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1. INTRODUCTION

This is the first of a series of papers devoted to the study of hyperbolic geo-
metric flow and its applications to geometry and physics. Hyperbolic geometric
flow was first studied by Kong and Liu in [11]. To introduce such flow we were
partially motivated by the Einstein equations in general relativity and the recent
progress in the Hamilton’s Ricci flow, and by the possibility of applying the pow-
erful theory of hyperbolic partial differential equations to geometry. Hyperbolic
geometric flow is a system of nonlinear evolution partial differential equations of

second order, it is very natural to understand certain wave phenomena in nature
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as well as the geometry of manifolds, in particular, it describes the wave charac-
ter of the metrics and curvatures of manifolds. We will see that the hyperbolic
geometric flow carries many interesting features of both the Ricci flow as well as
the Einstein equations. It has many promising applications to both subjects.

The elliptic and parabolic partial differential equations have been successfully
applied to differential geometry and physics. Typical examples are the Hamil-
ton’s Ricci flow and Schoen-Yau’s solution of the positive mass conjecture. A
natural and important question is if we can apply the well-developed theory of
hyperbolic differential equations to solve problems in differential geometry and
theoretical physics. This series of papers is an attempt to apply the hyperbolic
equation techniques to study some geometrical problems and physical problems.
One has found interesting results in these directions, see for example [16] for the
applications of the hyperbolic geometric flow equations to physics. Our results
already show that the hyperbolic geometric flow is a natural and powerful tool
to study some important problems arising from differential geometry and general
relativity such as singularities, existence and regularity. In this paper we study
the basic properties of the hyperbolic geometric flow such as the short-time ex-
istence, nonlinear stability and the wave feature of the curvatures. In the sequel
we will study several fundamental problems, for example, long-time existence,

formation of singularities, as well as the physical and geometrical applications.

Let .# be an n-dimensional complete Riemannian manifold with Riemannian
metric g;;, the Levi-Civita connection is given by the Christoffel symbols
k. — 1 Kl {89jl 993 892‘3‘ }

i = 9 ozt ' 0xd  Ox

where g'/ is the inverse of g;;. The Riemannian curvature tensors read

ork  ark
k ! l k Kk
Ry = 52 = 55 Tl = Uil Riw = gy

The Riccl tensor is the contraction
il
Ri; = ¢ Riju

and the scalar curvature is

R = ginij-
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The hyperbolic geometric flow under the consideration is the following evolution
equation
8291‘3’
ot?
for a family of Riemannian metrics g;;(¢) on .#. More general hyperbolic geomet-

— —2R; (1.1)

ric flows were also introduced in [11]. A natural and fundamental problem is the
short-time existence and uniqueness theorem of hyperbolic geometric flow (1.1).
In the present paper, we prove the following short-time existence and uniqueness
theorem, the nonlinear stability theorem for Euclidean space, and derive the cor-
responding wave equations for the curvatures. These results were announced in
Kong and Liu [11].

Theorem 1.1. Let (///,g?j (x)) be a compact Riemannian manifold. Then there
exists a constant h > 0 such that the initial value problem

%gij(x,t) = —2R;j(z,1),
9gis
9ij(z,0) = g¥i(z), F(x,0) = k()

has a unique smooth solution g;j(x,t) on A x [0, h], where k:?](x) is a symmetric

tensor on M .

The main difficulty to prove this theorem is that, the hyperbolic geometric flow
(1.1) is a system of nonlinear weakly-hyperbolic partial differential equations of
second order. The degeneracy of the system is caused by the diffeomorphism
group of .# which acts as the gauge group of the hyperbolic geometric flow.
Because the hyperbolic geometric flow (1.1) is only weakly hyperbolic, the short-
time existence and uniqueness result on a compact manifold does not come from
the standard PDEs theory directly. In order to prove the above short-time exis-
tence and uniqueness theorem, using the gauge fixing idea as in the Ricci flow, we
can derive a system of nonlinear strictly-hyperbolic partial differential equations
of second order, thus Theorem 1.1 comes from the standard PDEs theory. On the
other hand, we can reduce the hyperbolic geometric flow (1.1) to a quasilinear
symmetric hyperbolic system of first order, then using the Friedrich’s theory [5]
of symmetric hyperbolic system (more exactly, the quasilinear version [3]) we can
also prove Theorem 1.1.

