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Prologue

It is a great pleasure and a great honor to be a contributor to this volume
celebrating Michael Atiyah and Isadore Singer. The work of Atiyah and Singer,
especially their results on Index Theory, has greatly influenced my own.

Is Singer has been a close friend and colleague since 1982. It was he who
explained to me the importance of principal bundles and their uses in global
geometry. As a physicist I was “locally trained” in the use of local coordinates
and local frames. It was Is who patiently taught me to think globally. This article



Schwarzschild Spacetime without Coordinates 459

uses the global geometry of the bundle of lorentzian frames, a principal bundle,
to construct the maximal analytic extension of the Schwarzschild spacetime.

I thank Is for countless hours of discussion and most of all for his friendship.

1. Introduction

The Schwarzschild solution is probably the most studied nontrivial solution to
the Einstein equations1. The exterior solution represents spherically symmetric
stars and the interior has a black hole. What drives much of the intellectual
curiosity of students of general relativity is the presence of the black hole and its
consequences.

I have taught the general relativity course several times over a 20 year period
and I have not been completely satisfied with the discussions of black holes in the
introductory course. The presentation usually involves deriving the Schwarzschild
metric in standard Schwarzschild coordinates then transforming to Eddington-
Finkelstein coordinates to study what happens as one crosses the horizon and
finally a discussion of the maximal extension in Kruskal-Szekeres coordinates, see
for example [2, 3, 4]. Of course, you could take as a starting point the Kruskal-
Szekeres solution. This is neither physically or mathematically satisfying because
the radius r of the symmetry 2-spheres is implicitly given in terms of the Kruskal-
Szekeres (T, R)-coordinates by

T 2 −R2 =
(
1− r

2GM

)
er/2GM .

Another approach is to introduce a lot more mathematical machinery [5, 6] and
discuss global causal structures and singularity structures of lorentzian manifolds
but this is overkill if you just want to talk about the Schwarzschild solution.

I wanted to find a middle ground where you could see the whole extended
Schwarzschild solution at once with the geometry and the physics transparent. In
fact I wanted to find a coordinate independent way of describing the Schwarzschild
solution. It began by trying to understand what Birkhoff’s Theorem tells you
about the bundle of Lorentz orthonormal frames. In the process I found such a
coordinate independent geometric approach but unfortunately it is not elemen-
tary at the level of an introductory general relativity course. It requires much

1For a comprehensive study of known solutions to the Einstein equations see [1].
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more mathematics, especially an understanding of group actions on manifolds,
of principal fiber bundles [7] and of riemannian submersions [8]. It is more than
overkill, nevertheless, I believe the approach to be a new novel and insightful way
of studying the Schwarzschild solution.

This article is not meant to be an exhaustive discussion of the Schwarzschild
spacetime. I will pick and choose several topics that are of interest because of
the mathematical methods I use. One glaring omission is the discussion of the
actual singularity at r = 0. The reason is that I have no new insight to offer.

In brief, the goal is to derive the extended Kruskal-Szekeres spacetime without
ever writing coordinates. Instead of studying the geometry in the Schwarzschild
spacetime N directly, we work “upstairs” in the bundle of orthonormal Lorentz
frames F(N) and indirectly work out the properties of the spacetime. By using
the Einstein equations and some global structures in F(N) we construct the full
spacetime at once. There is no “extension process” where you begin with the
exterior Schwarzschild solution and find the maximal analytic extension.

We begin by discussing the Cartan structural equation for the bundle of or-
thonormal frames of a semi-riemannian manifold. We begin to specialize by
studying the restrictions imposed on the structural equation if the manifold is a
fiber bundle. We do a further specialization to the case that the manifold is a
semi-riemannian submersion. We finally study the case that the semi-riemannian
submersion arises due to a group action. The Schwarzschild spacetime is a man-
ifold of this type. By studying the properties of the structural equations we can
construct the full Kruskal-Szekeres spacetime.

There are extensive computations in these notes because the methods are not
familiar to most physicists or mathematicians. It makes extensive use of Cartan’s
method of the moving frame beyond what most people use. It is more of an
abstract use of Cartan’s method than the explicit direct computational approach
seen in some relativity textbooks. There are some nice uses of the machinery. For
this reason some sections are expository in nature and are not directly related to
the main topic.
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2. Frame Bundles

We wish to globally study a semi-riemannian manifold [9]. Most of the mathe-
matical framework we will be developing works in both the riemannian case and
in the lorentzian case. The riemannian language is more standard and for sim-
plicity I will phrase the discussion as if the manifold was riemannian. Of course
when we get to black holes we have to work in the lorentzian framework. The
only times we have to be careful is if we have a null vector in a subspace. When
we encounter such a case I will be extra careful.

We assume that we have an orientable riemannian manifold. The metric allows
us to consider the orthonormal bases at each tangent space TxN for x ∈ N . The
collection of all such orthonormal bases gives us a principal fiber bundle F(N),
the bundle of all orthonormal frames. This bundle has structure group SO(n)
where n = dim N . Note that dimF(N) = n + 1

2n(n − 1). One of the most
important properties of F(N) is that it has a canonical global coframing [7].
There are n tautologically defined global 1-forms2 on F(N) that will be denoted
by {θµ}. There is the unique Levi-Civita connection on F(N) that gives 1

2n(n−1)
globally defined 1-forms {ωµ

ν} with ωµν = −ωνµ. Together the 1
2n(n+1) 1-forms

{θµ, ων
ρ} gives a global coframing of F(N). The dual basis of vector fields is

denoted by (eµ, eνρ). The important observation is that we do not have global
coordinates on F(N) but we have something that is almost as good, a global
coframe. The frame bundle is the global structure that we are going to use to
study the Schwarzschild spacetime.

The Cartan structural equations for the orthonormal frame bundle F(N) of a
riemannian manifold N are [7]

dθµ = −ωµν ∧ θν ,

dωµν = −ωµλ ∧ ωλν +
1
2

RN
µνρσθρ ∧ θσ .

(2.1)

Note that these are equations on F(N) and therefore RN
µνρσ are globally defined

functions on F(N) with certain equivariance transformation laws under the group
action. If you consider a local section s : U ⊂ N → F(N) then the pullback 1-
forms ϑµ = s∗θµ give a local orthonormal coframe on U ⊂ N , the pullback 1-forms
s∗ωµν = γµνρϑ

ρ give the connection coefficients γµνρ in the local orthonormal

2These are sometimes called the “soldering forms” in the older mathematical literature and

in some of the physics literature.
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coframe, and s∗RN
µνρσ = RN

µνρσ ◦ s are the components of the Riemann curvature
tensor in the local coframe.

Assume we have a local orthonormal coframe ϑµ on U ⊂ N with Levi-Civita
connection Γµν = γµνρϑ

ρ. Locally we have a trivialization U × SO(n) of F(N).
If (x, g) ∈ U × SO(n) then the coframing of F(N) may be locally expressed in
terms of the trivialization as

θµ = g−1ϑµ ,

ω = g−1 dg + g−1Γg .
(2.2)

If xµ are local coordinates on U then (x, g) parametrize U × SO(N) and dx

and g−1dg are linearly independent on the frame bundle. We physicists usually
work downstairs and we usually think of ωµν as Γµνρdxρ. Do not do this in this
article. The connection lives upstairs! Some formulas look different because we
are working upstairs.

Next we discuss how to think about the covariant derivative. A tensor on the
base is viewed upstairs as an ordinary vector valued function ξA (a column vector)
that has special transformation laws. Assume we are at a frame3 q = (e1, . . .en)
and we act on the frame on the right by a rotation matrix g where we find that
q′ = qg then we want ξ(qg) = σ(g)−1ξ(q) where σ is a representation of SO(n).
The differential of ξ is a 1-form and we have to specify how ξ changes both
along the fiber and transverse to the fiber. We know that dξ must be expressible
as a linear combination of the coframe (θµ, ωνρ). The question is which linear
combination. Part of the definition of a connection [7] is that ω restricted to
the vertical tangent space is the left invariant form on the Lie algebra. In local
formulas (2.2) we see that ω = g−1dg when tangent to the fibration (given by
dx = 0). We know how ξ transforms under the SO(n) action and thus we conclude
that

dξ = −σ̇(ω)ξ + ξ;µθµ . (2.3)

Here σ̇ is the induced Lie algebra representation. The “horizontal” component
of dξ is denoted by ξ;µθµ and it is called the covariant differential.

If a vector field

V = V µeµ +
1
2
V µνeµν (2.4)

3Think of a frame as a row vector.
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on F(N) generates an isometry then L V θν = 0. A simple computation shows
that4

0 = −Vµνθ
ν + ωµνV

ν + dVµ = −Vµνθ
ν + Vµ;νθ

ν .

We immediately learn two things

0 = Vµ;ν + Vν;µ ,

Vµν =
1
2
(Vµ;ν − Vν;µ) .

(2.5)

The first of the above are Killing’s equations. The second one determines the
eµν component of the vector field V , see (2.4). Next we observe that 0 =
d L V θµ = L V (dθµ). Using the Cartan structural equation we immediately
see that (L V ωµν) ∧ θν = 0. An application of the corollary to Cartan’s lemma,
see Appendix A, yields that L V ωµν = 0, i.e., the connection is invariant under
the infinitesimal isometry.

We will be copiously using the differential forms version of the Frobenius The-
orem [10]. To avoid too much terminology we state the theorem in the following
practical way.

Theorem 2.1 (Frobenius). Assume that on a manifold M we have a collection of
k linearly independent non-vanishing 1-forms {ϕα} with the property that dϕα =
ξα

β ∧ϕβ for some 1-forms ξα
β. Then through every q ∈ M there exists a unique

maximal connected submanifold Sq containing q with dimSq = dim M − k such
that for every vector field X tangent to Sq we have that ϕα(X) = 0.

