each leaf
is orthogonal to the fibers. This can easily happen because of the group action.
Assume that under the GG, action there are no fixed vectors in T,0,. The inte-
grability tensor A;;%(z) is an invariant tensor under G, that transforms just like
a vector in the vector space 17,0, and thus it must vanish. This extends every-
where because we are assuming that the G action leads to a bona fide fibration
and the vector spaces T,0,, groups GG, and the associated representations are all
isomorphic. This leads to the following proposition.

Proposition 5.2. If under the G, action there are no fixed vectors in T,O, then
Aija = 0. The horizontal distribution is integrable and its integral submanifolds

are orthogonal to the fibers.

These methods are also useful for studying axisymmetric solutions. For ex-
ample, Theorem 7.1.1 in Wald’s book [6] can be proven by using the methods

discussed above.

5.3. The Basic Example. The basic non-trivial example is given by the SO(3)
action on N = E3\{0}. The fibration 7 : N — M has fibers isomorphic to S?
and the base is M = R;. We can easily write down the structural equations (4.2)
by noting that since dim M = 1 the integrability tensor A;;, vanishes identically.

6Tt can be shown that B, is a sub-bundle of Frea(IN).
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Note that the indices i, 7 = 1 and they will be suppressed. At z € N, the isotropy
group is isomorphic to SO(2) and therefore the second fundamental form must of
the form Ky, = kg, where k is constant on each S? fiber and can only depend on
the radial direction, i.e., it is the pullback of a function on M. Let’s write the 1-

forms as (p, 0, ¢) where we are using a notation analogous to spherical coordinates
(r,9, ¢).

Wai = kO,

A9 = —wAd—kOADp,
dp=+wAhl—kdAp,
dp=0.

Next we observe that since E? is flat we have that dwg; + wap A whi +wgj Awji = 0.
This greatly simplifies to d(k6%)+kwA6% = 0. A little algebra yields (dk +k%p) A
0% = 0 and consequently

dk = —k*p. (5.5)

This immediately tells us that k£ is constant on the fibers as expected. From
d?*0 = d?>¢ = 0 we learn that dw = Af A ¢. Note that w is invariant on an orbit,
the area element 6 A ¢ is invariant on the orbit, therefore A must be constant on
the orbits. The equation d?w = 0 then tells us that dA + 2kAp = 0.

Since dp = 0 we can set p = dr for some function r specified up to an additive
constant. We can easily integrate (5.5) to obtain 1/k = r + ¢. By redefining the
coordinate r we can set ¢ = 0. Thus we find that the second fundamental form

is determined by

S|

(5.6)

The curvature is given by

Ao
where Ag € R. Ag may be determined by topological or by geometrical consider-

ations.
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In summary the structural equations associated with the SO(3) action on
E3\{0} become

p=dr,

d@z—w/\gb—%@/\dr,

1 (5.8)
dp = +w N~ ~ ¢ Adr,
T
A
do="30N.
r

On a level surface of constant r we have that (0, ¢,w) are the Maurer-Cartan
forms for SO(3). The constant Ay may be determined via topological arguments
or coordinate arguments where you find that Ag = 1.

The space N = E3\{0} is flat and the geodesics are straight lines. It is not a
complete riemannian manifold because radial geodesics reach the origin in finite
affine parameter. It is clear that by adding an extra point N U{0} ~ E? becomes
a complete riemannian manifold. We can try to do the same analysis by thinking
of N in terms of its structural equation (5.8). This analysis is much more compli-
cated. The structural equations are non-singular as long as r # 0 and this is true
in N. Analyzing the structural equation you can see that radial geodesics get to
r = 0 in finite time and thus it appears that there is a hole in the space. You
have to work little hard with the structural equations to show that the apparent
singularity at » = 0 is removable and that by adding a point at » = 0 we get the
complete smooth manifold E3.

6. SPHERICALLY SYMMETRIC (3 + 1) GEOMETRY

Assume N is a 4-dimensional lorentzian manifold that is both orientable and
time orientable. This means that the structure group of of the orthonormal
Lorentz frame bundle is SO' (1,3), the connected component of the Lorentz group.
We assume there is an SO(3) action that leaves the metric invariant and that
the orbit of a point is a 2-dimensional spacelike surface. Let O, be the orbit
through p € N. This action leads to a foliation of N by the 2-dimensional
orbits. Under some assumptions of a constant dimensionality of the orbits we
can assume that this foliation is actually a fibration. Our hypothesis tells us
that dim O, = 2. If G), is the isotropy group at p then dim G, = 1. This tells
us that O, ~ SO(3)/G, ~ S?. The SO(3) action identifies a spacelike 2-plane
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1,0, C T,N at each p € N that induces a reduction of the structure group of
the lorentzian orthonormal frame bundle from SO'(1,3) to SO'(1,1) x SO(2). A
consequence is that there is only one w,;, and one 7;;. If we use some type of
“Schwarzschild spherical coordinates” denoted by (¢, 7,7, ¢). Then we will have
non-vanishing connections wyy and my,.. If 7 : N — M is our fiber bundle and if
7(p) = « then the fiber over z is given by F, = O),.

