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The Spectral Density Function of a Toric Variety

D. Burns, V. Guillemin and A. Uribe

Abstract: For a Kähler manifold (X, ω) with a holomorphic line bundle
L and metric h such that the Chern form of L is ω, the spectral measures
are the measures µN =

∑ |sN,i|2ν, where {sN,i}i is an L2-orthonormal basis
for H0(X, L⊗N ), and ν is Liouville measure. We study the asymptotics in
N of µN for X, L a Hamiltonian toric manifold, and give a very precise
expansion in terms of powers 1/N j and data on the moment polytope ∆ of
the Hamiltonian torus K acting on X. In addition, for a character k of K and
the unique unit eigensection sNk for the character Nk of the torus action on
H0(X, L⊗N ), we give a similar expansion for the measures µNk = |sNk|2ν.
A final remark shows that the eigenbasis {sk, k ∈ ∆ ∩ Zdim K} is a Bohr-
Sommerfeld basis in the sense of [12], and that the asymptotic results of [1]
are exact in this case.
Some of the present results are closely related to earlier results of [10]. The
present paper uses no microlocal analysis, but rather an Euler-Maclaurin
formula for Delzant polytopes.
Keywords: Toric varieties, spectral theory.
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1. Introduction

The purpose of this note is to explore a fundamental problem in spectral theory
in the context of “toric geometry”. This problem, formulated in the context
of Riemannian geometry, is the following: Let M be a compact Riemannian
manifold, and let ϕi, i = 1, 2, . . . be an orthonormal basis of eigenfunctions of
the Laplace operator. What can one say about the spectral measures

µi = |ϕi|2 dx (1.1)

as i tends to infinity? For instance, if the geodesic flow on T ∗M is ergodic,
Schnirelman-Colin de Verdière-Zelditch proved that along “most” subsequences
i1, i2, · · · , µi tends weakly to the volume measure, dx, [11], [5], [13]. (This
phenomenon is known as “quantum ergodicity”, and its violation by certain ex-
ceptional sequences of ϕi’s as “quantum scarring”.) However, what can one say
about the limiting behavior of the µi’s if one makes other assumptions about
geodesic flow, e. g. that it be periodic or completely integrable? If geodesic flow
is periodic then it is known ([7]) that the eigenvalues of

√
∆ clump into clusters,

λi,k, k = 1, . . . , Ni

with |λi,k − (ai + b)| = O(i−1) (for suitable constants a, b), and it is known that
a vestige of quantum ergodicity survives: The measures

νi =
∑

k

µi,k =
∑

k

|ϕi,k|2 dx (1.2)
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tend in limit to the volume measure. (The simplest example is Sn−1. In this case
νi is SO(n) invariant and hence is the volume measure up to a constant factor.)

There is another important instance in which the eigenvalues can be clumped
into clusters: If a compact Lie group K acts on M by isometries one can decom-
pose the eigenspaces of ∆ into K-invariant subspaces, and consider the spectral
measures (1.2), where the ϕi,k’s are orthonormal bases of these subspaces. If K

is an n-torus it is also natural to study the asymptotic behavior of the measure
(1.1) not for arbitrary sequences of ϕi’s, but for sequences for which ϕi lies in a
weight space of K of weight αi and the αi tend asymptotically to infinity along a
ray in k∗. In both these cases one would like to be able to relate the asymptotics
of µi and νi to properties of the geodesic flow.

These problems have analogues in Kähler geometry: If X is a compact Kähler
manifold and L → X a Hermitian line bundle whose curvature form is the neg-
ative of the Kähler form, then one can consider the asymptotic behavior of the
measures

µN =
∑

|ϕN,k|2 ν

where {ϕN,k ; k = 1, . . . dN} is an orthonormal basis of Γhol(LN ) (holomorphic
sections of (LN )) and ν is Liouville measure. 4 (Notice that µN is now a measure
on “phase space”. The analogue of X in the case of periodic geodesic flow is
the quotient of the unit cotangent bundle of M by the flow.) Using general
results about the microlocal structure of Szegö kernels, [2], one can prove that
the µN have a weak asymptotic expansion as N →∞ with leading term Liouville
measure.

If there is an action on X of a torus, K, preserving the Kähler structure and
preserving L, one can decompose the spaces Γhol(LN ) into weight spaces and, as
above, study the asymptotics of the measure |ϕN,k|2 ν associated with sequences
of weights which tend asymptotically to infinity along rays in k∗.

4This measure can be defined intrinsically as the measure

C∞(X) 3 f 7→ Trace ΠN Mf ΠN ,

where ΠN is the orthogonal projection of Γ(LN ) onto Γhol(L
N ), and Mf is the operator “mul-

tiplication by f”.
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The purpose of this article is to examine both of these problems in the setting of
“toric geometry”. As a toric variety (together with its canonical Kähler metric)
is completely determined by its moment polytope, it is natural to seek results
formulated explicitly in terms of the polytope.