The integrability conditions on the differential forms are sometimes written as
“dϕα = 0 mod ϕ”.

3. Fibration

Let π : N → M be a fiber bundle where N is a riemannian manifold. The
fibers are isomorphic to a manifold F . If x ∈ M then the fiber over x will be
denoted by Fx. Vectors tangent to the fiber will be called vertical and vectors
orthogonal to the fiber will be called horizontal. If dimN = n and dimM = p

then the dimension of the fibers is q = n−p. The existence of the fibration allows
for a reduction of the structure group SO(n) of F(N) to SO(p)× SO(q) obtain-
ing a principal sub-bundle F red(N) ⊂ F(N). If we introduce indices i, j, k, . . .

4We use the traditional semi-colon notation to denote covariant derivatives.



464 Orlando Alvarez

“associated to M” to run from 1, . . . , p and indices a, b, c, d, . . . “associated to the
fibers” to run from p + 1, . . . , n then the first structural equation may be written
as

dθi = −ωij ∧ θj − ωia ∧ θa ,

dθa = −ωab ∧ θb − ωai ∧ θi .
(3.1)

Once the structure group is reduced we have that the ωai become torsion:

ωai = Kabiθ
b −Mijaθ

j . (3.2)

This requires some explanation and is best understood by looking at local ex-
pression (2.2). Once we are on F red(N) ⊂ F(N) we can no longer move along
the group directions that are not tangent to F red(N). This means that g−1dg

restricted to F red vanishes in Lie algebra directions orthogonal to so(p)⊕ so(q) ⊂
so(n). Thus when restricted to F red(N) we only get the Γ part of ω in (2.2).
Schematically we have that Γ = γϑ = γgθ and this is how (3.2) arises. With this
in mind we see that the first of (3.1) becomes

dθi = −ωij ∧ θj −Mijaθ
j ∧ θa − 1

2
(Kabi −Kbai)θa ∧ θb . (3.3)

The pfaffian equations θi = 0 determine an integrable vertical distribution that
defines the fibration and therefore the Frobenius theorem requires

Kabi = Kbai . (3.4)

This is the statement that the second fundamental form for the submanifolds
associated with the fibration is symmetric. It is worthwhile to consider the sym-
metric and anti-symmetric parts of M :

Sija =
1
2
(Mija + Mjia) ,

Aija =
1
2
(Mija −Mjia) .

(3.5)

The structure equation may be written as

dθi = −ωij ∧ θj + Aijaθ
a ∧ θj − Sijaθ

j ∧ θa .

Following Cartan we try to absorb as much torsion as possible by defining a new
connection

πij = ωij −Aijaθ
a . (3.6)

The structural equation becomes

dθi = −πij ∧ θj − Sijaθ
j ∧ θa .
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Similarly, the second of (3.1) becomes

dθa = −ωab ∧ θb −Kabiθ
b ∧ θi −Aijaθ

i ∧ θj . (3.7)

The vanishing of the tensor Aija is the integrability condition for the distribution
defined by θa = 0. You cannot absorb the torsion in dθa because Kabi is symmetric
under a ↔ b.

Finally we make the following useful remark. If X is a horizontal vector field
,i.e., ιXθa = 0 then

L X(θa ⊗ θa) = 2XiKabi θ
a ⊗ θb − 2XiAija(θj ⊗ θa + θa ⊗ θj) . (3.8)

If the horizontal distribution is integrable then Aija = 0 and the equation
above simplifies to

L X(θa ⊗ θa) = 2XiKabi θ
a ⊗ θb . (3.9)

If ηF is the volume element on the fiber then

L X ηF = XiKa
ai ηF . (3.10)

SUMMARY: The structural equations for a fibration are

Kabi = Kbai ,

Mija = Sija + Aija , see (3.5),

ωai = Kabiθ
b −Mijaθ

j ,

πij = ωij −Aijaθ
a ,

dθi = −πij ∧ θj − Sijaθ
j ∧ θa ,

dθa = −ωab ∧ θb −Kabiθ
b ∧ θi −Aijaθ

i ∧ θj .

(3.11)

3.1. Local Description. Assume our total space N is euclidean space En and
that after a rotation we locally describe the fibers near the origin as the level sets
of the p functions

f i(x) = xi +
1
2
habi x

axb + O(x3) , (3.12)

where we use cartesian coordinates (xi, xa). We know that DN
ea

ei = ebKabi +
ejω

j
i(ea). Taking the gradient of the function that defines the level sets we see

that the normals (to leading order) are given by

ei =
∂

∂xi
+ habix

b ∂

∂xa
.
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Comparing with the connection definition of the extrinsic curvatures we see that
at the origin we have that Kabi = habi. Notice that Kabi is a first order invariant
of the metric, i.e., K ∼ ∂g, while the curvature is second order R ∼ ∂2g.

For the special case Kabi = δabSi we see that locally our embedded p-surface
looks like a surface of revolution about the normal S direction.

3.2. Totally Geodesic Fibration. Let’s forget the frame bundle and work on
the base manifold N . The extrinsic curvature tensor (second fundamental forms)
is defined by K(V, W,X) = (V, DN

W X) where V , W are vertical vectors and
X is a horizontal vector. In a local frame we have Kabi = (ea, D

N
eb

ei). A ge-
odesic with tangent vector field V that is tangent to a fiber will satisfy the
geodesic equation DN

V V = 0 and tangentiality condition (V, X) = 0 for all
horizontal vectors X. Since the connection DN is metric compatible we have
0 = DN

V (V, X) = (DN
V V, X) + (V, DN

V X) = K(V, V, X) for all possible V . This
implies that the second fundamental form must vanish if all geodesics are tangent
to the fibration.

3.3. Gauss and Codazzi Equations. The integrability of the vertical distri-
bution allows us to consistently substitute θi = 0 into the equations above by
restricting to Fx, the fiber over x ∈ M .

Kabi = Kbai ,

Mija = Sija + Aija , see (3.5),

ωai = Kabiθ
b ,

πij = ωij −Aijaθ
a ,

dθa = −ωab ∧ θb .

Note that

dθa|Fx = −ωab ∧ θb|Fx

which tells us that ωab|Fx is the torsion free riemannian connection on Fx. To
work out the curvature we observe that

1
2
RN

abµνθ
µ ∧ θν = dωab + ωac ∧ ωcb − ωai ∧ ωbi .

Restricting to Fx we get the Gauss equation

1
2
RN

abcdθ
c ∧ θd =

1
2
RFx

abcdθ
c ∧ θd − 1

2
(KaciKbdi −KadiKbci)θc ∧ θd . (3.13)
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This is often written

RN
abcd = RFx

abcd − (KaciKbdi −KadiKbci) . (3.14)

Next we derive the Codazzi equation. Note that ωai = Kabiθ
b when restricted

to Fx. We have
1
2
RN

aicdθ
c ∧ θd =

1
2
RN

aiµνθ
µ ∧ θµ|Fx

= (dωai + ωab ∧ ωbi + ωaj ∧ ωji)|Fx ,

= (dωai + ωab ∧ ωbi + ωaj ∧ πji)|Fx + ωaj ∧Ajidθ
d ,

= D(Kadiθ
d)|Fx + KacjAjidθ

c ∧ θd .

In the above D is the covariant differential with connection (ωab, πij). If we write
DKabi = Kabi;jθ

j + Kabi;cθ
c then the last line of the above may be written as

Kadi;cθ
c ∧ θd + KacjAjidθ

c ∧ θd .

We have derived the Codazzi equation

RN
aicd = (Kadi;c −Kaci;d) + (KacjAjid −KadjAjic) . (3.15)

4. Riemannian Submersion

Many of the spacetimes studied by physicists are semi-riemannian submersions.
A submersion π : N → M of riemannian manifolds is called a riemannian sub-
mersion if dπ preserves the inner product of vectors orthogonal to the fibers [8].
A tangent vector is horizontal if it is orthogonal to the fibers. A riemannian
submersion implies a very specific form for the metric. If xi are local coordinates
on the base M and if ya are local coordinates on the fiber F then (x, y) are local
coordinates on N . The fibers are the submanifolds with x fixed. The metric of a
submersion is locally of the form

ds2
N = gij(x)dxi dxi + gab(x, y)

(
dya + Ca

i(x, y)dxi
) (

dyb + Cb
j(x, y)dxj

)
.

Sometimes in the physics literature this is referred to as a metric of Kaluza-
Klein type. If we fix x then the metric on a fiber gab(x, y)dya dyb varies as we
move along the base. In general curves of constant x will not be orthogonal
to curves of constant y. On the other hand we have that ∂/∂ya is orthogonal
to the horizonal vector field ∂/∂xi − Ca

i ∂/∂ya. The metric on the horizontal
space is gij(x) which is the metric on the base and is independent of choice of
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y. O’Neill studied the properties of riemannian submersions and discovered that
the geometry was governed by two tensor fields. One tensor field is the second
fundamental form (the extrinsic curvature) of the embedding of the fibers in N

and the other tensor field is the integrability tensor for the horizontal spaces. We
present here a formulation that is equivalent to O’Neill’s except that everything
is expressed in terms of orthonormal frames adapted to the fibration.

We first do some local analysis. Locally pull back the θs from F red(N) to
N via a section. If V is a vertical vector field on N , i.e., tangential to the
fibration π : N → M , the condition of a riemannian submersion can be written
as L V (θi ⊗ θi) = 0. This is simply the statement that θi ⊗ θi descends to the
base. A vertical vector field satisfies ιV θi = 0. A simple computation shows that

L V (θi ⊗ θi) = −(πij(V ) + πji(V ))θi ⊗ θj + 2V aSijaθ
i ⊗ θj ,

= 2V aSijaθ
i ⊗ θj .