The general discussion of Section 5.2 tells us that we have a pseudo-riemannian
submersion. At p € N we can write T,N = T,,0, ® TPO;; and the SO(3) action
tells us that both the riemannian metric on 7,0, and the lorentzian metric on
TpOIJ; are invariant under the SO(3) action. At p € N, all geometrical structures
must be invariant under the isotropy group action G, ~ SO(2). The action of G),
on 7,0, is the standard SO(2) action and the action on T, p(’)pL is automatically
trivial because there is no SO(2) subgroup in SO'(1,1). Because of this we
can conclude that the integrability tensor A;j, for the horizontal spaces of the
submersion must vanish. At p € N the integrability tensor may be viewed as a
map A, : A2(Tp(”)pL) — T,0,. We note that A?(T, p(’)é) is one dimensional so A,
on the normalized area element gives a preferred vector on 7,0,. Said differently
we must have A;;j, = €;jv,. A non-vanishing vector field v tangential to O, is not
G, invariant and must therefore vanish”. This tells us that v must vanish. Thus

we have learned that the horizontal subspaces are integrable.

Similarly the second fundamental forms K (p) must be invariant under G,
otherwise the structure group will be further reduced. This immediately tells us
that Kb = 6apS; where o = S;0° will be called the second fundamental 1-form.

We can extend this argument and conclude that RY = 0 and Rfl\,@ X Ogp. We

wa

will denote by n = (_01 fl) the Minkowski metric on T (’)j.

The structural equations (4.2) applied to this case become

Wai = Si0%,
TS (6.1)
de* = —ij N 67,

do® = —w, A O° — S;0° N6 .

"The tensor Aijo must be invariant under G, if not then the structure group will be further

reduced.
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Next we explore additional properties that follow from the SO(3) action. First
we observe that wyp did not get modified by the symmetry breakdown therefore
we know that under the action of the SO(3) Killing vector

1
V =V%, + §Va;beaba (62)

the connection is invariant £y wey = 0. Also Ly we; = 0 because wg; in (6.1)
comes from restriction to the reduced orthonormal frame bundle Fioq(/V) and
the Killing vector field V' is tangential to Freq(N) C F(N). This immediately
implies that tydS; = S;.,V* = 0 from which we conclude that S;, = 0. Next
we show that the 1-form o = S;0’ is invariant under the SO(3) action. We have
that £y o = tydo + diuyo. We observe that do = Si;ﬂj + 55,00 = Si;jHj. Since
tyo =0 and tydo = 0 we see that £y o = 0.

Alternatively, this can also be seen by looking at the reduced structure equa-
tions (6.1) directly. First we observe that Ly o = Ly (S:0") = (1ydS;)0" =
VaS;..0". Next we note that 0 = d(Ly 0%) = £y (d6*) from which we conclude
that 0 = (Lv wa) A O° + (Ly o) A% If we write wyy = €pw Wwe see that the

previous equation becomes
(Lyw) AP +VS.00N0* =0,
—~(Ly W) AP+ VS0 N> =0.
By inspection we see that the unique solution is £y w = 0 and S;, = 0. In

conclusion we have that

1 ) .
do=—= SZ—Sz 91/\03,

5 (Siij = Sji) (6.3)
Sia=0.

Notice that (4.8) tells us that S;.; = Sj,; and therefore we learn that do = 0.
This is also a consequence of

0= d?0" = — (eqw + dapda) NO".

One of the equations above is w A 82 + do A 62 = 0. If we wedge with 6% we find
that do A 02 A 63 = 0. If we use (6.3) we immediately learn that Sp,; = Si.0, i.e.,
o is a closed 1-form: do = 0. Therefore we see that dw A §* = 0. Using a similar
argument we see that

dw = E"62 N 63 . (6.4)

We will shortly return to this equation.
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Using the submersion curvature results in Table 1 we immediately see that

RNy =Ry, (6.5)
R%{ab =0, (6.6)
RN, =0. (6.7)
RNy = —0ab(Sij + SiS;) - (6.8)

Note that the G}, action implies that RN =RN

abci cia

» = 0 and this can explicitly be
verified from the formulas. We point out that

Ry = kMeijer = —kM (nikmj — mamjr) (6.9)

because M is two dimensional. The negative sign in the last equality is due to
the negative sign in the Minkowski metric.

We observe that since the fiber O, is 2-dimensional we have that Rf;fcd =
kFeeqpecq = kT (8aeOpd — 0aadpe). Again using the results from Table 1 we see that

RY spea = (E'* — 578;)(8acOba — Saadbe) - (6.10)

Putting all this together we learn that the Cartan structural equation for the
SO(2) curvature (4.10) may be written in this case as

dway = K70 N 6. (6.11)
The SO(3)-orbits are “round” 2-spheres and we have that

1
Fr _
K=

(6.12)
Here r : Frea(N) — R, is the radius of the 2-sphere. Since know that k= is
constant on each orbit there exists a globally defined function r; : M — R such
that 7 is the pullback to the bundle of ;. The function 7,; is just the radius
of the fibering S2. We will avoid all the notation required and simply refer to
the radius function as r and implicitly assume its domain on context. Note that
dk®+ is independent of ¢ because of the SO(3) action and it is also independent
of the connections because it is invariant under SO'(1,1) x SO(2). Computing
0 = dPwgy, we find
0= (dk™ +2k™ o) NO* N O3
Since kf* and o are SO(3) invariant we learn that

dk™ 4+ 2k 0 = 0. (6.13)
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Using (6.12) we see that
1
o= dr = d(logr) . (6.14)

