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0 Introduction

Let M be a complete Riemannian manifold and ∆ its Laplace operator acting
on functions. In local coordinates ∆f = g−1/2 ∂

∂xi

(
g1/2gij ∂f

∂xj

)
. It follows that∫

M f∆f = − ∫
M |∇f |2, when f is smooth and compactly supported. So ∆ is

formally self–adjoint. The completeness of M guarantees that there is a unique
self–adjoint extension to an unbounded operator ∆ acting on L2M . If M is com-
pact, then L2M admits an orthonormal basis consisting of eigenfunctions φi with
eigenvalues λi, that is ∆φi = −λiφi. There have been many works concerning
the eigenvalues and their relationship to the geometry of the manifold. These
studies pertain to upper and lower bounds for eigenvalues and asymptotics of
eigenvalues. The spectral theory is less highly developed when M is noncompact.

The present paper constitutes an exposition of some topics of interest in current
research concerning spectral theory of the Laplacian for noncompact Riemannian
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manifolds. One source of inspiration is the mathematical physics surrounding the
Schrödinger operator. Many of the problems and techniques arising in quantum
mechanics have analogs in the setting of complete Riemannian manifolds. One
particularly interesting aspect is the influence of curvature upon the nature of
the spectrum.

Our first section concerns methods for showing that M has no square inte-
grable eigenfunctions under suitable hypotheses. The simplest example is Eu-
clidean space Rn with its flat metric. A technique discovered by Rellich [22], in
his studies of domains in Rn, admits extensive development. It is applicable to
asymptotically flat manifolds and manifolds with non–negative Ricci curvature
and maximal volume growth. It eventually becomes clear that for more gen-
eral Riemannian manifolds one should distinguish between isolated eigenvalues
of finite multiplicity and eigenvalues embedded in the continuum.

In section two, there is a discussion of embedded eigenvalues with emphasis
upon simply connected complete manifolds of negative curvature. A basic tool
is a method initiated by Kato in his studies of the Schrödinger operator on Rn.
The point is that the exponential map provides a diffeomorphism between a
Cartan–Hadamard manifold Mn and Euclidean space Rn. By working in geodesic
polar coordinates and renormalizing the measure one finds a setting where the
differential inequalities of Kato [19] are capable of generalization.

The final third section concerns the topic of spectral stability. This concept
was first introduced by F. Xavier, [25]. One says that M is spectrally stable
if any sufficiently small compactly supported perturbation of the metric yields
a unitarily equivalent Laplacian. The Kato–Birman theory, [2], of trace class
perturbations may be applied to the heat kernel yielding stability of the abso-
lutely continuous spectrum. To show absence of singular continuous spectrum
the limiting absorption principle or Kato’s theory of H–smoothing operators are
relevant. Discrete eigenvalues are generally unstable and the Rellich methods,
described in section one, are used to show their absence.

This article was solicited by the editors for the special issue dedicated to
M. F Atiyah and I. M. Singer. It may therefore be appropriate to mention that
much of the author’s early work was concerned with the index theory of elliptic
operators. In particular, he wrote a joint paper [1] with Atiyah and Singer. We
proved a conjecture of Hirzebruch relating special values of Hecke L–functions
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to signature defects of Hilbert modular varieties. This certainly stimulated the
author to pursue a more general study of spectral theory for noncompact Rie-
mannian manifolds.

1. Purely Continuous Spectrum

Euclidean space with its standard flat metric is certainly the most elementary
example of a complete Riemannian manifold. The spectral theorem is realized
through application of the Fourier transform. Alternatively, one may exploit the
rotational symmetry of the metric to represent the Laplacian as a direct sum of
ordinary differential operators. It follows that the spectrum is purely continuous
and consists of the half line [0,∞]. There are no square integrable eigenfunctions.

A natural problem is to seek more general geometric reasons for the absence
of point spectrum. One wants a method which includes Rn as a basic case but
is not reliant upon overly specialized hypotheses such as rotational symmetry. A
fundamental tool in this regard is an integral identity first discovered by Rellich
for domains in Euclidean space. Suppose that D is a bounded C1 domain in the
complete Riemannian manifold Mn. Let Xi denote the components of a vector
field and Xi,j the components of its covariant derivative. One has

Lemma 1.1. For any u ∈ C2(D) ∩ C1(D) we have
∫

D
(Xij+Xj,i)uiuj−

∫

D
div X |∇u|2+2

∫

D
Xu∆u = 2

∫

∂D
Xu

∂u

∂η
−

∫

∂D
|∇u|2 X ·η

Here η denotes the outward pointing normal vector.