The degenerate quadratic form θi ⊗ θi on N descends to a positive definite qua-
dratic form on the base M if

Sija = 0 . (4.1)

We can do the same analysis on F red(N) but the equations look different. The
vector field in this case is a vector field on F red(N) and will be of the form

V = V aea +
1
2
V abeab +

1
2
V ijeij .

Here (ea, ei, eab, eij) is the basis dual to (θa, θi, ωab, πij). We want L V θi = 0
and a brief computation leads to the equation 0 = −Vijθ

j + SijbV
bθj . From this

we learn that Vij = 0 and Sija = 0. Note that the vector field

V = V aea +
1
2
V abeab .

is of the type that is associated intrinsically with the fibers of the fibration π :
N → M . Finally we note that the conditions arising from L V θi = 0 at z ∈ N

do not depend on the derivatives of the components of V and therefore depend
only on V (z) and not its extension to a neighborhood of z.
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The structural equations for a riemannian submersion are

Kabi = Kbai and Aija = −Ajia ,

ωai = Kabiθ
b −Aijaθ

j ,

πij = ωij −Aijaθ
a ,

dθi = −πij ∧ θj ,

dθa = −ωab ∧ θb −Kabiθ
b ∧ θi −Aijaθ

i ∧ θj .

(4.2)

As we mentioned before Kabi are the second fundamental forms (extrinsic
curvatures) of the fibration. The tensor Aija measures the integrability of the
horizontal tangent spaces. We use the basic relation that if ξ is a 1-form then
dξ(X, Y ) = X(ξ(Y )) − Y (ξ(X)) − ξ([X, Y ]). First we take a section and we
pullback the structural equation. We have that ei is a basis for the horizon-
tal spaces of the submersion. If the horizontal spaces are to be integrable then
the bracket of two horizontal vector fields must be horizontal. We compute the
vertical component of the bracket as follows:

θa([ei, ej ]) = ei(θa(ej)) + ej(θa(ei))− (dθa)(ei, ej) = 2Aija .

Thus we see that the horizontal distribution is integrable if and only if the inte-
grability tensor Aija vanishes.

We note that d2θi = 0 and therefore

Πij ∧ θj = 0 , (4.3)

where

Πij = dπij + πik ∧ πkj . (4.4)

Wedging (4.3) with θk1 ∧· · ·∧θkp−1 we conclude that Πij ≡ 0 mod θk. So we can
write Πij = Ψijk ∧ θk for some 1-forms Ψijk that are skew in the indices i ↔ j.
From (4.3) we see that Ψijk ∧ θj ∧ θk = 0. This tells us that (Ψijk − Ψikj) ≡ 0
mod θl. Since Ψijk is symmetric in j ↔ k modulo θl but is it skew in i ↔ j we
conclude that Ψijk ≡ 0 mod θl. This tells us that Ψijk = Pijklθ

l. Putting this
all together we conclude that

Πij = dπij + πik ∧ πkj =
1
2
RM

ijklθ
k ∧ θl . (4.5)

Note that the right hand side is horizontal! This would not be true if we had
used the ωij connection.
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In the same way we see that the structural equation for ωab is given by

dωab = −ωac ∧ ωcb +
1
2
RFx

abcdθ
c ∧ θd

+
(
RN

abcj −AijbKaci + AijaKbci

)
θc ∧ θj

+
1
2

(
RN

abjk + AijaAikb −AikaAijb

)
θj ∧ θk

(4.6)

where RFx is given by the Gauss equation (3.14).

Next we compute the riemannian curvature of the base M by using the rie-
mannian data on the bundle N . Note that

1
2
RN

ijµνθ
µ ∧ θν = dωij + ωik ∧ ωkj − ωai ∧ ωaj .

Substituting the appropriate expressions we find

RN
ijkl = RM

ijkl + AilaAjk
a −AikaAj l

a − 2AijaAkl
a . (4.7)

We explicitly state the submersion curvature relations in Table 1 using the
O’Neill notation [9] where {n} denotes the number of base indices. If you take
ai–{3} and use the Bianchi identities B–{3} you get ij–{3}. The term B–{2} is
not skew under a ↔ b. From the fact that RN

abjk + RN
bajk = 0 we learn that

Ajka;b + Ajkb;a = −Kabj;k + Kabk;j . (4.8)

This relationship is also necessary to ensure that RN
aibj = RN

bjai. If you insert
this relationship into B–{2} you obtain ij–{2}. Finally we observe that using the
above relationship we can write a manifestly symmetric expression for RN

aibj .
We note that by (4.8), the term between parentheses in the expression RN

aibj =
AikbAj

k
a−KaciKb

c
j−(Aija;b+Kabi;j) is symmetric under the interchange ai ↔ bj.

Therefore we have

RN
aibj = AikbAj

k
a −KaciKb

c
j − 1

2
(Aija;b + Ajib;a + Kabi;j + Kbaj;i) . (4.9)

Using these relations the structural equation (4.6) may be rewritten as

dωab = −ωac ∧ ωcb +
1
2
RFx

abcdθ
c ∧ θd

+ (−Kcaj;b + Kcbj;a) θc ∧ θj

+
1
2

(−Ajka;b + Ajkb;a −KacjKb
c
k + KbcjKa

c
k) θj ∧ θk

(4.10)
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plane {n} Curvature

ab {0} RN
abcd = RFx

abcd − (KaciKbd
i −KadiKbc

i) [Gauss eq.]

ai or B {1} RN
aibc = −Kabi;c + Kaci;b −AkibKac

k + AkicKab
k [Codazzi eq.]

ai {2} RN
aibj = AikbAj

k
a −Aija;b −Kabi;j −KaciKb

c
j

ai {3} RN
aijk = Aija;k −Aika;j − 2AjkbKa

b
i

ij {2} RN
ijab = AikbAj

k
a −AikaAj

k
b −Aija;b + Aijb;a + KacjKb

c
i −KaciKb

c
j

ij {3} RN
ijkb = Aijb;k −AjkaK

a
bi + AikaK

a
bj + AijaK

a
bk [dual Codazzi eq.]

ij {4} RN
ijkl = RM

ijkl + AilaAjk
a −AikaAjl

a − 2AijaAkl
a [dual Gauss eq.]

B {2}
RN

abjk = −AijaA
i
kb + AijbA

i
ka − 2Ajka;b

−Kabj;k + Kabk;j −KbckK
c
aj + KbcjK

c
ak

B {3}
0 = −Ajka;l −Akla;j −Alja;k

+ AjkbKa
b
l + AklbKa

b
j + AljbKa

b
k

Table 1. Relationship of the bundle curvature to the base geometry
and fiber geometry for a riemannian submersion. Equations associated
with a rotation in the µν-plane, i.e., a consequence of dωµν , are labeled
by the first column. The second column uses O’Neill’s notation where
{n} denotes the number of horizontal indices. Rows identified with a
“B” are equations that are a direct consequence of the Bianchi identities
that follow from d2θa = 0.

If we now use the structure equation above look for Bianchi identities in d2θa = 0
we find (4.8) and B–{3} as the identities in addition to the cyclic identity that
RFx satisfies.



472 Orlando Alvarez

SUMMARY: The full structural equations for a riemannian submersion are

Kabi = Kbai and Aija = −Ajia ,

ωai = Kabiθ
b −Aijaθ

j ,

πij = ωij −Aijaθ
a ,

dθi = −πij ∧ θj ,

dθa = −ωab ∧ θb −Kabiθ
b ∧ θi −Aijaθ

i ∧ θj ,

dπij = −πik ∧ πkj +
1
2
RM

ijkl θ
k ∧ θl ,

dωab = −ωac ∧ ωcb +
1
2
RFx

abcdθ
c ∧ θd

+ (−Kcaj;b + Kcbj;a) θc ∧ θj

+
1
2

(−Ajka;b + Ajkb;a −KacjKb
c
k + KbcjKa

c
k) θj ∧ θk

(4.11)

If X, Y are horizontal vectors then the sectional curvature is given by

sectN (X, Y ) = sectM (X, Y )− 3
(AikaX

iY k)(Ajl
aXjY l)

(X, X)(Y, Y )− (X, Y )2
. (4.12)

A consequence of the above is O’Neill’s result [8] that in a strictly riemannian
submersion the sectional curvature of the base is “increased” because the second
summand subtracts a manifestly positive semi-definite expression. Note that if
N is flat then the base always has positive sectional curvature.

4.1. The Ricci Tensor and Ricci Scalar. It is straightforward to write down
the Ricci tensor in the case of a submersion:

RN
bd = RFx

bd −Kbd
i
;i −Kc

ciKbd
i + Aik

bAikd ,

RN
ai = −Kb

bi;a + Kb
ai;b + Aj

ia;j −AijbKab
j + AkiaKb

bk ,

RN
ij = RM

ij − 2AikdAj
kd −KcdiK

cd
j − 1

2
(Ka

ai;j + Ka
aj;i) .

(4.13)

The Ricci scalar is easily seen to be

RN = RM + RFx − 2Ka
ai

;i −KabiK
abi −Kc

ciKa
ai −AijaA

ija . (4.14)

5. The Group Action

5.1. Transitive Case and Invariant Tensors. Assume we have a connected
Lie group G acting transitively on a connected manifold M via isometries. Let
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H ⊂ G be the isotropy group at x ∈ M . We know that M ≈ G/H and that
π : G → M is a principal H-bundle. We assume that the Lie algebra is a reductive
Lie algebra: g = m ⊕ h with [h,m] ⊂ m. There is a canonical identification of
TxM with m. It is well known that G-invariant tensors on M ≈ G/H are in
a 1-1 correspondence with H-invariant tensors on m, see [9]. The argument is
roughly as follows. Assume S is a G-invariant tensor on M then if y = g · x then
Sy = g · Sx. If y = g′ · x then g′ = gh for some h ∈ H. We immediately see that
since g · Sx = g′ · Sx we must have that h · Sx = Sx for all h ∈ H.