We have learned that o is exact as will be collaborated by an independent argu-
ment later. In fact, the above equation will be valid everywhere if the fibration
is non-singular. Next we observe that if dr = r;6" then

T
=", (6.15)

The Gauss equation (6.10) becomes
1 — ||dr|)?
RN gpea = <W> (6acObd — Saddbe) - (6.16)

The Ricci tensor is computed using (4.13). First we note that as expected by
G, invariance we have Ré\g = 0. Doing the computations we find

RZ]-}[ = —Z(Si;j -+ SiSj) — kaj ,
T

R = [k" — (S +25°S;)] Sup

(ol =y 5,

r2

The wave operator is defined by Of = 5% f.i;j where each semi-colon denotes a

(6.17)

covariant derivative.

The Cartan structural equations associated with the SO(3) action on N are

de® = +m A O, (6.18)

dot = +m N 6°, (6.19)

dr = kM 0O A6, where 7 =mg, (6.20)

402 = —wn6d— L g2 p dr, (6.21)
T

6% = +w 62— L 6% ndr, (6.22)
T

1
dw = +— 62 NO%, where w = wo3. (6.23)
r
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The equation d?7 = 0 tells you that dkM = k{”@l —HcéVIHQ, i.e., kM is the pullback
to the frame bundle of a function on M. The geometry is determined by two
functions, r and kM, that are the pullbacks of functions on M. If r and kM
are non-singular in a neighborhood of a point ¢ € Feq(N) then the structural
equations can be integrated to locally construct the frame bundle.

If 7 and k™ are independent functions in a neighborhood in M, i.e., dr Adk™ #
0, then the inverse function theorem tells you that ¢ : p € M — (r(p), kM (p)) €
R? can be used as a local coordinate system for the neighborhood.

The converse of the above will be important to us later. If r and k™ are
dependent functions in a neighborhood in M, i.e., dr A dk™ = 0, then kM is a
function of 7. The reason is that d(k™ dr) = 0 and therefore locally there exists
a function F' such that dF = kM dr.

7. VACUUM EINSTEIN EQUATIONS

The vacuum Einstein equations are Rf}’ =0 and RY = 0. Using (6.17) these

may be written as

-
—2% — kM =0,

L [ldrl3, — (7.1)
2 dab = 0.
Taking the trace of each of the equations above we learn
12
Tiy kM=o,
r
. 7.2
iy 1—|ldrl, 72
-2 =0
r r

Taking the difference of the equations above we see that

1
M = —3 (L —|ldr|l3,) - (7.3)

The dalembertian term of (7.2) may be rewritten as
o(r?) =2, (7.4)

2

a hyperbolic equation for r°. In some sense, the area of the fibering 2-sphere,

A = 47mr?, is a propagating field on M with a constant source.
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Finally we point out that automatically there is an extra killing vector. Con-
sider a “horizontal” vector field

. 1 ..
X = Xzei + §X”eij

then we have

X',
Ly ="t
X r (7.5)

ZLx 9" = —Xijej + DX'.
Notice that for any horizontal X, the change in % ® 6% is conformal®. On the
other hand if X% o €% rj then the first equation above is automatically zero. We
will see that we can make the second also zero. Choose X = €*r F(r) for some
real valued function of r. We note that DX; = Xmﬂj + X;.,0% The Killing
conditions require X;,, = 0, 4.e., X is intrinsically associated with the base M.

The second displayed equation above also requires X;.; + X,.; = 0. Next we note
that

Xij = eikrk;jF(r) + eikrkrj F'(r),
1
= eikrker/(r) — Eeijk:MrF(r) .

The condition for the flow to generate an isometry is F'(r) = 0 or equivalently
F(r) = Fy where Fj is a constant. In conclusion we have an additional Killing
vector given by

X' = —ér;. (7.6)
The vectors r* and X* are Minkowski orthogonal, r; X? = 0, and that
X113, = = 1V, - (7.7)
Note that if Vr is spacelike then X is timelike and vice-versa. If Vr is lightlike
then X is also lightlike and vice-versa.

Next we observe that the Lie derivative of the metric on the fibers along the
direction of Vr is given by
w2
(0729 = 21Vt ga g o (7.8)

r

8This has to be true because there is a unique round metric on S? up to scale. The horizontal

vector field moves you to another point where the associated fiber is also a round S2.
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We conclude that if Vr is space-like then the area of the 2-sphere increases in
the direction of Vr. If Vr is time-like then the area of the 2-sphere decreases in
the direction of Vr.

