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The Floer Homotopy Type of the Cotangent Bundle

Ralph L. Cohen∗

Abstract: Let M be a closed, oriented, n-dimensional manifold. In this pa-
per we describe a spectrum in the sense of homotopy theory, Z(T ∗M), whose
homology is naturally isomorphic to the Floer homology of the cotangent
bundle, T ∗M . This Floer homology is taken with respect to a Hamiltonian
H : S1×T ∗M → R which is quadratic near infinity. Z(T ∗M) is constructed
assuming a basic smooth gluing result of J-holomorphic cylinders. This spec-
trum will have a C.W decomposition with one cell for every periodic solution
of the equation defined by the Hamiltonian vector field XH . Its induced cel-
lular chain complex is exactly the Floer complex. The attaching maps in the
C.W structure of Z(T ∗M) are described in terms of the framed cobordism
types of the moduli spaces of J-holomorphic cylinders in T ∗M with given
boundary conditions. This is done via a Pontrjagin-Thom construction, and
an important ingredient in this is proving, modulo this gluing result, that
these moduli spaces are compact, smooth, framed manifolds with corners.
We then prove that Z(T ∗M), which we refer to as the “Floer homotopy
type” of T ∗M , has the same homotopy type as the suspension spectrum of
the free loop space, LM . This generalizes the theorem first proved by C.
Viterbo that the Floer homology of T ∗M is isomorphic to H∗(LM).
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Introduction

An intriguing theorem proved by Viterbo [24], with alternative proofs by Salamon
and Weber [21], as well as Abbondondolo and Schwarz [1], states that the Floer
homology of the cotangent bundle of a closed, oriented manifold M , is isomorphic
to the homology of the free loop space,

HF∗(T ∗M) ∼= H∗(LM).

Here T ∗M is endowed with its canonical symplectic structure, and the Floer
homology is taken with respect to a time dependent Hamiltonian,

H : R/Z× T ∗M → R

which is quadratic near infinity in an appropriate sense. The goal of this paper
is to examine the homotopy theoretic underpinnings of this isomorphism.

Recall that the Floer homology of any symplectic manifold, (N, ω) is defined
to be the homology of the Floer complex, CF∗(N) which is generated by the
1-periodic solutions of a Hamiltonian equation of the form

dx

dt
= XH(t, x(t)), (1)
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where H is a time dependent Hamiltonian, and XH is the Hamiltonian vector
field.

Floer theory can be viewed as a generalized Morse theory, but in the case
of a classical Morse function f : P → R, where P is a smooth, closed manifold,
there is more information than just the corresponding chain complex. Namely,
the Morse complex Cf

∗ (P ) can be viewed as the cellular chain complex of a C.W

complex Zf (P ) which is naturally homotopy equivalent to the manifold P , and
has one cell for each critical point of the function f .

It is then natural to ask, in the case of Floer theory, is there a naturally
defined underlying C.W complex (or spectrum) with one cell for each solution
to the Hamiltonian equation (1), so that its associated cellular chain complex is
isomorphic to the Floer complex, CF∗(N)? This question was taken up by the
author, Jones, and Segal in [11] where conditions on a “Floer functional” were
obtained that allowed the construction of such an underlying homotopy type.
The most important of these conditions, which significantly restricts when such
a Floer homotopy type can exist, is that the moduli space of gradient flow lines
connecting two critical points, have a compactification which is a framed manifold
with corners. Moreover the framings must be chosen compatibly with respect to
the gluing of these moduli spaces.

The goal of this paper is to show that, modulo a specific analytic gluing
construction, these conditions are satisfied by the symplectic action functional
on the loop space of T ∗M , perturbed by an appropriate Hamiltonian, H : R/Z×
T ∗M → R,

AH : L(T ∗M) → R.

We then explicitly describe the resulting Floer homotopy type of T ∗M , which we
denote by Z(T ∗M). In this case Z(T ∗M) is a C.W -spectrum with one cell for
every periodic solution of the Hamiltonian equation (1).

To be more specific, let J be a compatible almost complex structure on T ∗M ,
let a, b : S1 → T ∗M be 1-periodic solutions of the Hamiltonian equation, and
let M̄(a, b;H, J) be the space of piecewise J-holomorphic cylinders u : S1×R→
T ∗M which converge to a as t → −∞, and b as t → +∞. (The precise definitions
of these moduli spaces will be given below.) The smoothness, compactness, and
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orientability properties of the uncompactified moduli spaces M(a, b;H, J) were
studied by Abbondandolo and Schwarz in [1]. The topology of the compactified
moduli space will be discussed in section 2. The basic gluing result that we will
assume in this paper is the following.

Gluing Assumption 1. Let a0, · · · , an be a sequence of 1-periodic solutions so
that M(ai, ai+1;H, J) is nonempty or each i. Then there is an ε > 0 and local
diffeomorphisms (i.e a diffeomorphisms onto open subsets)

M(a0, a1)× · · ·M(an−1, an)× [0, ε)n−1 → M̄(a0, an)

which give M̄(a0, an) the structure of a smooth, compact manifold with corners.
In particular, the boundary ∂M̄(a0, an) consists of the images of these gluing
maps restricted to M(a0, a1)× · · ·M(an−1, an)×{0}, and on the open intervals,
these gluing maps restrict to give local diffeomorphisms,

M(a0, a1)× · · ·M(an−1, an)× (0, ε)n−1 →M(a0, an).

Remark. Gluing constructions of the above type have been constructed in the
several places in the literature (see for example [14], [23], [13], [5]). However spe-
cific gluing results that would imply that the compact moduli spaces M̄(a, b;J,H)
studied here are smooth manifolds with corners, have not appeared in the liter-
ature. The analysis required to prove such a gluing result is of a very different
sort of mathematics than the algebraic topological techniques that are used in
this paper, and will not be pursued here. Thus the statements in this paper can
be viewed as topological results that would follow from this analysis. Although
we state these results as theorems, it should be understood that for their proofs
to be complete, the above gluing assumption must be proved. This, as far as the
author understands, has not yet been completed. From now on in this paper we
will operate under Gluing Assumption 1.

Our first result states that assuming the above gluing result, these moduli
spaces have natural framings.

Theorem 2. For appropriate choices of Hamiltonian H, and with respect to a
generic choice of almost complex structure J on T ∗M , the moduli spaces M̄(a, b;
H, J) are smooth, compact, framed manifolds with corners. The dimension of this
moduli spaces is µ(a)− µ(b)− 1, where µ represents the Conley-Zehnder index.
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We will actually prove something stronger than this. If CH is the “flow cate-
gory”, of AH : L(T ∗M) → R, whose objects are the critical points (i.e periodic
solutions to the Hamiltonian equation), and whose space of morphisms between
two solutions a and b is the moduli space M̄(a, b;H, J), then when certain con-
ditions are met, CH is a “compact, smooth, framed category of Morse-Smale
type”. These conditions will be defined below, but basically they refer to a
certain transversality conditions, and the fact that the choices of framings are
compatible with the composition in the category, which in this case corresponds
to gluing of flow lines.

These conditions were what was required in [11] to produce a “Floer homotopy
type”. In the general setting studied in [11], the Floer homotopy type was a
certain inverse limit of spectra, known as a “prospectrum”. In the case of the
cotangent bundle, however, since the critical values of AH are bounded below,
we will observe that the procedure in [11] actually produces a C.W -spectrum
Z(T ∗M) which realizes the Floer homotopy type. Namely, we prove the following.

Theorem 3. For appropriate choices of Hamiltonian H, and with respect to a
generic choice of almost complex structure J on T ∗M , there is an associated
finite type C.W -spectrum Z(T ∗M) with one cell for every critical point of the
perturbed sympectic action functional, AH : L(T ∗M) → R, i.e solutions to the
Hamiltonian equation, dx

dt = XH(t, x(t)). The attaching maps in this cellular
structure are defined explicitly using the Pontrjagin-Thom construction, in terms
of the framed bordism classes of manifolds with corners represented by the moduli
spaces, M̄(a, b;H, J). The induced cellular chain complex of Z(T ∗M) is precisely
the Floer complex taken with respect to this Hamiltonian and almost complex
structure, CF∗(T ∗M ;H, J).

This theorem says that the Floer homology, HF∗(T ∗M) is computed by tak-
ing the homology of the complex obtained by applying ordinary homology to the
subquotients of the cellular filtration of Z(T ∗M). These subquotients are wedges
of spheres indexed by the critical points of AH , and his theorem says that this
complex is the Floer complex, CF∗(T ∗M). Notice that if one applies a general-

ized homology theory h∗ to these subquotients, one obtains a spectral sequence
converging to the “Floer h∗-theory” of T ∗M .
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Corollary 4. . Let h∗ be any generalized homology theory. There is a spectral
sequence whose E1-term is given by

Ep,q
1 = CFp(T ∗M)⊗ hq(point)

and converges to h∗(Z(T ∗M)), the “Floer h∗-theory of T ∗M”. Here p is the
Conley-Zehnder index of the periodic solution to the Hamiltonian. In the case
when h∗ = H∗, ordinary homology, then the E1 -term is exactly the Floer complex,
and the spectral sequence collapses at the E2-level, which is the Floer homology,
HF∗(T ∗M).

In this spectral sequence, the differential at the E1 level,

d1 : CFp(T ∗M)⊗ hq(point) → CFp−1(T ∗M)⊗ hq(point)

is given in terms of the numbers #M̄(a, b;H, J) when a has Conley-Zehnder in-
dex µ(a) = p, and µ(b) = p− 1. The number, #M̄(a, b;H, J), which is given by
counting the number of points in M̄(a, b;H, J), with signs determined by orien-
tations, can also be viewed as the framed bordism class of this zero dimensional
manifold. (In dimension zero a framing and an orientation are the same thing.)
The higher differentials in this spectral sequence are determined by the framed
bordism classes of the higher dimensional moduli spaces. In the case of ordinary
homology, the collapse of this spectral sequence implies that one does not need
to consider these higher dimensional spaces. However for a generalized homology
theory these higher dimensional moduli spaces play a critical role.

Our final result is an identification of the Floer homotopy type, Z(T ∗M),
of the cotangent bundle. We compare the underlying homotopy theory of a
Morse function on the loop space, E : LM → R, with the Floer homotopy type
Z(T ∗M). This involves comparing the framed bordism types of the moduli spaces
of gradient trajectories of the Morse function E , with those of the moduli spaces
of J-holomorphic cylinders M̄(a, b;H, J). This adapts methods of Abbondandolo
and Schwarz [1], to the setting of framed manifolds with corners. The result of
this study is the following.