Noting an important result on nonlinear wave equations (see [10]), we will
find its other interesting application to geometry, by applying this result to the
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wave equations of curvatures. In the present paper we first use it to prove the
nonlinear stability of the flat solution of the hyperbolic geometric flow defined on
the Euclidean space with dimension larger than 4. More precisely, we have

Theorem 1.2. The flat metric g;; = 0;; of the Euclidean space R™ with n > 5 is
nonlinearly stable.

See Section 4 for the precise definition of nonlinear stability which is very
important in general relativity. The key point of the proof of this theorem is the
global existence of classical solutions of the Cauchy problem for the nonlinear

wave equations.

Similar to Hamilton [6], we derive the corresponding wave equations for the

curvatures, for example, we have

Theorem 1.3. Under the hyperbolic geometric flow (1.1), the curvature tensor
satisfies the evolution equation

82
w&jkl = ARijii + 2 (Bijii — Bijik — Biji + Bikji)
=9 (RpjkiRai + Ripi Roj + RijpiRok + RigipRat) — (1.9)

ore or?,  or® ar¢
+29pq ( il jk jl ik ’

ot ot ot ot

where Biji = " g% Rpyiqi Rekst and A is the Laplacian with respect to the evolving

metric.

The wave equations for the Ricci and scalar curvatures are stated and proved
in Section 5. This is similar to the Ricci flow equation, except that there are
quadratic lower order terms involving the connection coefficients. It turns out
that there is a very rich theory in nonlinear wave equations to deal with such
terms, see [10].

From the above results we can already see that the hyperbolic geometric flow
has many features of the Ricci flow, therefore many well-developed techniques in
the Ricci flow may be applied to the study of this new kind of flow equations. On
the other hand, the hyperbolic geometric flow can also be viewed as the leading
terms of the vacuum Einstein equations. Since the hyperbolic geometric flow
contains the major terms in the Einstein equations, it not only becomes simpler
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and more symmetric, but also possesses rich and beautiful geometric properties.
See Section 6 for more detailed discussions on the relations between the hyperbolic
geometric flow and the Einstein equations, and more generally its relations with
other important problems in general relativity.

The paper is organized as follows. In Section 2, using the gauge fixing idea as
in the Ricci flow, we derive a system of nonlinear strictly-hyperbolic partial differ-
ential equations of second order. In Section 3 we reduce the hyperbolic geometric
flow (1.1) to a quasilinear symmetric hyperbolic system of first order, and give
the proof of Theorem 1.1. Section 4 is devoted to the nonlinear stability of the
hyperbolic geometric flow defined on the Euclidean space with dimension larger
than 4. In Section 5, we derive the wave equations satisfied by the curvatures,
and illustrate the wave character of the curvatures. Some discussions are given
in Section 6.

2. STRICT HYPERBOLICITY OF HYPERBOLIC GEOMETRIC FLOW

In this section we consider a modified system of evolution equations of the hy-
perbolic geometric flow, which is strictly hyperbolic so that we can get a solution
for a short time by solving the corresponding Cauchy problem. The solution of
the system (1.1) then comes from the solution of the modified equations.

Let .# be a compact n-dimensional manifold. We consider the hyperbolic
geometric flow (1.1) on .#, that is,

82

@gij(x,t) = —2Rij($,t). (2.1)

Suppose §ij(z,t) is a solution of the hyperbolic geometric flow (2.1), and ¥ :
M — A is a family of diffeomorphisms of .Z. Let

gij(z,t) = ¥y gij(x, 1)

be the pull-back metrics. We now want to find the evolution equations for the
metrics g;;(z,t). Denote by y(z,t) = pi(z) = (y'(z,t),y*(2,t), - ,y"(x,t)) in
local coordinates. Then

Oy* 0y° .
Gij (:U, t) = Oz @gaﬁ(yv t) (2.2)




336 Wen-Rong Dai, De-Xing Kong, Kefeng Liu

and
= 2 Lo 22
519 (@ 0= 50 | Gas(y, 1) 5 axj]
B 8ya 8yﬂ d ) . 8 aya 8y6
= 507 907 g 08 W@ 1) 8) + ap(y,) 7 (axi 927 )

Furthermore, we have

o 0y~ 0y’ d?gup 9 <82y“> 0y° .