In more detail, let K be an n-dimensional torus, X a (non-singular) K-toric
variety, φ : X → k∗ the moment map associated with the action of K on X and
∆ = φ(X) the moment polytope. Under the action of K the space Γhol(LN )
breaks up into an orthogonal direct sum of one-dimensional weight spaces

Γhol =
⊕

k∈[N∆]

Γk

indexed by the set [N∆] of integer lattice points in the dilated polytope N∆, and
thus

µN =
∑

〈sk, sk〉 ν, (1.3)

where {sk ∈ Γk ; k ∈ [N∆]} is an orthonormal basis of Γhol and 〈sk, sk〉(p) is
the norm-squared of sk(p) ∈ LN

p . Thus to understand the asymptotic behavior
of µN one has to understand the asymptotic behavior of the functions 〈sk, sk〉.
Our first step in this direction is the following explicit formula for this function.
Let d be the number of facets of the polytope ∆, and `i : ∆ → R, i = 1, . . . , d,
the lattice distance to the ith facet (see definition 2.1). Then

〈sk, sk〉 =
1
ck

(
φ∗ exp

(
N

d∑

i=1

`i

(
k

N

)
log `i − `i

))
(1.4)

where ck is the integral of the expression in the outermost parentheses.

The measure µN is K-invariant, so it is completely determined by its push-
forward to X/K. Moreover, φ is also K-invariant, so it defines a map X/K → ∆
which for toric varieties is a bijection. Hence to study the asymptotics of µN it
suffices to study the asymptotics of the measure

µ]
N := φ∗µN .

Moreover, for toric varieties φ∗ν is just ordinary Lebesgue measure on ∆, hence
by (1.4) µ]

N is the measure

µ]
N =

∑

k∈[N∆]

1
ck

exp

(
N

d∑

i=1

`i

(
k

N

)
log `i − `i

)
dx . (1.5)
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For x and y in ∆ and N ∈ Z+ let

KN (x, y) = cN (x)−1 exp

(
N

d∑

i=1

`i(x) log `i(y)− `i(y)

)
(1.6)

where

cN (x) =
∫

∆
exp

(
N

d∑

i=1

`i(x) log `i(y)− `i(y)

)
dy . (1.7)

Then, for f ∈ C∞(∆),
∫

∆
f dµ]

N =
∑

k∈[N∆]

f ]
N

(
k

N

)
(1.8)

where

f ]
N (x) =

∫

∆
KN (x, y)f(y) dy . (1.9)

One of the main result of this paper is the following.

Theorem 1.1. There exist, for i = 0, 1, 2, . . . , differential operators, Pi(x,D) :
C∞(∆) → C∞(∆), of order 2i with the property

f ]
N (x) ∼

∞∑

i=0

Pi(x,D)(f)(x) N−i . (1.10)

Moreover, P0 = I.

The Pi’s are combinatorial invariants of the polytope ∆ (albeit given by rather
complicated formulas). By combining this result with an Euler–Maclaurin for-
mula for Riemann sums over polytopes (see [9]), we will be able to write the sum
(1.5) as an asymptotic series in inverse powers of N in which the individual terms
are integrals over the faces of ∆ of differential expressions in f . Moreover, if k is
a lattice point of ∆ and µN,k is the measure

µN,k = 〈sNk, sNk〉 ν
the formula (1.10) yields as a corollary a second main result of this paper:

Theorem 1.2. For f ∈ C∞(∆) one has an asymptotic expansion
∫

X
φ∗f dµN,k ∼

( ∞∑

i=0

Pi(x,D)f N−i
)
|x=k
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where the Pi are the same operators as before.

In case k is in the interior of ∆ this result follows from the results in §7 and
the “matrix coefficients” estimates in [1]. However, we will give below a direct
proof that includes the case k ∈ ∂∆.

To summarize briefly the contents of this article: In §2 we will review basic
facts about toric varieties, in §3 derive the formula (1.4), in §4 prove Theorem 1.1
and in §5 derive from it the asymptotic expansion mentioned above. The asymp-
totic properties of sk that we discuss in §4 are closely related to some results of
Shiffman–Tate–Zelditch, and can be viewed as an alternative derivation of these
results. (See [10]). We will comment on the relation of our work to theirs in §6.
Also, on the open set where 〈sk, sk〉 is non-zero, − log〈sk, sk〉 is a potential for
the Kähler metric on X, so inter alia our results give a formula for this Kähler
potential in terms of moment polytope data. (For other formulas of this type
see [3], [4] and [8].) Finally, in §7 we show that the basis of sections {sk} is a
“Bohr-Sommerfeld basis” in the sense of Tyurin, [12].