Given a space X, let Σ∞(X+) denote the suspension spectrum of X with a
disjoint basepoint.
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Theorem 5. Given the hypotheses of Theorem 3, there is a homotopy equivalence
of spectra,

Φ : Σ∞(LM+) '−→ Z(T ∗M).

Notice that this generalizes the Viterbo theorem stating that HF∗(T ∗M) ∼=
H∗(LM).

The motivation for this work came from recent work by several authors whose
goal is to relate the string topology theory of LM , as originally defined by Chas
and Sullivan [6], to the symplectic theory of T ∗M (see for example [2], [15], [8],
[7]). These approaches require the string topology operations to be defined and
have good properties on the chain level. Our goal is to take a more homotopy
theoretic approach. In [10], and [9] the author, Jones, and Godin showed that
string topology operations can be realized on the homotopy level. The results of
this paper, in particular Theorems 3 and 5, realize the Floer theory of T ∗M on
the homotopy level. This program was announced and summarized in [8].

This paper is organized as follows. In section one we describe the basic homo-
topy theory that is necessary. In particular we describe conditions that completely
characterize the realizations of a finite chain complex of free abelian groups, as
the cellular chains of a finite C.W complex or spectrum. These conditions are
also described in terms of cobordism classes of framed manifolds with corners.
This discussion is a recasting of the discussion in [11], and may be of independent
interest. (See Theorem 6 below.) In section two we study the Floer theory of
T ∗M , and prove that the corresponding flow category CH satisfies the conditions
necessary for generating a stable homotopy type (“Floer homotopy type”) as de-
scribed in section one. We then prove Theorems 2 and 3. In section three we
identify the Floer homotopy type with the stable homotopy type of the free loop
space thereby proving Theorem 5.

The author is very grateful to O. Cornea, Robert Lipshitz, C. Manolescu,
and K. Wehrheim for very helpful discussions and correspondence about this
material, and in particular for helping the author understand the status of gluing
constructions in symplectic geometry.
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1 The homotopy theory

From the algebraic topology point of view, the question of naturally realizing the
Floer chain complex by an underlying homotopy type, is a special case of the
question of understanding how a given chain complex

→ · · · → Ci
∂i−→ Ci−1

∂i−1−−−→ · · · → C0

may be realized as the cellular chain complex of a C.W -complex or spectrum.
This question was addressed in [11]. In this section we recall that discussion
and give functorial criteria. We then use Pontrjagin-Thom theory to recast these
criteria in terms of framed manifolds with corners.

1.1 Stable attaching maps of finitely filtered spaces

Recall in [11] the authors described how, given a compact space X, filtered by
compact subspaces,

X0 ↪→ X1 ↪→ · · · ↪→ Xn = X,

where each Xi−1 ↪→ Xi is a cofibration with cofiber, Ki = Xi/Xi−1, then one
can “rebuild” the homotopy type of the n-fold suspension, ΣnX, as the union of
iterated cones and suspensions of the Ki’s,

ΣnX ' ΣnK0 ∪ c(Σn−1K1) ∪ · · · ∪ ci(Σn−iKi) ∪ · · · ∪ cnKn. (2)

This decomposition can be described as follows. The cofibration sequences
Xi−1

ui−1−−−→ Xi
pi−→ Ki have Puppe extensions,

Ki
vi−→ ΣXi−1

ui−1−−−→ ΣXi.

Let ∂i : Ki → ΣKi−1 be the composition ∂i = Σpi−1 ◦vi : Ki → ΣXi−1 → ΣKi−1.
Consider the following sequence:

Kn
∂n−→ ΣKn−1

∂n−1−−−→ · · · ∂i+1−−−→ Σn−iKi
∂i−→ Σn−i+1Ki−1

∂i−1−−−→ · · · ∂1−→ ΣnK0 = ΣnX0.

(3)
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In this sequence, for ease of notation, ∂j represents the appropriately iterated
suspension of the map ∂j defined above. This sequence can be viewed as a
“homotopy chain complex” because each of the compositions,

∂j ◦ ∂j+1

is canonically null homotopic. This is because the composition contains as a

factor, the cofibration sequence, Σn−jXj
Σn−jpj−−−−→ Σn−jKj

Σn−jvj−−−−→ Σn−j+1Xj−1.
This canonical null homotopy defines an extension of ∂j : Σn−jKj → Σn−j+1Kj−1

to the mapping cone,

c(Σn−j−1Kj+1) ∪∂j+1
Σn−jKj −→ Σn−j+1Kj−1.

More generally for every q, using these null homotopies, ∂j : Σn−jKj → Σn−j+1Kj−1

extends to an attaching map for map of the iterated mapping cone,

cq(Σn−j−qKj+q)∪ cq−1(Σn−j−q+1Kj+q−1)∪ · · · ∪ c(Σn−j−1Kj+1)∪∂j+1
Σn−jKj

−→ Σn−j+1Kj−1. (4)

To keep track of the combinatorics of these attaching maps, a category J
was introduced in [11]. The objects of J are the integers, Z. To describe the
morphisms, we first define, for any two integers n > m, the space

J(n,m) = {ti, i ∈ Z, where each ti is a nonnegative real number, and

ti = 0, unless m < i < n.} (5)

Notice that J(n,m) ∼= Rn−m−1
+ , where Rq

+ is the space of q-tuples of nonnegative
real numbers. Notice that one has natural inclusions,

ι : J(n,m)× J(m, p) ↪→ J(n, p).

We then define the morphisms in J as follows. For integers n < m there are

no morphisms from n to m. The only morphism from an integer n to itself is
the identity. If n = m + 1, we define the morphisms to be the two point space,
Mor(m + 1,m) = S0. If n > m + 1, Mor(n,m) is given by the one point
compactification,

Mor(n,m) = J(n,m)+ = J(n,m) ∪∞.
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For consistency of notation we refer to all the morphism spaces Mor(n,m) as
J(n,m)+. Composition in the category is given by addition of sequences,

J(n,m)+ × J(m, p)+ → J(n, p)+.

If n − m ≥ 2, notice that Mor(n,m) = J(n,m)+ is topologically a disk of
dimension n−m− 1 with a distinguished basepoint (= ∞). Notice also that for
a based space Y , the smash product J(n,m)+ ∧ Y is the iterated cone,

J(n,m)+ ∧ Y = cn−m−1(Y ).

Given integers p > q, then there are subcategories J p
q defined to be the full

subcategory generated by integers q ≥ m ≥ p. Notice that given a filtered space
X = Xn as above, there is an induced functor,

ZX : J n
0 → Spaces∗

where Spaces∗ is the category of compact spaces with basepoint. On objects we
have

ZX(m) = Σn−mKm = Σn−m(Xm/Xm−1).

On morphisms, ZX is defined via the relative attaching maps,

ZX : J(m, p)+ ∧ Σn−mKm = cm−p−1(Σn−mKm) −→ Σn−pKp

given in (4) above. A precise description of this functor was given in [11].

As described in [11], given such a functor, Z : J p
q → Spaces∗ one can take its

geometric realization,

|Z| =
∐

q≤j≤p

Z(j) ∧ J(j, q − 1)+/ ∼ (6)

where one identifies the image of Z(j)×J(j, i)+×J(i, q−1)+ in Z(j)∧J(j, q−1)+

with its image in Z(i) ∧ J(i, q − 1) under the map on morphisms. Notice that
since Z(j) ∧ J(j, q − 1)+ is the iterated cone cj−qZ(j),

|Z| = Z(q) ∪ c(Z(q + 1)) ∪ · · · ∪ cp−q(Z(p)). (7)

There is a double complex,

C∗(Z) = ⊕q≤j≤pC∗(Z(j)) (8)
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which computes the homology of |Z|. In the case of the functor ZX : J n
0 →

Spaces∗ coming from a filtered space as above, this decomposition is exactly the
decomposition given in (2), and |ZX | ' ΣnX.

Notice that in this construction, our functor Z∗ might just as well have taken
values in the category Sp∗ of finite spectra. Here the identifications in the defi-
nition (6) of |Z|, would be replaced by coequalizers in Sp∗ in the usual way.

We observe that the above argument proves the following theorem which gives
our basic criterion for realizing a finite chain complex as a homotopy type.

Theorem 6. Each realization of a finite chain complex of finitely generated free
abelian groups,

Cn
∂n−→ Cn−1 → · · · → Ci

∂i−→ Ci−1
∂i−1−−−→ · · · ∂1−→ C0

as the the cellular chain complex of a finite C.W spectrum X, with Ci = Hi(X(i),

X(i−1)), occurs as the geometric realization of a functor

ZX : J n
0 → Sp∗

with ZX(i) = Σn−i(X(i)/X(i−1)).

1.2 Framed manifolds with corners

Consider the case when a functor Z : J → Sp∗ has the property that each Z(i)
is homotopy equivalent to a wedge of spheres (i.e a wedge of suspension spectra
of spheres). This, of course, is the case when Z is induced by a cellular filtration
of a space. In this setting, the maps on morphisms are defined by collections of
maps

Z(α, β) : Sk
α ∧ J(i, j)+ −→ Sr

β

for each sphere Sk
α in the wedge decomposition of Z(i) and Sr

β in the wedge de-
composition of Z(j). We can find a smooth representative of this map on the
level of spaces, Z(α, β) : Sk+L

α ∧ J(i, j)+ −→ Sr+L
β . Then the inverse image

of a regular point is a compact, smooth manifold with corners, M , embedded
in Rk+L × J(i, j) ∼= Rk+L × Ri−j−1

+ , where the embedding respects the corner
structure and has a trivialized normal bundle. By Pontrjagin-Thom theory, the
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“framed cobordism type” of this manifold is determined by and determines this
attaching map. The purpose of this section is to describe categorically, the con-
dition on a collection of framed manifolds with corners, so that it determines a
functor Z : J → Sp∗, and therefore a stable homotopy type.

Recall that an n-dimensional manifold with corners M has charts which are
local homeomorphisms with Rn

+. Recall that the boundary ∂M are those points
in M which map under a local chart to the boundary ∂Rn

+ = {(t1, · · · , tn) ∈
Rn

+ such that at least one of the ti’s is zero.}. Let ψ : U → (R+)n be a chart of
a manifold with corners M . For x ∈ U , the number of zeros of this chart, c(x)
is independent of the chart. A connected face, or “boundary hypersurface” of a
manifold with corners M is the closure of a component of {x ∈ M : c(x) = 1}.
Recall from [16], [17] that a manifold with faces is a manifold with corners M

such that each x ∈ M lies in c(x) different, connected faces. Notice that in a
manifold with faces, any disjoint union of connected faces is itself a manifold with
faces.