@g@j(-ﬁ, t) ~ Ort % 12 (y(a:, t)? t) + % o2 @gaﬁ
oy 0 (%P . 0 (0y*\ 0y® djags

-— | Y5 2— , 2.3

00 o ( iz )90+ 255\ ot ) o ar (2:3)

Oy* 0 (9y’\ djap , 5 O (Oy*\ O (0y°\
T2 aﬂ(at) &t Zow \ ot ) ow \Cor ) 9

On the other hand,

dt T oy ot ot ’

ngaﬂ( ( ) t) _ 82@0&5 @873/)\4_282@&5@ 82§7aﬁ 8?7&,6’ 82y'y
dt? T oy oy ot Ot oyrot ot ot? oy Ot?
and

82gaﬁ
ot?

(y,t) = —2Rag(y. t).

It follows from (2.3) that

82%3‘
ot?

o dy* Oy’ 9%Gap Oy* 0y® Oy Oy*
(2,8) = =2Rap(v: )5 7 5.7 * By 00 007 Of ot
0ap 0y 0y" Oy> O (. Oy Py 9 (. Iy’ Oy
9y10t 0t 03 0t 0zt \ TP a2 ) " 915 \IP ot a2
[aga,aay“ayﬁ o <8yﬁA ) o <3yﬁA )} 0%y

oy Oxt Ozi Bt D7 I 023 \ 92797 ot2

0 <ayo‘> 8yﬁ (agaﬁ I 8,@()46 é?gﬂ)

+2

+2

Oxt \ ot ) 0xd \ Ot oy Ot
oy? B 0Ja Y 0Ga
190" 0 (097 (0905 0y7 | Ofas
Ox* Oxd \ Ot oyr Ot ot

9 [(Oy*\ O [Oy°
20085 3 < ot > B2 < ot > ‘

(2.4)
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Let us choose the normal coordinates {z°} around a fixed point p € .# such

9a, s
that agzlz =0 at p. We next prove that, at p € .,
x

OGap Oy™ Oy 0 <8y3A > 0 <8yﬂA )

oy Oxt Oxd Ot 0039 ) T Bgi \ i I

:07 v’i7j77:17"'7n'
(2.5)

The left hand side of (2.5) is

0gap 0y~ 0y” 0 (0y° 9 (o,
Oyr Oxt OxJ  Oxt \ OxJ 96y i IO

oxJ

0 ozx™ Oz™\ Oy® oy’ 0 oz™ 0 ox™
T oy (gm" dy° ayﬂ) 92 0zl Oa (g””’am> " Oal (gmam>
9 [9x™\ Oz" oy dy®  dx™ O [0x™\ Oy* dyP
oy <8ya> 0y® Ozt 0xd " Oy* Dy <8y6) ]

Oxt OxJ
0 [0x™ a [0z™
) ()
_, 9 <3xm> oy 0 (‘%’m> oy’
= gmj oyY \ Oy~ ) Oxt Jmi oy \ OyP ) OxJ
0 [0x™ g [0z™
() (5
0 (0x™\ oy“ 9 [0xz™\ 0y®
—Imi gy <8yV ) g Iy (&W) Oz’

A (e W A
Imi gy oy S oy

=0.

= dmn |:

So (2.5) holds.

By (2.4) and (2.5), we have
0%gij 0 ox™ §*y> 0 oy 9%y
— _9R.. il Iadadiih gl i A
g (D=2 )+ 55 (g"“ oy ot > o (gm’axm o2 )
D?Gap Oy OyY° oy” oy 0gap Oy Oy* oy’
Oy Oy* Ozt dxd Ot Ot oyrot Ot Ox' OxJ
d (aya) yP <8§aﬂ . 9905 0y >

oxt \ ot ) dxJ \ Ot oyr Ot
(o2 0 (O (B | G0
Ox' Oxd \ Ot ot oy Ot

0 [oy*\ O [0yP
200 57 (m) 927 (m) - (26)
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We define y(z,t) = ¢¢(x) by the following initial value problem

82ya aya ) o
a2 = 59 i = Th):

) (2.7)
ya(xvo) =z, &ya(l’,O) :y%(m)

and define the vector filed

Vi = ging” <F§z - F?z) ;

o
where F?l and F?l are the connection coefficients corresponding to the metrics
gij(x,t) and gj;(z,0), respectively, y¢*(z) (o = 1,2,---,n) are arbitrary C'*°
smooth functions on the manifold .Z. We get the following evolution equation
for the pull-back metric

( 8%g;; *Gap Oy™ 0y° Oy Oy
= —2R;:(x, Vi Vi . - —
gz Dt = 2Ry (@ )+ ViV A VVid 5os R o a7 ot ot