It may be worth noting that we make no use of microlocal analysis in this
paper.

2. Toric varieties

Let T be the standard d-dimensional torus, T = (S1)d, let t = Lie T = Rd and
let e1, . . . , ed be the standard basis vectors of Rd. T acts on Cd by its diagonal
action, and if we equip Cd with the Kähler form, ω =

√−1
∑

dzi ∧ dz̄i this
becomes a Hamiltonian action with moment map

Ψ : Cd → t∗ , z →
∑

|zi|2e∗i . (2.1)

For G a codimension n subtorus of T , let g = Lie G, let Z∗G ⊂ g∗ be the weight
lattice of G and let

Q : t∗ → g∗ (2.2)

be the transpose of the inclusion map, g → t. Then the action of T on Cd restricts
to a Hamiltonian action of G on Cd with moment map

Φ = Q ◦Ψ =
∑

|zi|2αi (2.3)
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where αi = Qe∗i ∈ Z∗G. We will assume that this moment map is proper, or
alternatively, that the αi’s are “polarized”: for some ξ ∈ g, all the numbers,
αi(ξ) are positive. The toric varieties we will be considering in this paper are
symplectic reduced spaces of the form

Xα = Zα/G (2.4)

where α is in Z∗G and Zα = Φ−1(α). We recall that the action of G on Φ−1(α)
is locally free iff α is a regular value of Φ, and since we will only be considering
non-singular toric varieties in this paper we will assume that G acts freely on Zα.
Hence Xα is a manifold and the projection

π : Zα → Xα (2.5)

is a principal G-fibration. From the action of T on Cd we get a Hamiltonian
action of T on Xα, and if we denote by “ι” the inclusion of Zα into Cd, the
moment map for the T -action on Cd is related to the moment map φα for the T

action on Xα by the identity:

φα ◦ π = Ψ ◦ ι . (2.6)

Thus we have a commutative diagram:

Zα
ι

↪→ Cd

π ↓ Ψ ↓ ↘Φ

Xα
φα→ t∗ Q→ g∗

The moment polytope for the action of T on Xα is

∆α = Rd ∩Q−1(α), (2.7)

by (2.1) and (2.3). (Here we’ve identified t∗ with Rd via the basis vectors e∗i .)
The facets of this polytope are the intersections of Q−1(α) with the coordinate
hyperplanes xi = 0 in Rd.

Definition 2.1. The “lattice distance” to the ith facet, `i, is the restriction of
the coordinate function xi to ∆α.

Since G acts trivially on Xα the action of T on Xα is effectively an action
of the quotient group, K = T/G, and since Lie K = k = t/g, the dual k∗ is
the annihilator in t∗ of g, and hence is the kernel of the map Q. To make
the action of K a Hamiltonian action one has to normalize the moment map,
φα : Xα → Q−1(α), so that it maps into k∗, and this one can do by fixing an
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element, cα ∈ Zd ∩ Int∆α and replacing φα by φα − cα. We won’t, however,
bother to make this normalization here and will continue to think of φα as a map
into Q−1(α).

3. Kähler reduction

In this section we review some general facts about Kähler reduction and use
them to derive the formula (1.4). Let M be a complex manifold and L → M

a holomorphic line bundle. We recall that if L is equipped with a Hamiltonian
inner product, there is a unique holomorphic connection on L which is compatible
with this inner product. More explicitly, if O is a holomorphic connection and
〈 , 〉 an inner product then for every holomorphic trivialization s : U → L

Os

s
= µ ∈ Ω1,0(U) (3.1)

and the compatibility of 〈 , 〉 and O reduces to

d log〈s, s〉= µ + µ (3.2)

and hence
(3.3)

∂ log〈s, s〉= µ

which shows that the inner product determines the connection and vice versa. It
also shows that

curv(O) =
√−1 ∂∂ log〈s, s〉 =: −ω . (3.4)

Suppose now that the form, ω, is Kähler. Let G be an m-dimensional torus, let
τ : G×M → M be a holomorphic action of G on M and let τ ] : G×L → L be an
action of G on L by holomorphic line bundle automorphisms which is compatible
with τ . If τ ] preserves 〈 , 〉 then by (3.2)—(3.3) it preserves O and ω. Moreover,
by Kostant’s formula there is an intrinsically defined moment map, Φ : M → g∗,
such that

Lvs = OvM s + i〈Φ, v〉s (3.5)

for all s ∈ C∞(L) and v ∈ g. In other words the infinitesimal action of G on
C∞(L) is completely determined by Φ and 〈 , 〉.

