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Homology of Equivariant Vector Fields

Gerald W. Schwarz

Abstract: Let K be a compact Lie group. We compute the abelianization
of the Lie algebra of equivariant vector fields on a smooth K-manifold X.
We also compute the abelianization of the Lie algebra of strata preserving
smooth vector fields on the quotient X/K.
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1. Introduction

1.1. K. Abe and K. Fukui [AbFu2] have considered the first homology group
(abelianization) of the group of equivariant smooth diffeomorphisms of a smooth
K-manifold X, where K is finite. They also computed the abelianization for the
diffeomorphisms of the quotient orbifold X/K. Our results below are the ana-
logues of their results for vector fields in the case that K is a compact Lie group.
The vector fields are, in a sense, the Lie algebras of the relevant diffeomorphism
groups, so, hopefully, our results indicate that one should be able to generalize
the Abe-Fukui results. There are already generalizations in some cases [AbFu1].

1.2. Let X be a smooth K-manifold where K is compact. Let X∞(X) denote
the Lie algebra of smooth vector fields on X and let X∞c (X) denote the subalgebra
of vector fields with compact support. If X is algebraic, then X (X) will denote
the polynomial vector fields on X. By X∞(X)K , etc. we mean the K-invariant
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elements in X∞(X), etc. We will state most of our results for X∞c (X)K ; the
corresponding results for X∞(X)K follow easily from our techniques.

If g is a Lie algebra, we denote by H(g) the abelianization g/[g, g]. We denote
the Lie algebras of compact Lie groups K, H, etc. by the corresponding gothic
letters k, h, etc.

1.3. Let x ∈ X. Then we have the isotropy group Kx and its slice representation
on Wx := TxX/Tx(Kx) where Kx denotes the K-orbit through x. We say that
the orbit Kx is isolated if WKx

x = (0). It follows from the differentiable slice
theorem that Kx is isolated if and only if all isotropy groups Ky of points y

near x, Ky 6= Kx, are conjugate to a proper subgroup of Kx. There is then a
discrete subset {xi}i∈I of X (possibly empty) where we choose one point from
each isolated orbit. Let Hi denote Kxi and set Wi := Wxi , i ∈ I.

Theorem 1.4. Let X and the xi, Hi and Wi be as above Then

H(X∞c (X)K) '
⊕

i

H(kHi/hHi
i )

⊕
i

H(End(Wi)Hi).

Theorem 1.5. Let H be a compact Lie group and V an H-module where V H =
(0). Write V = ⊕m

j=1njVj where the Vj are irreducible and pairwise non-isomorphic
and njVj denotes the direct sum of nj copies of Vj. Let l denote the number of
Vj such that End(Vj)H ' C and let Z(End(V )H) denote the center of End(V )H .
Then

H(End(V )H) ' Z(End(V )H) =
⊕

j

Z(End(njVj)H) ' Rm−l ⊕ Cl.

Let X∞c (X/K) denote the Lie algebra of compactly supported smooth strata
preserving vector fields on X/K (see §4 for definitions).

Theorem 1.6. Let X and the xi, Hi and Wi be as above. Then

H(X∞c (X/K)) '
⊕

i

(Z(End(Wi)Hi)/si)

where each si is the Lie algebra of a torus Si lying in Z(End(Wi)Hi).

We will say more about the Si in §4.
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1.7. This work was done while attending the conference “Diffeomorphisms and
Related Fields” held at Shinshu University, December 2005. The author thanks
professors K. Abe and K. Fukui for the invitation and for their wonderful hospi-
tality.

2. Vanishing of abelianizations

2.1. In the following, let B∞c (X)K denote [X∞c (X)K ,X∞c (X)K ] and let C∞c (X)K

denote the compactly supported smooth functions on X. Our first goal is to show
that H(X∞c (X × R)K) is zero.

Lemma 2.2. Let A ∈ X∞c (X)K and B ∈ X∞(X)K . Then [A,B] ∈ B∞c (X)K .

Proof. Let g ∈ C∞c (X)K be identically 1 on a neighborhood of suppA. Then
[A, gB] = g[A,B] + A(g)B = [A,B] ∈ B∞c (X)K . �

Proposition 2.3. Let K act on X×R with the given action on X and the trivial
action on R. Then H(X∞c (X × R)K) = 0.