Proof. A direct calculation gives the identity 2Xi,juiuj = div(2Xu∇u−|∇u|2X)−
2Xu∆u + divX|∇u|2. Lemma 1.1 follows by integration over D. ¤

To apply the Rellich lemma to eigenfunctions we assume that ∆u = −λu.
Substitution and another partial integration yield

∫

D
(Xij + Xj,i)uiuj +

∫

D
(λu2 − |∇u|2)divX

= 2
∫

∂D
Xu

∂u

∂η
+

∫

∂D
(λu2 − |∇u|2)X · η.
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Exhaustion of M by bounded domains and application of Federer’s coarea
formula yield the next result. It is a fundamental tool for the theorems appearing
in [13] and the closely related paper by Escobar and Freire [15]:

Proposition 1.2. Let u ∈ L2(Mn) be a solution to ∆u = −λu. Suppose that X

is a C1 vector field on Mn with |∇X| ≤ c, then
∫

Mn

(Xij + Xj,i)uiuj =
∫

Mn

(|∇u|2 − λu2)divX.

Most of the applications follow by specializing to X = ∇f , where f is a C2

function with bounded Hessian. The identity then becomes
∫

M
2 fi,juiuj =

∫

M
(|∇u|2 − λu2)∆f.

If M = Rn, then one chooses f(x) =
1
2

n∑

i=1

x2
i so that Hess(f) = I and ∆f = n.

So ∫

Rn

2 |∇u|2 =
∫

Rn

(|∇u|2 − λu2)n = 0.

The last step follows by partial integration and the eigenfunction equation ∆u =
−λu. So |∇u| = 0 and u is constant. Since u is square integrable u ≡ 0.

The previous proof that Rn has purely continuous spectrum is capable of con-
siderable generalization. This is in contrast with the more standard proof by
Fourier transformation or separation of variables. The most immediate extension
is

Proposition 1.3. Suppose that Mn supports a convex function f with bounded
Hessian. If the Hessian is positive at a point and the Laplacian ∆f is constant,
then Mn admits no square integrable eigenfunctions.

The requirement that ∆f is constant is quite restrictive. Nevertheless, func-
tions satisfying the hypotheses of Proposition 1.3 do exist on certain rotationally
symmetric Riemannian manifolds.

The next step in extending the scope of the method is to assume only that
∆f is close to a constant. The main results of [13] and [15] use the following
observation in combination with comparison theory.
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Proposition 1.4. Assume that Mn supports a convex function f with bounded
Hessian. Suppose also that for some b > 0 there exists ε = ε(Mn, b) satisfying
fi,j ≥ (b− ε)gi,j, and |∆f −n| ≤ ε, where ε is sufficiently small. Then ∆u = −λu

and u ∈ L2M only when u ≡ 0.

A typical application is to choose f(r) = 1
2r2 where r is the geodesic distance

from a point. To guarantee that f is C2 one assumes the exponential map, with
the given basepoint, to be a global diffeomorphism. This gives

Theorem 1.5. Let Mn be a complete Riemannian manifold with a pole. Suppose
the radial curvature satisfies |K| ≤ δ(1 + r)−2, for δ sufficiently small. Then M

admits no point spectrum.

Proof. It follows from the Hessian comparison theorem [16] that f(r) = 1
2r2

satisfies Hess f ≥ (1 − ε)g and |∆f − n| ≤ ε, for sufficiently small δ. The
conclusion now follows from Proposition 1.4. ¤

The paper [13] puts the previous theorem into a much more general framework.
One constructs various rotationally symmetric manifolds, such as paraboloids,
where Proposition 1.3 applies. These rotationally symmetric models are then
perturbed to manifolds with a pole. The symmetry is perhaps removed but one
can still apply comparison theory and Proposition 1.4.

The results outlined above require global hypotheses on the complete Riemann-
ian manifold M . These hypotheses include the existence of a C2 function f which
is convex at every point. To construct such an f one typically assumes that the
exponential map exp : TpM → M is a diffeomorphism for some point p ∈ M .
However, since Rn is the basic model, one expects that absence of point spectrum
should persist if the metric is perturbed arbitrarily on any compact set. This is
certainly the case for Rn. One simply employs separation of variables outside the
perturbation.

The papers [9] and [12] formulate hypotheses in a neighborhood of infinity
which guarantee that the Laplacian has purely continuous spectrum. The hy-
potheses are given in terms of an exhaustion function b(x). If Mn = Rn, note
that b(x) = (x2

1 + x2
2 + · · · + x2

n)1/2 satisfies (i) |∇b| = 1, when x 6= 0, (ii)
∆b = (n − 1)b−1, when x 6= 0, and (iii) Hess b2 = 2g, where g denotes the flat
metric. The idea is that if Mn supports an exhaustion function where these
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properties hold in a weak or approximate sense, then ∆ should have no point
spectrum.

The first step is to derive certain weighted L2 estimates. Suppose that M

admits a C2 exhaustion function b(x) that satisfies the following conditions in
the complement of a compact set (i) |Hess b2 − 2g| < ε1, (ii) c1 ≤ |∇b| ≤ c2, and
(iii) c1r ≤ b ≤ c2r. Here r = r(x) denotes the geodesic distance from a fixed
basepoint p ∈ M . Under these conditions one has

Proposition 1.6. Assume that u belongs to C2M ∩ L2M and moreover ∆u =
−λu, λ > 0, in the complement of a compact set. Then for any positive integer
k,

∫
M bk(u2 + |∇u|2) is finite.