Let’s now describe what symplectic reduction looks like from this Kählerian
perspective. Given α ∈ Z∗G, let Zα = Φ−1(α). Assuming that G acts freely
on Zα, the reduced space, Xα = Zα/G is a C∞ manifold, and the projection,
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π : Zα → Xα is a principal G-fibration. Let Lα → Xα be the line bundle whose
fiber at p is the (one-dimensional) space of sections

s : π−1(p) → L

which transform under G by the recipe

τ ](exp v)∗s = eiα(v)s, (3.6)

or alternatively, by (3.5), are auto-parallel along π−1(p). For such a section, 〈s, s〉
is constant along π−1(p), so the inner product 〈 , 〉 induces an inner product 〈 , 〉α
on Lα. In terms of sections, if C∞(L)α is the space of global sections of L which
transform by (3.6) and ι : Zα → M is the inclusion,

ι∗C∞(L)α = π∗C∞(Lα), (3.7)

and, if ι∗s = π∗sα,

ι∗〈s, s〉= π∗〈sα, sα〉α (3.8)

We now define a complex structure on Xα and make Lα → Xα into a holo-
morphic line bundle by requiring that

π∗Oα ⊆ ι∗O (3.9)

and
π∗Lα ⊆ ι∗L, (3.10)

where O is the sheaf of holomorphic functions on M , Oα the sheaf of holomorphic
functions on X, L the sheaf of holomorphic sections of L and Lα the sheaf of
holomorphic sections of Lα. By (3.3) one gets a holomorphic connection, Oα, on
Lα which is compatible with 〈 , 〉α and by (3.4) and (3.8)

ι∗ curv(O) = π∗ curv(Oα) . (3.11)

Thus − curv(Oα) is the reduced symplectic form on Xα.

We’ll conclude this section by applying these general observations to the set-up
in §2.

Let L = C × Cd → Cd be the trivial line bundle over Cd and s : Cd → L the
trivial section, s(z) = (1, z). If we equip L with the Hermitian inner product,
〈s, s〉 = e−|z|2 , we get a non-trivial connection on L, and by (3.4) the curvature
form of this connection is minus the symplectic form,

√−1
∑

dzi ∧ dzi. If we let
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G act on L by requiring that s be G-invariant then the space Γhol(L)α is spanned
by monomials, zk1

1 . . . zkd
d , for which α = Q(

∑
kie

∗
i ) =

∑
kiαi, i.e., for which

k ∈ Zd ∩∆α. For each of these sections let sk be the corresponding holomorphic
section of Lα. On Zα one has

〈zk, zk〉 = |z1|2k1 . . . |zd|2kde−|z|
2
,

and so by (3.8) and (2.1)

π∗〈sk, sk〉α = ι∗|z1|2k1 · · · |zd|2kde−|z|
2

= ι∗Ψ∗(xk1
1 . . . xkd

d e−
∑

xi).

But, by (2.6)

ι∗Ψ∗(xk1
1 . . . xkd

d e−
∑

xi) = π∗φ∗α(`k1
1 . . . `kd

d e−
∑

`i).

Hence we conclude that

〈sk, sk〉α = φ∗α
(
`k1
1 . . . `kd

d e−
∑

`i

)
, (3.12)

which implies the formula (1.4).

4. Asymptotics

In this section we will use stationary phase to analyze the behavior of the
integral (1.9) as N tends to infinity. Let

ϕ(x, y) =
∑

`i(x) log `i(y)− `i(y) (4.1)

be the phase function in this integral. We claim:

Lemma 4.1. For x a fixed point in the interior of ∆, the function ϕ as a function
of y has a unique critical point at x = y, and this critical point is the unique global
maximum of this function on ∆.

Proof. Since

dϕ =
∑

`i(x)
d`i

`i(y)
− d`i = 0

at x = y, the point x = y is a critical point of ϕ and since

d2ϕ = −
∑

`i(x)
(d`i)2

`i(y)2
(4.2)

this critical point is a maximum. Moreover, by (4.2) every critical point of ϕ in
the interior of ∆ has to be a maximum and as y tends to the boundary of ∆, ϕ
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tends to −∞. Hence by the “peaks–passes” lemma x is the only critical point of
ϕ and is its unique global maximum. ¤

For x in the interior of a boundary face, F , of ∆, one has an analogous result:

Lemma 4.2. The restriction of ϕ to F has a unique critical point at x = y,
and this critical point is the unique global maximum of ϕ on ∆. In addition, the
derivatives of ϕ (as a function of y) in directions normal to F are not zero at
y = x.