Proof. Let t denote the usual coordinate function on R and let g ∈ C∞c (X ×
R)K . We show that g d

dt ∈ B∞c (X × R)K . For x ∈ X and s ∈ R set h(x, s) =∫ s
0 g(x, u) du. Then h is smooth and K-invariant. Let f ∈ C∞c (X × R)K . Then

[f
d

dt
, h

d

dt
] = f

dh

dt

d

dt
− h

df

dt

d

dt
and

[
d

dt
, fh

d

dt
] = f

dh

dt

d

dt
+ h

df

dt

d

dt
.

Hence 2fg d
dt ∈ B∞c (X × R)K . If f equals 1/2 on a neighborhood of supp g, we

obtain that g d
dt ∈ B

∞
c (X × R)K .

Now suppose that A ∈ X∞c (X×R)K . By our result above, we can assume that
A annihilates t. Set B(x, s) =

∫ s
0 A(x, u) du and let g ∈ C∞c (X × R)K equal 1 on

a neighborhood of supp A. Then [g d
dt , B] = gA−B(g) d

dt . We already know that
B(g) d

dt ∈ B
∞
c (X×R)K , hence A ∈ B∞c (X×R)K . Thus H(X∞c (X×R)K) = 0. �

2.4. Let H be a closed subgroup of K and W an H-module. Then we have
the twisted product K ∗H W which is the quotient (K ×W )/H where h(k, w) =
(kh−1, hw), h ∈ H, k ∈ K and w ∈ W . We denote the image of (k, w) ∈ K ×W
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in K ∗H W by [k,w]. Note that K ∗H W is naturally a K-vector bundle and a
real algebraic K-variety [Schw3].

Let H → GL(W ) be the slice representation at a point x ∈ X. By the
differentiable slice theorem, a K-neighborhood of Kx in X is K-diffeomorphic to
K ∗H W . By Proposition 2.3, H(X∞c (K ∗H W )K) = 0 if WH 6= (0).

Let F be a closed K-stable subset of X. We say that H(X∞c (X)K) is supported
on F if H(X∞c (X \ F )K) = 0. Using a partition of unity argument we can show

Corollary 2.5. Let F = {x ∈ X | WKx
x = 0}. Then H(X∞c (X)K) is supported

on F .

3. Local computations

3.1. Our results above show that there is a discrete set of orbits {Kxi} such
that

H(X∞c (X)K) '
⊕

i

H(X∞c (K ∗Hi Wi)K)

where Hi = Kxi and Wi is the slice representation of Hi at xi. Thus it suffices to
computeH(X∞c (K∗H V )K) where H is a closed subgroup of K, V is an H-module
and V H = (0). This computation is the content of the following theorem.

Theorem 3.2. Let H and V be as above. Then

H(X∞c (K ∗H V )) ' H(kH/hH)⊕H(End(V )H).

3.3. Our proof of the theorem requires several lemmas. Set Y := K ∗H V . Then

X (Y )K ' X (K × V )K×H/(O(K × V )h)K×H

(see [Schw2, §4]) where H has the diagonal action (see 2.4) on K × V (inducing
an action of h) and O(K × V ) denotes the polynomial functions on K × V . Now

X (K×V )K×H ' (X (K)⊗O(V )⊕O(K)⊗X (V ))K×H ' (k⊗O(V ))H⊕(1⊗X (V )H)

while

(O(K × V )h)K×H ' (h⊗O(V ))H .
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3.4. We have the Euler operator E ∈ X (V )H , where if x1, x2, . . . are coordinate
functions on V , then E =

∑
i xi

∂
∂xi

. By the isomorphisms above, E can be
considered as a (K × H)-invariant vector field on K × V and as a K-invariant
vector field on Y .

Lemma 3.5. Let f ∈ C∞(Y )K . Then f = E(h) for some h ∈ C∞(Y )K if and
only if f([e, 0]) = 0.

