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Abstract: Let M be a closed, oriented, n-dimensional manifold. In this pa-
per we describe a spectrum in the sense of homotopy theory, Z(7T% M), whose
homology is naturally isomorphic to the Floer homology of the cotangent
bundle, T*M. This Floer homology is taken with respect to a Hamiltonian
H : S' xT*M — R which is quadratic near infinity. Z(T*M) is constructed
assuming a basic smooth gluing result of J-holomorphic cylinders. This spec-
trum will have a C.W decomposition with one cell for every periodic solution
of the equation defined by the Hamiltonian vector field X . Its induced cel-
lular chain complex is exactly the Floer complex. The attaching maps in the
C.W structure of Z(T™*M) are described in terms of the framed cobordism
types of the moduli spaces of J-holomorphic cylinders in T*M with given
boundary conditions. This is done via a Pontrjagin-Thom construction, and
an important ingredient in this is proving, modulo this gluing result, that
these moduli spaces are compact, smooth, framed manifolds with corners.
We then prove that Z(T*M), which we refer to as the “Floer homotopy
type” of T* M, has the same homotopy type as the suspension spectrum of
the free loop space, LM. This generalizes the theorem first proved by C.
Viterbo that the Floer homology of T*M is isomorphic to H.(LM).
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Introduction

An intriguing theorem proved by Viterbo [24], with alternative proofs by Salamon
and Weber [21], as well as Abbondondolo and Schwarz [1], states that the Floer
homology of the cotangent bundle of a closed, oriented manifold M, is isomorphic

to the homology of the free loop space,
HF.(T*M) = H,(LM).

Here T*M is endowed with its canonical symplectic structure, and the Floer

homology is taken with respect to a time dependent Hamiltonian,
H:R/ZxT*M — R

which is quadratic near infinity in an appropriate sense. The goal of this paper

is to examine the homotopy theoretic underpinnings of this isomorphism.

Recall that the Floer homology of any symplectic manifold, (N, w) is defined
to be the homology of the Floer complex, C'Fy(N) which is generated by the

1-periodic solutions of a Hamiltonian equation of the form

dzr

o = Xu(t, (1), 1)
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where H is a time dependent Hamiltonian, and Xy is the Hamiltonian vector
field.

Floer theory can be viewed as a generalized Morse theory, but in the case
of a classical Morse function f : P — R, where P is a smooth, closed manifold,
there is more information than just the corresponding chain complex. Namely,
the Morse complex cf (P) can be viewed as the cellular chain complex of a C.W
complex Z¢(P) which is naturally homotopy equivalent to the manifold P, and

has one cell for each critical point of the function f.

It is then natural to ask, in the case of Floer theory, is there a naturally
defined underlying C.W complex (or spectrum) with one cell for each solution
to the Hamiltonian equation (1), so that its associated cellular chain complex is
isomorphic to the Floer complex, CF,(N)? This question was taken up by the
author, Jones, and Segal in [11] where conditions on a “Floer functional” were
obtained that allowed the construction of such an underlying homotopy type.
The most important of these conditions, which significantly restricts when such
a Floer homotopy type can exist, is that the moduli space of gradient flow lines
connecting two critical points, have a compactification which is a framed manifold
with corners. Moreover the framings must be chosen compatibly with respect to

the gluing of these moduli spaces.

The goal of this paper is to show that, modulo a specific analytic gluing
construction, these conditions are satisfied by the symplectic action functional
on the loop space of T*M, perturbed by an appropriate Hamiltonian, H : R/Z x
™M — R,

A : L(T*M) — R.

We then explicitly describe the resulting Floer homotopy type of T* M, which we
denote by Z(T*M). In this case Z(T*M) is a C.W-spectrum with one cell for

every periodic solution of the Hamiltonian equation (1).

To be more specific, let J be a compatible almost complex structure on T*M,
let a, b : S* — T*M be 1-periodic solutions of the Hamiltonian equation, and
let M(a,b; H,.J) be the space of piecewise .J-holomorphic cylinders u : S x R —
T*M which converge to a as t — —o0, and b as t — +00. (The precise definitions

of these moduli spaces will be given below.) The smoothness, compactness, and
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orientability properties of the uncompactified moduli spaces M(a,b; H, J) were
studied by Abbondandolo and Schwarz in [1]. The topology of the compactified
moduli space will be discussed in section 2. The basic gluing result that we will

assume in this paper is the following.

Gluing Assumption 1. Let ag,--- ,a, be a sequence of 1-periodic solutions so
that M(a;,a;41; H, J) is nonempty or each i. Then there is an € > 0 and local

diffeomorphisms (i.e a diffeomorphisms onto open subsets)
M(ag,a1) X - M(an_1,a,) x [0,6)" 1 — M(ag, an)

which give M(ag, ay) the structure of a smooth, compact manifold with corners.
In particular, the boundary OM ag,ay,) consists of the images of these gluing
maps restricted to M(ap,a1) X -+ M(an—1,a,) x {0}, and on the open intervals,

these gluing maps restrict to give local diffeomorphisms,

M(ag,a1) x - M(an_1,an) % (0,€)""F — M(ag, ay).