Proof. Suppose that F is defined by the equations `i = 0, i ∈ I ⊂ {1, 2, . . . , d}.
Then, for x in the interior of F ,

ϕ(x, y) =
∑

i6∈I

`i(x) log `i(y)−
d∑

i=1

`i(y), (4.3)

which shows that ϕ is a decreasing function of the `i, i ∈ I. The joint minimum
of those functions is exactly F , and therefore the global maximum of ∆ 3 y 7→
ϕ(x, y) is attained on F . The restriction of this function to F is

ϕ(x, y)|y∈F =
∑

i6∈I

`i(x) log `i(y)−
∑

i6∈I

`i.

Lemma 4.1 can be applied to this restriction, and therefore y = x is the unique
global maximum of ϕ|F , and so x is the unique global maximum of ∆ 3 y 7→
ϕ(x, y) on ∆. Moreover, at y = x

(dϕ)y = −
∑

i∈I

(d`i)y, (4.4)

which shows that the derivatives normal to F are not zero at x (and ϕ decreases
to the interior of the polytope).

¤

From these lemmas one obtains the following “localization” theorem for the
integral operator defined by (1.10).

Theorem 4.3. Let f and g be in C∞(∆). Suppose that for x ∈ ∆, f(x) 6= 0 and
x /∈ supp g. Then∣∣∣∣

∫

∆
eNϕ(x,y)g(y) dy

∣∣∣∣ ≤ e−cN

∣∣∣∣
∫

∆
eNϕ(x,y)f(y) dy

∣∣∣∣ (4.5)

for some positive constant, c.
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We will now examine the local behavior of the transform (1.9) in the neigh-
borhood of a fixed vertex, p, of ∆. Let ∆p be the open subset of ∆ obtained by
deleting from ∆ all facets except the facets containing p. By repagination we can
assume that these are the facets, `i = 0, i = 1, . . . , n.

Lemma 4.4. There exists an affine transform mapping ∆p onto an open subset
of the positive orthant, Rn

+, mapping p onto the origin and transforming the `i’s,
i = 1, . . . , n, into the coordinate functions, xi, i = 1, . . . , n.

(For proof of this “standard fact” about moment polytopes of toric manifolds
see [6].)

In these new coordinates the phase function (4.1) takes the form

ϕ(x, y) =
∑

xi log yi − yi + ψ(x, y) (4.6)

where

ψ(x, y) =
∑
r>n

`r(x) log `r(y)− `r(y) (4.7)

is a C∞ function on ∆p. Moreover, with x fixed, the derivative of ψ with respect
to y:

dψ =
∑
r>n

`r(x)
`r(y)

d`r − d`r

is zero at x = y, so

∂ψ

∂yi
(x, y) =

∑
hi,j(x, y)(xj − yj) (4.8)

and

∂ϕ

∂yi
=

xi − yi

yi
+

∑

j

hi,j(x, y)(xj − yj)

=
1
yi

∑

j

(δi,j + yihi,j)(xj − yj) .

Hence

xj − yj =
∑

gi,j(x, y)yi
∂ϕ

∂yi
(4.9)

the gi,j ’s being C∞ in a neighborhood of x = y = 0.
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Consider now an integral of the form
∫

Rn
+

eNϕ(x,y)f(x, y) dy (4.10)

where f is C∞ and supported in a neighborhood of x = y = 0. Let ρ(y) be a C∞0
function which is equal to one on a neighborhood of the support of f . Then

f(x, y) =
(
f0(x) +

∑
(yj − xj)f

]
j (x, y)

)
ρ(y) , (4.11)

where

f0(x) = f(x, x) (4.12)

and

f ]
j (x, y) =

∫ 1

0

∂

∂yj
f(x, x + t(y − x)) dt . (4.13)

By (4.9) and (4.11) we can write (4.10) as the sum of the two expressions

f0(x)
∫

Rn
+

eNϕ(x,y)ρ(y) dy (4.14)

and

−
∫

Rn
+

eNϕ(x,y)


∑

i,j

gi,jf
]
jyi

∂ϕ

∂yi


 ρ(y) dy (4.15)

and by making the substitution

eNϕ(x,y) ∂ϕ

∂yi
=

1
N

∂

∂yi
eNϕ(x,y)

and integrating by parts with respect to yi we can rewrite (4.15) in the form

1
N

∫

Rn
+

eNϕ(x,y)f1(x, y) dy (4.16)

where

f1(x, y) =
∑

i,j

∂

∂yi
(yif

]
jgi,jρ(y)) . (4.17)

(Notice that in integrating by parts we don’t pick up boundary terms because of
the presence of the yi’s in the integrand.)
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From (4.14) and (4.16) we get for (4.10) the expansion

f0(x)
∫

Rn
+

eNϕ(x,y)ρ(y) dy +
1
N

∫

R
eNϕ(x,y)f1(x, y) dy (4.18)

and by iteration of (4.18), an expansion
k−1∑

i=0

fi(x)N−i

∫

Rn
+

eNϕ(x,y)ρ(y) dy + Rk(x) (4.19)

where

Rk(x) = N−k

∫

Rn
+

eNϕ(x,y)fk(x, y) dy . (4.20)

(In more detail: fi(x) = fi(x, x) and fi(x, y) is obtained from f(x, y) by iterating
i times the operation (4.17). In particular fi is a sum of derivatives of f of degree
less than or equal to 2i with C∞ functions as coefficients.)