5.2. General Case. Assume we have a connected Lie group G acting on N via
isometries. The orbit of z ∈ N by the G action will be denoted by Oz. If Gz

is the isotropy group at z then Oz ≈ G/Gz. We assume all the Gz ⊂ G are
isomorphic as we vary z ∈ N . The orbits will foliate N . Under our assumptions,
the dimensions of the orbits are constant and we have a fibration π : N → M

such that if π(z) = x then the fiber at x is isomorphic to the orbit Fx ≈ Oz.

Let dimOz = q then the foliation reduces the structure group of the orthonor-
mal frame bundle from SO(n) to SO(p)× SO(q). Let y ∈ Oz such that y = g · z
for g ∈ G. If we write TzN = TzOz ⊕ TzO⊥z and TyN = TyOz ⊕ TyO⊥z then
we have that g ∈ G takes TzOz isometrically to TyOz and TzO⊥z isometrically to
TyO⊥z . The isometric action on the normal bundle to the orbits tells us that we
have a riemannian submersion and therefore structural equations (4.2) are valid.
Additionally we have an isometric action on the fibers. The Killing vector field
is tangential to the orbits therefore its lift to the reduced frame bundle is of the
form

V = V aea +
1
2
Vabeab +

1
2
Vijeij . (5.1)

Using the invariance conditions L V θi = 0, L V θa = 0, and structural equations
(4.2) leads to

Vij = 0 ,

Va;b + Vb;a = 0 ,

Vab − Va;b = 0 ,

Va;i −KabiV
b = 0 ,

(5.2)
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where DVa = dVa + ωabVb = Va;bθ
b + Va;iθ

i. The first equation tells us that the
G action on TzO⊥z is trivial5. The middle two equations tell us that when we
restrict to the orbit Oz then we have the familiar Killing equations. If the orbit
bends, i.e., the second fundamental form is nonvanishing, then the last equation
tell us that the normal derivative of the Killing vector field is nontrivial and is
determined by the second fundamental form.

At z ∈ N we have that Gz acts as an isometry on TzN ≈ TzOz ⊕ TzO⊥z . Since
Oz is the orbit of G, the isotropy subgroup Gz acts as an isometry and leaves
invariant the tangent space TzOz. Consequently, Gz also acts as an isometry on
the orthogonal complement TzO⊥z . The action of G is transitive on the orbit Oz.
If we look at the structural equations (4.2) we see that the second fundamental
tensor Kabi(z) and the integrability tensor Aija(z) must be invariant tensors under
the Gz action by generalizing the arguments given in Section 5.1 to the normal
bundle TzO⊥z . Also remember Kabi and Aija are ordinary functions on the reduced
frame bundle. The structure equations show that these functions are constants
under the action of G. To see this consider a Killing vector V then we note that
L V (dθa) = d(L V θa) = 0 and therefore

0 = −(L V ωab) ∧ θb − V (Kabi)θb ∧ θi − V (Aija)θi ∧ θj .

Note there is a unique term that is a form of degree 2 in the horizontal direction
and therefore V (Aabi) = 0 and we conclude that Aija is constant under the action
of G. This reduces the equation to [L V ωab−V (Kabi)θi]∧θb = 0. Cartan’s lemma
tells us that

L V ωab − V (Kabi)θi = Babcθ
c ,

where Babc = Bacb. Symmetrizing the displayed equation under a ↔ b we see
that V (Kabi)θi = 1

2(Babc + Bbac)θc. We immediately see that V (Kabi) = 0 and
Babc = −Bbac. This tells us that Kabi is constant under the action of G. Also
Babc is skew under a ↔ b but symmetric under b ↔ c and therefore Babc = 0 and
consequently we also learn as expected L V ωab = 0. The same type of statements
will be true for the curvatures. We summarize below.

5This is one of these left-right action confusions. The reader is urged to understand this in

the S2 ≈ SO(3)/ SO(2) example.
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Proposition 5.1. Let u ∈ F red(N) and let Bu ⊂ F red(N) be the orbit6 of u

under the action of G. The functions Kabi, Aija and the curvatures are constant
on Bu.

We have some information of the derivatives of various tensors. As an example
we consider the case of the extrinsic curvature. Remember that Kabi are functions
on F red(N) and the differential dKabi in the various directions on F red(N) are
given by

dKabi = −ωacKcbi − ωbcKaci − πijKabj + Kabi;jθ
j + Kabi;cθ

c . (5.3)

If we differentiate along the direction of the Killing vector field we find using (5.2)
and the previous equation that

0 = −VacKcbi − VbcKaci + Kabi;cV
c . (5.4)

If the integrability tensor Aija vanishes then the horizontal distribution is in-
tegrable. Each leaf of the foliation is isometric to the base M and also each leaf
is orthogonal to the fibers. This can easily happen because of the group action.
Assume that under the Gz action there are no fixed vectors in TzOz. The inte-
grability tensor Aij

a(z) is an invariant tensor under Gz that transforms just like
a vector in the vector space TzOz and thus it must vanish. This extends every-
where because we are assuming that the G action leads to a bona fide fibration
and the vector spaces TzOz, groups Gz and the associated representations are all
isomorphic. This leads to the following proposition.

Proposition 5.2. If under the Gz action there are no fixed vectors in TzOz then
Aija = 0. The horizontal distribution is integrable and its integral submanifolds
are orthogonal to the fibers.

These methods are also useful for studying axisymmetric solutions. For ex-
ample, Theorem 7.1.1 in Wald’s book [6] can be proven by using the methods
discussed above.

5.3. The Basic Example. The basic non-trivial example is given by the SO(3)
action on N = E3\{0}. The fibration π : N → M has fibers isomorphic to S2

and the base is M = R+. We can easily write down the structural equations (4.2)
by noting that since dimM = 1 the integrability tensor Aija vanishes identically.

6It can be shown that Bu is a sub-bundle of F red(N).
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Note that the indices i, j = 1 and they will be suppressed. At z ∈ N , the isotropy
group is isomorphic to SO(2) and therefore the second fundamental form must of
the form Kab = kδab where k is constant on each S2 fiber and can only depend on
the radial direction, i.e., it is the pullback of a function on M . Let’s write the 1-
forms as (ρ, θ, φ) where we are using a notation analogous to spherical coordinates
(r, ϑ, ϕ).

ωai = kθa ,

dθ = −ω ∧ φ− kθ ∧ ρ ,

dφ = +ω ∧ θ − kφ ∧ ρ ,

dρ = 0 .

Next we observe that since E3 is flat we have that dωai +ωab∧ωbi +ωaj ∧ωji = 0.
This greatly simplifies to d(kθa)+kω∧θa = 0. A little algebra yields (dk+k2ρ)∧
θa = 0 and consequently

dk = −k2 ρ . (5.5)

This immediately tells us that k is constant on the fibers as expected. From
d2θ = d2φ = 0 we learn that dω = Aθ ∧ φ. Note that ω is invariant on an orbit,
the area element θ ∧ φ is invariant on the orbit, therefore A must be constant on
the orbits. The equation d2ω = 0 then tells us that dA + 2kAρ = 0.

Since dρ = 0 we can set ρ = dr for some function r specified up to an additive
constant. We can easily integrate (5.5) to obtain 1/k = r + c. By redefining the
coordinate r we can set c = 0. Thus we find that the second fundamental form
is determined by

k =
1
r
. (5.6)

The curvature is given by

dω =
A0

r2
θ ∧ φ , (5.7)

where A0 ∈ R. A0 may be determined by topological or by geometrical consider-
ations.
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In summary the structural equations associated with the SO(3) action on
E3\{0} become

ρ = dr ,

dθ = −ω ∧ φ− 1
r

θ ∧ dr ,

dφ = +ω ∧ θ − 1
r

φ ∧ dr ,

dω =
A0

r2
θ ∧ φ .

(5.8)

On a level surface of constant r we have that (θ, φ, ω) are the Maurer-Cartan
forms for SO(3). The constant A0 may be determined via topological arguments
or coordinate arguments where you find that A0 = 1.

The space N = E3\{0} is flat and the geodesics are straight lines. It is not a
complete riemannian manifold because radial geodesics reach the origin in finite
affine parameter. It is clear that by adding an extra point N ∪{0} ≈ E3 becomes
a complete riemannian manifold. We can try to do the same analysis by thinking
of N in terms of its structural equation (5.8). This analysis is much more compli-
cated. The structural equations are non-singular as long as r 6= 0 and this is true
in N . Analyzing the structural equation you can see that radial geodesics get to
r = 0 in finite time and thus it appears that there is a hole in the space. You
have to work little hard with the structural equations to show that the apparent
singularity at r = 0 is removable and that by adding a point at r = 0 we get the
complete smooth manifold E3.

6. Spherically Symmetric (3 + 1) Geometry

Assume N is a 4-dimensional lorentzian manifold that is both orientable and
time orientable. This means that the structure group of of the orthonormal
Lorentz frame bundle is SO↑(1, 3), the connected component of the Lorentz group.
We assume there is an SO(3) action that leaves the metric invariant and that
the orbit of a point is a 2-dimensional spacelike surface. Let Op be the orbit
through p ∈ N . This action leads to a foliation of N by the 2-dimensional
orbits. Under some assumptions of a constant dimensionality of the orbits we
can assume that this foliation is actually a fibration. Our hypothesis tells us
that dimOp = 2. If Gp is the isotropy group at p then dim Gp = 1. This tells
us that Op ≈ SO(3)/Gp ≈ S2. The SO(3) action identifies a spacelike 2-plane
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TpOp ⊂ TpN at each p ∈ N that induces a reduction of the structure group of
the lorentzian orthonormal frame bundle from SO↑(1, 3) to SO↑(1, 1)× SO(2). A
consequence is that there is only one ωab and one πij . If we use some type of
“Schwarzschild spherical coordinates” denoted by (t, r, ϑ, φ). Then we will have
non-vanishing connections ωϑφ and πtr. If π : N → M is our fiber bundle and if
π(p) = x then the fiber over x is given by Fx = Op.