0%Gap Oy 0y’ Dy 0 (0™ 0y’ (DGap | 0Gap Oy”
OyYot Ozt OxI Ot Ox' \ ot ) 9x3 \ Ot oy ot

o [0y * (IGa 0Ga Y
49 0 (U7 0y* (09ap | OGas Oy’
Oxd \ Ot ) Ox* ot oyY Ot

0 [oy*\ O [0y
2908 5 ( ot ) 92 < ot >

£ —2R;i(z,t) + V;V; + V;Vi + F(Dy, D:D,y),

0
\gij(SU,O) :ggj(‘r)v agij(xvo) = k%(x)?

where

Let
2=

aya 6ya 82ya .
I —1,2,---,n).
< o o owigr) (@iTLZom)

~ ~

The nonlinear term F' = F(\) = F(Dy, D:D,y) in (2.8) is smooth and F(\) =
O([A2) holds.
Since
e _ Oy Oyt Oats, a9y
I 9xd Ot Oy B Py Qi dat
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the initial value problem (2.7) can be written as

82ya _ 62ya B ok % fa 872/563/7
ot2 Oridzl T Itozk T T BY9xd 9z )’

0
ya(l‘,O) =z, ayo‘(aj,()) :ytll(x)
At the same time, in the normal coordinates {x'},

O ( 109w 0 w (091  Oga  0gij
—2R;i(x, Vi Vi = - —_— ) — — - - —
Rij(w,t) + ViV + V;Vi ozt {g Oz } Ok {g 927 " 0xd  Oal
2 [1 Ogpi | Ogq Oy
P Lkl P al _ Y9pq
I3k B {29 <8xq T T oal
1
+gikgpq% {ngl <gizjll gi‘ﬁ - %g;;;) } + (lower order terms)
:gkl{ 2 gr 8 gji & gil 8%gij }

0xidxi  Oxidxk  Oxidzk | 9xkox!

+1 ghi 8291)1' 82961]’ _ 6291)11
2 0x'0xd  Ox'0xd  Ox'dxd
1 02 gy 0%q, 0%g
Z Pl pi @i pq
+2g { 920wt T 920w~ Baitw } + (lower order terms)
820
=gk 83:"“981231 + (lower order terms).
Thereby, the initial value problem (2.8) can be written as
820, 820,
U (2,8) = gL + F(Dy, Dy Dyy) + G(g, Dag),

0
gij(CC, 0) = g?j(x)’ agij(xv 0) = k?g(x)’

where g = (glj)a ng = ( glj) (Zvjvk = 1727"' ,’I’L)- Let
X

N 09i; o
H:<glj)ax]z> (7’7.]7]{521727"'7”)'

The nonlinear term G = G() = G(g, Dzg) in (2.10) is smooth and quadratic
with respect to D,.g.

We observe that both (2.9) and (2.10) are clearly strictly hyperbolic systems.
Since the equations (2.9) and (2.10) are strictly hyperbolic and the manifold .#
is compact, it follows from the standard theory of hyperbolic equations (see [8],
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[9], [10]) that the system united by (2.9) and (2.10) has a unique smooth solution
for a short time. Thus, we have proved Theorem 1.1.

3. SYMMETRIZATION OF HYPERBOLIC GEOMETRIC FLOW — SECOND PROOF
OF THEOREM 1.1

In this section we reduce the hyperbolic geometric flow (2.1) to a symmetric
hyperbolic system. Then we use the theory of symmetric hyperbolic system to
give another proof of Theorem 1.1.

Let .# be a compact n-dimensional manifold and g¢;;(z,t) is a hyperbolic geo-
metric flow on .#Z. We denote the corresponding connection coefficients, the
Riemannian curvature tensor and the Ricci curvature tensor by Ffj, ikl and
R;i, respectively.

We consider the space-time R x .# with the Lorentzian metric
ds? = —dt* + g;j(z, t)dz"dx’ (3.1)

and denote the corresponding connection coefficients, the Riemannian curvature
tensor and the Ricci curvature tensor by Flﬁ, Ropyx and R,g, respectively. Here
and hereafter, the Greek indices run from 0 to n, Latin indices from 1 to n. The
summation convention is employed. We also denote 2% = ¢.