Remark. Gluing constructions of the above type have been constructed in the
several places in the literature (see for example [14], [23], [13], [5]). However spe-
cific gluing results that would imply that the compact moduli spaces M (a, b; J, H)
studied here are smooth manifolds with corners, have not appeared in the liter-
ature. The analysis required to prove such a gluing result is of a very different
sort of mathematics than the algebraic topological techniques that are used in
this paper, and will not be pursued here. Thus the statements in this paper can
be viewed as topological results that would follow from this analysis. Although
we state these results as theorems, it should be understood that for their proofs
to be complete, the above gluing assumption must be proved. This, as far as the
author understands, has not yet been completed. From now on in this paper we

will operate under Gluing Assumption 1.

Our first result states that assuming the above gluing result, these moduli

spaces have natural framings.

Theorem 2. For appropriate choices of Hamiltonian H, and with respect to a
generic choice of almost complex structure J on T*M, the moduli spaces M(a, b;
H,J) are smooth, compact, framed manifolds with corners. The dimension of this

moduli spaces is p(a) — u(b) — 1, where u represents the Conley-Zehnder index.
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We will actually prove something stronger than this. If Cy is the “flow cate-
gory”, of A : L(T*M) — R, whose objects are the critical points (i.e periodic
solutions to the Hamiltonian equation), and whose space of morphisms between
two solutions a and b is the moduli space M a,b; H,.J), then when certain con-
ditions are met, Cy is a “compact, smooth, framed category of Morse-Smale
type”. These conditions will be defined below, but basically they refer to a
certain transversality conditions, and the fact that the choices of framings are
compatible with the composition in the category, which in this case corresponds

to gluing of flow lines.

These conditions were what was required in [11] to produce a “Floer homotopy
type”. In the general setting studied in [11], the Floer homotopy type was a
certain inverse limit of spectra, known as a “prospectrum”. In the case of the
cotangent bundle, however, since the critical values of Ap are bounded below,
we will observe that the procedure in [11] actually produces a C.W-spectrum

Z(T*M) which realizes the Floer homotopy type. Namely, we prove the following.

Theorem 3. For appropriate choices of Hamiltonian H, and with respect to a
generic choice of almost complex structure J on T*M, there is an associated
finite type C.W -spectrum Z(T*M) with one cell for every critical point of the
perturbed sympectic action functional, Ay : L(T*M) — R, i.e solutions to the
Hamiltonian equation, ‘é—f = Xpg(t,x(t)). The attaching maps in this cellular
structure are defined explicitly using the Pontrjagin-Thom construction, in terms
of the framed bordism classes of manifolds with corners represented by the moduli
spaces, M(a,b; H,J). The induced cellular chain complez of Z(T*M) is precisely
the Floer complex taken with respect to this Hamiltonian and almost complex

structure, CF.(T*M; H, J).

This theorem says that the Floer homology, H F,.(T*M) is computed by tak-
ing the homology of the complex obtained by applying ordinary homology to the
subquotients of the cellular filtration of Z(T*M). These subquotients are wedges
of spheres indexed by the critical points of Ag, and his theorem says that this
complex is the Floer complex, CF,(T*M). Notice that if one applies a general-
ized homology theory h, to these subquotients, one obtains a spectral sequence

converging to the “Floer h,-theory” of T*M.
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Corollary 4. . Let hy be any generalized homology theory. There is a spectral

sequence whose E1-term is given by
EY? = CF,(T*M) ® hy(point)

and converges to h.(Z(T*M)), the “Floer hi-theory of T*M 7. Here p is the
Conley-Zehnder index of the periodic solution to the Hamiltonian. In the case
when h, = H,, ordinary homology, then the E1 -term is exactly the Floer compler,

and the spectral sequence collapses at the Eo-level, which is the Floer homology,
HFE.(T*M).

In this spectral sequence, the differential at the E; level,
di : CF,(T*M) ® hy(point) — CFE,_1(T*M) ® hq(point)

is given in terms of the numbers #M(a, b; H, J) when a has Conley-Zehnder in-
dex p(a) = p, and pu(b) = p — 1. The number, #M (a, b; H, J), which is given by
counting the number of points in M a,b; H,J), with signs determined by orien-
tations, can also be viewed as the framed bordism class of this zero dimensional
manifold. (In dimension zero a framing and an orientation are the same thing.)
The higher differentials in this spectral sequence are determined by the framed
bordism classes of the higher dimensional moduli spaces. In the case of ordinary
homology, the collapse of this spectral sequence implies that one does not need
to consider these higher dimensional spaces. However for a generalized homology

theory these higher dimensional moduli spaces play a critical role.

Our final result is an identification of the Floer homotopy type, Z(T*M),
of the cotangent bundle. We compare the underlying homotopy theory of a
Morse function on the loop space, £ : LM — R, with the Floer homotopy type
Z(T*M). This involves comparing the framed bordism types of the moduli spaces
of gradient trajectories of the Morse function £, with those of the moduli spaces
of J-holomorphic cylinders M (a, b; H, J). This adapts methods of Abbondandolo
and Schwarz [1], to the setting of framed manifolds with corners. The result of

this study is the following.