Recall furthermore, that a 〈k〉-manifold M , is a manifold with faces, together
with an ordered k-tuple F1(M), · · · , Fk(M) of faces, satisfying

1. The union of these faces is the entire boundary,

F1(M) ∪ · · · ∪ Fk(M) = ∂M.

2. Each intersection Fi(M) ∩ Fj(M) is a face of both Fi(M) and of Fj(M).

The archetypical example of a 〈k〉-manifold is Rk
+. In this case the face

Fj ⊂ Rk
+ consists of those k-tuples with the jth- coordinate equal to zero. Cobor-

disms of 〈k〉-manifolds have been studied by Laures in [17], as have their basic
embedding properties. We will make considerable use of these properties in this
paper.

For example as Laures indicated, the data of a 〈k〉-manifold can be encoded in
a categorical way as follows. Let 2 be the partially ordered set with two objects,
{0, 1}, generated by a single nonidentity morphism 0 → 1. Let 2k be the product
of k-copies of the category 2. A 〈k〉-manfold M then defines a functor from 2k

to the category of topological spaces, where for an object a = (a1, · · · , ak) ∈ 2k,
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M(a) is the intersection of the faces Fi(M) with ai = 0. Such a functor is a
k-dimensional cubical diagram of spaces, which, following Laures’ terminology,
we refer to as a 〈k〉-diagram. Notice that Rk

+(a) ⊂ Rk
+ consists of those k-tuples

of nonnegative real numbers so that the ith-coordinate is zero for every i such
that ai = 0.

In this section we will consider embeddings of manifolds with corners into
Euclidean spaces of the form given by the following definition.

Definition 1. An embedding of a 〈k〉-manifold M into Euclidean space Rm×Rk
+

is a natural transformation of 〈k〉-diagrams

e : M ↪→ Rm × Rk
+

for some m, that satisfies the following properties:

1. For every object a ∈ 2k, e(a) : M(a) → Rm × Rk
+(a) is an inclusion of a

smooth submanifold, and

2. for all a > b, the intersection M(a) ∩ (
Rm × Rk

+(b)
)

is equal to M(b).

Such an embedding was called a neat embedding by Laures in [17]. Moreover
he proved that a manifold with corners M admits such an embedding if and only
if it is a 〈k〉-manifold. In particular if e : M ↪→ Rm×Rk

+ is such an embedding, the
〈k〉-structure on M is given by the intersection, Fj(M) = M ∩ (

Rm × Fj(Rk
+)

)
.

Because of this, we refer to such an embedding of 〈k〉-manifolds simply as an
embedding of manifolds with corners.

Notice that given an embedding of manifolds with corners, e : M ↪→ Rm×Rk
+,

then it has a well defined normal bundle. In particular, for any pair of objects in
2k a > b, then the normal bundle of e(a) : M(a) ↪→ Rm×Rk

+(a), when restricted
to M(b), is the normal bundle of e(b) : M(b) ↪→ Rm × Rk

+(b).

Said another way, the normal bundle is classified by a homotopy class of
maps (natural transformations) of 〈k〉-diagrams νe : M → BO(q), where BO(q)
represents the constant 〈k〉-diagram whose value at every object is a model of
the classifying space BO(q), and whose arrows are all equal to the identity map.
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(By a “model” we mean a choice of space of the given homotopy type.) Here q is
the codimension, n = m + k − dimM . By a homotopy of maps of 〈k〉-diagrams
we mean a continuous, one-parameter family of such maps, in the usual way.

Similarly, the stable normal bundle of M is classified by a homotopy class of
maps of 〈k〉-diagrams

νM : M → BO

for some model of BO, viewed as a constant 〈k〉-diagram. This homotopy class
is independent of any choice of embedding into Euclidean space.

For our purposes, we would like to consider “framed” embeddings of manifolds
with corners, which has the extra structure of a trivialization of the normal
bundle.

Definition 2. Let M be a 〈k〉-manifold. Let νM : M → BO be a classifying
map of its stable normal bundle. That is, BO is a constant 〈k〉-diagram whose
value on an object is a model for the classifying space BO = limn→∞BO(n), and
νM : M → BO is a map of 〈k〉-spaces which on every object classifies the stable
normal bundle of the underlying manifold. Let p : EO → BO be a fibration, where
EO is contractible. View EO as a constant 〈k〉-diagram, and p : EO → BO a
map of 〈k〉-diagrams. Then a framing of the stable normal bundle is a homotopy
class of lifting

ν̃M : M → EO

of ν.

Now consider again an embedding of manifolds with corners,

e : M ↪→ Rm × Rk
+.

of codimension q. If q is sufficiently large and M has a framing of its stable
normal bundle, then a choice of framing defines, via the tubular neighborhood
theorem, an extension of e to an embedding

e : Rq ×M → Rm × (R+)n (9)

which is a diffeomorphism onto an open neighborhood of the image e(M). In
particular on every object a ∈ 2k, this map restricts to give a local diffeomorphism
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e : Rq × M(a) → Rm × Rk
+(a). This extension is well defined up to a self

diffeomorphism of Rq ×M , fixing {0} ×M , which is isotopic to the identity. We
refer to this property as being “well defined up to source isotopy”. We call such
a class of embedding with extension as a “framed” embedding of a manifold with
corners.

Notice that given a framed embedding, e : Rq×M → Rm×Rk
+, the Pontrjagin-

Thom construction gives us a map from the one point compactifications,

τe : Sm ∧ (Rk
+ ∪∞) → (Rq ×M) ∪∞ project−−−−→ Rq ∪∞ = Sq.

The source of this map is the iterated cone, ck(Sm), or equivalently the space
Sm ∧ J(i, j)+ when i = j + k + 1. So the Pontrjagin-Thom construction gives a
map

τe : ck(Sm) → Sq (10)

Sm ∧ J(i, j)+ → Sq.

Here again, m+k−q = dimM . Conversely, given a smooth map, τ : ck(Sm) → Sq

then the inverse image of a regular point is a compact, smooth 〈k〉-manifold M of
dimension k+m−q, equipped with a framed embedding, e : Rq×M ↪→ Rm×Rk

+.

1.3 Compact, smooth, framed categories

From the point of view of Theorem 6 and the discussion in section 1.2 , in order to
define a stable homotopy type one needs an appropriately compatible collection
of framed manifolds with corners. In this section we make this precise by defining
the notion of a “compact, smooth, framed category”. This is a slight variant of
the notion defined in [11].

We adopt the following definition.

Definition 3. ([11])A smooth, compact category is a topological category C whose
objects form a discrete set, and whose whose morphism spaces, Mor(a, b) are com-
pact, smooth manifolds with corners, such that the composition maps µ:Mor(a, b)×
Mor(b, c) → Mor(a, c) are smooth codimension one embeddings (of manifolds
with corners) into the boundary.
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A smooth, compact category C is said to be a “Morse-Smale” category if the
following additional properties are satisfied.

1. The objects of C are partially ordered by condition

a ≥ b if Mor(a, b) 6= ∅.

2. Mor(a, a) = {identity}.

3. There is a set map, µ : Ob(C) → Z which preserves the partial ordering so
that if a > b,

dimMor(a, b) = µ(a)− µ(b)− 1.

µ is known as an “index” map. A Morse-Smale category such as this is said
to have finite type, if for each pair of objects a > b, there are only finitely
many objects α with a > α > b.

We are now in a position to define a “framing” of such a smooth category.

Definition 4. Let C be a compact, smooth, Morse-Smale category of finite type.
Let a > b be objects, and let Ca

b ⊂ C be the full subcategory generated by objects
α with a > α > b. By a framed embedding of Ca

b we mean that for every pair
of objects α, β in Ca

b with α > β, there is a framed embedding of manifolds with
corners,

eα,β : Mor(α, β) ⊂ Mor(α, β)× RL ↪→ RL × J(µ(α), µ(β))

satisfying the compatibility requirement that given any three objects, α > β > γ

in Ca
b , then the following diagram of embeddings commutes up to source isotopy:

Mor(α, γ)× RL eα,γ−−−−→
↪→ RL × J(µ(α), µ(γ)

x
x1×ι

compose

x RL × J(µ(α), µ(β))× J(µ(β), µ(γ))
x

xeα,β×1

Mor(α, β)×Mor(β, γ)× RL ↪→−−−−→
1×eβ,γ

Mor(α, β)× RL × J(µ(β), µ(γ)).
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In particular, this means that each morphism space Mor(α, β) is a 〈µ(α)−µ(β)−
1〉-manifold.

A framing of a compact, smooth, Morse-Smale category of finite type is a
choice of framed embedding of Ca

b for each pair of objects, a > b. In particular,
this means that each morphism space Mor(α, β) is a 〈µ(α)−µ(β)− 1〉-manifold.

The following was essentially proved in [11]. (We say “essentially” because
some of the language of [11] is slightly different than what is used here.)

Theorem 7. Let C be a compact, smooth, framed Morse-Smale category of finite
type. For objects a > b, Let p = µ(a), and q = µ(b) be the indices. Then there
is a functor Za,b

C : J p
q → Sp∗, whose geometric realizations, |Za,b

C | fit together to
give a prospectrum. This prospectrum is called the “Floer homotopy type” of C.

Proof. For completeness, we describe the functors Za,b
C : J p

q → Sp∗. We will not
review the prospectrum aspect of this theory, since we will not need it in this
paper. Let C be such a compact, smooth, Morse-Smale category, and let a > b be
objects of indices p and q respectively, and Ca

b ⊂ C the full subcategory endowed
with a framed embedding as in Definition 4. This involves a choice of integer L

such that for each α > β objects in Ca
b , there is a framed embedding of manifolds

with corners,

eα,β : Mor(α, β) ⊂ Mor(α, β)× RL ↪→ RL × J(µ(α), µ(β)).

We now define the functor, Za,b
C : J p

q → Sp∗. For an integer m with q ≤ m ≤ p,
define

Za,b
C (m) = ΣL−m

∨

µ(α)=m

Sm
α (11)

where the wedge is taken over all objects α with a ≥ α ≥ b and µ(α) = m.
Here the spheres in this notation actually are representing the suspension spectra
of the spheres indicated. We continue this abuse of notation whenever dealing
with functors with values in Sp∗. The Pontrjagin-Thom construction on the
embedding eα,β defines a map of one point compactifications,

ZC(α, β) :
(
RL × J(µ(α), µ(β))

) ∪∞ −→ (
Mor(α, β)× RL

) ∪∞ proj−−→ SL

SL ∧ J(µ(α), µ(β))+ −→ SL
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which we think of as a map of suspension spectra

ZC(α, β) : ΣL−µ(α)Sµ(α)
α ∧ J(µ(α), µ(β))+ −→ ΣL−µ(β)S

µ(β)
β . (12)

Wedges of these maps (in the category Sp∗) define the functor Za,b
C on morphisms.