7.1. Properties of the radius function. Next we derive a differential equation
satisfied by v = rir; = ||dr|j3,.

dv = 2r'r; ;607

= —rkMdr,
= 1=V dr.
r
A little algebra leads to the equation
d((v—1)r) =0. (7.9)
The solution to this equation is elementary and given by
v =|drl} =1+, (7.10)
where ¢ € R is a constant of integration. We also have using (7.7)
1X13, = = lldrl3; = = (1+ 7). (7.11)
Using (7.3) we see that
KM = 763 (7.12)

Next we determine the constant c. Here we need to make a physical assump-
tion. We assume that in the spacetime N there is a region that is asymptotically
minkowskian and looks like the gravitational far field of a localized mass distri-
bution. The Cartan structural equations tell us that as r — +o00 our geometry
becomes asymptotically minkowskian. The equation for geodesic deviation says
that Dy,Dyn = DyDyu = [Dy,Dylu = RY(u,n)u. In the instantaneous rest
frame we have u = e; and we look at n = n"e,. Our relative radial acceleration
equation becomes

2,7
ddTZ =R = Rpyr)” =
Newtonian mechanics tells us that # = —M/r? where M is the mass of the star.
We have that " = ér and therefore 7" = (2M/r3)n". We immediately see that

M, r c r
T

¢c=—Rg where Rg =2M (7.13)
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is called the Schwarzschild radius.

Finally we observe that we can define a closed 1-form 7 by”

with the property that 7(X) = 1. Note that 7 is not defined if r = Rg.
scale we have that 7 is basically *dr, the Hodge dual on M of dr.

It is worthwhile to summarize the data that determines our geometry:

T =

7“1«90 + 7‘091 —EijTiej

. 7“190 + 7’091 . —El'jT‘in

1—Rg/r N 1—R5/r’

Schwarzschild radius,

radius of the fibering S2,

).

1—-Rs/r 1—Rg/r

Rg =2M |,
vy M — Ry
dr = r;0°,

Rs
Ti;jZQTQ"%j»
Xi:—eijrj,

Ry
dr|2, =1- =2
ldrl3 =1~

Rg

X3, =—(1-=2

Ixi = (1- 2
.

R

Il = (1- 22

r

)1.

and dr =0,

485

(7.14)

Up to

(7.15)
(7.16)
(7.17)

(7.18)
(7.19)

(7.20)

(7.21)
(7.22)

(7.23)

90n a two dimensional manifold, a locally non-vanishing 1-form « always defines a local fo-

liation because the Frobenius condition da = 0 mod « is automatically satisfied. Furthermore,

the Frobenius theorem states that there exists functions f and g such that « = fdg. In our

case we have that o = *dr.
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The Cartan structural equations for the reduced frame bundle of the Schwarzschild

spacetime are

do® = 47 Ao, (7.24)
dot = +7 N E°, (7.25)
dr = —R—gs A0, where 7 =m0, (7.26)
T
1
do* = —w A 0> — . 62 A dr, (7.27)
1
do® = +w NB* — = 63 Adr, (7.28)
T
1
dw = +ﬁ 0> AG3, where w=wn3. (7.29)

Note that the only singularity in the structural equations occurs where r = 0.
For this reason we expect the frame bundle of the Schwarzschild manifold to be
smooth everywhere as long as r # 0. In particular we do not expect any type
of singularity when rj; = Rg. The exceptional properties of the Schwarzschild
solution at rp; = Rg occur because of the behavior of dr at 1 = Rg. The only
potential problems with the structural equations occur at » = 0. What type of
singularity is at r = 0? Is it removable as in the example of E3\{0} or is it a true
singularity?
We can make a consistency check on equations'® (7.27), (7.28), (7.29). If we

make a conformal rescaling % = §° /7 then these equations may be written as

do* = —w A 6° ,

d6® = +w A 6 ,

dw = +6* N 6°.
These equations are easily identifiable. They are the Cartan structural equa-
tions for the orthogonal frame bundle of the unit 2-sphere. Note that they are
the Maurer-Cartan equations for the group SO(3) and thus the frame bundle of

S? is isomorphic to SO(3). The base space for this frame bundle is precisely
SO(3)/SO(2) ~ S2.

7.2. Geodesics. We work out some properties of the geodesics on M by using
Cartan’s method [11], see Appendix C. It is useful to introduce a null basis

10This also applies to (5.8).
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for the canonical 1-forms on the Lorentz frame bundle of M by defining 8+ =
6° & 0 then the pullback of the metric on M to the frame bundle is given by
—1 (0" ®6~ 4+ 6~ ®6%). We also note that

dot = £ A 6T,
(7.30)
dr = 15 g+ p o=
273

Remember that we are working “upstairs”!