Given a space X, let ¥°°(X ) denote the suspension spectrum of X with a

disjoint basepoint.
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Theorem 5. Given the hypotheses of Theorem 3, there is a homotopy equivalence

of spectra,

®: N°(LM,) = Z(T*M).

Notice that this generalizes the Viterbo theorem stating that HF,(T*M) =
H,(LM).

The motivation for this work came from recent work by several authors whose
goal is to relate the string topology theory of LM, as originally defined by Chas
and Sullivan [6], to the symplectic theory of T*M (see for example [2], [15], [§],
[7]). These approaches require the string topology operations to be defined and
have good properties on the chain level. Our goal is to take a more homotopy
theoretic approach. In [10], and [9] the author, Jones, and Godin showed that
string topology operations can be realized on the homotopy level. The results of
this paper, in particular Theorems 3 and 5, realize the Floer theory of T*M on

the homotopy level. This program was announced and summarized in [8].

This paper is organized as follows. In section one we describe the basic homo-
topy theory that is necessary. In particular we describe conditions that completely
characterize the realizations of a finite chain complex of free abelian groups, as
the cellular chains of a finite C.WW complex or spectrum. These conditions are
also described in terms of cobordism classes of framed manifolds with corners.
This discussion is a recasting of the discussion in [11], and may be of independent
interest. (See Theorem 6 below.) In section two we study the Floer theory of
T* M, and prove that the corresponding flow category Cy satisfies the conditions
necessary for generating a stable homotopy type (“Floer homotopy type”) as de-
scribed in section one. We then prove Theorems 2 and 3. In section three we
identify the Floer homotopy type with the stable homotopy type of the free loop

space thereby proving Theorem 5.

The author is very grateful to O. Cornea, Robert Lipshitz, C. Manolescu,
and K. Wehrheim for very helpful discussions and correspondence about this
material, and in particular for helping the author understand the status of gluing

constructions in symplectic geometry.
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1 The homotopy theory

From the algebraic topology point of view, the question of naturally realizing the
Floer chain complex by an underlying homotopy type, is a special case of the

question of understanding how a given chain complex

: i

NG AN o M NN X
may be realized as the cellular chain complex of a C.W-complex or spectrum.
This question was addressed in [11]. In this section we recall that discussion
and give functorial criteria. We then use Pontrjagin-Thom theory to recast these

criteria in terms of framed manifolds with corners.

1.1 Stable attaching maps of finitely filtered spaces

Recall in [11] the authors described how, given a compact space X, filtered by
compact subspaces,
Xo— Xy oo X, = X,

where each X;_; — X, is a cofibration with cofiber, K; = X;/X;_1, then one
can “rebuild” the homotopy type of the n-fold suspension, ¥ X, as the union of

iterated cones and suspensions of the K;’s,

YX ~ YKo Ue(E" K ) U U (B"TK) U - U K, (2)

This decomposition can be described as follows. The cofibration sequences
Xi 1 L, X, LN K; have Puppe extensions,

K; %5 vX, 2L vX;.

Let 0; : K; — Y K;_1 be the composition 9; = Xp;_10v; : K; — XX;_1 — 2K;_1.

Consider the following sequence:

0 O ) i B anei i P)
K, &5 YK, =5 . 2 ynmi g, G oyt e 220 IL YR = 2 X

(3)
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In this sequence, for ease of notation, J; represents the appropriately iterated
suspension of the map 0; defined above. This sequence can be viewed as a

“homotopy chain complex” because each of the compositions,
9j 0 911
is canonically null homotopic. This is because the composition contains as a

. . anjpv . E”ijv .
factor, the cofibration sequence, X" 7 X; ——% SN IK; ——% Snitly,

This canonical null homotopy defines an extension of 0; : YK = it -1

to the mapping cone,
("I K 1) Ug,, SVTK; — ST
More generally for every ¢, using these null homotopies, 9; : "7 K; — ST K, 4
extends to an attaching map for map of the iterated mapping cone,
ST ) Ut (ST ) U Ue(S T ) U, B
— En_j+1Kj_1. (4)
To keep track of the combinatorics of these attaching maps, a category J

was introduced in [11]. The objects of J are the integers, Z. To describe the

morphisms, we first define, for any two integers n > m, the space

J(n,m) = {t;, i € Z, where each t; is a nonnegative real number, and

t; =0, unlessm <i<n.} (5)

Notice that J(n,m) = Rfﬁ*mfl, where RY is the space of g-tuples of nonnegative

real numbers. Notice that one has natural inclusions,
t:J(n,m) x J(m,p) — J(n,p).
We then define the morphisms in J as follows. For integers n < m there are

no morphisms from n to m. The only morphism from an integer n to itself is
the identity. If n = m + 1, we define the morphisms to be the two point space,
Mor(m + 1,m) = S° If n > m + 1, Mor(n,m) is given by the one point

compactification,

Mor(n,m) = J(n,m)" = J(n,m) U oo.
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For consistency of notation we refer to all the morphism spaces Mor(n,m) as

J(n,m)T. Composition in the category is given by addition of sequences,
J(n,m)* x J(m,p)* — J(n,p)*.

If n —m > 2, notice that Mor(n,m) = J(n,m)" is topologically a disk of
dimension n — m — 1 with a distinguished basepoint (= 00). Notice also that for

a based space Y, the smash product J(n,m)™ AY is the iterated cone,

J(n,m)T AY =" (Y.