The proof of Proposition 1.6 is given in [9]. One ingredient is the Rellich lemma
which was described above. Note that −∆ is positive semidefinite. Harmonic
square integrable functions exist only on manifolds of finite volume, because such
functions are necessarily constant.

Carleman estimates were developed in [9]. By combining these with Proposi-
tion 1.6, one shows the absence of point spectrum. Suppose that in the comple-
ment of a compact set, one has for some ε > 0, (i) |Hess b2 − 2g| ≤ c1b−ε, (ii)
||∇b| − 1| ≤ c2b

−ε, and (iii) c3r ≤ b ≤ c4r. Combining the Carleman estimates
with the weighted L2 estimates gives

Theorem 1.7. Suppose u ∈ L2M ∩ C2M satisfies ∆u = −λu in M −K, λ >

0. We assume K is a compact set and M − K is connected. If M admits an
exhaustion function with the properties specified above, then u ≡ 0.

A manifold Mn, of dimension n ≥ 3, with one end is asymptotically locally
Euclidean if the sectional curvature decays faster than quadratically and geodesic
balls have Euclidean volume growth. More precisely, one assumes (i) |K| ≤
c1r

−2−ε, for some c1 > 0 and ε > 0, where r is the geodesic distance for a
basepoint p, and (ii) Geodesic balls have Vol B(p, t) ≥ c2t

n, for some c2 > 0.
These spaces provide interesting examples where Theorem 1.7 applies.

The Mourre theory was used in [12] to develop the above work. Let ε(r) signify
a function satisfying ε(r) → 0 as r →∞, where r(x) denotes the geodesic distance
from a basepoint p ∈ M . Assume that M admits an exhaustion function with
the following properties (i) c1r ≤ b ≤ c2r, for some positive constants c1 and c2,
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(ii) 1− ε(r) ≤ |∇b| ≤ 1 + ε(r), (iii) |Hess b2 − 2g| ≤ ε(r), and (iv) |d∆b2| ≤ ε(r).
Here d denotes the exterior derivative and |T | is the pointwise norm of the tensor
T . Combining the Mourre theory with weighted L2 estimates gives

Theorem 1.8. Suppose u ∈ L2M ∩ C2M satisfies ∆u = −λu on M , for some
λ > 0. If M admits an exhaustion function with the properties just specified, then
u ≡ 0.

Theorem 1.8 is applicable to certain manifolds of non–negative Ricci curvature.
Suppose that the dimension of M is at least three. Assume (i) Ricci (M) ≥ 0,
(ii) Vol B(p, t) ≥ c1t

n, and (iii) |K| ≤ c2r
−2, where K denotes the sectional

curvature. A consequence of Theorem 1.8 is that ∆ has purely continuous spec-
trum. Construction of the required exhaustion functions requires sophisticated
techniques. Their existence is due to Cheeger and Colding [4] and Colding and
Minicozzi [6].

Note that Theorem 1.7 requires a specific decay rate b−ε, for some ε > 0,
and for both |Hess b2 − 2g| and ||∇b| − 1|. No such precise rate of decay is
needed in Theorem 1.8, only that |Hess b2 − 2g| → 0 and ||∇b| − 1| → 0 as
one approaches infinity, i.e. in the complement of compact sets. However, the
hypotheses of Theorem 1.8 also include |d∆b2| → 0 at infinity. No estimate on the
third derivatives is needed for Theorem 1.7. So Theorem 1.8 does not supersede
Theorem 1.7.

2. Absence of Embedded Eigenvalues

Consider the hyperbolic space Hn with its metric of constant curvature −1.
Since Hn is simply connected, the exponential map provides a diffeomorphism
between Hn and Rn. Nevertheless, the negative curvature has interesting effects
on the spectral theory of the Laplacian. The spectrum of −∆ on L2Hn consists of
the half line [14(n− 1)2,∞) and is purely continuous. However, square integrable
eigenfunctions occur even for compactly supported perturbations of the metric.
One simply sews in a large Euclidean disc and applies the minimax principle.
This elementary construction shows that arbitrarily many eigenvalues less than
1
4(n − 1)2 may occur when the metric is perturbed on a compact set. Rather
than showing purely continuous spectrum under decay conditions K → −1, the
sensible problem is to show absence of embedded eigenvalues λ > 1

4(n− 1)2.



446 Harold Donnelly

Recall that in geodesic polar coordinates the metric of Hn is given by (ds)2 =
(dr)2 + g2(r)(dθ)2, with g(r) = sinh r. The method of separation of variables
applies to determine the spectral representation of the Laplacian ∆. The spherical
harmonics Yk,j(θ), for k ≥ 0 and 1 ≤ j ≤ q(k) form a complete orthonormal
basis for L2(Sn−1). Each Yk,j(θ) belongs to a q(k) dimensional eigenspace of the
spherical Laplacian with corresponding eigenvalue λk. One may expand

φ(r, θ) =
∞∑

k=0

q(k)∑

j=1

φk,j(r)Yk,j(θ)

A computation using the local defining formula for ∆ gives

∆φ =
∞∑

k=0

q(k)∑

j=1

∆kφk,j(r)Yk,j(θ)

where −∆kφk,j = −φ′′k,j − (n− 1)g′
g φ′k,j + λkg

−2φk,j . The prime denotes differ-
entiation in r. Thus φk,j ∈ L2((0,∞), gn−1(r)dr). So ∆ is decomposed into a
direct sum of the operators ∆k with multiplicity q(k).