Let #" = §" + u’d)\ and m = 7 for A > 0. Here barred 1-forms are independent
of dX analogous to ¥ and w in Appendix C. The initial conditions are that
6'(0) = 0, 0,0*(0) = du', and 7(0) = 0. Differentiating once we see that

Nt
889)\ = du® F 7ut,,
oTr  Rg _ _
Differentiating again we see that
D0t JoNT\ Ry utu™ —(uh)?) (6 (731)
9%0=/aX?) 213 \ —(u™)? whu 0~ '

Next we derive an ODE that r satisfies along a geodesic. We note that dr/d\ =
ryut +r_u~. Next we remember that dry = Frre +re 07 +r._07 and that

ry.4 =r_._ =0 by (7.18). Therefore along a geodesic we have that
d?"+ . RS w
D
.32
dr_ Rs . )
d\  4r2
We immediately see that
d?r Rg
2 = 92 HUH?\/[ (7.33)

The equations that describe the exponential map (7.31) are complicated but the
equation that describes the evolution of r along a geodesic (7.33) is relatively

simple.

The case of a null radial geodesic is particularly simple because d?r/d\? = 0. If
the horizontal lift of the null geodesic begins at a point p € F(M) with r(p) = r)
and dr(p) = r;(p)0’(p) then the evolution of r along the lift is

r(A) =rp+ A (reut +r_(p)u”). (7.34)
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There are four cases of null geodesics to analyze corresponding to
(ut,u”) € {(+1,0),(0,41),(-1,0), (0, -1)} .

The latter two cases may be considered with the first two by allowing A to be
negative. In the first case we have that r(\) = r, + Ary(p), and in the second
case we have 7(\) = r,+Ar_(p). Choose a Lorentz frame p € F(M), if 1 (p) > 0
then r4(p’) > 0 for all p’ in the same fiber because the action of the (1 4 1)
dimensional Lorentz group translates to an action 7+ — e*ry where 7 is the

rapidity. This means that we can define the following four open subsets of M:

Ur={qeM|ri(p)>0,r_(p) <0},

(p) (
Un={qe M|ri(p) <0,r_(p) <0},
(7.35)
Um ={q € M [r4(p) > 0,7—(p) > 0},
Uy ={q€ M |ry(p) <0,7—(p) > 0}.

In the above p € F(M) is any Lorentz orthonormal frame at ¢ € M.

By hypothesis, our space-time manifold N has a region where it is asymptot-
ically like Minkowski space. In such a region a light ray can go radially inward
(ut,u~) = (0,1) or radially outward (u*,u~) = (1,0). In that asymptotically
Minkowski region we can choose a p € F(M) with the property that 74 (p) > 0
and r_(p) < 0 and thus we conclude that Uy # () and that the familiar asymp-
totic exterior lies in Uy. According to (7.34), an inward future directed radial null
geodesic will have r(\) = rp, + Ar_(p). Two important observations are that for
finite positive affine parameter the light ray will cross r = Rg and in finite affine
parameter it will also hit » = 0. This last observation says that our space may
have a singularity because the Cartan structural equations have a singularity at
r = 0. We will not address the question of whether this is a real or a removable
singularity. We will concentrate on what happens to null geodesics at » = Rg.

7.3. Schwarzschild Geometry without Coordinates. The key to under-
standing the geometry of the Schwarzschild solution is to understand the level
sets of the radius function r : M — R,. For all practical purposes, both physical
and mathematical, we can take M to be simply connected. Topology tells us that
M has a universal simply connected cover & : M — M. We have a fiber bundle
m: N — M. We can use the covering map « to obtain the pull back bundle
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#: N — M and we can pull back all metrics. The conclusion is that we might
as well as well assume that M is simply connected. We do this now.

An important ingredient in our discussion is that we can use r as a Morse
function!! to learn about M. The Einstein equation (7.18) tells that that the
critical points of  are non-degenerate. Let’s briefly review the argument. Assume
I have a smooth function f : X — R where X is a manifold. The point p € X
is a critical point if df|, = 0. The hessian of f at xy can be defined intrinsically
but it is easier to do it in terms of local coordinates. Let (z°) and (3%) be two
local coordinate systems. We observe that the matrix of second derivatives has
a non-tensorial transformation law

82f 8yk ayl 82f aka af
Oxi0xi Ozt Oz OyF oyl | Oxi Oxd yk’
except at a critical point p where 0f/0y(p) = 0 and the above reduces to
62 f ayk ayl 62 f
Oz’ Oxd |, ~ » 9 , OyF oyl

The next thing we observe is that the hessian at a critical point is given by the

p
second covariant derivative with respect to any connection I'. The reason is that

0? 0 0?
(DiDiN)®) = 5ot (o) ~ T 0) 2 (0) = 50— (v).

If r : M — Ry has critical points then they must be non-degenerate because of
(7.18).

Assume the radius function r : M — R, has a critical point at p € M.
We know by (7.18) that this critical point is non-degenerate. We also know by
Morse’s lemma [13] that in a neighborhood of p we can find local coordinate
(y°,y') centered at p that are Minkowski orthonormal at p such that in the
neighborhood we have that

(012 1y2
T’(y):Rs—l-(y)éle(y).

The neighborhood of any critical point of the function ;s looks like Figure 1.