The compatibility conditions of these framings given in Definition 4 assure that
the appropriate compositions are preserved.

Theorem 8. Let C be a compact, smooth, framed Morse-Smale category of finite
type. Let a > b be objects. Then the geometric realization of the functor,

Za,b
C : J p

q → Sp∗

has a cell decomposition with one cell for every object α with a ≥ α ≥ b. Fur-
thermore, its cellular chain complex,

→ · · ·Ca,b
m

∂−→ Ca,b
m−1 → · · ·

has boundary homomorphisms that can be computed in the following way. If α

and β are objects with µ(α) = m and µ(β) = m− 1, then the coefficient

〈∂(α), β〉 = nα,β ∈ Z

is given by
nα,β = #Mor(α, β).

This number is counted with sign determined by the framing.

Proof. Recall the decomposition (7) into iterated cones of the geometric realiza-
tion |Z| of a functor Z : J p

q → Sp∗. In the case of the functor Za,b
C : J p

q → Sp∗
coming from a compact, smooth, Morse-Smale category C of finite type, each
Za,b
C (m) is a wedge of spheres indexed on the objects, which are the critical

points. Thus this decomposition gives a cell decomposition of Za,b
C with one cell

for every critical point. The dimension of a cell corresponding to a critical point
α, is µ(α) + (L − q). Furthermore, the corresponding chain complex (8) is then
generated by the objects with a > α > b. The boundary homomorphism in this
chain complex is determined by the attaching maps in the cell decomposition (7).
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It can be computed by observing that if α and β are objects with µ(α) = m and
µ(β) = m− 1, then the coefficient of the boundary homomorphism,

〈∂(α), β〉 = nα,β ∈ Z

is the degree of the attaching map,

φα,β : ΣL−q−1Sm+1
α

ια−→ |Za,b
C |(m+L−q) project−−−−→ |Za,b

C |(m+L−q)/|Za,b
C |(m+L−q−1)

= ΣL−q
∨

µ(γ)=m

Sm
γ

pβ−→ ΣL−qSm
β .

Here |Za,b
C |(r) is the rth skeleton of |Za,b

C |, ια is the attaching map of the cell
corresponding to α, and pβ is the projection onto the sphere corresponding to β.
But by definition, this map is constructed as the Pontrjagin-Thom construction
on the framed, compact zero dimensional manifold M(α, β). In other words, the
degree

nα,β = #φ−1
α,β(∞) = #M(α, β)

where this number is counted with sign determined by the framing.

As described in [11], the standard example of a compact framed Morse-Smale
category is the flow category of a Morse function on a closed manifold,

f : M → R

satisfying the Morse-Smale transversality condition. This category, which we
denote by Cf has the set of critical points of f as its objects. The space of
morphisms between critical points a and b is the compact space of piecewise
gradient flow lines connecting a to b, M̄(a, b). This category was first defined
in [12] and studied in [11]. It is well known that the space of flows M̄(a, b) is
compact framed manifold with corners of dimension ind(a)− ind(b)− 1.

2 The Floer theory

Our goal in this section is to show that the flow category of the (perturbed)
symplectic action functional on the loop space of the cotangent bundle, L(T ∗M),
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is a compact, smooth, framed Morse-Smale category of finite type, assuming one
chooses the Hamiltonian and the almost complex structure appropriately. By
the results of the last section this defines a functor Z : J → Sp∗, and therefore
a “Floer homotopy type” which has one cell for every critical point (periodic
orbit of the Hamiltonian). This will prove Theorems 2 and 3 as stated in the
introduction.

We begin by recalling the basic analytic setup for the Floer theory of T ∗M ,
as described by Abbondandolo and Schwarz [1].

2.1 Analytic setup

Let M be a connected, closed, orientable manifold of dimension n, and T ∗M its
cotangent bundle with its canonical symplectic form ω. Recall that ω is exact,
ω = dθ, where θ is the Liouville 1-form on T ∗M , where for x ∈ M , and t ∈ T ∗xM ,
θ(x, t) is the given by the composition,

θ(x, t) : Tx,t(T ∗M)
dp−→ TxM

t−→ R.

Let
H : R/Z× T ∗M → R

be a 1-periodic Hamiltonian, with corresponding Hamiltonian vector field XH

defined by
ω(XH(t, x), v) = −dH(t,x)(v)

for all (t, x) ∈ T ∗M , and v ∈ Tt,x(T ∗M). Here x ∈ M , and t ∈ T ∗xM . We will be
considering the space of 1-periodic solutions, P(H), of the Hamiltonian equation

dx

dt
= XH(t, x(t)).

As in [1] we make the nondegeneracy assumption,

(H0) Every solution a ∈ P(H) is nondegenerate. This means that if φt
H is the

integral flow of the vector field XH , then 1 is not an eigenvalue of
Dφ1

H(x(0) ∈ GL(Tx(0)T
∗M).
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This condition is known to hold for a generic set of H (see [20], [25]).

Continuing to follow [1], let L(T ∗M) denote the space of all loops x : S1 →
T ∗M of Sobolev class W 1,2. L(T ∗M) has a canonical Hilbert manifold struc-
ture. Let H be a Hamiltonian satisfying condition (H0). Consider the perturbed
symplectic action functional

AH : L(T ∗M) → R

x →
∫

x∗(θ −Hdt) =
∫ 1

0
(θ(

dx

dt
)−H(t, x(t))dt. (13)

This is a smooth functional, and its critical points are the elements of P(H).
Now let J be a 1-periodic, smooth almost complex structure on T ∗M , so that for
each t ∈ R/Z,

〈ζ, ξ〉Jt = ω(ζ, J(t, x)ξ), ζ, ξ ∈ TxT ∗M, x ∈ T ∗M,

is a loop of Riemannian metrics on T ∗M . One can then consider the gradient of
AH with respect to the metric, 〈·, ·〉, written as

∇JAH(x) = −J(x, t)(
dx

dt
−XH(t, x)).

The (negative) gradient flow equation on a smooth curve u : R→ L(T ∗M),

du

ds
+∇JAH(u(s))

can be rewritten as a perturbed Cauchy-Riemann PDE, if we view u as a smooth
map R/Z× R→ T ∗M , with coordinates, t ∈ R/Z, s ∈ R,

∂su− J(t, u(t, s))(∂tu−XH(t, u(t, s)) = 0. (14)

Let a, b ∈ P(H). Abbondandolo and Schwarz defined the space of solutions

W (a, b;H, J) = {u : R→ L(T ∗M) a solution to (14), such that (15)

lim
s→−∞u(s) = a, and lim

s→+∞u(s) = b}.
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We call this space W (a, b) for short. Note that our notation differs from that of
[1]. They use the notation M(a, b). We will reserve this notation for the “moduli
space” obtained by dividing out by the free R-action,

M(a, b) = W (a, b)/R. (16)

Give M a Riemannian metric. Let ∇ represent the corresponding Levi-Civita
connection. Abbondandolo and Schwarz then imposed the following further con-
ditions on the Hamiltonian:

(H1)There exist h0 > 0 and h1 ≥ 0 such that

dH(t, q, p)[η]−H(t, q, p) ≥ h0|p|2 − h1,

for every (t, q, p) ∈ R/Z× T ∗M (so that q ∈ M , and p ∈ T ∗q M .).

(H2) There exists h2 ≥ 0 such that

|∇qH(t, q, p)| ≤ h2(1 + |p|2), |∇q∂H(t, q, p)| ≤ h2(1 + |p|),

for every (t, q, p) ∈ R/Z× T ∗M .

As observed in [1], Condition (H1) is a condition of quadratic growth and infinity,
and neither conditions (H1) nor (H2) depend on the choice of metric.

An important property of Hamiltonians that satisfy conditions (H0) - (H2) is
the following.

Lemma 9. ([1]) . Suppose H is a Hamiltionian on T ∗M satisfying conditions
(H0), (H1), and (H2). Then for any real number r, the set of solutions a ∈ P(H)
with AH(a) ≤ r is finite.

The Levi-Civita connection coming from the Riemannian structure on M

defines a splitting of the tangent bundle of T ∗M ,

T (T ∗M) ∼= p∗(TM)⊕ p∗(T ∗M), (17)
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where p : T ∗M → M is the projection. This determines a canonical almost
complex structure Ĵ on T ∗M compatible with the symplectic structure, which,
with respect to this splitting is given by

Ĵ =

(
0 I

−I 0

)

In [1] the the spaces W (a, b) were described as the zeros of an appropriate vector
field defined by the perturbed Cauchy-Riemann operator (14), as follows.

Define the space B(a, b) to be the space of maps u : R × R/Z → T ∗M of
Sobolev class W 1,r

loc , with r > 2, such that there is an s0 ≥ 0 for which

u(s, t) =





expa(t)(ζ−(s, t)) for s ≤ −s0

expb(t)(ζ+(s, t)) for s ≥ s0,

where ζ− and ζ+ are W 1,r sections of a∗(TT ∗M) and b∗(TT ∗M) respectively.
These pullback bundles are viewed as bundles over (−∞,−s0]×R/Z and [s0,+∞)×
R/Z respectively. B(a, b) has the structure of a Banach manifold, and the tangent
space at u ∈ B(a, b) is the space of W 1,r-sections of u∗(TT ∗M). Notice that there
is a homotopy equivalence,

B(a, b) ' Ωa,b(L(T ∗M)) (18)

where Ωa,b(L(T ∗M)) is the space of continuous paths γ : [0, 1] → L(T ∗M) with
γ(0) = a, and γ(1) = b. This space has the compact-open topology.

Define T B → B(a, b) to be the Banach - bundle whose fiber Tu(B(a, b)) at
u ∈ B(a, b) is the space of Lr-section of u∗(TT ∗M). Then W (a, b) is the space of
zeros of the smooth section,

∂J,H : B(a, b) → T B(a, b) (19)

u → ∂su +∇JAH(u) = ∂su− J(t, u)(∂tu−XH(t, u(s, t)).

Define Jreg(H) to be the set of all time dependent, periodic smooth ω-
compatible almost complex structures such that ‖J − Ĵ‖ < ∞ and such that
the section ∂J,H is transverse to the zero section, for every a, b ∈ PH . They
observe that this is a residual subspace of the space of all ω-compatible almost
complex structures J with ‖J− Ĵ‖ < ∞. Thus the following condition is generic.
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(J1). J ∈ Jreg(H).