Proof. Clearly the condition on f is necessary. Suppose that f([e, 0]) = 0. Since
f is K-invariant, it is determined by its restriction g to {[e, v] | v ∈ V } ' V ,
where g is H-invariant. Set h(v) =

∫ 1
0 (1/t)g(tv) dt. Then h ∈ C∞(V )H since

g(0) = 0. We have

E(h)(v) =
∫ 1

0

1
t

∑
i

xi
∂g

∂xi
(tv)t dt =

∫ 1

0

∑
i

xi
∂g

∂xi
(tv) dt

=
∫ 1

0

d

dt
g(tv) dt = g(v)− g(0) = g(v).

�

Corollary 3.6. Let g ∈ C∞c (Y )K such that g([e, 0]) = 0. Then gE ∈ B∞c (Y )K .

Proof. By Lemma 3.5, g = E(h) for some h ∈ C∞(Y )K . Let f ∈ C∞c (Y )K such
that f is 1/2 in a neighborhood of supp g. Then, as in Proposition 2.3,

[E, fhE] + [fE, hE] = 2fE(h)E = 2fgE,

so that gE ∈ B∞c (Y )K . �

3.7. Since Y is real algebraic, the results in [Schw1, §6] show that X∞(Y ) '
C∞(Y ) ⊗O(Y ) X (Y ). For compactly supported sections we clearly have that
X∞c (Y ) = C∞c (Y )X (Y ).

3.8. We have an E-eigenspace decomposition

X (K × V )K×H '
⊕
m≥0

(k⊗O(V )m)H ⊕ (1⊗X (V )H
m)

and similarly for (h⊗O(V ))H . The weights that occur in X (V )H are all positive
since V H = (0). We have an induced decomposition

X (Y )K =
⊕
m≥0

X (Y )K
m.
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Remark 3.9. Since the sum only contains terms for m ≥ 0, an element of X (Y )K

applied to an element of C∞(Y )K ' C∞(V )H always vanishes at [e, 0].

Lemma 3.10. Let A ∈ X (Y )K
m and let f ∈ C∞c (Y )K . Then fA ∈ B∞c (Y )K if

(1) m > 0 or
(2) f([e, 0]) = 0.

Proof. Suppose that m > 0. Then [(1/m)fE,A] = fA − (1/m)A(f)E where
A(f)E ∈ B∞c (Y )K by Corollary 3.6. Hence fA ∈ B∞c (Y )K . If m = 0 and
f([e, 0]) = 0, then let h ∈ C∞(Y )K be such that E(h) = f , and let g ∈ C∞c (Y )K .
Then

[gE, hA] = gE(h)A− hA(g)E = gfA− hA(g)E,

where hA(g)E ∈ B∞c (Y )K by Corollary 3.6. We may arrange that gfA = fA, so
fA ∈ B∞c (Y )K . �

Proof of Theorem 3.2. We first define a map of Lie algebras ϕ : X∞c (Y )K →
X (Y )K

0 . Let B =
∑m

i=1 fiBi ∈ X∞c (Y )K where fi ∈ C∞c (Y )K and Bi ∈ X (Y )K
mi

,
i = 1, . . . ,m. Define ϕ(B) :=

∑
mi=0 fi([e, 0])Bi ∈ X (Y )K

0 . It is obvious
that ϕ is surjective. Suppose that C, D ∈ X (Y )K are eigenvectors for E

and that f , g ∈ C∞c (Y )K . Then [fC, gD] = fC(g)D − gD(f)C + fg[C,D]
where C(g) and D(f) vanish at [e, 0]. Thus ϕ([fC, gD]) = (fg)(0)ϕ([C,D]) =
(fg)(0)[ϕ(C), ϕ(D)] = [ϕ(fC), ϕ(gD)] . Now ϕ induces ϕ̃ : H(X∞c (Y )K) →
H(X (Y )K

0 ), which is again surjective. Suppose that B =
∑

i fiBi ∈ Ker(ϕ̃)
where the Bi are in X (Y )K

0 . Then ϕ(B) =
∑

j [Cj , Dj ] where Cj , Dj ∈ X (Y )K
0

for all j. Let f ∈ C∞c (Y )K such that f is 1 on a neighborhood of [e, 0]. Then
B −

∑
j [fCj , fDj ] ∈ B∞c (Y )K . Hence ϕ̃ is an isomorphism. From our equations

in 3.3 it follows that H(X (Y )K
0 ) ' H(kH/hH)⊕H(End(V )H). �

Proof of Theorem 1.4. The theorem is immediate from 3.1 and Theorem 3.2 �

Proof of Theorem 1.5. Let V = ⊕m
j=1njVj and H be as in 1.5. Then End(V )H '

⊕j End(njVj)H . There are three cases to consider.