The general discussion of Section 5.2 tells us that we have a pseudo-riemannian
submersion. At p ∈ N we can write TpN = TpOp ⊕ TpO⊥p and the SO(3) action
tells us that both the riemannian metric on TpOp and the lorentzian metric on
TpO⊥p are invariant under the SO(3) action. At p ∈ N , all geometrical structures
must be invariant under the isotropy group action Gp ≈ SO(2). The action of Gp

on TpOp is the standard SO(2) action and the action on TpO⊥p is automatically
trivial because there is no SO(2) subgroup in SO↑(1, 1). Because of this we
can conclude that the integrability tensor Aija for the horizontal spaces of the
submersion must vanish. At p ∈ N the integrability tensor may be viewed as a
map Ap : Λ2(TpO⊥p ) → TpOp. We note that Λ2(TpO⊥p ) is one dimensional so Ap

on the normalized area element gives a preferred vector on TpOp. Said differently
we must have Aija = εijva. A non-vanishing vector field v tangential to Op is not
Gp invariant and must therefore vanish7. This tells us that v must vanish. Thus
we have learned that the horizontal subspaces are integrable.

Similarly the second fundamental forms Kabi(p) must be invariant under Gp

otherwise the structure group will be further reduced. This immediately tells us
that Kabi = δabSi where σ = Siθ

i will be called the second fundamental 1-form.

We can extend this argument and conclude that RN
ia = 0 and RN

ab ∝ δab. We
will denote by η =

(−1 0
0 +1

)
the Minkowski metric on TO⊥p .

The structural equations (4.2) applied to this case become

ωai = Siθ
a ,

πij = ωij ,

dθi = −πij ∧ θj ,

dθa = −ωab ∧ θb − Siθ
a ∧ θi .

(6.1)

7The tensor Aija must be invariant under Gp if not then the structure group will be further

reduced.
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Next we explore additional properties that follow from the SO(3) action. First
we observe that ωab did not get modified by the symmetry breakdown therefore
we know that under the action of the SO(3) Killing vector

V = V aea +
1
2
Va;beab , (6.2)

the connection is invariant L V ωab = 0. Also L V ωai = 0 because ωai in (6.1)
comes from restriction to the reduced orthonormal frame bundle F red(N) and
the Killing vector field V is tangential to F red(N) ⊂ F(N). This immediately
implies that ιV dSi = Si;aV

a = 0 from which we conclude that Si;a = 0. Next
we show that the 1-form σ = Siθ

i is invariant under the SO(3) action. We have
that L V σ = ιV dσ + dιV σ. We observe that dσ = Si;jθ

j + Si;aθ
a = Si;jθ

j . Since
ιV σ = 0 and ιV dσ = 0 we see that L V σ = 0.

Alternatively, this can also be seen by looking at the reduced structure equa-
tions (6.1) directly. First we observe that L V σ = L V (Siθ

i) = (ιV dSi)θi =
V aSi;aθ

i. Next we note that 0 = d(L V θa) = L V (dθa) from which we conclude
that 0 = (L V ωab) ∧ θb + (L V σ) ∧ θa. If we write ωab = εabω we see that the
previous equation becomes

(L V ω) ∧ θ3 + V aSi;aθ
i ∧ θ2 = 0 ,

−(L V ω) ∧ θ2 + V aSi;aθ
i ∧ θ3 = 0 .

By inspection we see that the unique solution is L V ω = 0 and Si;a = 0. In
conclusion we have that

dσ = −1
2
(Si;j − Sj;i)θi ∧ θj ,

Si;a = 0 .
(6.3)

Notice that (4.8) tells us that Si;j = Sj;i and therefore we learn that dσ = 0.
This is also a consequence of

0 = d2θa = − (εabω + δabdσ) ∧ θb .

One of the equations above is ω ∧ θ3 + dσ ∧ θ2 = 0. If we wedge with θ3 we find
that dσ ∧ θ2 ∧ θ3 = 0. If we use (6.3) we immediately learn that S0;1 = S1;0, i.e.,
σ is a closed 1-form: dσ = 0. Therefore we see that dω ∧ θa = 0. Using a similar
argument we see that

dω = kFxθ2 ∧ θ3 . (6.4)

We will shortly return to this equation.
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Using the submersion curvature results in Table 1 we immediately see that

RN
ijkl = RM

ijkl , (6.5)

RN
ijab = 0 , (6.6)

RN
ijka = 0 . (6.7)

RN
aibj = −δab(Si;j + SiSj) . (6.8)

Note that the Gp action implies that RN
abci = RN

ciab = 0 and this can explicitly be
verified from the formulas. We point out that

RM
ijkl = kM εijεkl = −kM (ηikηjl − ηilηjk) , (6.9)

because M is two dimensional. The negative sign in the last equality is due to
the negative sign in the Minkowski metric.

We observe that since the fiber Op is 2-dimensional we have that RFx
abcd =

kFxεabεcd = kFx(δacδbd−δadδbc). Again using the results from Table 1 we see that

RN
abcd = (kFx − SiSi)(δacδbd − δadδbc) . (6.10)

Putting all this together we learn that the Cartan structural equation for the
SO(2) curvature (4.10) may be written in this case as

dωab = kFxθa ∧ θb . (6.11)

The SO(3)-orbits are “round” 2-spheres and we have that

kFx =
1
r2

. (6.12)

Here r : F red(N) → R+ is the radius of the 2-sphere. Since know that kFx is
constant on each orbit there exists a globally defined function rM : M → R+ such
that r is the pullback to the bundle of rM . The function rM is just the radius
of the fibering S2. We will avoid all the notation required and simply refer to
the radius function as r and implicitly assume its domain on context. Note that
dkFx is independent of θa because of the SO(3) action and it is also independent
of the connections because it is invariant under SO↑(1, 1) × SO(2). Computing
0 = d2ωab we find

0 =
(
dkFx + 2kFx σ

) ∧ θ2 ∧ θ3 .

Since kFx and σ are SO(3) invariant we learn that

dkFx + 2kFx σ = 0 . (6.13)
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Using (6.12) we see that

σ =
1
r

dr = d(log r) . (6.14)

We have learned that σ is exact as will be collaborated by an independent argu-
ment later. In fact, the above equation will be valid everywhere if the fibration
is non-singular. Next we observe that if dr = riθ

i then

Si =
ri

r
. (6.15)

The Gauss equation (6.10) becomes

RN
abcd =

(
1− ‖dr‖2

M

r2

)
(δacδbd − δadδbc) . (6.16)

The Ricci tensor is computed using (4.13). First we note that as expected by
Gp invariance we have RN

ai = 0. Doing the computations we find

RN
ij = −2(Si;j + SiSj)− kMηij ,

= −2
ri;j

r
− kMηij ,

RN
ab =

[
kF − (Si

;i + 2SiSi)
]
δab

=
(

1− ‖dr‖2
M − rri

;i

r2

)
δab ,

=
(

2−2(r2)
2r2

)
δab .

(6.17)

The wave operator is defined by 2f = ηijf;i;j where each semi-colon denotes a
covariant derivative.

The Cartan structural equations associated with the SO(3) action on N are

dθ0 = +π ∧ θ1 , (6.18)

dθ1 = +π ∧ θ0 , (6.19)

dπ = kM θ0 ∧ θ1 , where π = π01 , (6.20)

dθ2 = −ω ∧ θ3 − 1
r

θ2 ∧ dr , (6.21)

dθ3 = +ω ∧ θ2 − 1
r

θ3 ∧ dr , (6.22)

dω = +
1
r2

θ2 ∧ θ3 , where ω = ω23 . (6.23)
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The equation d2π = 0 tells you that dkM = kM
1 θ1+kM

2 θ2, i.e., kM is the pullback
to the frame bundle of a function on M . The geometry is determined by two
functions, r and kM , that are the pullbacks of functions on M . If r and kM

are non-singular in a neighborhood of a point q ∈ F red(N) then the structural
equations can be integrated to locally construct the frame bundle.

If r and kM are independent functions in a neighborhood in M , i.e., dr∧dkM 6=
0, then the inverse function theorem tells you that ϕ : p ∈ M 7→ (r(p), kM (p)) ∈
R2 can be used as a local coordinate system for the neighborhood.

The converse of the above will be important to us later. If r and kM are
dependent functions in a neighborhood in M , i.e., dr ∧ dkM = 0, then kM is a
function of r. The reason is that d(kM dr) = 0 and therefore locally there exists
a function F such that dF = kM dr.

7. Vacuum Einstein Equations

The vacuum Einstein equations are RN
ij = 0 and RN

ab = 0. Using (6.17) these
may be written as

−2
ri;j

r
− kMηij = 0 ,

(
1− ‖dr‖2

M − rri
;i

r2

)
δab = 0 .

(7.1)

Taking the trace of each of the equations above we learn

ri
;i

r
+ kM = 0 ,

ri
;i

r
− 1− ‖dr‖2

M

r2
= 0 .

(7.2)

Taking the difference of the equations above we see that

kM = − 1
r2

(
1− ‖dr‖2

M

)
. (7.3)

The dalembertian term of (7.2) may be rewritten as

2(r2) = 2 , (7.4)

a hyperbolic equation for r2. In some sense, the area of the fibering 2-sphere,
A = 4πr2, is a propagating field on M with a constant source.
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Finally we point out that automatically there is an extra killing vector. Con-
sider a “horizontal” vector field

X = Xiei +
1
2
Xijeij

then we have

L X θa =
Xiri

r
θa ,

L X θi = −Xijθ
j + DX i .