(7.36)

We begin analyzing the properties of ryy : M — Ry. Let Us = {p €
M | rp(p) > Rs} and let Uc = {p € M | 0 < rp(p) < Rs}. Note that Us
and U. are both open subsets of M. It is clear from (7.20) that dras(p) # 0 if

UThere is an application of Morse theory to black holes by Carter [12, p. 187] but it is

different from ours.
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FicURE 1. Behavior of the function rj; near the critical point.

p € U- UUs. The implicit function theorem tells us that the level sets of the
function rjs give a good foliation on U. U Us. The only question remains what
happens at 7,y = Rg where we note that ||dr|%, = 0 by (7.20). Since the metric
is Minkowski we cannot conclude that dr = 0, but we do know that if there is a

critical point then it must be non-degenerate and that it must have rj; = Rg.

Next we establish that r must have a critical point. We choose a point p; €
Ur C M that is in the asymptotic Minkowski region ry; > Rg where r4(q;) > 0
and 7_(q1) < 0 and let g1 € F(M) be a Lorentz frame at p;. We will construct
a null broken horizontal curve beginning at ¢; that takes us to the critical point.
Begin with an inward null horizontal curve with initial data (u*,u™) = (0,1).
Inserting into (7.34) we see that r(\) = rq, +Ar_(q1) and therefore the horizontal
curve arrives to a point go € F(M) where the sphere radius is the Schwarzschild
radius at Apg = (Rs — 1¢,)/7—(q1) > 0. Note that according to (7.32) we have
that

dT‘+ _ RS
dA A(rg +Ar(q)*’
dr_

o0
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Thus r_ is constant along this horizontal curve and we have r_(g2) = r_(q1) < 0.
We know that at r = Rg we have that ||dr||3; = 0 and therefore 74 (g2) = 0. We
can verify this explicitly. Solving the ODE for r; we see that

Rg Rg

I (q)re A (q1) (rgy T A (@)

Inserting A = Ary and doing some algebra we find the desired result.

r+(A) =r(q) -

At the point go where r_(q2) < 0 and r4(g2) = 0 we begin a new horizontal
curve with initial velocity (u™,u~) = (—1,0). Along this curve we have r(\) = Rg

is constant and

dT'_|_

T 0

d\ ’
d?“i___i_i
d\  4Rg’

Thus 7+ = 0 along this curve and r_(\) = r_(g2) + A/4Rgs. Thus in finite positive
A we will get to a point g, where r_(gs) = 0. This is the critical point of r that
we sought.

We have established that if M has an asymptotic Minkowski region then there
exists a critical point of the radius function rj;. Can there be more than one
critical point? The answer is no under our hypotheses. The pictorial topological
argument is that near each critical point we have a situation that looks like
Figure 1. It is very hard to see how two copies of the figure can be put together

consistently. You can also give a more analytical argument that has two parts.

The first part is essentially running the proof of the existence backwards.
Namely we observe that if we start at a critical point p, € M of ry; then
rym(px) = Rs and there are two null geodesics emanating from p, and along
each we have that r); = Rg, see Figure 1. Lift the geodesics to horizontal curves.
Along the first horizontal curve we have that v = 0 and r_ is a strictly mono-
tonic function of the affine parameter, and along the other horizontal curve we
have the opposite: r— = 0 and r; is a strictly monotonic function of the affine
parameter. This immediately tells us that we cannot have another critical point

along the null geodesics emanating from p,.

The second part of the argument is a bit more involved. It is proof by con-
tradiction. We develop the intuition by studying the case where we assume that
there are nearby timelike separated critical points p, and p/ as in Figure 2. We
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7

Py

P

FIGURE 2. Two nearby timelike separated critical points p, and
pl, connected by a path and also by a broken null geodesic.

P«

FIGURE 3. Two causally separated critical points p, and p/, con-
nected by a causal path and also by a broken null geodesic.

begin with a horizontal null curve with initial tangent vector (ut,u™) = (1,0)
at g« € F(M) over p, € M. We evolve the curve until it reaches a point ¢
over p. According to (7.32) we have that 7, (¢)) = 0 and r_(¢!) < 0. Next we
begin a null curve with initial tangent vector (u™,u~) = (0,1) that will take us
to a point ¢, over the critical point p/. But according to (7.32) we have that
r—(q.) = r—(¢}) < 0. This contradicts dr(q’) = 0. More generally, assume that
you have two critical points on M with p/ in the future of p.. Since M is con-
nected there is a causal curve between them. We approximate the causal curve
by the zig-zag path of null geodesics as in Figure 3. If we apply the previous ar-
gument piece by piece to the zig-zag we conclude that dr(q,) # 0. The argument
can be extended to the case where the conjectured critical points are not causally

connected by using broken null geodesics that are future and past directed.
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rm = Rs v = Rg
Urv . Uy
ry = Rg ry = Rs
Ut

FIGURE 4. The four regions of the Kruskal spacetime with the
black hole and the white hole singularities as indicated.

7.4. The Kruskal Spacetime. Since there is only one critical point we have
the standard Kruskal diagram, see Figure 4, of the Schwarzschild geometry with
the four regions associated with (7.35). The asymptotic Minkowski region is in
Region Ur. In Region Uy we have that 1 < 0 and (7.34) tells us that all future
directed null geodesics end up at rpy = 0 in finite affine parameter. Therefore
light rays cannot escape Region Ury. This is the black hole region. Region Uy is
the white hole region which is the time reversal image of the black hole region.
Region Uty is the parity image of Ur. The two Minkowski like regions are causally
disconnected. The properties of the radial null geodesics in the various regions
are easily determined using (7.34).