Given integers p > ¢, then there are subcategories Ji defined to be the full
subcategory generated by integers ¢ > m > p. Notice that given a filtered space

X = X, as above, there is an induced functor,
Zx + Jyt — Spaces,

where Spaces, is the category of compact spaces with basepoint. On objects we
have
Zx(m)=X"K,; =" Xpn/Xm-1)-

On morphisms, Zx is defined via the relative attaching maps,
Zx : J(m,p)T AX"K,, =P (EK,) — SVPK,
given in (4) above. A precise description of this functor was given in [11].

As described in [11], given such a functor, Z : jf — Spaces, one can take its

geometric realization,

Zl= 11 260 A JGa=17"/ ~ (6)
q<j<p
where one identifies the image of Z(j) x J(j,7)* x J(i,q—1)" in Z(j)AJ(j,q—1)"
with its image in Z(i) A J(i,q — 1) under the map on morphisms. Notice that
since Z(j) A J(j,q — 1) is the iterated cone ¢/~9Z(j),

Z| = Z(q) Uc(Z(qg+ 1)) U--- U4 (Z(p)). (7)
There is a double complex,

Cu(Z) = Bq<j<pCi(Z(j)) (8)
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which computes the homology of |Z|. In the case of the functor Zx : Jj* —
Spaces, coming from a filtered space as above, this decomposition is exactly the

decomposition given in (2), and [Zx| ~ X" X.

Notice that in this construction, our functor Z, might just as well have taken
values in the category Sp, of finite spectra. Here the identifications in the defi-

nition (6) of |Z|, would be replaced by coequalizers in Sp, in the usual way.

We observe that the above argument proves the following theorem which gives

our basic criterion for realizing a finite chain complex as a homotopy type.

Theorem 6. Fach realization of a finite chain complex of finitely generated free

abelian groups,

- 0
C, 2 n71—>"'—>018—2>0171—1>"'8—1>00
as the the cellular chain complex of a finite C.W spectrum X, with C; = Hi(X(i),

X(i_l)), occurs as the geometric realization of a functor
ZX : jon - Sp*

with Zx (i) = 2 H(X® /x0-1),

1.2 Framed manifolds with corners

Consider the case when a functor Z : J — Sp, has the property that each Z(i)
is homotopy equivalent to a wedge of spheres (i.e a wedge of suspension spectra
of spheres). This, of course, is the case when Z is induced by a cellular filtration
of a space. In this setting, the maps on morphisms are defined by collections of
maps

Z(Oé,ﬁ) : Sfx N J(Z7j)+ - Sg

for each sphere S¥ in the wedge decomposition of Z(i) and Sp in the wedge de-
composition of Z(j). We can find a smooth representative of this map on the
level of spaces, Z(a, 3) : SE*L A J(i,5)t — SEJrL. Then the inverse image
of a regular point is a compact, smooth manifold with corners, M, embedded
in REFE x J(i,5) = RFFE x ]Ri_j_l, where the embedding respects the corner

structure and has a trivialized normal bundle. By Pontrjagin-Thom theory, the
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“framed cobordism type” of this manifold is determined by and determines this
attaching map. The purpose of this section is to describe categorically, the con-
dition on a collection of framed manifolds with corners, so that it determines a

functor Z : J — Sp,, and therefore a stable homotopy type.

Recall that an n-dimensional manifold with corners M has charts which are
local homeomorphisms with R’}. Recall that the boundary M are those points
in M which map under a local chart to the boundary ORY} = {(ti,---,t,) €
R” such that at least one of the ¢;’s is zero.}. Let ¢ : U — (R4)™ be a chart of
a manifold with corners M. For x € U, the number of zeros of this chart, c(x)
is independent of the chart. A connected face, or “boundary hypersurface” of a
manifold with corners M is the closure of a component of {z € M : ¢(z) = 1}.
Recall from [16], [17] that a manifold with faces is a manifold with corners M
such that each z € M lies in ¢(x) different, connected faces. Notice that in a
manifold with faces, any disjoint union of connected faces is itself a manifold with

faces.

Recall furthermore, that a (k)-manifold M, is a manifold with faces, together
with an ordered k-tuple Fy (M), .-, F(M) of faces, satisfying

1. The union of these faces is the entire boundary,

Fi(M)U---UFi(M)=0M.
2. Each intersection F;(M) N F;(M) is a face of both Fj(M) and of F;(M).

The archetypical example of a (k)-manifold is ]le_. In this case the face
F; C R’i consists of those k-tuples with the j%*- coordinate equal to zero. Cobor-
disms of (k)-manifolds have been studied by Laures in [17], as have their basic
embedding properties. We will make considerable use of these properties in this
paper.

For example as Laures indicated, the data of a (k)-manifold can be encoded in
a categorical way as follows. Let 2 be the partially ordered set with two objects,
{0,1}, generated by a single nonidentity morphism 0 — 1. Let 2 be the product
of k-copies of the category 2. A (k)-manfold M then defines a functor from 2F

to the category of topological spaces, where for an object a = (ay,--- ,a;) € 2¥,
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M (a) is the intersection of the faces F;(M) with a; = 0. Such a functor is a
k-dimensional cubical diagram of spaces, which, following Laures’ terminology,
we refer to as a (k)-diagram. Notice that R¥ (a) C R¥ consists of those k-tuples
of nonnegative real numbers so that the i*-coordinate is zero for every i such
that a; = 0.