(7.5)

Notice that for any horizontal X, the change in θa ⊗ θa is conformal8. On the
other hand if Xi ∝ εijrj then the first equation above is automatically zero. We
will see that we can make the second also zero. Choose Xi = εikrkF (r) for some
real valued function of r. We note that DXi = Xi;jθ

j + Xi;aθ
a. The Killing

conditions require Xi;a = 0, i.e., X is intrinsically associated with the base M .
The second displayed equation above also requires Xi;j + Xj;i = 0. Next we note
that

Xi;j = εi
krk;jF (r) + εi

krkrj F ′(r) ,

= εikr
krjF

′(r)− 1
2
εijk

MrF (r) .

The condition for the flow to generate an isometry is F ′(r) = 0 or equivalently
F (r) = F0 where F0 is a constant. In conclusion we have an additional Killing
vector given by

Xi = −εijrj . (7.6)

The vectors ri and Xi are Minkowski orthogonal, riX
i = 0, and that

‖X‖2
M = −‖∇r‖2

M . (7.7)

Note that if ∇r is spacelike then X is timelike and vice-versa. If ∇r is lightlike
then X is also lightlike and vice-versa.

Next we observe that the Lie derivative of the metric on the fibers along the
direction of ∇r is given by

L ∇r(θa ⊗ θa) = 2
‖∇r‖2

M

r
θa ⊗ θa . (7.8)

8This has to be true because there is a unique round metric on S2 up to scale. The horizontal

vector field moves you to another point where the associated fiber is also a round S2.
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We conclude that if ∇r is space-like then the area of the 2-sphere increases in
the direction of ∇r. If ∇r is time-like then the area of the 2-sphere decreases in
the direction of ∇r.

7.1. Properties of the radius function. Next we derive a differential equation
satisfied by ν = riri = ‖dr‖2

M .

dν = 2riri;jθ
j ,

= −rkM dr ,

=
1− ν

r
dr .

A little algebra leads to the equation

d
(
(ν − 1)r

)
= 0 . (7.9)

The solution to this equation is elementary and given by

ν = ‖dr‖2
M = 1 +

c

r
, (7.10)

where c ∈ R is a constant of integration. We also have using (7.7)

‖X‖2
M = −‖dr‖2

M = −
(
1 +

c

r

)
. (7.11)

Using (7.3) we see that

kM =
c

r3
. (7.12)

Next we determine the constant c. Here we need to make a physical assump-
tion. We assume that in the spacetime N there is a region that is asymptotically
minkowskian and looks like the gravitational far field of a localized mass distri-
bution. The Cartan structural equations tell us that as r → +∞ our geometry
becomes asymptotically minkowskian. The equation for geodesic deviation says
that DuDuη = DuDηu = [Du, Dη]u = RN (u, η)u. In the instantaneous rest
frame we have u = et and we look at η = ηrer. Our relative radial acceleration
equation becomes

d2ηr

dt2
= Rr

ttrη
r = Rrttrη

r = −kMηr = − c

r3
ηr .

Newtonian mechanics tells us that r̈ = −M/r2 where M is the mass of the star.
We have that ηr = δr and therefore η̈r = (2M/r3)ηr. We immediately see that

c = −RS where RS = 2M (7.13)
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is called the Schwarzschild radius.

Finally we observe that we can define a closed 1-form τ by9

τ =
r1θ

0 + r0θ
1

1−RS/r
=

−εijr
iθj

1−RS/r
, (7.14)

with the property that τ(X) = 1. Note that τ is not defined if r = RS . Up to
scale we have that τ is basically ∗dr, the Hodge dual on M of dr.

It is worthwhile to summarize the data that determines our geometry:

RS = 2M , Schwarzschild radius, (7.15)

rM : M → R+ , radius of the fibering S2 , (7.16)

dr = riθ
i , (7.17)

ri;j =
RS

2r2
ηij , (7.18)

Xi = −εijrj , (7.19)

‖dr‖2
M = 1− RS

r
, (7.20)

‖X‖2
M = −

(
1− RS

r

)
, (7.21)

τ =
r1θ

0 + r0θ
1

1−RS/r
=

−εijr
iθj

1−RS/r
and dτ = 0 , (7.22)

‖τ‖2
M = −

(
1− RS

r

)−1

. (7.23)

9On a two dimensional manifold, a locally non-vanishing 1-form α always defines a local fo-

liation because the Frobenius condition dα ≡ 0 mod α is automatically satisfied. Furthermore,

the Frobenius theorem states that there exists functions f and g such that α = f dg. In our

case we have that α = ∗dr.
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The Cartan structural equations for the reduced frame bundle of the Schwarzschild
spacetime are

dθ0 = +π ∧ θ1 , (7.24)

dθ1 = +π ∧ θ0 , (7.25)

dπ = −RS

r3
θ0 ∧ θ1 , where π = π01 , (7.26)

dθ2 = −ω ∧ θ3 − 1
r

θ2 ∧ dr , (7.27)

dθ3 = +ω ∧ θ2 − 1
r

θ3 ∧ dr , (7.28)

dω = +
1
r2

θ2 ∧ θ3 , where ω = ω23 . (7.29)

Note that the only singularity in the structural equations occurs where r = 0.
For this reason we expect the frame bundle of the Schwarzschild manifold to be
smooth everywhere as long as r 6= 0. In particular we do not expect any type
of singularity when rM = RS . The exceptional properties of the Schwarzschild
solution at rM = RS occur because of the behavior of dr at r = RS . The only
potential problems with the structural equations occur at r = 0. What type of
singularity is at r = 0? Is it removable as in the example of E3\{0} or is it a true
singularity?

We can make a consistency check on equations10 (7.27), (7.28), (7.29). If we
make a conformal rescaling θ̂a = θa/r then these equations may be written as

dθ̂2 = −ω ∧ θ̂3 ,

dθ̂3 = +ω ∧ θ̂2 ,

dω = +θ̂2 ∧ θ̂3 .

These equations are easily identifiable. They are the Cartan structural equa-
tions for the orthogonal frame bundle of the unit 2-sphere. Note that they are
the Maurer-Cartan equations for the group SO(3) and thus the frame bundle of
S2 is isomorphic to SO(3). The base space for this frame bundle is precisely
SO(3)/ SO(2) ≈ S2.

7.2. Geodesics. We work out some properties of the geodesics on M by using
Cartan’s method [11], see Appendix C. It is useful to introduce a null basis

10This also applies to (5.8).
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for the canonical 1-forms on the Lorentz frame bundle of M by defining θ± =
θ0 ± θ1 then the pullback of the metric on M to the frame bundle is given by
−1

2 (θ+ ⊗ θ− + θ− ⊗ θ+). We also note that

dθ± = ±π ∧ θ± ,

dπ =
RS

2r3
θ+ ∧ θ− .

(7.30)

Remember that we are working “upstairs”!

Let θi = θ̄i + uidλ and π = π̄ for λ ≥ 0. Here barred 1-forms are independent
of dλ analogous to ϑ and $ in Appendix C. The initial conditions are that
θ̄i(0) = 0, ∂λθ̄i(0) = dui, and π̄(0) = 0. Differentiating once we see that

∂θ̄±

∂λ
= du± ∓ π̄u±, ,

∂π̄

∂λ
=

RS

2r3

(
u+θ̄− − u−θ̄+

)
.

Differentiating again we see that
(

∂2θ̄+/∂λ2

∂2θ̄−/∂λ2

)
=

RS

2 r3

(
u+u− −(u+)2

−(u−)2 u+u−

)(
θ+

θ−

)
(7.31)

Next we derive an ODE that r satisfies along a geodesic. We note that dr/dλ =
r+u+ + r−u−. Next we remember that dr± = ∓πr± + r±;+θ+ + r±;−θ− and that
r+;+ = r−;− = 0 by (7.18). Therefore along a geodesic we have that

dr+

dλ
= −RS

4r2
u− ,

dr−
dλ

= −RS

4r2
u+ .

(7.32)

We immediately see that
d2r

dλ2
=

RS

2r2
‖u‖2

M . (7.33)

The equations that describe the exponential map (7.31) are complicated but the
equation that describes the evolution of r along a geodesic (7.33) is relatively
simple.

The case of a null radial geodesic is particularly simple because d2r/dλ2 = 0. If
the horizontal lift of the null geodesic begins at a point p ∈ F(M) with r(p) = rp

and dr(p) = ri(p)θi(p) then the evolution of r along the lift is

r(λ) = rp + λ
(
r+(p)u+ + r−(p)u−

)
. (7.34)
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There are four cases of null geodesics to analyze corresponding to

(u+, u−) ∈ {(+1, 0), (0,+1), (−1, 0), (0,−1)} .

The latter two cases may be considered with the first two by allowing λ to be
negative. In the first case we have that r(λ) = rp + λr+(p), and in the second
case we have r(λ) = rp +λr−(p). Choose a Lorentz frame p ∈ F(M), if r+(p) > 0
then r+(p′) > 0 for all p′ in the same fiber because the action of the (1 + 1)
dimensional Lorentz group translates to an action r± → e±ηr± where η is the
rapidity. This means that we can define the following four open subsets of M :

UI = {q ∈ M | r+(p) > 0, r−(p) < 0} ,

UII = {q ∈ M | r+(p) < 0, r−(p) < 0} ,

UIII = {q ∈ M | r+(p) > 0, r−(p) > 0} ,

UIV = {q ∈ M | r+(p) < 0, r−(p) > 0} .

(7.35)

In the above p ∈ F(M) is any Lorentz orthonormal frame at q ∈ M .