By direct computations,

- T L R Y N -
Ffj:r?j’ ngzg 3237 r’ofl:r%:igkz 87; ) ng:(], 00 =0, F80207
k k
pr = Lo 0T fk fa ko gh g L em 09mi 0051 L o O0m; O
O A e S T Y S T T
51 lagli 0gik lgli 82gik n lglm n 8gmp OGnk
0k0 =9 gt ot 27 o2 4 ot ot

(3.2)
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Then,

Ry, = 9" Riarp = gaﬂgszéag = —guRly + 9" qgklRﬁpq
[ 109" 0gip 1 1,@gip 1y Omp Ogni
HN\"57ar ot 27 a2 4 ot ot
1 Im agmi agpq 1 Im 8977110 agzq:|

9 ot ot 1Y "ot o

1 0% gix 1 09" 09 1 ,nO09kp Ogni
B R. 2229w 4~ opn ZIRP ZIme
5 2 TR TSI T T 1Y "ot ot

1 g 8.9’(?2 6gpq 1 g 6gkp aglq

+gpqgkl |:R£pq +

T o 17 o o
1 0% 1 0009ik Ogpg 1 1, 0Gip Ogkq

_1 .1 99pg 1 , 3.3
2o T o T 29 o (3:3)

A direct computation gives (see, e.g., Fock [4], p.423; Fisher and Marsden [3],
p.22)

mo_pm L, ot or\ sy 1 ork o ork
Rz]—Rij +2<gzaax]~ +g]aaxi = 1y, +2 gzkaxj +g]k6xi )

~ ~ ~ ~ 1 0 ~. ~. N
Do — gﬁvfg’w ie., T0=gMT0 = §gkl%’ [ = ghTi, = ghlpi, 2 1,

2
sy Loag 079 & 99ap
Ry = _5904 0xedxh + Hij | 9os; oz

1&gy 1y Py +ﬁij< 59aﬂ>

T2 02~ 29 BrkoL ois "5 X

and

. g L
Hiy (gaﬁ ’ axaf> =9"79e T e

1 (0gij= A 399979 A 89999
5 (T + pPar™ o 2+ aalgmo 0t ).

Similar to (3.3), we have

ph _ 195 1 4 Pgyy

09k Ogr
i =20 29 ggkogl T (9’“” ozP ' ot
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and

gkl gk \ A 7 Jg
H;; (gk‘la oz’ ot = Hij | gap; aaAﬁ
= _gleiOFjO +(=1)g lch FOZ +g" gqupkf}l-z

agz] 1 Kl 8gkl ag] k 89 ag
Wk .pa F Pq _pr gqs . Fk pr qs ~IP4
( 8t 29 8t + 837 qg +g]l€ rs 8 7 g g +glk‘ T‘Sg g ax]

1 4,09ip1 ;.09 1agklagl
_ p09ip 1 1,095 141 0gik 1095
99 "5 29 "o 9 2ot 2 ot

1 kl 8gkl 3ng 1 agij k
- ~Japk gpa
19 o0 ot T 20m, Y

kl P 149
gpqrikrjl

O oz’
_lgpq%% lgkl%%
2 ot ot 4 ot ot

10
+g gpqrp Fq 9ij Fk gpq

1 dg v gs99
+3 <gm1“rsg”gqs P14 gDk gPrg?s 221

2 Dy,
1 g r 4599
+5 <9ikffsgp "9t S0+ kg g q) :
It follows from (3.3) that
19%g; 10%gij 1 4y gy | 1 ork 61“’1‘C
5 AD i = 5 A 59 Al 9ik a7 T 9ik A
2 Ot 2 Ot 27 OxFox oI oz’

+H;; ( 091 agkl) pa 09in 995q pq 99ii O9pa

Ikl Dep Ot ot ot _Zg ot ot
i.e.,
BQgij 82gij kl 82% 8F’“ 8Fk
o T e~ 9 Grga 7 Ik gt >

(glk a
Ogk g 0gip 0954 1 ,,09i; Og
2Hz “ IR nq Jq9 _ ~ . pq J prq
2y (g’“l’ om0 0t ) 79 or ot 27 o ot

8 Gij kl 8 Gij < 61“"/’ 6Fk>

o2 g Oxkox! +

gzka J +gjka

F2P g T T 4 Q0T g

dg Jg
(gzkfmg’”gqs T ol g™ q> (34)
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Similar to the harmonic coordinates in the space-time (see [3]), here we make
use of a new kind of coordinates on the manifold .# defined by

I = gMri, = o. (3.5)
Such new coordinates are called elliptic coordinates on A .

Lemma 3.1. Let g;; be a C* Riemannian metric on the manifold .#. There
is a C* local coordinates transformation ¢ : M — M, x — T around a
fized point p € M such that the transformed metric g;; is a C* Riemannian
metric with fk(f) = 0 for all T in a neighborhood around p € .# and any
ke{l,2,--- n}.