In this section we will consider embeddings of manifolds with corners into

Euclidean spaces of the form given by the following definition.

Definition 1. An embedding of a (k)-manifold M into Fuclidean space R™ x Rﬁ

is a natural transformation of (k)-diagrams
e: M — R™xRE
for some m, that satisfies the following properties:

1. For every object a € 2%, e(a) : M(a) — R™ x RE (a) is an inclusion of a

smooth submanifold, and

2. for all a > b, the intersection M(a) N (R™ x R% (b)) is equal to M(b).

Such an embedding was called a neat embedding by Laures in [17]. Moreover
he proved that a manifold with corners M admits such an embedding if and only
if it is a (k)-manifold. In particularif e : M < R™ xR is such an embedding, the
(k)-structure on M is given by the intersection, F;(M) = M N (R™ x F;(R%)) .
Because of this, we refer to such an embedding of (k)-manifolds simply as an

embedding of manifolds with corners.

Notice that given an embedding of manifolds with corners, e : M — R™ x Rﬁ,
then it has a well defined normal bundle. In particular, for any pair of objects in
2% @ > b, then the normal bundle of e(a) : M(a) — R™ x R” (a), when restricted
to M (b), is the normal bundle of e(b) : M (b) — R™ x R% (b).

Said another way, the normal bundle is classified by a homotopy class of
maps (natural transformations) of (k)-diagrams v, : M — BO(q), where BO(q)
represents the constant (k)-diagram whose value at every object is a model of

the classifying space BO(q), and whose arrows are all equal to the identity map.
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(By a “model” we mean a choice of space of the given homotopy type.) Here ¢ is
the codimension, n = m + k — dim M. By a homotopy of maps of (k)-diagrams

we mean a continuous, one-parameter family of such maps, in the usual way.

Similarly, the stable normal bundle of M is classified by a homotopy class of
maps of (k)-diagrams
vy M — BO

for some model of BO, viewed as a constant (k)-diagram. This homotopy class

is independent of any choice of embedding into Euclidean space.

For our purposes, we would like to consider “framed” embeddings of manifolds

with corners, which has the extra structure of a trivialization of the normal
bundle.

Definition 2. Let M be a (k)-manifold. Let vy; : M — BO be a classifying
map of its stable normal bundle. That is, BO is a constant (k)-diagram whose
value on an object is a model for the classifying space BO = lim,,_,o, BO(n), and
vy M — BO is a map of (k)-spaces which on every object classifies the stable
normal bundle of the underlying manifold. Letp : EO — BO be a fibration, where
EO is contractible. View EO as a constant (k)-diagram, and p : EO — BO a
map of (k)-diagrams. Then a framing of the stable normal bundle is a homotopy
class of lifting
Uy M — EO

of v.
Now consider again an embedding of manifolds with corners,
e: M — R™xRE.

of codimension ¢. If g is sufficiently large and M has a framing of its stable
normal bundle, then a choice of framing defines, via the tubular neighborhood

theorem, an extension of e to an embedding
e:RTx M —R™x (Ry)"” (9)

which is a diffeomorphism onto an open neighborhood of the image e(M). In

particular on every object a € 2, this map restricts to give a local diffeomorphism
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e : R? x M(a) — R™ x R%(a). This extension is well defined up to a self
diffeomorphism of R? x M, fixing {0} x M, which is isotopic to the identity. We
refer to this property as being “well defined up to source isotopy”. We call such
a class of embedding with extension as a “framed” embedding of a manifold with

corners.

Notice that given a framed embedding, e : RIx M — R™x R’L the Pontrjagin-

Thom construction gives us a map from the one point compactifications,

project
B —

Te : S™ A (RE Uoo) — (R x M) U oo RYU oo = S1.

The source of this map is the iterated cone, ¢*(S™), or equivalently the space
S™ A J(i,7)t when i = j + k + 1. So the Pontrjagin-Thom construction gives a

map

Te 1 F(S™) — §9 (10)
S™ A J(i, )T — 89,

Here again, m+k—q = dim M. Conversely, given a smooth map, 7 : ¢#(S™) — S9
then the inverse image of a regular point is a compact, smooth (k)-manifold M of

dimension k+m —q, equipped with a framed embedding, e : R? x M — R™ x Rﬁ.

1.3 Compact, smooth, framed categories

From the point of view of Theorem 6 and the discussion in section 1.2 , in order to
define a stable homotopy type one needs an appropriately compatible collection
of framed manifolds with corners. In this section we make this precise by defining
the notion of a “compact, smooth, framed category”. This is a slight variant of
the notion defined in [11].

We adopt the following definition.

Definition 3. ([11])A smooth, compact category is a topological category C whose
objects form a discrete set, and whose whose morphism spaces, Mor(a,b) are com-
pact, smooth manifolds with corners, such that the composition maps p.Mor(a, b) x
Mor(b,c) — Mor(a,c) are smooth codimension one embeddings (of manifolds

with corners) into the boundary.
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A smooth, compact category C is said to be a “Morse-Smale” category if the

following additional properties are satisfied.