Theorem 10. ([1]) Assume the Hamiltonian H satisfies conditions (H0), (H1),
(H2). Then there exists a number j0 > 0 such that if a time dependent ω-
compatible almost complex structure J satisfies condition (J1) with respect to
the Hamiltonian H, and ‖J − Ĵ‖ < j0, then the spaces W (a, b;H, J) are all
precompact, orientable smooth manifolds of dimension µ(a)−µ(b), where µ(x) is
the Conley-Zehnder index of the periodic solution x ∈ P(H).

Remark. The compactness results in the above theorem basically follow from
the fact that the symplectic form ω on T ∗M is exact, and hence there can be no
bubbling. See [1] for details.

If M(a, b) = W (a, b)/R is the moduli space, then construct the space M̄(a, b)
of “piecewise flow lines” in the usual way:

M̄(a, b) =
⋃

a=a1>a2>···>ak=b

M(a1, a2)× · · · ×M(ak−1, ak),

Here the partial order is given by a1 ≥ a2 if W (a1, a2) 6= ∅.
The topology of M̄(a, b) can be described as follows. Since the action func-

tional AH is strictly decreasing along flow lines, an element u ∈ W (a, b) deter-
mines a diffeomorphism R ∼= (AH(b),AH(a)) given by the composition,

R u−→ L(T ∗M) AH−−→ R.

This defines a parameterization of any γ ∈M(a, b) as a map

γ : [AH(b),AH(a)] → L(T ∗M)

that satisfies the differential equation

dγ

ds
=
∇AH(γ(s))
|AH(γ(s))|2 , (20)

as well as the boundary conditions

γ(AH(b)) = b and γ(AH(a)) = a. (21)
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From this viewpoint, the compactification M̄(a, b) can be described as the space
of all continuous maps [AH(b),AH(a)] → L(T ∗M) that are piecewise smooth,
(and indeed smooth off of the critical values of AH that lie between AH(b) and
AH(a)), that satisfy the differential equation (20) subject to the boundary con-
ditions (21). It is topologized with the compact open topology.

We now invoke Gluing Assumption (1), which implies that the spaces M̄(a, b)
are compact, smooth, orientable manfolds with corners. The dimension of M̄(a, b)
is µ(a)−µ(b)−1. For the rest of the paper we operate under this gluing assump-
tion. The following is immediate.

Proposition 11. . The compact moduli spaces M̄(a, b) are 〈k(a, b)〉 - manifolds,
where k(a, b) = µ(a)− µ(b)− 1.

Proof. The faces of M̄(a, b) are given as follows. For j = 1, · · · , k(a, b), let

Fj(M̄(a, b)) =
⋃

µ(c)=µ(a)−j

M̄(a, c)× M̄(c, b).

This face structure clearly satisfies the intersection property necessary for being
a 〈k(a, b)〉- manifold (See the definition in the beginning of section 1.2.)

The following is also straightforward.

Proposition 12. The inclusion of the moduli space into its compactification,

ι : M(a, b) ↪→ M̄(a, b)

is a homotopy equivalence.

Proof. By the gluing assumption (1), one has local diffeomorphisms, M(a, a1)×
· · · × M(aq, b) × [0, ε) → M̄(a, b), for every sequence of intermediate critical
points, a ≥ a1 ≥ a2 ≥ · · · ≥ aq ≥ b. The boundary ∂M̄(a, b) consists of the
images of these gluing maps restricted to M(a, a1) × · · · ×M(aq, b) × {0}, and
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these gluing maps restrict on the open intervals to give local diffeomorphisms,
M(a, a1)× · · · ×M(aq, b)× (0, ε) →M(a, b). Thus

M(a, b) = M̄(a, b) −
⋃

a≥a1≥a2≥···≥aq≥b

M(a, a1)× · · · ×M(aq, b)× {0}

where the union is taken over all such sequences of intermediate critical points.
In this notation we are identifying M(a, a1)×· · ·×M(aq, b)×{0} with its image
in M̄(a, b).

Let K(a, b) be the complement of a smaller open collar around the boundary:

K(a, b) = M̄(a, b) −
⋃

a≥a1≥a2≥···≥aq≥b

M(a, a1)× · · · ×M(aq, b)× [0, ε/2)

In particular, K(a, b) is a subspace of the open moduli space K(a, b) ⊂ M(a, b).
But clearly K(a, b) is homeomorphic to M̄(a, b). Such a homeomorphism is in-
duced by the natural affine homeomorphism between the intervals [ε/2, ε) and
[0, ε). With respect to this homeomorphism the inclusion K(a, b) ⊂ M(a, b) is a
clearly a homotopy inverse to the inclusion M(a, b) ⊂ M̄(a, b).

The following says that the stable normal bundle of M̄(a, b) is, up to isomor-
phism, completely determined by the stable normal bundle of the open moduli
space M(a, b). In particular it does not depend on the actual gluing maps in
gluing assumption (1).

Corollary 13. The stable normal bundle of M̄(a, b) is classified by any map
M̄(a, b) → BO whose restriction to the open moduli space M(a, b) classifies its
stable normal bundle.

2.2 A framing of the moduli space of J-holomorphic cylinders

The goal of this section is to prove Theorem 2 in the introduction, and to define
the Floer homotopy type of T ∗M . We now restate this Theorem 2 with the
appropriate hypotheses.

Theorem 14. Let H and J satisfy the conditions of Theorem 10. Then the
compactified moduli spaces, M̄(a, b) = M̄(a, b;H, J) have framings on their stable
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normal bundles. Here framing means as manifolds with corners as in Definition
(2).

Proof. In [11] the authors discussed how the basic obstruction to the framability
of the morphism spaces Mor(a, b) in the flow category CN of the symplectic
action functional on the loop space, LN , of a symplectic manifold, (N2n, ω), is
the “polarization class”, which is a homotopy class of map

ρ : LN → U/O

where U/O = limk→∞ U(k)/O(k). The map ρ is defined as follows. A compatible
almost complex structure on N defines a map τ : N → BU(n) classifying the
isomorphism class of the tangent bundle as a complex vector bundle. The ho-
motopy class of τ does not depend on the particular compatible almost complex
structure chosen. Applying loop spaces, one has a composite map,

ρ : LN
L(τ)−−−→ L(BU(n)) ↪→ LBU ' BU × U → U → U/O. (22)

Here the homotopy equivalence L(BU) ' BU×U is well defined up to homotopy,
and is given by a trivialization of the fibration

U ' ΩBU
ι−→ L(BU) ev−→ BU

where ev : LX → X evaluates a loop a 0 ∈ R/Z.

The reason we refer to this invariant as the “polarization class” of the loop
space LN , is because when viewed as an infinite dimensional manifold, the tan-
gent bundle T (LN) is polarized, and is classified up to homotopy by the map ρ.
See [11] for details.

We now observe that in the case of the cotangent bundle, this polarization
class is trivial.

Lemma 15. The polarization class ρ : L(T ∗M) → U/O is has a canonical null
homotopy.
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Proof. As described above (17), a Riemannian metric on M defines via the
Levi-Civita connection, a splitting T (T ∗M) ∼= p∗(TM) ⊕ p∗(T ∗M), and an ω-
compatible almost complex structure defines an isomorphism of the complex vec-
tor bundle T (T ∗M), with the complexification of the tangent bundle of M ,

T (T ∗M) ∼= p∗(TM)⊗ C.

On the level of classifying maps this means the following diagram homotopy
commutes:

M
τM−−−−→ BO(n)yz

yc

T ∗M −−−−→
τT∗M

BU(n)

(23)

where the horizontal maps τ classify the relevant tangent bundles, z : M ↪→ T ∗M
is the zero section, and c : BO(n) → BU(n) is the complexification map. That
means we have a homotopy commutative diagram,

LM
LτM−−−−→ LBO(n) −−−−→ L(BO) ' O ×BO

project−−−−→ Oyz

yc

yc

yc

L(T ∗M) −−−−→
LτT∗M

LBU(n) −−−−→ L(BU) ' U ×BU −−−−→
project

U −−−−→ U/O

Now the bottom horizontal composition is the polarization class ρ : L(T ∗M) →
U/O. But since the composition O

c−→ U → U/O is canonically null homotopic,
the commutativity of this diagram says that the composition

LM
z−→ L(T ∗M)

ρ−→ U/O

is canonically null homotopic. But the zero section z : LM ↪→ L(T ∗M) is a
homotopy equivalence, with homotopy inverse Lp : L(T ∗M) → LM . This implies
that ρ : L(T ∗M) → U/O is canonically null homotopic.

In order to complete the proof of Theorem 14, we will now show how the
canonical null homotopy of the polarization class induces canonical trivializa-
tions of the stable normal bundles of the morphism manifolds, M̄(a, b). This
relationship was alluded to in [11].
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Consider the space W (a, b) = W (a, b;J,H) described above. We first show
that under the hypotheses of this theorem, W (a, b) has a stably trivial tangent
bundle. Recall that the manifold W (a, b) can be described as the space of zero’s
of a vector field (19). The tangent space of u ∈ W (a, b) is therefore given by the
kernel of the fiberwise derivative,

Dfib∂J,H(u) : TuB(a, b) → TuB(a, b).

A trivialization Φ of u∗(TT ∗M) defines a conjugacy between Dfib∂J,H(u) and a
bounded operator, DS : W 1,r(R× R/Z;R2n) −→ Lr(R× R/Z;R2n) of the form

DS(v) = ∂s(v)− J0∂t(v)− S(s, t)v (24)

where S is a smooth family of endomorphisms of R2n in which the limits

S±(t) = lim
s→±∞S(s, t)

are symmetric.

Thus the stable tangent bundle of W (a, b) is classified in the following way.
Consider the fiber bundle

Fr
p−→ W (a, b)

whose fiber over u ∈ W (a, b) is the space of Fredholm operators, TuB(a, b) →
TuB(a, b). Notice that this bundle is trivial, because it is induced from principal
GL(W 1,r(R × R/Z;R2n) and GL(Lr(R × R/Z;R2n)-bundles. But by Kuiper’s
theorem, these general linear groups are contractible. This says that the bundle,
Fr

p−→ W (a, b) is trivial, and the space of trivializations is contractible. Thus the
assignment to u ∈ W (a, b), the operator Dfib∂J,H(u) is a section of Fr

p−→ W (a, b),
which gives a well defined homotopy class of map to the space of Fredholm oper-
ators,

Dfib∂J,H : W (a, b) −→ Fred(W 1,r(R× R/Z;R2n), Lr(R× R/Z;R2n).