We now renormalize the measure to Lebesque measure. Note that ∆k is unitar-
ily equivalent to Dk = g(n−1)/2∆kg

(1−n)/2 acting on L2((0,∞), dr). A calculation
yields −Dkψ = −ψ

′′
+[γ(r)+λkg

−2]ψ. Here γ(r) =
(

n−1
2

)
f
′′
+

(
n−1

2

)2 (f ′)2 with
g = ef . It follows that the essential spectrum of ∆ on Hn consists of the half line
[14(n− 1)2,∞).

One may apply comparison theory and Cheeger’s inequality [3] to show that
there are no eigenvalues below 1

4(n − 1)2. Let D be a domain in Hn and r the
geodesic distance from a basepoint p ∈ Hn −D. Then

∣∣∣∣
∫

D
∆r

∣∣∣∣ =
∣∣∣∣
∫

∂D

∂r

∂η

∣∣∣∣ ≤ vol(∂D).

Now ∆r = (n−1)cothr → (n−1) as p →∞. So the ratio vol(∂D)/vol(D) ≥ n−1.
Cheeger’s inequality now gives λ1 ≥ 1

4(n− 1)2.

Pinsky [21] studied more general rotationally symmetric metrics. If n = 2, he
gave decay conditions upon the Gauss curvature which guarantee the absence of
embedded eigenvalues greater than 1

4(n− 1)2. More specifically, Pinsky assumed
that K → −1 at infinity and

∫∞
0 |K + 1| dr < ∞, along with K ≤ −1 for

sufficiently large r. He then proposed the problem of studying the same question
without the hypothesis of a rotationally symmetric metric.
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Pinsky’s problem was taken up by the author in [7]. The inspiration for
the method came from the analogous work of Kato [19], when he studied the
Schrödinger operator on Rn. Kato’s idea is to regard L2(Rn) = L2(R+) ×
L2(Sn−1) and to systematically exploit differential inequalities for L2(Sn−1) val-
ued functions on R. This is still an ordinary differential equations method but
the level of sophistication is more than for simple separation of variables.

We again work in geodesic polar coordinates. For simplicity details are given
only for surfaces but the generalization to higher dimensions only requires some
standard results about Jacobi fields. Let M be a complete simply connected
negatively curved surface. We endow M with a global system of geodesic polar
coordinates where the metric is given by (ds)2 = (dr)2 + g2(r, θ)(dθ)2. If K

denotes the Gauss curvature then K satisfies ∂2g/∂r2 + Kg = 0.

The Laplacian is given by the next formula

∆ψ = g−1 ∂

∂r

(
g
∂ψ

∂r

)
+ g−1 ∂

∂θ

(
g−1 ∂ψ

∂θ

)

Define w = g1/2ψ and H = g1/2(−∆− 1
4)g−1/2. Then one has

Hw =
−∂2w

∂r2
− g−2 ∂2w

∂θ2
+ Λ

∂w

∂θ
+ V w

where

Λ = 2g−3 ∂g

∂θ

and

V = −5
4
g−4

(
∂g

∂θ

)2

+
1
2
g−3 ∂2g

∂θ2
+

1
2
g−1 ∂2g

∂r2
− 1

4
g−2

(
∂g

∂r

)2

− 1
4
.

Suppose that K(r, θ) ≤ 0 satisfies the following decay conditions, uniformly
in θ, (i) lim

r→∞ r|K + 1| = 0. (ii)
∫

r|K + 1| dr < d1, (iii)
∫

e2r|Kθ| dr < d2, (iv)∫
e2r|Kθθ| < d3. It then follows from the method of asymptotic integrations that

Λ = 0(e−2r) and V = o(r−1) as r →∞.

The method of Kato and its generalizations consist in exploiting suitable
differential inequalities for cleverly chosen functionals. Suppose that −∆ψ =(
E + 1

4

)
ψ with E > 0. Then Hw = Ew and

∫ ‖w‖2 dr < ∞. Let w′ = ∂w
∂r and

define

G(r) = (w′, w′)− (g−2wθ, wθ) + E(w, w)
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Here ( , ) is the global inner product on L2(S1) and ‖ ‖ denotes the currespond-
ing norm. If the above curvature decay conditions hold, then d

dr (rG(r)) ≥ 0 for
r > R0, and so G(r) ≤ 0 because it is integrable.

Define wm = rmw, for any m ≥ 0. Then wm satisfies the ordinary differential
equation

w
′′
m − 2mr−1w′m + g−2wm,θθ + m(m + 1)r−2wm − Λwm,θ + (E − V )wm = 0

Let

L(m, r) = (w′m, w′m) + (E −ER0r
−1 + m(m + 1)r−2)(wm, wm)− (g−2wm,θ, wm,θ)

Under the assumed curvature decay hypotheses d
dr (r2L(m, r)) > 0 for m > m0

and r > R1 > R0. Examination of the formula defining L(m, r) shows that for
some R2 > R1 there exists an m1 > m0 so that L(m1, R2) > 0. Since r2L(m1, r)
is increasing, we must have L(m1, r) > 0, for all r ≥ R2.