Case 1: End(Vj)H ' R. Then End(njVj)H ' gl(nj , R) and H(gl(nj , R)) '
Z(gl(nj , R)) ' R.

Case 2: End(Vj)H ' C. Then End(njVj)H ' gl(nj , C) and H(gl(nj , C)) '
Z(gl(nj , C)) ' C.
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Case 3: End(Vj)H ' H, the quaternions. Then End(njVj)H ' gl(nj , H) and
we have that H(gl(nj , H)) ' Z(gl(nj , H)) ' R. The theorem follows. �

4. Computations on the quotient

We now consider the abelianization of the strata preserving vector fields on the
quotient X/K. We recall a few facts about X/K from [Schw1]. Let π : X → X/K

denote the canonical map, where X/K is given the quotient topology. Then X/K

has a differentiable structure where for U an open subset of X/K, C∞(U) =
C∞(π−1(U))K . Let H be a closed subgroup of K. Then we have the corre-
sponding stratum X(H) := {x ∈ X | Kx is conjugate to H} and its image
(X/K)(H) ⊂ X/K. The isotropy strata (X/K)(H) ⊂ X/K and X(H) ⊂ X are
smooth and locally closed submanifolds and π : X(H) → (X/K)(H) is naturally a
smooth fiber bundle (with structure group NK(H)/H). The number of isotropy
strata is locally finite on X and X/K. Let Der(C∞(X/K)) denote the deriva-
tions of C∞(X/K) and let X∞(X/K) denote those derivations that preserve the
ideals of functions IHi vanishing on the isotropy strata (X/K)(Hi) of X/K. Each
element of X∞(X)K restricts to a derivation of C∞(X/K), so there is a canoni-
cal map π∗ : X∞(X)K → Der(C∞(X/K)). The main theorem of [Schw1] is that
Im π∗ ⊂ X∞(X/K) and that π∗ is surjective. Clearly π∗ is a homomorphism of
Lie algebras so we have an induced surjection H(X∞(X)K) → H(X∞(X/K)).
We only need to compute what happens in the case of X = K ∗H V where H

is a closed subgroup of K and V is an H-module such that V H = (0). Let
V = ⊕m

j=1njVj as in Theorem 1.5. The following has Theorem 1.6 as a corollary.

Theorem 4.1. Assume that End(Vj)H ' C if and only if j ≤ l where l ≤ m.
Let T be the corresponding torus (S1)l ⊂

∏l
j=1 Z(End(Vj)H). Then T acts on V

commuting with the action of H, and we have an induced map T → Aut(V/H).
Let S denote the kernel where dim S = k. Then

H(X∞c ((K ∗H V )/K)) ' H(X (V/H)) ' Rm−l+k ⊕ Cl−k.

Proof. We have the canonical surjection of Lie algebras π∗ : End(V )H → X0(V/H)
and π∗ induces a surjection of H(End(V )H) onto H(X (V/H)). For every j we
have the identity Idj ∈ End(njVj)H and clearly these elements give linearly in-
dependent derivations of O(V )H . Now consider the action of T on V/H and its
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kernel S. Then s is the kernel of the restriction of π∗ to the center of End(V )H ,
so that s is the kernel on homology. �

Example 4.2. Suppose that H is a torus acting faithfully on V and V =
∑m

j=1 njVj

where V H = (0) as in Theorem 1.5. Then s ' h and H(X (V/H)) ' Rk ⊕ Cm−k

where k = dim H.

Example 4.3. Let V = Cn ⊕ ∧2Cn with the canonical action of SU(n, C), n ≥ 3.
Then T has dimension 2 and S has dimension 1. See [Schw1, Table I].
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