This space of Fredholm operators is homotopy equivalent, via Atiyah’s theorem
[3] to the classifying space Z×BO. Since these operators all have index equal to
the difference of the Conley-Zehnder indices, µ(a) − µ(b) the image of this map
lies in the component of Z×BO corresponding to µ(a)−µ(b) ∈ Z. By the above
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description of the tangent spaces Tu(W (a, b)), the induced (homtopy class of)
map

Dfib∂J,H : W (a, b) → BO (25)

classifies the stable tangent bundle. We therefore must show that this map is null
homotopic.

Notice that since Dfib∂J,H(u) is a perturbation of the Cauchy-Riemann op-
erator, the following diagram homotopy commutes:

W (a, b)
Dfib∂J,H−−−−−−→ Z×BO

∩
y

xι

B(a, b) ' Ωa,b(L(T ∗M)) −−−−→
ΩL(τ)

ΩLBU(n) −−−−→
ind ∂̄

Z×BU

(26)

The map ind ∂̄ assigns to a map u : S1 × S1 → BU(n), with the appropriate
basepoint conditions, the index of the ∂̄-operator coupled to u, as constructed by
Atiyah in [4] in his well known proof of Bott-periodicity using elliptic operators.
In particular, ind ∂̄ factors up to homotopy through a map ind ∂̄ : Ω2BU

'−→
Z×BU which is the homotopy equivalence inverse to the Bott map, β : Z×BU →
Ω2BU . The map ι : BU → BO is induced by the inclusion maps, U(k) ↪→ O(2k).

In other words, ind ∂̄ : ΩLBU(n) → Z×BU factors as the composition

ΩLBU(n) ↪→−−−−→ ΩLBU ' Ω2BU × ΩBU
proj−−−−→ Ω2BU

ind ∂̄−−−−→' Z×BU

But also notice that standard homotopy theory implies the following diagram
homotopy commutes:

Ω2BU
ind ∂̄−−−−→' Z×BU

'
y

yι

ΩU −−−−→
project

ΩU/O −−−−→' Z×BO.

Putting these facts together with the definition of the polarization class ρ :
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L(T ∗M) → U/O, we have the following homotopy commutative diagram:

W (a, b)
Dfib∂J,H−−−−−−→ Z×BOy

y'
ΩL(T ∗M) −−−−→

Ωρ
Ω(U/O)

(27)

Thus the canonical null homotopy of the polarization class, ρ : L(T ∗M) →
U/O (Lemma 15) defines a null homotopy of the induced map of loop spaces,
Ωρ : ΩL(T ∗M) → Ω(U/O), which, by the above diagram defines null homotopies
of the classification maps of the stable tangent bundles, Dfib∂J,H : W (a, b) →
Z×BO.

Now the spaces of flows, M(a, b) can be viewed as a subspace of W (a, b) as the
intersection of W (a, b) with a level set of the action functionalAH : L(T ∗M) → R.
With respect to this embedding, there is a natural isomorphism of bundles,

T (M(a, b))× R ∼= T (W (a, b)).

So the stable trivialization of the tangent bundles TW (a, b) induce stable trivi-
alizations fo T (M(a, b)).

We need to organize these stable trivializations further in order to complete
the proof of Theorem 2.

Let a ≥ b be a pair of critical points of A. We define the path space Ωa,bU/O

to be the space of paths
θ : [A(b),A(a)] → U/O

with the boundary conditions θ(A(b)) = ρ(b), θ(A(a)) = ρ(a). Notice that there
is a homotopy equivalence Ωa,bU/O ' ΩU/O ' Z × BO. We therefore take
Ωa,bU/O to be our model of Z × BO, and view it as a constant 〈k〉-diagram,
where k = µ(a)− µ(b)− 1.

Consider the composition

νa,b : M̄(a, b) ↪→ Ωa,bLT ∗M
Ωa,bρ−−−→ Ωa,bU/O

Ωa,b(−1)−−−−−→ Ωa,bU/O

where “ − 1” : U/O → U/O is a fixed self homotopy equivalence that induces
a map of degree −1 on π1(U/O) = Z. By diagram (27), the restriction of this
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map to the open moduli space M(a, b) classifies its stable normal bundle, hence
by Corollary 13, νa,b classifies the stable normal bundle of M̄(a, b). Moreover,
notice that the following diagrams obviously commute:

M̄(a, c)× M̄(c, b)
compose−−−−−→ M̄(a, b)

∩
y

y∩
Ωa,cLT ∗M × Ωc,bLT ∗M compose−−−−−→ Ωa,bLT ∗M

Ωa,cρ×Ωc,bρ

y
yΩa,bρ

Ωa,cU/O × Ωc,bU/O
compose−−−−−→ Ωa,bU/O

Ωa,c(−1)×Ωc,b(−1)

y
yΩa,b(−1)

Ωa,cU/O × Ωc,bU/O −−−−−→
compose

Ωa,bU/O

(28)

This means that the restriction of the map of 〈k〉-diagrams νa,b : M̄(a, b) →
Ωa,bU/O to a stratum of the boundary (i.e to any object in the poset 2k) classifies
the stable normal bundle. Therefore as a map of 〈k〉-diagrams, νa,b classifies the
stable normal bundle of the 〈k〉-manifold M̄(a, b).

By Definition (14), a framing of this stable normal bundle map is an appro-
priate lifting of νa,b to a contractible fibration. We define this as follows.

Recall that π1(U/O) ∼= Z. Let f : S1 → U/O be a generator. That is, f

induces an isomorphism on the fundamental group. Define φ : S → U/O to be a
fibration replacing f in the following way. Let S = {(t, γ) ∈ S1 × U/OI : f(t) =
γ(0)}. Here XI denotes the space of continuous paths, [0, 1] → X. φ : S → U/O

is defined by φ(t, γ) = γ(1). Notice that φ is a “fibrant replacement” of f , because
S has a natural homotopy equivalence to S1, with respect to which φ is homotopic
to f .

Notice that the canonical null homotopy of the polarization class ρ : L(T ∗M) →
U/O defines a null homotopic lifting,

ρ̃ : L(T ∗M) → S
which we now fix.

Like above, let Ωa,bS to be the space of paths,

θ : [A(b),A(a)] → S
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with the boundary conditions θ(A(b)) = ρ̃(b), θ(A(a)) = ρ̃(a). Notice that
Ωa,bS ' ΩS ' ΩS1, so that it has one path component for every integer, but
each path component is contractible. We notice that φ induces a fibration, which
by abuse of notation we still call

φ : Ωa,bS → Ωa,bU/O

where each path component of Ωa,bU/O is covered by a contractible path com-
ponent of Ωa,bS. Again, we think of this as a fibration of constant 〈k〉-diagrams,
where k = µ(a)− µ(b)− 1.

The map ρ̃ : L(T ∗M) → S then allows us to define the lifting of νa,.b.

ν̃a,b : M̄(a, b) ↪→ Ωa,bL(T ∗M)
Ωa,bρ̃−−−→ Ωa,bS

Ωa,b(−1)−−−−−→ Ωa,bS (29)

where “ − 1” : S → S is a lifting of the degree −1-map −1 : U/O → U/O. This
lifting is again viewed as a map of 〈k〉-diagrams. Since M̄(a, b) is connected,
the image of ν̃a.,b is in a connected component of Ωa,bS, which is a contractible
fibration over the corresponding component of Ωa,bU/O, which is our model for
BO. This gives a framing of the stable normal bundle of M̄(a, b) according to
Definition (2) above.

We observe that we have actually proved something more than Theorem 14,
which says that the compact moduli spaces have framings. Namely the ana-
logue of commutative diagram (28) for the framing ρ̃ defined by (29) implies the
following.

Corollary 16. The framings ρ̃a,b : M̄ → Ωa,bS are multiplicative, in the sense
that for any three critical points a1 ≥ a2 ≥ a3, the following diagram of framings
commute:

M̄(a1, a2)× M̄(a2, a3)
compose−−−−−→ M̄(a1, a3)

ρ̃a1,a2×ρ̃a2,a3

y
yρ̃a1,a3

Ωa1,a2S × Ωa1,a2S −−−−−→
compose

Ωa1,a3S.

In [17] Laures showed how the well known relationship between framings of
stable normal bundles of closed manifolds, and isotopy classes of framed embed-
dings into high codimension Euclidean space, extends to 〈k〉 -manifolds. From



424 Ralph L. Cohen

this one immediately sees that Corollary 16 implies the following, which in view
of Theorems 7 and 8 assures us the existence of a “Floer homotopy type” of T ∗M .

Theorem 17. Let CH be the flow category of the symplectic action AH : L(T ∗M) →
R where H is a Hamiltonian and J is an almost complex structure satisfying the
conditions of Theorem 10 above. Then CH is a compact, smooth, framed Morse-
Smale category of finite type. In particular for each pair of critical points a > b,
the subcategory (CH)a

b has a framed embedding. Furthermore these framed em-
beddings are compatible in the sense that the induced framing class of the stable
tangent bundle of M̄(α, β) with a ≥ α > β ≥ b is independent of the choice of a

and b.

Let us consider the Floer homotopy type induced by the framed category CH ,
under the assumptions of theorem. Consider nonnegative integers, p > q, and
the corresponding subcategories,

(CH)q ↪→ (CH)p ⊂ CH ,

where (CH)m denotes the full subcategory of CH generated by critical points
(objects) less than or equal to α. Recall from [1] that for every m there are
finitely many critical points with index ≤ m. Thus these are finite categories
(i.e have finitely many objects). They have framed embeddings, which induce
functors,

Zq
CH

: J q
0 → Sp∗ and Zq

CH
: J p

0 → Sp∗

as in Theorem 7. These framed embeddings involve choices of integers Lq and Lp

with Lp ≥ Lq and framed embeddings of manifolds with corners,

eq,0
α,β : Mor(CH)b

c
(α, β) = M̄(α, β) ⊂ M̄(α, β)× RLq ↪→ RLq × J(µ(α), µ(β)).

and

ep,0
α,β : Mor(CH)a

c
(α, β) = M̄(α, β) ⊂ M̄(α, β)× RLp ↪→ RLp × J(µ(α), µ(β)).

The framings of the tangent bundle of M̄(α, β) coming for the embeddings
eq,0
α,β and ep,0

α,β are compatible. So the Pontrjagin-Thom constructions

τ q,0
α,β : SLq ∧ J(µ(α), µ(β))+ → M̄(α, β)+ ∧ SLq

proj−−→ SLq
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and
τp,0
α,β : SLp ∧ J(µ(α), µ(β))+ → M̄(α, β)+ ∧ SLp

proj−−→ SLp

have the property that τp,0
α,β is the (Lp −Lq)-fold suspension of τ q,0

α,β . This defines
a map on geometric realizations,

εa,b,c : Σ(Lp−Lq)|Zq
CH
| → |Zp

CH
|.