On the other hand, we may choose R3 > R2 so that −ER0r
−1 + m1(2m1 +

1)r−2 < 0 if r ≥ R3. Since
∫ ‖w‖2 is finite, a suitable R3 will also satisfy

(w′, w)(R3) < 0. Note that

R−2m1
3 L(m1, R3) = ‖w′+mw

R3
‖2+(E−ER0R

−1
3 +m(m+1)R−2

3 )‖w‖2−(g−2wθ, wθ)

Consequently, R−2m1
3 L(m1, R3) ≤ G(R3) ≤ 0. This contradicts the result of the

previous paragraph that L(m1, R3) > 0.

In summary, we have proved

Theorem 2.1. Let M be a complete simply connected negatively curved surface.
Suppose that the Gauss curvature satisfies (i) lim

r→∞ r|K + 1| = 0, (ii)
∫

r|K +

1| dr < d1 (iii)
∫

e2r|Kθ| dr < d2, and (iv)
∫

e2r|Kθ,θ| dr < d3. Then −∆ has no
eigenvalue greater that 1/4.

Theorem 2.1 generalizes in a straightforward way to manifolds of dimension n ≥
2. One need only utilize the technique of Jacobi fields and suitable theorems for
systems of ordinary differential equations. The decay conditions are formulated
in terms of sectional curvature and its covariant derivatives. One concludes that
−∆ has no eigenvalues λ > 1

4(n − 1)2. Precise statements and proofs are given
in [7].



Spectral Theory of Complete Riemannian Manifolds 449

Most differential geometers find the hypotheses involving covariant derivatives
of curvature to be unappealing. It is preferable to assume only that K → −1 at
a prescribed rate. This improvement was achieved in the paper [10]. Note that
the θ dependence is introduced when one renormalizes the measure to get H =
g1/2(−∆− 1/4)g−1/2, because g = g(r, θ). The first step is to simply renormalize
by er/2, so that H = g1/2(−∆ − 1

4)g−1/2, with g = er. The operator H is less
suitable for Kato’s method and various complications ensue when choosing the
correct generalizations of the functionals G(r) and L(m, r). After some additional
effort one proves

Theorem 2.2. Let Mn be a complete simply connected negatively curved man-
ifold whose sectional curvatures converge to −1 at infinity. Assume the decay
conditions (i)

∫∞
0 tβ|K + 1|dt < d1 and (ii) lim

t→∞ tβ |K + 1| = 0, uniformly in the
spherical variable and with β > 2. Then −∆ has no eigenvalues greater than
(n− 1)2/4.

In a recent preprint [20], Kumura improved the last result by assuming only
tβ|K+1| → 0, with β > 1. He achieves further generality by using the exponential
map from an embedded submanifold rather than just the exponential map from
a point. The submanifold is assumed to be the boundary of a compact domain
and to have non–negative second fundamental form with respect to an outward
pointing normal vector. Kumura also provides an example showing that his result
is sharp. Namely, there exists a manifold with |K + 1| = 0(r−1) and with large
convex geodesic spheres where −∆ has an eigenvalue 1 + (n − 1)2/4. These
examples have rotational symmetry, so that separation of variables is applicable.
The resulting ordinary differential operators are of the type considered by Wigner
and von Neumann in their celebrated construction of Schrödinger operators with
eigenvalues embedded in the continuum.

If one does not require large convex geodesic spheres, then there are examples
where K ≡ −1 outside a compact set and −∆ has arbitrarily large eigenvalues.
Let g(r) be a function satisfying g(0) = 0, g′(0) = 1, and g(r) = e−r, for r ≥ 1.
Let M be a Riemannian manifold diffeomorphic to R2 with metric ds2 = dr2 +
g2(r)dθ2. Separation of variables shows that ∆ is unitarily equivalent to a direct
sum of ordinary differential operators

Dnψ = ψ
′′

+
[
w(r)− n2g−2(r)

]
ψ
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where w(r) = −1
2h

′′
(r)− 1

4(h′(r))2 and g(r) = exp(h(r)). Thus, if r ≥ 1, one has
−Dnψ = −ψ

′′
+ [14 + n2e2r]ψ. A theorem of Titchmarsh and Weyl [22] states

that operators of the form −d2

dr2 + q(r), with q(r) → ∞ as r → ∞, have empty
essential spectrum. Thus, when n 6= 0, −Dn has pure point spectrum consisting
of eigenvalues λm(n), where λm(n) → ∞ as m → ∞. On the other hand −D0

has no eigenvalues greater than 1/4 because −D0 = −d2/dr2 + 1/4, outside the
compact set r ≤ 1. So in these examples −∆ has continuous spectrum consisting
of the interval [1/4,∞). Moreover, −∆ has arbitrarily large eigenvalues embedded
in the continuum.