Note that the Killing vector field X is a null vector field on the null lines
defined by rjp; = Rg in the Kruskal spacetime. If we think in terms of the
fibration w : N — M. The fiber over where the two line intersects is called the
the bifurcation 2-sphere. The fibers over the two null geodesics at rp; = Rg
define the bifurcate Killing horizon.

There are real singularities at 3y = 0. We do not get any new insight into the
nature of the singularities using these methods. For this reason we will not say
anything about it.
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7.5. Schwarzschild Coordinates. We conclude by using our geometrical data
to write down the metric in standard Schwarzschild coordinates. On the open
set V C F(M) that is the complement to the closed set r~!(Rg) C F(M) we can
write

T1 0 To 1
11— Rg/r o 1—Rg/r i (7.37)
dr = ro0° +r10'.

T

The inverse relationship is

0]

0 = —_— — ————
07 =-nr 1—Rs/7“dr’
r (7.38)
o' = —7“07—1—71 dr.
1—Rg/r
From this we learn that on V' we have
— (0°)% + (09 = — (1 — Rg/r) > + (1 — Rg/r) ™" (dr)?. (7.39)

which is the metric in standard Schwarzschild coordinates because 7 is a closed
1-form and therefore locally exact'?, 7 = dt. By taking a section you can pull
these structures back to the base M.

7.6. Redshift without Coordinates. This discussion is treated in standard
texts. We have a timelike Killing vector field X in regions I and IV and we
restrict to observers in either of these regions. Let k be a tangent vector to a null
geodesic, i.e., Dk = 0 and ||k||? = 0. It is elementary to show that Dy (X -k) = 0.
In other words X -k is constant along the geodesic. We know that if k is the wave
vector of a beam of light then an observer at ¢ € N with (timelike) 4-velocity u
will measure the frequency to be w(q) = —u - k. Consider two observers E and O
at fixed radii rg and ro. A photon is emitted by E and observed by O. We note
that ugp = (1 — RS/rE)_1/2XE and that up = (1 — Rs/To)_l/QXO because the
observers are at fixed radii. Using the constancy of X - k along the null geodesic
we conclude that

wo  [1-Rgs/rg (7.40)
wE 1—Rs/ro- '

2There are really four different functions i, ti1, tir, trv corresponding to the four regions
Ut, Urt, Ui, Ury that make up V.
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APPENDIX A. CARTAN’S LEMMA

Cartan’s lemma is the observation that if {¢'} is a linearly independent col-
lection of 1-forms and if {a;} are 1-forms such that a; A ¢ = 0 then there exists

coefficients {a;;} with a;; = aj; such that o; = aijgoj.

A corollary to Cartan’s lemma is the statement that if you have a collection of
1-forms {3;;} with 8;; = —3j; and if B;; A ¢/ = 0 then B;; = 0. To prove this we
note that Cartan’s lemma implies that there exists coefficients b;j;, = b;; such
that 3;; = bijkgok . But by is skew symmetric under i < j but symmetric under
J < k and therefore b;;, = 0. This corollary is responsible for the uniqueness of

the Levi-Civita connection, i.e., the fundamental lemma of riemannian geometry.
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APPENDIX B. LIGHTCONE CONVENTIONS

0 1/ 0 0
0t = 0° + 0 — ==t == B.1
060+ 2 (800 891> (B-1)
1
ds? = —(6°)* + (61)?, ds?® = = (0T +6 0™
(B.2)
1 i
- = =5 =2, (B.3)
1
6° Aot = —§9+ AN €01 = +1, Ol =—1 , (B.4)
1
- =5 et =42, € =41, e, =-1, (B.5)
N _ 1, 1
vt =—2v_, v =—2vu4, V- =gU, Ve =g, (B.6)
1
Joll? = vt~ = —dvi0, vPoy = v = 2ol (B.7)
Of =0 fu; = —4f4—, (B.8)

APPENDIX C. CARTAN’S APPROACH TO GEODESICS

Cartan studies geodesics on a manifold N by using the structural equations to
study horizontal curves in the bundle of frames [11]. In fact, Cartan often studies
families of geodesics via the exponential map generalized to the bundle of frames.

Let 7 : F(N) — N be the orthonormal frame bundle with canonical coframing
(0", wpy). It is well known that if ¢ € F(NN) with p = m(q) € N then a curve
in N based at p uniquely lifts to a horizontal curve in F(N) beginning at g.
Using his structural equations, Cartan sets up a system of ordinary differential
equations satisfied by the horizontal lift of the geodesic. Cartan considers a map
E:R xE" - F(N). Fix ¢ € N and u € E" then we have that F(0,u) = ¢
and as \ varies we have that F(\,u) will be the horizontal curve with “constant
velocity” w:

o+ <E* ((5)\)) =ut, (constant velocity)

e (5:(2)) =0 i !
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The dual versions of these statements are

E* 0" = v dX + 9",
. (C.2)
Ewy =wu,
where ¥* and w,, are unknown l-forms on R x E" that are independent of
d\. Note that on R x E™ there are natural global cartesian coordinates (\,u)
and differential forms can be assigned a bi-degree (k,l) where £k = 0,1 and | =
0,1,...,n. For example, d\ has bi-degree (1,0) and ¥* has bi-degree (0,1).