This structure defines a spectrum (up to homotopy), which we abbreviate by
Z(T ∗M). This is the Floer homotopy type of T ∗M .

We note that, as described in [11], in general the Floer homotopy type is a
prospectrum. What allowed us to obtain a spectrum in this situation was that
the critical points were bounded below under the partial ordering. This allowed
us to consider the framings associated to the categories, (CH)p. When one is
dealing more generally with a compact, framed category C that does not have
this boundedness condition, one has to take an inverse system of the geometric
realizations of the functors Za,b

C : J
µ(a)
µ(b) → Sp∗ as the index µ(b) decreases. This

produces the inverse system of spectra making up the prospectrum. In this case,
however, the Floer homotopy type of T ∗M is given by the spectrum Z(T ∗M).
By Theorems 7 and 8 we have the following consequence, which proves Theorem
3 in the introduction.

Corollary 18. Given a Hamiltonian H and almost complex structure J satisfying
the hypotheses of Theorem 10, the Floer homotopy type of T ∗M is the C.W -
spectrum Z(T ∗M) which has one cell for each periodic solution a ∈ P(H). The
corresponding cellular chain complex is the Floer complex, and hence

H∗(Z(T ∗M)) ∼= HF∗(T ∗M).

3 The Floer homotopy type of T ∗M and the free loop

space.

By Corollary 18 and the results of Abbondandolo and Schwarz [1], we know that
the Floer homotopy type Z(T ∗M) has homology isomorphic to that of the free
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loop space, H∗(Z(T ∗M)) ∼= H∗(LM). The goal of this section is to strengthen
this by proving Theorem 5 as stated in the introduction. Our method in com-
paring the homotopy types of Z(T ∗M) and Σ∞(LM+) is to adapt the techniques
of Abbondandolo and Schwarz [1] that produced an isomorphism between the
Morse chain complex from a specific Palais-Smale Morse function on LM , with
the Floer chain complex of T ∗M associated to AH . We will adapt their tech-
niques to compare the framed bordism type of the moduli spaces of flow lines in
each case, in order to conclude a relationship between the corresponding stable
homotopy types.

Proof of Theorem 5. We begin by recalling the Morse theory on the loop
space, LM coming from a Lagrangian dynamical system, as studied in [1]. In
this setting there is a smooth Lagrangian

L : R/Z× TM → R

satisfying and appropriate strong convexity property, bounds on its second deriva-
tives, as well as nondegeneracy properties (see properties (L0) (L1), and (L2) as
defined in section 2 of [1]). In such a setting, the Hamiltonian

H : R/Z× T ∗M → R

H(t, q, p) = max
v∈TqM

(p(v)− L(q, t, v)) (30)

satisfies conditions (H0), H(1), and (H2) above, which are the conditions that we
have assumed throughout. Moreover in this context, the energy functional,

E : LM −→ R

E(γ) =
∫ 1

0
L(t, γ(t),

dγ

ds
(t))dt

is a Morse function that is bounded below, its critical points, PL, have finite Morse
indices, and E satisfies the Palais-Smale condition. Here M is given a Riemannian
metric, and LM is an appropriate compatible Hilbert manifold model for the loop
space. The Legendre transform then gives a bijective correspondence between the
critical points of E , PL, and the critical points of AH , P(H), defined by

L(c) = (c, g(
dc

dt
))
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where g : TM
∼=−→ T ∗M is the isomorphism induced by the metric. Indeed L can

be viewed as a homotopy equivalence,

L : LM
'−→ L(T ∗M)) (31)

γ → (γ, g(
dγ

dt
))

It was shown in [1] that for any loop (γ, η) ∈ L(T ∗M), then

AH(γ, η) ≤ E(γ) (32)

with equality holding only when η(s) ∈ T ∗γ(s)M is given by η(s) = g(dγ
dt (s)), that

is, (γ, η) = L(γ).

The Morse complex for the function E : LM → R, which we call CE∗ (LM),
is generated by PL, where the Floer complex, CF∗(T ∗M) is generated by P(H).
However the Legendre transform correspondence of these generating sets does
not yield a chain map. Nevertheless, Abbondondolo and Schwarz found an iso-
morphism of chain complexes that we call

Ψ∗ : CE∗ (LM)
∼=−−−−→ CF∗(T ∗M), (33)

which yields an isomorphism, H∗(LM) ∼= HF∗(T ∗M). Ψ∗ is defined by studying
zero and one dimensional moduli spaces of “mixed flow lines”, M+(a, β), where
a ∈ PL and β ∈ P(H). Adapting their ideas, we will use the higher dimensional
moduli spaces, to show that this chain isomorphism is induced by a equivalence
of spectra,

Ψ : Σ∞(LM+)
∼=−→ Z(T ∗M),

thus proving Theorem 5. We now recall the definition of the moduli spaces
M+(a, β) from [1], as well as some of their basic properties. In [1] it was proved
that these moduli spaces have orientations. The main technical result we need
to prove Theorem 5 is that in fact they have natural framings, that extend the
framings of the spaces M̄(α, β;J,H) studied above. As before, let p : T ∗M → M

be the projection map.

Definition 5. ([1] section 3) For a ∈ PL and β ∈ P(H), let M+(a, β) be the set
of all C∞ maps

u : R+ × S1 → T ∗M
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of Sobolev type W 1,r, such that

∂su− J(t, u)(∂tu−XH(t, u)) = 0 on (0,∞)× S1

p ◦ u(0, ·) ∈ W u(a) = W u(a; E), the unstable manifold of the critical point a

lim
s→+∞u(s, t) = β(t) uniformly in t ∈ S1.

It was proved in [1] that the spaces, M+(a, β) are, (with the choices of J and
H as above), smooth, oriented manifolds of dimension ind(a)−µ(β), where ind(a)
is the Morse index. They showed that these manifolds are precompact, and have
compactifcations, M̄+(a, β) that can be defined recursively as follows. If ind(a) =
µ(β), then M+(a, β) is compact, and so M+(a, β) = M̄+(a, β). Recursively,
suppose M̄+(a′, β′) for all a′ ∈ PL and β′ ∈ P(H) with index difference ind(a′)−
µ(β′) < q. Now suppose a ∈ PL and β ∈ P(H) have ind(a) − µ(β) = q. Then
M̄+(a, β) = M+(a, β) ∪ ∂M̄+(a, b), where

∂M̄+(a, β) =
⋃

a≥a′∈PL

⋃

β′≥β∈P(H)

M̄L(a, a′)× M̄+(a′, β′)× M̄(β′, β) (34)

where in these unions, at least one of the inequalities, a ≥ a′, and β′ ≥ β must be
a strict inequality. Here the space M̄L(a, a′) is the compactification of the space
of gradient flows (i.e “piecewise flows”) of the Morse function, E : LM → R that
connect the critical points a and a′. The spaces M̄(β′, β) = M̄(β′, β;J,H) are
as studied above.

We will need another gluing assumption regarding these moduli spaces, com-
pletely analogous to Gluing Assumption 1.

Gluing Assumption 19. For each a > b ∈ PL and γ > β ∈ P(H), there is an
ε > 0 and local diffeomorphisms

M̄L(a, b)× M̄+(b, β)× [0, ε) → M̄+(a, β) and

M̄+(a, γ)× M̄(γ, β)× [0, ε) → M̄+(a, β)

which gives M̄+(a, β) the structure of a smooth, compact manifold with corners.
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We remark that the moduli spaces M̄+(a, β) actually have the structure of
〈ind(a)− µ(β)〉-manifolds. The the faces are given by

Fj(M(a, β)) =
∐

ind(b)=ind(a)−j

M̄L(a, b)×M̄+(b, β) t
∐

µ(γ)=ind(a)−j

M̄+(a, γ)×M̄(γ, β)

Notice that the above decomposition of ∂M̄+(a, β) has two interesting strata.
One is ∐

ind(a)=µ(α)

M+(a, α)× M̄(α, β) (35)

where each M+(a, α) in the above disjoint union is a compact zero dimensional
manifold, (and therefore a finite set). The other stratum of interest is

∐

ind(b)=µ(β)

M̄L(a, b)×M+(b, β)

where eachM+(b, β) is a finite set. We now prove essentially prove that M̄+(a, β)
defines a framed bordism between these two strata. More specifically we prove
the following (assuming the two gluing assumptions above).

Lemma 20. For each a ∈ PL, β ∈ P(H), the space M̄+(a, β) is a compact,
framed manifold with corners, in such a way that the framing, when restricted
to the stratum of the boundary given by (35) is given by the product of framings
on M+(a, α) (i.e an orientation on the finite set), and the canonical framing on
M̄(α, β) used in Theorem(17) above.

Proof. The proof will be very similar to the proof of Theorem 17. Recall from
[1] that M+(a, β) can be viewed as the space of zeros of a certain section of a
vector bundle. Specifically, let B+(a, α) be the set of maps u : R+ × S1 → T ∗M
which are Sobolev of type W 1,r on every compact subset, and such that

1. p ◦ u(0, ·) ∈ W u(a),

2. there is an s0 ≥ 0 for which u(s, t) = expx(t)(ζ(s, t)) for all(s, t) ∈ (s0,∞)×
S1, where ζ is a W 1,r section of β∗(TT ∗M).

There is a vector field on B+(a, β),

∂+
J,H : u −→ (∂su− J(t, u)(∂tu−XH(t, u)))
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whose zeros are M+(a, β). Then, as in the proof of Theorem 17, (see (25)) the
assignment u → Dfib∂

+
J,H(u) defines a homotopy class of map

Dfib∂
+
J,H : B+(a, β) → BO, (36)

which, when one composes with the inclusion M+(a, β) ↪→ B+(a, β) classifies the
stable tangent bundle. We therefore must show that this map is null homotopic.
Notice that B+(a, β) can be viewed as a subspace of Ωα,β(LT ∗M), where α ∈
P(H) is the Legendre transform of a ∈ PL. This can be seen as follows. Let
u ∈ B+(a, β). Let u0 = u(0, ·) : S1 → T ∗M . Since p ◦u0 : S1 → M lies in W u(a),
there exists a unique map v : (−∞,−1] → LM , which is a gradient trajectory of
E , and satisfies the initial condition, v(−1) = p ◦ u0. Let ṽ : (−∞,−] → T ∗M
be the Legendre transform of v. That is, it is the composition of v with the map
LM → LT ∗M that sends γ to (γ, g(dγ

dt )). Now ṽ(−1) and u0 : S1 → T ∗M have
the same image under composition with p : T ∗M → M . So one can define a
linear combination,

h : [−1, 0] → L(T ∗M)

by h(t) = −tṽ(−1) + (1 + t)u0. Now define

ũ : R→ L(T ∗M) by ũ(s) =





ṽ(s) for s < −1

h(s) for − 1 ≤ s ≤ 0

u(s, ·) for 0 ≤ s.