Finally observe that for x near zero the quotient of∫

∆
eNϕ(xy)(1− ρ(y)) dy

by ∫

∆
eNϕ(x,y) dy (4.21)

is of order O(e−cN ) by Theorem 4.3, hence if we divide the sum (4.19) by (4.21)
and let k tend to infinity we get the asymptotic expansion (1.10).

Remark 4.5. In the discussion above we’ve assumed that f(x, y) is supported on
the set {x, y ∈ ∆p}. However, by the localization Theorem 4.3 one can always
reduce to this case by means of a partition of unity.

5. Riemann sums

One of the many variants of the classical Euler–Maclaurin formula asserts that
for f ∈ C∞0 (R) the Riemann sum

1
N

∞∑

k=0

f

(
− k

N

)

differs from the Riemann integral
∫ 0

−∞
f(x) dx
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by an asymptotic series

f(0)
2N

+
∞∑

n=1

(−1)n−1 Bn

(2n)!
f (2n−1)(0)N−2n (5.1)

where the Bn’s are the Bernoulli numbers.

Recalling that

τ(s) :=
s

1− e−s
= 1 +

s

2
+

∑
(−1)n−1Bn

s2n

(2n)!

this asymptotic expansion can be written more succinctly in the form:

1
N

∞∑

k=0

f

(
− k

N

)
∼

(
τ

(
1
N

∂

∂h

) ∫ h

−∞
f(x) dx

)
(h = 0) . (5.2)

Guillemin and Sternberg proved in [9] an n-dimensional version of this result in
which the interval, (−∞, 0], gets replaced by a convex polytope. In particular for
the moment polytopes associated with toric manifolds their formula is basically a
“product” version of the formula above and is proved by localization arguments
similar to those we used above to prove Theorem 1.1. Let ∆ ⊆ Rn be such a
polytope and let d be the number of facets of ∆. Then ∆ can be defined by a set
of inequalities

〈ui, x〉 ≤ ci (5.3)

where ci is an integer and ui ∈ (Zn)∗ is a primitive lattice vector which is per-
pendicular to the ith facet and points “outward” from ∆. The Euler–Maclaurin
formula in [9] asserts:

Theorem 5.1. Let ∆h be the polytope

〈ui, x〉 ≤ ci + hi , i = 1, . . . , d . (5.4)

Then for f ∈ C∞0 (Rn)

1
Nn

∑

k∈Zn∩N∆

f

(
k

N

)
∼

(
τ

(
1
N

∂

∂h

) ∫

∆h

f(x) dx

)
(h = 0) (5.5)

where τ(s1, . . . , sd) = τ(s1) . . . τ(sd).

Now notice that if we divide (1.8) by Nn the right hand side is exactly a
Riemann sum of the form above. Hence if we plug in for f ]

N the asymptotic
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expansion (1.10) and apply to each summand the formula (5.5) we obtain an
“Euler–Maclaurin formula” for the asymptotics of the measure µ]

N , of the form:
∫

∆
f dµ]

N ∼ Nn

∫

∆
f(x) dx +

∞∑

i=1

ci(f) Nn−i

where the ci are integrals over the faces of ∆ of differential expressions in f .

6. The Shiffman–Tate–Zelditch results

Let ϕ(x, y) be the function (4.1). By (1.4), if x ∈ ∆ and k = xN is an integral
point in N∆, then

〈sk, sk〉(p) =
1

ck(x)
eNϕ(x,y) (6.1)

where p ∈ Φ−1(y) and

ck(x) =
∫

∆
eNϕ(x,y) dy . (6.2)

If x ∈ Int∆ then by Lemma 4.1 the function

∆ 3 y 7→ ϕ(x, y)

has a unique non-degenerate maximum at y = x, and hence by the lemma of
steepest descent

ck(x) =
(

2π

N

)n/2

h(x)−
1
2 eNϕ(x,x)(1 + 0(N−1)) (6.3)

where h(x) is the determinant of the quadratic form
∑ 1

`i(x)
(d`i)2(x) . (6.4)

Thus as k = Nx tends to infinity along the ray through x one gets the asymptotic
identity