Comment 1. If N = E™ with cartesian coordinates x then the map wo F/
is given by (A, u) — z* = Aut. Note that dz¥ = u* d\ + X du” and in
comparing with (C.2) we see that ¥* = X du*.

Comment 2. On the vector space R with standard coordinates (z', ..., z¥),
the exterior derivative d acting on a p-form a = aydz’, |J| = p (multi-

index notation) is simply given by

. Oda
do =dz* N —
o T D’
where
Oa  Oay , ;

drt  Oxt

Taking the exterior derivatives of (C.2) and using the comments we have

o+ oY
— v vy 1% -7 v
Wy N (07 dXN+9Y) = dul NdX + dA A B\ + du” A R
1 ow ow
E* ( —w,,. o+ =R 0P o\ pv A e
< Wy A w +2Rup0 /\0) dA N I\ + du™ A N
(C.3)
Identifying the terms that have bi-degree (1, 1) we find
g
o = du" + w,u”,
O
(C4)
awﬂl’ P Q0
— = Tuwpe U 97,
1))

where 7,00 = E*Ryp0. The initial conditions on these differential equations are
V*|x=0 = 0 and @, |[x=¢0 = 0. This follows from the condition that E(0,u) = ¢
for all u, see for example Comment 1.
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Equations (C.4) can be combined into a second order differential equation
D?Hr
0N

with initial conditions ¥*|x—9 = 0 and (06*/ON)|,_, = dut. This equation is
Cartan’s equation for a Jacobi vector field. It tells you how the coframe changes

= T/U/PO' ul’up v s (05)

along the horizontal lift of a geodesic.

C.1. Holonomy and Symmetric Spaces. Using the methods of the previous
section it is easy to understand the basic properties of symmetric spaces. Choose
a point ¢ € F(M), let T'; be the holonomy group at ¢ and let ®;, C F(M) be
the set of all points in the frame bundle that are connected to ¢ by a piecewise
differentiable horizontal curve. The basic theorem is that the holonomy bundle ®,,
is a sub-bundle of F(M) with structure group I'; € SO(n) and that M = ®,/T,
see [7].

Next we show that the riemannian connection restricted to the holonomy bun-
dle is a I'j-connection. To do this we write the Lie algebra

so(n) =g @b (C.6)

where g is the Lie algebra of I'; and b is a complementary subspace. Under this
decomposition the Cartan structural equations become

1 1 1
dw® = _ifaﬁ-ywﬂ Aw? — faﬁcwﬁ Aw’ — ifabcwb A w€ + §Ra#1/0ﬂ AGY s

1 1 1
A = =2 f o AW = fpe® N — 2 feid At + SR 00 NG, (C.7)
A0 = — AP pw® A GY — AFuw® A OV

In the above the indices a, b, ¢ refer to g and «, 3, refer to h. The f are the
structure constants for so(n) adapted to the decomposition (C.6) and the A are
other constants associated to the same decomposition'®. The holonomy bundle
is a sub-bundle that solves the equation w® = 0. The reason is that a basis for
T,®, is {e,} U{eq}, i.e., need the horizontal curves that are used to construct
the holonomy bundle and also need the holonomy Lie algebra. The Frobenius
theorem requires f%,. = 0 and R%,, = 0 for an integrable distribution. This
means that g is a subalgebra of so(n) as required and there is no curvature in

L3These are really associated with the decomposition of the basic representation of so(n) in

terms of the decomposition (C.6).
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the “b-direction”. Restricting to the holonomy sub-bundle ®, we have structural
equations
dw® = —lf“bcwb Aw’+ 1RCLWH“ N6Y
2 2 (C.8)
dor = — AW N OV

These equation tell us that the restriction of the connection to the holonomy

bundle is a Fq—connection14.

How do symmetric spaces arise from this viewpoint!®? If the curvature is co-
variantly constant then it is a constant function on the holonomy sub-bundle.
The reason is that dR = —w - R+ (VAR)0* = —w - R which vanishes along a hor-
izontal curve. Consequently R, ,, must be a constant function on the holonomy
sub-bundle ®,. This means that R®,, are constant and therefore equations (C.8)
are the Maurer-Cartan equations for a Lie group G. Therefore ®, ~ G and
M = G/Ty. There is a stronger statement we can make. The Maurer-Cartan
equations (C.8) admit a symmetry w — w and € — —6. This is the famous Car-
tan involution that leads to symmetric Lie algebras and associated symmetric
spaces. The reason for “symmetric” may be see in (C.5). Note that 7., ,,u"u’
are constant and therefore A\ — —X\ is a symmetry of the differential equation.
This means that by integrating (C.5) to construct the metric we have an isometry
between the point at time A and the one at —\. This is the Cartan local isometry

in a symmetric space'®.
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