Methods extending the ideas of Kato are also applicable to asymptotically flat
manifolds. The first such results were found by Leon Karp [18] who gave decay
conditions on K and Kθ which guarantee no eigenvalues for asymptotically flat
surfaces. Karp notes that the methods of Kato are in fact closely related to
the Rellich identities described in the first section of this paper. The author
[8] showed that more stringent decay conditions on K alone guarantee purely
continuous spectrum. These works both assume that M is a simply connected
complete surface with K ≤ 0 globally. The more recent work of Kumura [20]
reaches the same conclusion in all dimensions with weaker decay assumptions on
K than those of [8].

3. Spectral Stability

The concept of spectral stability was introduced by F. Xavier in an unpub-
lished paper [25]. It was subsequently developed in joint work with the present
author [14]. Recall that two self–adjoint operators A1, A2 acting on Hilbert spaces
H1,H2, respectively, are said to be unitarily equivalent if there exists a unitary
isomorphism U : H1 → H2 satisfying UA1 = A2U , where U preserves the do-
mains of A1 and A2. The fundamental concept is

Definition 3.1. Let (M, g) be a complete Riemannian manifold. We say that g is
spectrally stable if for any compactly supported two tensor h, there is a δ(h) > 0,
so that ∆g is unitarily equivalent to ∆g+γh, for any |γ| < δ(h).

One notes that g + γh is positive definite for sufficiently small δ(h).

Let A be a self adjoint operator acting on a Hilbert space H. In general, A may
be unbounded. The spectral theorem guarantees that A is unitary equivalent to a
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multiplication operator. More precisely there is a collection µα of Borel measures
supported on the real line R so that A is unitarily equivalent to multiplication by x

on the Hilbert space
∑
α

L2(µα). Here x is the standard coordinate on the real line

R. According to the Lebesque decomposition theorem we may decompose each
Borel measure as µα = µα,1 + µα,2 + µα,3. Here µα,1 is the absolutely continuous
part of µα, µα,2 is the singular continuous part of µα, and µα,3 is the discrete
part of µα. The absolutely continuous, singular continuous, and discrete part
of A correspond to the decomposition

∑
α

L2(µα) =
∑
α

L2(µα,1) +
∑
α

L2(µα,2) +
∑
α

L2(µα,3).

Our approach to spectral stability of Riemannian manifolds entails separate
consideration of the absolutely continuous, singular continuous, and discrete spec-
trum. The absolutely continuous spectrum is the most tractable. Application of
the work of Birman and Kato [2] shows its stability for any complete Riemannian
manifold. The singular continuous spectrum is more difficult. One may employ
either the limiting absorption principle or H–smoothing operators [22]. These
methods seem to be effective in special cases only. For the point spectrum one
distinguishes between isolated eigenvalues and eigenvalues embedded in the con-
tinuum. The minimax principle is often applicable to give a lower bound on the
spectrum and thus preclude the existence of small eigenvalues below the essen-
tial spectrum. Embedded eigenvalues are handled by the methods of Kato and
Rellich as outlined in the earlier sections of this paper.

We now explain the stability of the absolutely continuous spectrum. Let A and
B denote positive self adjoint operators acting on a Hilbert space H. Suppose
that for some t > 0, the difference exp(−tA)−exp(−tB) is a trace class operator.
Then the absolutely continuous part of A is unitarily equivalent to the absolutely
continuous part of B by the work of Birman and Kato [2]. One applies this result
to the Laplacians ∆1,∆2 of two metrics that agree outside a compact set and are
both complete. The corresponding Hilbert spaces are identified by conjugation.
Duhamel’s principle and the finite propagation speed for the wave equation show
that the difference of the heat kernels exp(t∆1)− exp(t∆2) is trace class. Recall
that for Rn the heat kernel is given by (4πt)−n/2 exp(−|x− y|2/4t). Rapid decay
off the diagonal is a very general phenomenon for complete Riemannian manifolds.
Cheeger, Gromov, and Taylor [5] wrote the heat kernel as a Fourier transform
using the wave kernel. This gave rapid decay in the L2 sense of the heat kernel
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for any complete Riemannian manifold. Alternatively, one may employ powers
of the resolvent kernel [25] instead of the heat kernel.

There is at present no such general technique for dealing with the discrete
spectrum or the singular continuous spectrum. The main positive result is

Theorem 3.2. Any Riemannian symmetric space of noncompact type is spec-
trally stable.

We proceed to outline two proofs of Theorem 3.2. The first works in full gen-
erality and is developed from the author’s paper [11]. It relies upon the function
theory of symmetric spaces as expounded by Helgason [17] and Harish–Chandra.
This consists of the sophisticated use of representation theory for semisimple
groups. There is little prospect of generalization to complete Riemannian mani-
folds even if one assumes simple connectedness and variable negative curvature.
A second method initiated by Xavier [25] has promise for greater scope, although
it does not yet cover all cases of Theorem 3.2. It is tied to the Rellich identities
of the first section of this paper. Convexity of functions is applicable not just to
showing absence of point spectrum but also to ruling out the presence of singu-
lar continuous spectrum. However, for the singular continuous spectrum, certain
fourth order conditions intervence which pose great difficulties.