〈sk, sk〉(p) ∼
(

N

2π

)n/2

h(x)1/2eN(ϕ(x,y)−ϕ(x,x)) (6.5)

at p ∈ Φ−1(y). In particular, as N tends to infinity 〈sk, sk〉 concentrates expo-
nentially on the Bohr–Sommerfeld set Φ−1(k/N). This result is due to Shiffman,
Tate and Zelditch, 5 who also observe that by applying steepest descent argu-
ments to the function (4.3) one gets an analogue of (6.5) for x lying in the interior
of a face, F , of ∆. In this case the asymptotic dependence of 〈sk, sk〉(p) on N

5More or less: Their result involves a slightly different choice of inner product on the sk’s and of

coordinates on X. See [10].
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is given by an expression similar to (6.5), except that the “n” in (6.5) has to be
replaced by the dimension of F . Hence the behavior of 〈sk, sk〉(p) for k = Nx is
very non-uniform in x when x is near the boundary of ∆. We will prove below
that by averaging their result over an “δ-pinched” neighborhood

∣∣∣ k

N
− y

∣∣∣ <
1

N δ
, 0 < δ <

1
2

one gets a version of (6.5) which is much more uniform in k/N :

Theorem 6.1. For x = k/N ∈ ∆, δ ∈ (0, 1/2), and for every test function
ψ ∈ C∞

0 (Rn),
∫

∆
〈sk , sk〉 ψ

(
N δ

( k

N
− y

))
dy ∼

∞∑

i=0

σi(x) N−(1−2δ)i , (6.6)

the σi(x) being C∞ functions on ∆. Thus the averaged estimate, unlike the
pointwise estimate (6.5), is “uniform up to the boundary”.

Proof. We mimic the integration by parts argument in §4. Applying this argu-
ment to the function

f(x, y) = ψ
(
N δ

(
x− y

))
(6.7)

and keeping track of powers of N one gets for the integral
∫

Rn
+

eNϕ(x,y)ψ
(
N δ

(
x− y

))
dy

an expression
k−1∑

i=0

σi(x) N−i(1−2δ)

∫

Rn
+

eNϕ(x,y) ρ(y) dy + Rk(x),

where

Rk(x) = N−k(1−2δ)

∫

Rn
+

eNϕ(x,y) fk(x, y, N δ(x− y)) dy.

Dividing by (4.21) and letting k tend to infinity one gets the estimate (6.6). ¤

Another result of [10] which is closely related to the results of this paper
concerns the asymptotic behavior of another interesting measure associated with
the norm-squares of the sk’s, namely the measure on the real line

mN ([t,∞]) = Vol { 〈sk, sk〉(p) ≥ t } (6.8)
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(i. e. the distribution function of the “random variable” 〈sk, sk〉), where k = Nx.
Assuming that x is a point in the interior of ∆, Shiffman, Tate and Zelditch prove
that the moments of this measure have the limiting behavior

∫ ∞

0
tm dmN ∼ (cNn/2)m−1 m−n/2, m = 0, 1, . . . (6.9)

where c is a constant depending on x, and from this result deduce that µN satisfies
“universal rescaling laws” in various regimes (e. g. for t exponentially small with
respect to N or for t greater than some positive power of N). To deduce (6.9)
from the results above we note that the integral on the left is just

∫

X
〈sk, sk〉m dν

where ν is, as in §1, Liouville measure. This integral is equal to the integral over
∆ of the right-hand side of (6.1) to the mth power, with respect to Lebesgue
measure. Using (6.2), this gives

∫

X
〈sk, sk〉m dν =

ckm(x)
ck(x)m

.

But by (6.3)
ckm(x)
ck(x)m

∼
( N

2π

) (m−1)n
2

m−n/2 h(x)
m−1

2 , (6.10)

and we recover (6.9). (We are grateful to Zuoqin Wang for pointing out to us
this connection between (6.1)–(6.3) and these rescaling laws of [10].)

7. Monomials and delta functions

In this section we present a precise way to relate the sections sk with the Bohr-
Sommerfeld fibers of the moment map. This can be seen as a concrete realization
of the expected (or hoped-for) equivalence between the complex polarization used
in this paper and the singular real polarization defined by such fibers. The result
is exact (not asymptotic), so in this section N = 1.

Let P ⊂ L∗ be the unit circle bundle, which is a principal S1 bundle with
connection. We denote by H ⊂ L2(P ) the L2 closure of the space of smooth
functions that extend holomorphically to the unit disk bundle of L∗, and let
Π : L2(P ) → H be the orthogonal projection. Under the circle action H splits
into isotypical subspaces,

H = ⊕̂NHN .
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Specifically, HN consists of eigenspace of the infinitesimal generator of the S1

action in H corresponding to the eigenvalue
√−1N . H1 is naturally isomorphic

with the space of holomorphic sections of L. If s : X → L is such a section, we
will denote by

s[ ∈ H1

the corresponding function on P .