By hypothesis, our space-time manifold N has a region where it is asymptot-
ically like Minkowski space. In such a region a light ray can go radially inward
(u+, u−) = (0, 1) or radially outward (u+, u−) = (1, 0). In that asymptotically
Minkowski region we can choose a p ∈ F(M) with the property that r+(p) > 0
and r−(p) < 0 and thus we conclude that UI 6= ∅ and that the familiar asymp-
totic exterior lies in UI. According to (7.34), an inward future directed radial null
geodesic will have r(λ) = rp + λr−(p). Two important observations are that for
finite positive affine parameter the light ray will cross r = RS and in finite affine
parameter it will also hit r = 0. This last observation says that our space may
have a singularity because the Cartan structural equations have a singularity at
r = 0. We will not address the question of whether this is a real or a removable
singularity. We will concentrate on what happens to null geodesics at r = RS .

7.3. Schwarzschild Geometry without Coordinates. The key to under-
standing the geometry of the Schwarzschild solution is to understand the level
sets of the radius function r : M → R+. For all practical purposes, both physical
and mathematical, we can take M to be simply connected. Topology tells us that
M has a universal simply connected cover κ : M̃ → M . We have a fiber bundle
π : N → M . We can use the covering map κ to obtain the pull back bundle
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π̃ : Ñ → M̃ and we can pull back all metrics. The conclusion is that we might
as well as well assume that M is simply connected. We do this now.

An important ingredient in our discussion is that we can use r as a Morse
function11 to learn about M . The Einstein equation (7.18) tells that that the
critical points of r are non-degenerate. Let’s briefly review the argument. Assume
I have a smooth function f : X → R where X is a manifold. The point p ∈ X

is a critical point if df |p = 0. The hessian of f at x0 can be defined intrinsically
but it is easier to do it in terms of local coordinates. Let (xi) and (yi) be two
local coordinate systems. We observe that the matrix of second derivatives has
a non-tensorial transformation law

∂2f

∂xi ∂xj
=

∂yk

∂xi

∂yl

∂xj

∂2f

∂yk ∂yl
+

∂2yk

∂xi ∂xj

∂f

∂yk
,

except at a critical point p where ∂f/∂y(p) = 0 and the above reduces to

∂2f

∂xi ∂xj

∣∣∣∣
p

=
∂yk

∂xi

∣∣∣∣
p

∂yl

∂xj

∣∣∣∣
p

∂2f

∂yk ∂yl

∣∣∣∣
p

.

The next thing we observe is that the hessian at a critical point is given by the
second covariant derivative with respect to any connection Γ. The reason is that

(DiDjf)(p) =
∂2f

∂xi ∂xj
(p)− Γk

ij(p)
∂f

∂xk
(p) =

∂2f

∂xi ∂xj
(p) .

If r : M → R+ has critical points then they must be non-degenerate because of
(7.18).

Assume the radius function r : M → R+ has a critical point at p ∈ M .
We know by (7.18) that this critical point is non-degenerate. We also know by
Morse’s lemma [13] that in a neighborhood of p we can find local coordinate
(y0, y1) centered at p that are Minkowski orthonormal at p such that in the
neighborhood we have that

r(y) = RS +
−(y0)2 + (y1)2

4RS
. (7.36)

The neighborhood of any critical point of the function rM looks like Figure 1.

We begin analyzing the properties of rM : M → R+. Let U> = {p ∈
M | rM (p) > RS} and let U< = {p ∈ M | 0 < rM (p) < RS}. Note that U>

and U< are both open subsets of M . It is clear from (7.20) that drM (p) 6= 0 if

11There is an application of Morse theory to black holes by Carter [12, p. 187] but it is

different from ours.
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Figure 1. Behavior of the function rM near the critical point.

p ∈ U< ∪ U>. The implicit function theorem tells us that the level sets of the
function rM give a good foliation on U< ∪ U>. The only question remains what
happens at rM = RS where we note that ‖dr‖2

M = 0 by (7.20). Since the metric
is Minkowski we cannot conclude that dr = 0, but we do know that if there is a
critical point then it must be non-degenerate and that it must have rM = RS .

Next we establish that r must have a critical point. We choose a point p1 ∈
UI ⊂ M that is in the asymptotic Minkowski region rM À RS where r+(q1) > 0
and r−(q1) < 0 and let q1 ∈ F(M) be a Lorentz frame at p1. We will construct
a null broken horizontal curve beginning at q1 that takes us to the critical point.
Begin with an inward null horizontal curve with initial data (u+, u−) = (0, 1).
Inserting into (7.34) we see that r(λ) = rq1 +λr−(q1) and therefore the horizontal
curve arrives to a point q2 ∈ F(M) where the sphere radius is the Schwarzschild
radius at λRS

= (RS − rq1)/r−(q1) > 0. Note that according to (7.32) we have
that

dr+

dλ
= − RS

4 (rq1 + λr−(q1))
2 ,

dr−
dλ

= 0 .
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Thus r− is constant along this horizontal curve and we have r−(q2) = r−(q1) < 0.
We know that at r = RS we have that ‖dr‖2

M = 0 and therefore r+(q2) = 0. We
can verify this explicitly. Solving the ODE for r+ we see that

r+(λ) = r+(q1)− RS

4r−(q1)rq1

+
RS

4r−(q1) (rq1 + λr−(q1))
.

Inserting λ = λRS
and doing some algebra we find the desired result.

At the point q2 where r−(q2) < 0 and r+(q2) = 0 we begin a new horizontal
curve with initial velocity (u+, u−) = (−1, 0). Along this curve we have r(λ) = RS

is constant and

dr+

dλ
= 0 ,

dr−
dλ

= +
1

4RS
.

Thus r+ = 0 along this curve and r−(λ) = r−(q2)+λ/4RS . Thus in finite positive
λ we will get to a point q∗ where r−(q∗) = 0. This is the critical point of r that
we sought.

We have established that if M has an asymptotic Minkowski region then there
exists a critical point of the radius function rM . Can there be more than one
critical point? The answer is no under our hypotheses. The pictorial topological
argument is that near each critical point we have a situation that looks like
Figure 1. It is very hard to see how two copies of the figure can be put together
consistently. You can also give a more analytical argument that has two parts.

The first part is essentially running the proof of the existence backwards.
Namely we observe that if we start at a critical point p∗ ∈ M of rM then
rM (p∗) = RS and there are two null geodesics emanating from p∗ and along
each we have that rM = RS , see Figure 1. Lift the geodesics to horizontal curves.
Along the first horizontal curve we have that r+ = 0 and r− is a strictly mono-
tonic function of the affine parameter, and along the other horizontal curve we
have the opposite: r− = 0 and r+ is a strictly monotonic function of the affine
parameter. This immediately tells us that we cannot have another critical point
along the null geodesics emanating from p∗.

The second part of the argument is a bit more involved. It is proof by con-
tradiction. We develop the intuition by studying the case where we assume that
there are nearby timelike separated critical points p∗ and p′∗ as in Figure 2. We
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Figure 2. Two nearby timelike separated critical points p∗ and
p′∗ connected by a path and also by a broken null geodesic.

Figure 3. Two causally separated critical points p∗ and p′∗ con-
nected by a causal path and also by a broken null geodesic.

begin with a horizontal null curve with initial tangent vector (u+, u−) = (1, 0)
at q∗ ∈ F(M) over p∗ ∈ M . We evolve the curve until it reaches a point q′′∗
over p′′∗. According to (7.32) we have that r+(q′′∗) = 0 and r−(q′′∗) < 0. Next we
begin a null curve with initial tangent vector (u+, u−) = (0, 1) that will take us
to a point q′∗ over the critical point p′∗. But according to (7.32) we have that
r−(q′∗) = r−(q′′∗) < 0. This contradicts dr(q′) = 0. More generally, assume that
you have two critical points on M with p′∗ in the future of p∗. Since M is con-
nected there is a causal curve between them. We approximate the causal curve
by the zig-zag path of null geodesics as in Figure 3. If we apply the previous ar-
gument piece by piece to the zig-zag we conclude that dr(q′∗) 6= 0. The argument
can be extended to the case where the conjectured critical points are not causally
connected by using broken null geodesics that are future and past directed.
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Figure 4. The four regions of the Kruskal spacetime with the
black hole and the white hole singularities as indicated.

7.4. The Kruskal Spacetime. Since there is only one critical point we have
the standard Kruskal diagram, see Figure 4, of the Schwarzschild geometry with
the four regions associated with (7.35). The asymptotic Minkowski region is in
Region UI. In Region UII we have that r± < 0 and (7.34) tells us that all future
directed null geodesics end up at rM = 0 in finite affine parameter. Therefore
light rays cannot escape Region UII. This is the black hole region. Region UIII is
the white hole region which is the time reversal image of the black hole region.
Region UIV is the parity image of UI. The two Minkowski like regions are causally
disconnected. The properties of the radial null geodesics in the various regions
are easily determined using (7.34).

Note that the Killing vector field X is a null vector field on the null lines
defined by rM = RS in the Kruskal spacetime. If we think in terms of the
fibration π : N → M . The fiber over where the two line intersects is called the
the bifurcation 2-sphere. The fibers over the two null geodesics at rM = RS

define the bifurcate Killing horizon.

There are real singularities at rM = 0. We do not get any new insight into the
nature of the singularities using these methods. For this reason we will not say
anything about it.
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7.5. Schwarzschild Coordinates. We conclude by using our geometrical data
to write down the metric in standard Schwarzschild coordinates. On the open
set V ⊂ F(M) that is the complement to the closed set r−1(RS) ⊂ F(M) we can
write

τ =
r1

1−RS/r
θ0 +

r0

1−RS/r
θ1 ,

dr = r0θ
0 + r1θ

1 .
(7.37)

The inverse relationship is

θ0 = −r1 τ − r0

1−RS/r
dr ,

θ1 = −r0τ +
r1

1−RS/r
dr .