Let (M, g0) be a Riemannian symmetric space of noncompact type. The
Fourier analysis developed by Helgason shows that −∆g0 is unitarily equivalent
to multiplication by 〈ρ, ρ〉 + x2 on L2(R+, dx,M), where M denotes a Hilbert
space of countably infinite dimension. Here ρ denotes half the sum of the positive
restricted roots. This includes the case of Euclidean space Rn with ρ = 0. In
general there is an important qualitative change due to the gap in the spectrum
of the interval [0, 〈ρ, ρ〉]. For hyperbolic space Hn, one has 〈ρ, ρ〉 = (n − 1)2/4,
which explains the connection to the previous section of this paper. The spec-
tral resolution for hyperbolic space may be obtained by separation of variables
and reduction to ordinary differential equations. More sophisticated methods are
needed to treat symmetric spaces of higher rank.

A major ingredient in the first proof of Theorem 3.2 is the following result
most of which was already established in [11]:

Theorem 3.3. Let (M, g) be obtained by a compactly supported perturbation of
the metric on a Riemannian symmetric space (M, g0). Then the continuous part
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of ∆g is unitarily equivalent to ∆g0. Moreover, ∆g has at most finitely many
eigenvalues which are all less than 〈ρ, ρ〉.

Proof. (i) As noted above, exp(t∆g) is a trace class perturbation of exp(t∆g0).
So by the Birman–Kato theory the absolutely continuous part of ∆g is unitarily
equivalent to ∆g0 , which is purely absolutely continuous.

(ii) The operator ∆g has no singular continuous spectrum. This follows by
analytically continuing the resolvent (∆g +z)−1 as a perturbation of (∆g0 +z)−1.
One establishes the existence of boundary values on R+ when the resolvents
are restricted to weighted L2 spaces. The limiting absorption principle is then
applicable.

(iii) There are no embedded eigenvalues λ ≥ 〈ρ, ρ〉 and finitely many eigenval-
ues less that 〈ρ, ρ〉. Fourier analysis and unique continuation show the absence
of embedded eigenvalues. One extends the Fourier transform of a hypothetical
eigenfunction with λ > 〈ρ, ρ〉 to the complex plane and employs the Paley–Wiener
theorem. Dirichlet Neumann bracketing shows that there are finitely many eigen-
values less than 〈ρ, ρ〉. A similar comparison with an exterior problem also shows
the absence of eigenvalues λ ≥ 〈ρ, ρ〉. ¤

The proof of Theorem 3.2 is now reduced to obtaining the required lower
bound of the spectrum for sufficiently small perturbations of the metric. Of
course, by sewing in a large Euclidean disc and applying the minimax principle,
it is easily seen that suitable large but compactly supported perturbations of
the metric give finitely many eigenvalues less than 〈ρ, ρ〉. Consider the Cartan
decomposition G = KAK. The induced volume element on the Weyl chamber is
w =

∏
α∈∑+

(sinhα(H))mα , where
∑+ denotes the set of restricted positive roots.

If ρ = 1
2

∑
α∈∑+

mαα denotes half the sum of the positive restricted roots, let

~n = ~∇ρ / |~∇ρ|. If φ is of compact support, then integration by parts in the Weyl
chamber gives

|ρ|2
[∫

φ2w +
∫

wφ2

(
~nw

2|ρ|w − 1
)]

≤
∫
|∇φ|2w

The integration runs over the Weyl chamber which contains the support of φ.
Standard properties of

∑+ guarantee that ~nw/2|ρ|w ≥ 1. This provides the
stability. Of course, the difference ~nw/2|ρ|w − 1 decays to zero at infinity, but
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one is only considering compactly supported perturbation of the metric. For the
special case of hyperbolic space, the above calculation takes place in geodesic
polar coordinates. One has w = (sinh r)n−1 and the stabilizing term is just
coth r − 1.

The second approach to the proof of Theorem 3.2 relies upon the work of
Xavier in [24] and [25]. He extends the ideas of Rellich, outlined in the first
section of this paper, and employs Kato’s theory of H–smoothing operators to
prove the following result:

Theorem 3.4. Let M be a complete Riemannian manifold with metric g0. Sup-
pose that M supports a strictly convex function f which has bounded Laplacian
and gradient and satisfies ∆2f ≤ 0. Assume that for all φ ∈ C∞

0 (M),
∫

M
Hess f(∇φ,∇φ) ≥

∫

M
ηφ2

where η is a positive continuous function. Then ∆g0 has purely absolutely con-
tinuous spectrum. Moreover, if g is a sufficiently small compactly supported per-
turbation of g0, then ∆g has purely absolutely continuous spectrum.