Then ũ ∈ Ωα,β(LT ∗M). This defines an inclusion map, ι : B+(a, β) ↪→
Ωα,β(LT ∗M). Furthermore it is clear that ι is a homotopy equivalence. Now like
diagram (26) above, the following diagram homotopy commutes:

M+(a, β)
Dfib∂

+
J,H−−−−−−→ Z×BOy

xc

B+(a, β) '−→ Ωα,β(L(T ∗M)) −−−−→
ΩL(τ)

ΩLBU(n) −−−−→
ind ∂̄

Z×BU

(37)

Here τ : T ∗M → BU(n) classifies that almost complex tangent bundle of T ∗M .
But by diagram (27) above, this diagram is homotopic to
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M+(a, β)
Dfib∂

+
J,H−−−−−−→ Z×BOy

y'
ΩL(T ∗M) −−−−→

Ωρ
Ω(U/O)

(38)

Thus the null homotopy of ρ : L(T ∗M) → U/O defines a null homotopy of
Dfib∂

+
J,H : M+(a, β) → Z × BO, and thus a framing. Notice that since these

framings are induced applying the loop functor to a null homotopy of ρ, they are
multiplicative, and that in analogy to (16) above, they extend to give framings of
the compactified spaces, M̄(a, β). Furthermore, when restricted to the boundary
strata of the form

M+(a, α)×M(α, β) ↪→ ∂(M̄+(a, β)

these framings are the product of the framing on M+(a, α), and a framing on
M̄(α, β). The induced framing on M̄(α, β) is given by the null homotopy of the
composition

M̄(α, β) ↪→ Ωα,βL(T ∗M)
Ωρ−−→ Ω(U/O) ' Z×BO

induced by the canonical null homotopy of ρ. This is same framing as the canon-
ical framing used in Theorem 17.

Now suppose a ∈ PL has Morse index p, and β ∈ P(H) has Conley-Zehnder
index q. The above lemma implies there is a framed embedding

M̄+(a, β) ↪→ M̄+(a, β)× RL e−−−−→
↪→ J(p, q − 1)× RL

whose intersection with J(p, q)× RL ⊂ J(p, q − 1)× RL is
∐

µ(α)=pM(a, α)×
M̄(α, β)×RL. Similarly, the intersection of the image of e with J(p−1, q−1)×RL

is
∐

ind(b)=q M̄L(a, b) ×M(b, β) × RL. This means that the Pontrjagin-Thom
construction,

ζa,β : J(p, q − 1)+ ∧ SL
a →

(M̄+(a, β)× RL
) ∪∞ → SL

β
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has the property that when restricted to J(p, q)+∧SL
a is given by the composition

Φ0
a,β : J(p, q)+ ∧ SL

a

1∧(
∨

µ(α=p) ζa,α)−−−−−−−−−−−→ J(p, q)+ ∧

 ∨

µ(α)=p

SL
α




∨
α ZCH

(α,β)−−−−−−−−→ SL
β .

(39)
Here ZCH

(α, β) : J(p, q)+ ∧ SL
α → SL

β is the induced map on morphisms of the
functor ZCH

as was defined (12) above, in the proof of Theorem 7. Notice also
that since ind(a) = µ(α), the map ζa,α : SL

a → SL
α is a map whose degree is

equal to #M+(a, α), where the count is defined by the framing of these zero
dimensional moduli spaces. Similarly, when restricted to J(p − 1, q − 1)+ ∧ SL,
the map ζa,β is given by the composition

Φ1
a,β : J(p− 1, q − 1)+ ∧ SL

a

∨
ind(b)=q) ZCL

(a,b)−−−−−−−−−−−−→
∨

ind(b)=q

SL
b

∨
b ζb,β−−−−→ SL

β . (40)

Here, CL is the flow category of the Morse function E : LM → R defined in terms
of the Lagrangian L, which is a smooth, compact, framed category of Morse-
Smale type, where the framings of the morphism spaces M̄L(a, b) are induced by
the framings of M̄+(a, β) as above. This induces a functor ZCL

: J → Sp∗ as
described in section 1. As shown in [11], the Floer homotopy type of such a Morse
function, given by the geometric realization, |ZCL

| is given by the suspension
spectrum of the underlying manifold,

|ZCL
| ' Σ∞(LM+) (41)

We now show that the two maps Φ0
a,β and Φ1

a,β are canonically homotopic, via
a homotopy that preserves the corner structure. As we will see, these homotopies
will patch together to give a homotopy equivalence of the Floer homotopy types
given from the Morse function E : LM → R, and from the symplectic action,
AH : L(T ∗M) → R,

|ZCL
| ' |ZCH

(T ∗M)| = Z(T ∗M).

Given the equivalence, (41), we will then know that the Floer homotopy type of
T ∗M is stably equivalent to the free loop space, as asserted in the theorem.
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To define these homotopies, let ei ∈ J(p, q−1) be the vector with a 1 in the ith

slot and zero’s elsewhere, for each p > i > q− 1. Then J(p, q) ⊂ J(p, q− 1) is the
hyperplane (with corners) given by nonnegative linear combinations of the ei’s,
for i = p−1, · · · q+1. Similarly, J(p−1, q−1) ⊂ J(p, q−1)is the hyperplane given
by nonnegative linear combinations of the ei’s, for i = p− 2, · · · , q. For t ∈ [0, 1],
let Jt ⊂ J(p, q−1) be the hyperplane spanned by nonnegative linear combinations
of (1− t)ep−1 + teq, and the ei’s for i = p− 2, · · · , q +1. Notice that J0 = J(p, q),
and J1 = J(p − 1, q − 1). The restriction of ζa,β : J(p, q − 1)+ ∧ SL

a → SL
b to

J+
t ∧ SL

a is a map we call

Φt
a,β : J+

t ∧ SL
a −→ SL

β (42)

which gives a canonical homotopy between Φ0
a,β and Φ1

a,β viewed as maps

Φ0
a,β , Φ1

a,β : cp−q−1SL
a −→ SL

β .

Furthermore, this homotopy preserves the corner structure (i.e the boundary
stratification of the iterated cones).

We now define the homotopy equivalence

Ψ : |ZCL
| '−→ |ZCH

(T ∗M)|.

It is enough to give a homotopy equivalence, between |Zp,q
CL
| and |Zp,q

CH
| for every

p ≥ q.

Recall that for an integer m with p ≥ m ≥ q, ZCL
(m) =

∨
ind(c)=m SL

c .
Similarly, ZCH

(m) =
∨

µ(γ)=m SL
γ . Define

Ψm : ZCL
(m) '−→ ZCH

(m)

to be given by the wedge of the maps ζc,γ : SL
c → SL

γ . Notice that when one
applies homology, H̃∗(ZCL

(m)) is the free abelian group generated by the index
m critical points PL of the Morse function E . This is the mth chain group in the
Morse complex of the function E , which we call CE∗ (LM). Similarly, H̃∗(ZCH

(m))
is the free abelian group generated by the Conley-Zehnder index m critical points
P(H) of the perturbed symplectic action, AH , which is the mth Floer chain group,
CFm(T ∗M). Moreover

(Ψm)∗ : CE
m(LM) → CFm(T ∗M) (43)
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is the isomorphism constructed by Abbondondolo and Schwarz in [1].

We now consider the induced map

Ψm ∧ 1 : ZCL
(m) ∧ J(m, q − 1)+ −→ ZCH

(m) ∧ J(m, q − 1)+.

Now recall the relations involved in defining the geometric realization of a functor
Z : J → Sp∗ (see (6).) For each m > n > q One identifies the image of the
embedding

ιm,n : Z(m) ∧ J(m,n) + ∧J(n, q − 1)+ ↪→ Z(m) ∧ J(m, q − 1)+

with the image of

jm,n : Z(m) ∧ J(m,n) + ∧J(n, q − 1)+
Z(m,n)∧1−−−−−−→ Z(n) ∧ J(n, q − 1)+.

Thus in order for the maps Ψm ∧ 1 to directly fit together to give a map of
geometric realizations, we would need to have that for every m > n > q,

Ψn ◦ ZCL
(m,n) : ZCL

(m) ∧ J(m,n)+ → ZCL
(n) → ZCH

(n)

would need to equal

ZCH
(n) ◦ (Ψm ∧ 1) : ZCL

(m) ∧ J(m,n)+ → ZCH
(m) ∧ J(m,n)+ → ZCH

(n).

This, however is not true, but these maps are canonically homotopic, via the
homotopy

Φt(m,n) =
∨

ind(a)=m
µ(β)=m

Φt
a,β .

We accommodate these homotopies by using double mapping cylinders. Recall
that the double mapping cylinder of maps ι : A → B and j : A → C is

M(ι, j) = (B t C) ∪ι,j A× I

where (a, 0) ∈ A × I is identified with ι(a) ∈ B and (a, 1) is identified with
j(a) ∈ C. There is a projection onto the pushout, which collapses the cylinder,

π : M(ι, j) → B ∪A C

which is a homotopy equivalence if ι is a cofibration.
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Now consider the space |Z̃p,q
CL
| defined like |Zp,q

CL
| except that rather than iden-

tifying the images of ιm,n and jm,n as above, one takes the mapping cylinders,
M(ιm,n, jm,n). By collapsing the cylinders, one gets a map

π : |Z̃p,q
CL
| → |Zp,q

CL
|

which is a homotopy equivalence, because all of the maps ιm,n are cofibrations.
Moreover, the maps Ψm ∧ 1 : ZCL

(m) ∧ J(m, q − 1)+ −→ ZCH
(m) ∧ J(m, q − 1)+

do extend to give a map
Ψ̃ : |Z̃p,q

CL
| → |Zp,q

CH
|

by putting the homotopies Φt(m,n) on the cylinders. Thus we can define

Ψ : |Zp,q
CL
| → |Zp,q

CH
|

to be Ψ̃ ◦ π−1. This is well defined up to homotopy. By (43) above, on the level
of chain complexes this gives the Abbondandolo-Schwarz isomorphism between
the Morse homology and the Floer homology. Thus Ψ is a homotopy equivalence.
Moreover by letting p and q vary this defines a homotopy equivalence,

Ψ : Σ∞(LM+) ' |ZCL
| → |ZCH

(T ∗M)| = Z(T ∗M)

as claimed.
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