1. The objects of C are partially ordered by condition

a>b if Mor(a,b) #0.

2. Mor(a,a) = {identity}.

3. There is a set map, u : Ob(C) — Z which preserves the partial ordering so
that if a > b,
dim Mor(a,b) = p(a) — u(b) — 1.

1 1s known as an “index” map. A Morse-Smale category such as this is said

to have finite type, if for each pair of objects a > b, there are only finitely

many objects a with a > a > b.
We are now in a position to define a “framing” of such a smooth category.

Definition 4. Let C be a compact, smooth, Morse-Smale category of finite type.
Let a > b be objects, and let C; C C be the full subcategory generated by objects
a with a > a > b. By a framed embedding of C; we mean that for every pair
of objects o, 3 in Cy with o > (3, there is a framed embedding of manifolds with

corners,
€ap 1 Mor(a, B) C Mor(a, 8) x R — R" x J(u(a), u(8))

satisfying the compatibility requirement that given any three objects, a > 3 > ~

in Cg, then the following diagram of embeddings commutes up to source isotopy:

Mor(a,~y) x RE ea—:> RE x J(p(e), ()
T 1xe
composeT RY > J(pu(a), p(B)) x J(u(B), (7))

T TeaﬂXl

Mor(a, 8) x Mor(8,7) x RE. —— Mor(a, 8) x RY x J(u(B), u(7))-

Ixes,
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In particular, this means that each morphism space Mor(a, 3) is a (p(a) — u(5) —
1)-manifold.

A framing of a compact, smooth, Morse-Smale category of finite type is a
choice of framed embedding of C;' for each pair of objects, a > b. In particular,
this means that each morphism space Mor(a, ) is a {(u(a) — p(5) — 1)-manifold.

The following was essentially proved in [11]. (We say “essentially” because

some of the language of [11] is slightly different than what is used here.)

Theorem 7. Let C be a compact, smooth, framed Morse-Smale category of finite
type. For objects a > b, Let p = p(a), and ¢ = p(b) be the indices. Then there
s a functor Zg’b : JI — Sps, whose geometric realizations, |Zg’b\ fit together to

give a prospectrum. This prospectrum is called the “Floer homotopy type” of C.

Proof. For completeness, we describe the functors Zg’b : JI — Sp.. We will not
review the prospectrum aspect of this theory, since we will not need it in this
paper. Let C be such a compact, smooth, Morse-Smale category, and let a > b be
objects of indices p and ¢ respectively, and Cj' C C the full subcategory endowed
with a framed embedding as in Definition 4. This involves a choice of integer L
such that for each a > 3 objects in Cy, there is a framed embedding of manifolds

with corners,
ea : Mor(a, ) C Mor(a, 8) x RE < RE x J(u(e), u(8)).

We now define the functor, Zg’b : JI — Sps. For an integer m with ¢ < m < p,
define

Z¢(m) =xtm \/ s (11)

pla)=m

where the wedge is taken over all objects a with @ > o > b and p(a) = m.
Here the spheres in this notation actually are representing the suspension spectra
of the spheres indicated. We continue this abuse of notation whenever dealing
with functors with values in Sp,. The Pontrjagin-Thom construction on the

embedding e, g defines a map of one point compactifications,

Ze(a,B) : (RY x J (), p(8))) U oo — (Mor(a, B) x RF) Uso 2% gt
SN J(ula), w(B)T — S*
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which we think of as a map of suspension spectra
Ze(a, ) : SEHOSHO A J(p(a), w(8)F — SEEOSED - (12)

Wedges of these maps (in the category Sp.) define the functor Z; * on morphisms.
The compatibility conditions of these framings given in Definition 4 assure that

the appropriate compositions are preserved.

O]

Theorem 8. Let C be a compact, smooth, framed Morse-Smale category of finite

type. Let a > b be objects. Then the geometric realization of the functor,
Zy%: JP — Sp.

has a cell decomposition with one cell for every object a with a > o« > b. Fur-

thermore, its cellular chain complez,

19} b
g Lent,

has boundary homomorphisms that can be computed in the following way. If o

and (B are objects with p(a) = m and p(B) = m — 1, then the coefficient

(8(04), ﬁ) = Na,p € Z

is given by
Na,3 = #Mor(a, 3).

This number is counted with sign determined by the framing.

Proof. Recall the decomposition (7) into iterated cones of the geometric realiza-
tion |Z| of a functor Z : J¥ — Sp.. In the case of the functor Zg’b : J¥ — Sp.
coming from a compact, smooth, Morse-Smale category C of finite type, each
Zg’b(m) is a wedge of spheres indexed on the objects, which are the critical
points. Thus this decomposition gives a cell decomposition of Zg’b with one cell
for every critical point. The dimension of a cell corresponding to a critical point
a, is p(a) + (L — q). Furthermore, the corresponding chain complex (8) is then
generated by the objects with a > a > b. The boundary homomorphism in this

chain complex is determined by the attaching maps in the cell decomposition (7).
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It can be computed by observing that if a and /3 are objects with p(a) = m and
w(B) = m — 1, then the coefficient of the boundary homomorphism,

<8(Oé),ﬁ> =TNqpg € Z
is the degree of the attaching map,

Do : ZL—q—lsglJrl Lo, ‘Zg,b’(m—i-L—Q) project |Zg’b (m+L_q)/’Zg,b‘(m+L—q_1)

L— m PB L—qgom
=yt~ \/ s sl
p(v)=m

Here ]Zg’b|(’") is the r*" skeleton of |Zg’b

corresponding to o, and pg is the projection onto the sphere corresponding to [.