Since the torus K acts on the bundle L → X (preserving the hermitian struc-
ture) it acts on P , preserving the connection. The infinitesimal action of K on
P is given by the Kostant formula, (3.5), translated into this setting:

∀A ∈ k ξ]
A = ξ̃A + HA ∂θ. (7.1)

Here:

(1) ξA is the vector field on X induced by A,
(2) ξ̃A is the horizontal lift of ξA, and
(3) HA is the A-component of the moment map X → k∗, pulled back to P .

Note that, since HA is constant along trajectories of ξ̃A, the two fields on the
right-hand side of (7.1) commute. Furthermore, the representation of the torus
K on L2(P ) by translations commutes with the projection, Π. Therefore, if A ∈ k,

[L
ξ]
A

, Π] = 0,

where L denotes the Lie derivative.

We begin with:

Lemma 7.1. Let k ∈ [∆] be a lattice point. Then there exists a closed submani-
fold Yk ⊂ P such that

(1) Yk is horizontal, and the projection, P → X, restricted to Yk is a diffeo-
morphism onto φ−1(k).

(2) The restriction of s[
k to Yk is a non-zero constant function.

Proof. The inverse image φ−1(k) is an orbit of K, and therefore diffeomorphic
to a quotient torus, K/Kk, where Kk is the isotropy subgroup of any point in
φ−1(k). The Lie algebra of Kk is the conormal space to the face, F , of ∆ such that
k ∈ Int(F ). φ−1(k) is an isotropic submanifold of X, and so a closed horizontal
lift, Yk, will exist if the holonomies of generators of the fundamental group of
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φ−1(k) are trivial. By the properties of Delzant polytopes, we can represent
generators of π1(φ−1(k)) by orbits of one-parameter subgroups exp(tA) of period
T = 2π, and with A ∈ k integral.

Fix p ∈ P above φ−1(k), and note that the curve exp(tA) · p is 2π periodic (we
are denoting the action of K on P by a dot). Therefore

p = exp(2πA) · p = exp(2πξ̃A) ◦ exp(2πHA(p) ∂θ)(p).

Since A and k are integral, HA(p)=〈A, k〉∈Z, and therefore exp(2πHA(p) ∂θ)(p) =
p. Therefore

p = exp(2πξ̃A)(p),

that is, the holonomy of an orbit of exp(tA) in φ−1(k) is trivial. This proves (1).

To prove (2), note that ∀A ∈ k the section sk satisfies

L
ξ]
A
(s[

k) =
√−1 〈A, k〉 s[

k.

Taking into account that L∂θ
s[
k =

√−1 s[
k, we obtain using (7.1) that Lξ̃A

(s[
k) = 0

at points over φ−1(k). Since this is true ∀A ∈ k, s[
k is constant on Yk. It is not

zero because, as we have seen, 〈sk, sk〉 is in fact maximal on φ−1(k). ¤

The main result of this section is:

Proposition 7.2. Let k ∈ [∆] and Yk ⊂ P as in the previous proposition. Let ν

be the lift to Yk of a K-invariant density on φ−1(k). Then the projection, Π1(δYk
),

on H1 of the resulting delta function on Yk is a non-zero constant times sk.

Proof. Let tk = Π1(δYk
). We begin by clarifying that, as a distribution, tk is

defined by the identity

(tk , u) = (δYk
, Π1(u)), (7.2)

for u a test function on P . Therefore, if u ∈ H1,

〈tk, u〉L2 = (tk , u) =
∫

Yk

u ν. (7.3)

For any A ∈ k let us now compute L
ξ]
A
(tk). Using that [L

ξ]
A

, Π1] = 0, if u is a
test function on P

(L
ξ]
A
(tk) , u) = −

∫

Yk

L
ξ]
A
(u1) ν
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where u1 = Π1(u). By (7.1) this equals

−
∫

Yk

Lξ̃A
(u1) ν +

√−1 〈A, k〉
∫

Yk

u1 ν.

The first integral is zero, because Yk is horizontal and L
ξ]
A
ν = 0. The second

term is
√−1 〈A, k〉

∫

Yk

Π1(u)ν =
√−1 〈A, k〉 (tk , u),

using (7.2). Therefore L
ξ]
A
(tk) =

√−1 〈A, k〉 tk, that is, tk satisfies the same

ODEs as s[
k, and so necessarily tk = Ck s[

k for some constant Ck. To show that
this constant is not zero note that

Ck = 〈tk, s[
k〉L2 =

∫

Yk

(sk)[ dν 6= 0

by (7.3) and part (2) of the previous lemma (in fact Ck is equal to the volume of
Yk times the conjugate of the constant value of s[

k on Yk). ¤

It is natural to ask if the analogue of the previous proposition holds for other
integrable systems on Kähler manifolds, for example the Gelfand-Cetlin system.
We hope to return to this problem.
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