(7.38)

From this we learn that on V we have

− (
θ0

)2 +
(
θ1

)2 = − (1−RS/r) τ2 + (1−RS/r)−1 (dr)2 . (7.39)

which is the metric in standard Schwarzschild coordinates because τ is a closed
1-form and therefore locally exact12, τ = dt. By taking a section you can pull
these structures back to the base M .

7.6. Redshift without Coordinates. This discussion is treated in standard
texts. We have a timelike Killing vector field X in regions I and IV and we
restrict to observers in either of these regions. Let k be a tangent vector to a null
geodesic, i.e., Dkk = 0 and ‖k‖2 = 0. It is elementary to show that Dk(X ·k) = 0.
In other words X ·k is constant along the geodesic. We know that if k is the wave
vector of a beam of light then an observer at q ∈ N with (timelike) 4-velocity u

will measure the frequency to be ω(q) = −u · k. Consider two observers E and O

at fixed radii rE and rO. A photon is emitted by E and observed by O. We note
that uE = (1 − RS/rE)−1/2XE and that uO = (1 − RS/rO)−1/2XO because the
observers are at fixed radii. Using the constancy of X · k along the null geodesic
we conclude that

ωO

ωE
=

√
1−RS/rE

1−RS/rO
. (7.40)

12There are really four different functions tI, tII, tIII, tIV corresponding to the four regions

UI, UII, UIII, UIV that make up V .
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Appendix A. Cartan’s Lemma

Cartan’s lemma is the observation that if {ϕi} is a linearly independent col-
lection of 1-forms and if {αi} are 1-forms such that αi ∧ ϕi = 0 then there exists
coefficients {aij} with aij = aji such that αi = aijϕ

j .

A corollary to Cartan’s lemma is the statement that if you have a collection of
1-forms {βij} with βij = −βji and if βij ∧ ϕj = 0 then βij = 0. To prove this we
note that Cartan’s lemma implies that there exists coefficients bijk = bikj such
that βij = bijkϕ

k. But bijk is skew symmetric under i ↔ j but symmetric under
j ↔ k and therefore bijk = 0. This corollary is responsible for the uniqueness of
the Levi-Civita connection, i.e., the fundamental lemma of riemannian geometry.
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Appendix B. Lightcone Conventions

θ± = θ0 ± θ1 ∂

∂θ±
=

1
2

(
∂

∂θ0
± ∂

∂θ1

)
(B.1)

ds2 = −(θ0)2 + (θ1)2 , ds2 = −1
2

(
θ+ ⊗ θ− + θ− ⊗ θ+

)

(B.2)

η+− = −1
2

η+− = −2 , (B.3)

θ0 ∧ θ1 = −1
2
θ+ ∧ θ− , ε01 = +1, ε01 = −1 , (B.4)

ε+− = −1
2
, ε+− = +2 , ε−− = +1, ε+

+ = −1 , (B.5)

v+ = −2v− , v− = −2v+ , v− = −1
2
v+ , v+ = −1

2
v− , (B.6)

‖v‖2 = −v+v− = −4v+v− , v+v+ = v−v− =
1
2
‖v‖2 , (B.7)

2f = ηijf;ij = −4f;+− , (B.8)

Appendix C. Cartan’s Approach to Geodesics

Cartan studies geodesics on a manifold N by using the structural equations to
study horizontal curves in the bundle of frames [11]. In fact, Cartan often studies
families of geodesics via the exponential map generalized to the bundle of frames.

Let π : F(N) → N be the orthonormal frame bundle with canonical coframing
(θµ, ωµν). It is well known that if q ∈ F(N) with p = π(q) ∈ N then a curve
in N based at p uniquely lifts to a horizontal curve in F(N) beginning at q.
Using his structural equations, Cartan sets up a system of ordinary differential
equations satisfied by the horizontal lift of the geodesic. Cartan considers a map
E : R × En → F(N). Fix q ∈ N and u ∈ En then we have that E(0, u) = q

and as λ varies we have that E(λ, u) will be the horizontal curve with “constant
velocity” u:

θµ

(
E∗

(
∂

∂λ

))
= uµ , (constant velocity)

ωµν

(
E∗

(
∂

∂λ

))
= 0 . (horizontal)

(C.1)
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The dual versions of these statements are

E∗θµ = uµ dλ + ϑµ ,

E∗ωµν = $µν ,
(C.2)

where ϑµ and $µν are unknown 1-forms on R × En that are independent of
dλ. Note that on R × En there are natural global cartesian coordinates (λ, u)
and differential forms can be assigned a bi-degree (k, l) where k = 0, 1 and l =
0, 1, . . . , n. For example, dλ has bi-degree (1, 0) and ϑµ has bi-degree (0, 1).

Comment 1. If N = En with cartesian coordinates x then the map π◦E

is given by (λ, u) 7→ xµ = λuµ. Note that dxµ = uµ dλ + λ duν and in
comparing with (C.2) we see that ϑµ = λ duµ.

Comment 2. On the vector space Rk with standard coordinates (x1, . . . , xk),
the exterior derivative d acting on a p-form α = αJdxJ , |J | = p (multi-
index notation) is simply given by

dα = dxi ∧ ∂α

∂xi
,

where
∂α

∂xi
=

∂αJ

∂xi
dxJ .

Taking the exterior derivatives of (C.2) and using the comments we have

−$µν ∧ (uν dλ + ϑν) = duµ ∧ dλ + dλ ∧ ∂ϑµ

∂λ
+ duν ∧ ∂ϑµ

∂uν
,

E∗
(
−ωµκ ∧ ωκν +

1
2
Rµνρσθρ ∧ θσ

)
= dλ ∧ ∂$µν

∂λ
+ duλ ∧ ∂$µν

∂uλ
,

(C.3)

Identifying the terms that have bi-degree (1, 1) we find

∂ϑµ

∂λ
= duµ + $µνu

ν ,

∂$µν

∂λ
= rµνρσ uρ ϑσ ,

(C.4)

where rµνρσ = E∗Rµνρσ. The initial conditions on these differential equations are
ϑµ|λ=0 = 0 and $µν |λ=0 = 0. This follows from the condition that E(0, u) = q

for all u, see for example Comment 1.
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Equations (C.4) can be combined into a second order differential equation

∂2ϑµ

∂λ2
= rµνρσ uνuρ ϑσ , (C.5)

with initial conditions ϑµ|λ=0 = 0 and (∂θµ/∂λ)|λ=0 = duµ. This equation is
Cartan’s equation for a Jacobi vector field. It tells you how the coframe changes
along the horizontal lift of a geodesic.

C.1. Holonomy and Symmetric Spaces. Using the methods of the previous
section it is easy to understand the basic properties of symmetric spaces. Choose
a point q ∈ F(M), let Γq be the holonomy group at q and let Φq ⊂ F(M) be
the set of all points in the frame bundle that are connected to q by a piecewise
differentiable horizontal curve. The basic theorem is that the holonomy bundle Φq

is a sub-bundle of F(M) with structure group Γq ⊂ SO(n) and that M = Φq/Γq,
see [7].

Next we show that the riemannian connection restricted to the holonomy bun-
dle is a Γq-connection. To do this we write the Lie algebra

so(n) = g⊕ h (C.6)

where g is the Lie algebra of Γq and h is a complementary subspace. Under this
decomposition the Cartan structural equations become

dωα = −1
2
fα

βγωβ ∧ ωγ − fα
βcω

β ∧ ωc − 1
2
fα

bcω
b ∧ ωc +

1
2
Rα

µνθ
µ ∧ θν ,

dωa = −1
2
fa

βγωβ ∧ ωγ − fa
βcω

β ∧ ωc − 1
2
fa

bcω
b ∧ ωc +

1
2
Ra

µνθ
µ ∧ θν ,

dθµ = −Aµ
ναωα ∧ θν −Aµ

νaω
a ∧ θν .

(C.7)

In the above the indices a, b, c refer to g and α, β, γ refer to h. The f are the
structure constants for so(n) adapted to the decomposition (C.6) and the A are
other constants associated to the same decomposition13. The holonomy bundle
is a sub-bundle that solves the equation ωα = 0. The reason is that a basis for
TqΦq is {eµ} ∪ {ea}, i.e., need the horizontal curves that are used to construct
the holonomy bundle and also need the holonomy Lie algebra. The Frobenius
theorem requires fα

bc = 0 and Rα
µν = 0 for an integrable distribution. This

means that g is a subalgebra of so(n) as required and there is no curvature in

13These are really associated with the decomposition of the basic representation of so(n) in

terms of the decomposition (C.6).
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the “h-direction”. Restricting to the holonomy sub-bundle Φq we have structural
equations

dωa = −1
2
fa

bcω
b ∧ ωc +

1
2
Ra

µνθ
µ ∧ θν ,

dθµ = −Aµ
νaω

a ∧ θν .
(C.8)

These equation tell us that the restriction of the connection to the holonomy
bundle is a Γq-connection14.

How do symmetric spaces arise from this viewpoint15? If the curvature is co-
variantly constant then it is a constant function on the holonomy sub-bundle.
The reason is that dR = −ω ·R + (∇λR)θλ = −ω ·R which vanishes along a hor-
izontal curve. Consequently Rµνρσ must be a constant function on the holonomy
sub-bundle Φq. This means that Ra

µν are constant and therefore equations (C.8)
are the Maurer-Cartan equations for a Lie group G. Therefore Φq ≈ G and
M = G/Γq. There is a stronger statement we can make. The Maurer-Cartan
equations (C.8) admit a symmetry ω → ω and θ → −θ. This is the famous Car-
tan involution that leads to symmetric Lie algebras and associated symmetric
spaces. The reason for “symmetric” may be see in (C.5). Note that rµνρσuνuσ

are constant and therefore λ → −λ is a symmetry of the differential equation.
This means that by integrating (C.5) to construct the metric we have an isometry
between the point at time λ and the one at −λ. This is the Cartan local isometry
in a symmetric space16.
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