Since the absolutely continuous spectrum is known to be stable, Theorem 3.4
is potentially a valuable tool for proving spectral stability in greater generality,
where the methods of Theorem 3.3 are not available. The difficulty comes in
satisfying the hypothesis ∆2f ≤ 0. For symmetric spaces of noncompact type, one
takes f to be an infinite sum of Busemann functions plus a coordinate function on
A. Here G = KAN is the Iwasawa decomposition. Hardy’s inequality is applied
on an abelian B ⊆ N which requires the condition dimB ≥ 3. So the method
fails for the hyperbolic spaces H2 and H3. There are other exceptional cases.
For the f just described ∆f is constant and thus ∆2f = 0. Although one would
like to extend the technique to certain manifolds of variable negative curvature
it seems hard to find suitable f with ∆2f ≤ 0.

We close with some remarks concerning spectral instability. It follows from
Weyl’s asymptotic formula that any compact Riemannian manifold is spectrally
unstable. Namely vol(M) = cn lim

λ→∞
λ−n/2N(λ) where N(λ) denotes the number

of eigenvalues less than λ, and vol(M) denotes the volume of M . Small perturba-
tions of the metric can certainly change the volume. More generally, elementary
perturbation theory indicates that isolated eigenvalues of finite multiplicity are
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shifted by small compactly supported perturbations in the metric. Xavier [25]
showed that cylindrical manifolds M×R are spectrally unstable. Here M is com-
pact and R denotes the real line. The cylindrical manifolds have purely absolutely
continuous spectrum with finite but nonconstant multiplicity. The thresholds are
determined by the eigenvalues of the compact factor. Separation of variables
shows that small compactly supported changes in the metric can create infinitely
many embedded eigenvalues, with at most finitely many corresponding to each
threshold.

References

[1] Atiyah, M.F., Donnelly, H., and Singer, I.M., Eta invariants, signature defects of cusps, and

values of L–functions, Annals of Math., 118 (1983), 131–177.

[2] Birman, M.S., Existence conditions for wave operators, Izv. Akad. Nauk SSSR, Ser. Mat.,

27 (1973), 883–906.

[3] Cheeger, J., A lower bound for the smallest eigenvalue of the Laplacian, Bochner volume,

Princeton University Press, 1970, 195–199.

[4] Cheeger, J. and Colding, T., Lower bounds on Ricci curvature and the almost rigidity of

warped products, Annals of Math., 144 (1996), 189–237.

[5] Cheeger, J., Gromov, M., and Taylor, M., Finite propagation speed, kernel estimates for

functions of the Laplace operator, and the geometry of complete Riemannian manifolds,

J. Differential Geometry, 17 (1982), 15–53.

[6] Colding, T. and Minicozzi, W., Large scale behavior of kernels of Schrödinger operators,

Amer. J. Math., 119 (1997), 1355–1398.

[7] Donnelly, H., Eigenvalues embedded in the continuum for negatively curved manifolds, Michi-

gan Math. J., 28 (1981), 53–62.

[8] Donnelly, H., Embedded eigenvalues for asymptotically flat surfaces, Proceedings of Symposia

in Pure Mathematics, 54 (1993), 169–177.

[9] Donnelly, H., Exhaustion functions and the spectrum of complete Riemannian manifolds,

Indiana Univ. Math. J., 46 (1997), 505–527.

[10] Donnelly, H., Negative curvature and embedded eigenvalues, Math. Z., 203 (1990), 301–308.

[11] Donnelly, H., Spectral geometry for certain noncompact Riemannian manifolds, Math. Z.,

169 (1979), 63–76.

[12] Donnelly, H., Spectrum of the Laplacian on asymptotically Euclidean spaces, Michigan

Math. J., 46 (1999), 101–111.

[13] Donnelly, H. and Garofalo, N., Riemannian manifolds whose Laplacians have purely con-

tinuous spectrum, Math. Ann., 293 (1992), 143–161.

[14] Donnelly, H. and Xavier, F., Spectral stability of symmetric spaces, Math. Z., 253 (2006),

655–658.

[15] Escobar, J. and Freire, A., The spectrum of the Laplacian of manifolds of positive curvature,

Duke Math. J., 65 (1992), 1–21.



456 Harold Donnelly

[16] Greene, R. and Wu, H., Function theory on manifolds which possess a pole, Springer Lecture

Notes in Math., Vol 699, Berlin, Heidelberg, N.Y., 1979.

[17] Helgason, S., Functions on symmetric spaces, Proceedings of symposia in pure mathematics,

26 (1973), American Mathematical Society, Providence, 1973, 101–146.

[18] Karp, L., Noncompact Riemannian manifolds with purely continuous spectrum, Michigan

Math. J., 31 (1984), 339–347.

[19] Kato, T., Growth properties of solutions of the reduced wave equation with a variable coef-

ficient, Comm. Pure and Applied Math., 12 (1959), 403–426.

[20] Kumura, H., Geometry of an end and the absence of eigenvalues in the essential spectrum,

arXiv:math. DG/0505557, v.3, 3 Jul 2005.

[21] Pinsky, M., The spectrum of the Laplacian on a manifold of negative curvature II, J. Dif-

ferential Geometry, 14 (1979), 609–620.

[22] Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Volumes I–IV, Aca-

demic Press, N.Y., 1972.
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