, Lo is the attaching map of the cell

But by definition, this map is constructed as the Pontrjagin-Thom construction
on the framed, compact zero dimensional manifold M(«, 3). In other words, the

degree
Mo = #67(00) = #M(a, B)

where this number is counted with sign determined by the framing. O

As described in [11], the standard example of a compact framed Morse-Smale

category is the flow category of a Morse function on a closed manifold,
f:M—-R

satisfying the Morse-Smale transversality condition. This category, which we
denote by C; has the set of critical points of f as its objects. The space of
morphisms between critical points a and b is the compact space of piecewise
gradient flow lines connecting a to b, M(a,b). This category was first defined
in [12] and studied in [11]. Tt is well known that the space of flows M(a,b) is

compact framed manifold with corners of dimension ind(a) — ind(b) — 1.

2 The Floer theory

Our goal in this section is to show that the flow category of the (perturbed)

symplectic action functional on the loop space of the cotangent bundle, L(T*M),
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is a compact, smooth, framed Morse-Smale category of finite type, assuming one
chooses the Hamiltonian and the almost complex structure appropriately. By
the results of the last section this defines a functor Z : J — Sp., and therefore
a “Floer homotopy type” which has one cell for every critical point (periodic
orbit of the Hamiltonian). This will prove Theorems 2 and 3 as stated in the

introduction.

We begin by recalling the basic analytic setup for the Floer theory of T%M,
as described by Abbondandolo and Schwarz [1].

2.1 Analytic setup

Let M be a connected, closed, orientable manifold of dimension n, and T*M its
cotangent bundle with its canonical symplectic form w. Recall that w is exact,
w = df, where 0 is the Liouville 1-form on 7% M, where for x € M, and t € T; M,
0(x,t) is the given by the composition,

O(z,t) : To (T*M) 22 T, L R

Let
H:R/ZxT*M — R

be a 1-periodic Hamiltonian, with corresponding Hamiltonian vector field X
defined by

UJ(XH(t, 1’), U) = _dH(t,:r) (U)
for all (t,z) € T*M, and v € T} ,(T*M). Here x € M, and t € Ty M. We will be

considering the space of 1-periodic solutions, P(H), of the Hamiltonian equation

a = XH(tax(t))‘

As in [1] we make the nondegeneracy assumption,

(HO) Every solution a € P(H) is nondegenerate. This means that if ¢}, is the

integral flow of the vector field X7, then 1 is not an eigenvalue of
Doy (2(0) € GL(TyoyT*M).
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This condition is known to hold for a generic set of H (see [20], [25]).

Continuing to follow [1], let L(T*M) denote the space of all loops x : St —
T*M of Sobolev class W2, L(T*M) has a canonical Hilbert manifold struc-
ture. Let H be a Hamiltonian satisfying condition (H0). Consider the perturbed

symplectic action functional
A L(T*M) - R
dx
xﬂ/ (0 — Hdt) / (O(5) — H(t,a(0)dr. (13)

This is a smooth functional, and its critical points are the elements of P(H).
Now let J be a 1-periodic, smooth almost complex structure on 7% M, so that for
each t € R/Z,

(€, &)y, =w(C, J(t,x)€), (EeT,T*M,xeT M,

is a loop of Riemannian metrics on 7*M. One can then consider the gradient of

Ap with respect to the metric, (-,-), written as

ViAu(z) = —J(x,t)(d—x

i Xp(t,z)).

The (negative) gradient flow equation on a smooth curve u : R — L(T*M),

VA (u(s))

can be rewritten as a perturbed Cauchy-Riemann PDE, if we view u as a smooth
map R/Z x R — T*M, with coordinates, t € R/Z, s € R,

Osu — J(t,u(t, s))(Ou — Xg(t,u(t,s)) =0. (14)
Let a,b € P(H). Abbondandolo and Schwarz defined the space of solutions

Wi(a,b;H,J) ={u:R — L(T*M) a solution to (14), such that (15)

lim u(s) = a, and liIll u(s) = b}.
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We call this space W (a, b) for short. Note that our notation differs from that of
[1]. They use the notation M(a,b). We will reserve this notation for the “moduli
space” obtained by dividing out by the free R-action,

M(a,b) = W(a,b)/R. (16)

Give M a Riemannian metric. Let V represent the corresponding Levi-Civita
connection. Abbondandolo and Schwarz then imposed the following further con-

ditions on the Hamiltonian:

(H1)There exist hg > 0 and h; > 0 such that
dH (t,q,p)[n] — H(t,q,p) = holp|* — h1,
for every (¢,q,p) € R/Z x T*M (so that ¢ € M, and p € T; M.).
(H2) There exists ha > 0 such that
IVaH (t,q,p)| < ha(1+[p*),  [V40H(t,q,p)| < ha(1 + [p]),

for every (t,q,p) € R/Z x T*M.

As observed in [1], Condition (H1) is a condition of quadratic growth and infinity,

and neither conditions (H1) nor (H2) depend on the choice of metric.

An important property of Hamiltonians that satisfy conditions (HO) - (H2) is
the following.

Lemma 9. ([1]) . Suppose H is a Hamiltionian on T*M satisfying conditions
(HO0), (H1), and (H2). Then for any real number r, the set of solutions a € P(H)
with Ap(a) <1 is finite.

The Levi-Civita connection coming from the Riemannian structure on M
defines a splitting of the tangent bundle of T*M,

T(T*M) = p*(TM) & p*(T* M), (17)
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where p : T*M — M is the projection. This determines a canonical almost
complex structure J on T*M compatible with the symplectic structure, which,

with respect to this splitting is given by

- 1
J = 0
—10

In [1] the the spaces W (a, b) were described as the zeros of an appropriate vector

field defined by the perturbed Cauchy-Riemann operator (14), as follows.

Define the space B(a,b) to be the space of maps u : R x R/Z — T*M of
Sobolev class VV;Z, with r > 2, such that there is an s9 > 0 for which

erpa)(C(s,t)) for s < —s9
expy(r) (T (s,1)) for s> s,

where (= and (T are W™ sections of a*(TT*M) and b*(TT*M) respectively.
These pullback bundles are viewed as bundles over (—oo, —so|xR/Z and [sg, +00) X

u(s,t) =

R/Z respectively. B(a,b) has the structure of a Banach manifold, and the tangent
space at u € B(a, b) is the space of W -sections of u*(TT*M). Notice that there

is a homotopy equivalence,
B(a,b) ~ Qg p(L(T*M)) (18)

where Q,,(L(T*M)) is the space of continuous paths v : [0,1] — L(T*M) with
~v(0) = a, and (1) = b. This space has the compact-open topology.

Define 7B — B(a,b) to be the Banach - bundle whose fiber 7,,(B(a,b)) at
u € B(a,b) is the space of L"-section of u*(TT*M). Then W (a,b) is the space of

zeros of the smooth section,

dym : B(a,b) — TB(a,b) (19)
u— Osu~+ Vi Ag(u) = 0su — J(t,u)(Opu — X (t,u(s, t)).

Define Jyeq(H) to be the set of all time dependent, periodic smooth w-
compatible almost complex structures such that ||J — J|| < oo and such that
the section 0jp is transverse to the zero section, for every a,b € Py. They
observe that this is a residual subspace of the space of all w-compatible almost

complex structures J with ||.J — J|| < co. Thus the following condition is generic.
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(J1). J € Treg(H).

Theorem 10. (/1]) Assume the Hamiltonian H satisfies conditions (H0), (H1),
(H2). Then there exists a number jo > 0 such that if a time dependent w-
compatible almost complex structure J satisfies condition (J1) with respect to
the Hamiltonian H, and ||J — jH < jo, then the spaces W(a,b; H,J) are all
precompact, orientable smooth manifolds of dimension p(a) — pu(b), where u(x) is

the Conley-Zehnder index of the periodic solution x € P(H).

Remark. The compactness results in the above theorem basically follow from
the fact that the symplectic form w on T*M is exact, and hence there can be no
bubbling. See [1] for details.

If M(a,b) = W (a,b)/R is the moduli space, then construct the space M (a, b)

of “piecewise flow lines” in the usual way:

M(a, b) = U M(al,ag) X - X M(ak,l,ak),

a=ai>a2>>ar=>b
Here the partial order is given by a1 > ag if W(a1,a2) # 0.

The topology of M(a,b) can be described as follows. Since the action func-
tional Ay is strictly decreasing along flow lines, an element u € W (a,b) deter-

mines a diffeomorphism R 2 (Ag(b), Ag(a)) given by the composition,
R % L(T*M) 25 R
This defines a parameterization of any v € M(a,b) as a map
v : [Au(b), Au(a)] — L(T*M)

that satisfies the differential equation

dy _ VAuz((s))
ds = TAn(y ()P (20)

as well as the boundary conditions

(A () =b and ~(Ag(a))=a. (21)
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From this viewpoint, the compactification M a,b) can be described as the space
of all continuous maps [Ag(b), Ag(a)] — L(T*M) that are piecewise smooth,
(and indeed smooth off of the critical values of Ay that lie between Ay (b) and
Ap(a)), that satisfy the differential equation (20) subject to the boundary con-
ditions (21). It is topologized with the compact open topology.

We now invoke Gluing Assumption (1), which implies that the spaces M(a, b)
are compact, smooth, orientable manfolds with corners. The dimension of M(a, b)
is p(a) — u(b) — 1. For the rest of the paper we operate under this gluing assump-

tion. The following is immediate.

Proposition 11. . The compact moduli spaces M(a,b) are (k(a,b)) - manifolds,
where k(a,b) = p(a) — p(b) — 1.

Proof. The faces of M(a,b) are given as follows. For j = 1,--- 