Proof. Consider the elliptic equation for the scalar v,

A g 0% _i_klrjai:

MY =g 0z1.0x; g klf)xj 0-

The coefficients are C*™. Let T'(x) be a solution with the condition Z'(p) =
. ot ) )
z'(p), a—x(p) = 0;. Then 7" is a C local coordinates transformation ¢ :
-

M — A around p and the transformed metric g;; is a C°° Riemannian metric.

Now the equation Ay = 0 is a tensorial (scalar) equation. In the barred

coordinates, it becomes

— 0%k _o7F g
0=Azr=—g¥ T =T,
o g 851‘(95]' + 8fj

Therefore, g;; satisfies the elliptic condition (3.5). The proof of Lemma 3.1 is
complete. g

By Lemma 3.1, we can choose the elliptic coordinates around a fixed point
p € .# and for a fixed time ¢t € RT. After throwing off the bar sign, the geometric
hyperbolic flow (3.1) can be written as

%gi; 0%gij ~ Ogri
52 =9 gpkog T Hi (g“’axp>’ (36)

where

= Agki 9g 99
Hy <gkz, Sop ) = 20" UGS — ( gnlrg 9™ 2 + gilrog™ g" 7

(3.7)
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10)
are homogenous quadratic with respect to le and rational with respect to
x

gk with non-zero denominator det(g) # 0. By introducing the new unknowns

_ 0Ogij _ 0gij
ij» hij = 0 Yk = o
partial differential equations of first order. We now consider such a quasi-linear

1
(symmetric hyperbolic) system with Qn(n + 1)(n + 2) PDEs of first order

the system (3.6) can be reduced to a system of

(09ij

ot
09i; Ohi;

gt ik _ ki O (3.8)

= h’L]?

ot Oxk’
Ohij w99k |
- L
ot 9 gl Y

In the C? class, the system (3.8) is equivalent to (3.6).

1
Let w = (gij, 9ij b, hi;)T be the gn(n + 1)(n + 2)-dimensional unknown vector
function. The coefficient matrices A%, A7, B are given by
I 0 0 --- 00
091119121_“ glnIO
092119221"' anIO
A%(u) = A%gij, gijk, hij) = : ;

OgnljgnZIgnnIO

00 0 --- 0 I
o 0 0 --- 0 0

0 0 0 --- 0 ¢g''I

O 0 0 --- 0 gjn[

()gleQZj]...gnj[ 0
. 1 1 . . 1
where 0 is the <2n(n + 1)> X <2n(n + 1)) zero matrix, [ is the <2n(n + 1)> X

1
<2n(n + 1)> identity matrix,

B(u) = B(9ij, 9ijp-hij) = 0 |,
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1
in which 0 is the 5712 (n + 1)-dimensional zero vector.

We observe that the symmetric hyperbolic system

ou . 0u
A%(u)— = AV(u)~— + B 3.9
()% = A9(u) £ + Bw) (39)
is nothing but the system (3.8). So far, we have reduced the equation of the
hyperbolic geometric flow (3.1) to the symmetric hyperbolic system (3.9), which
are equivalent to each other in the C? class. Then, by the theory of the symmetric
hyperbolic system, the smooth solution to (3.1) exists uniquely for a short time

(see [3]). Thus, the proof of Theorem 1.1 is completed.

Remark 3.1. The elliptic coordinates can also be used to prove the short-time

existence for the Ricci flow.

More generally, motivated by general Einstein equations and the rich theory
of hyperbolic equations, we may also consider the following field equations with
the energy-momentum tensor 7;; under certain conditions:

& gij g
Qij 7(,%2 + 2Rij + ﬁij g, E = HTij, (3.10)
where «;; are certain smooth functions on .# which may also depend on t, .Z;;

are some given smooth functions of the Riemannian metric g and its first order
derivative with respect to ¢, and k is a parameter. Similar results can be obtained.

Remark 3.2. For noncompact manifolds, if the initial metric, velocity and cur-
vature satisfy some bounded conditions, then a theory similar to Shi’s short-time
existence result can be developed. That is to say, under suitable assumptions,
Shi’s short-time existence result for the ricci flow can be extended to the hyper-
bolic geometric flow.

4. NONLINEAR STABILITY FOR HYPERBOLIC GEOMETRIC FLOW
In this section we investigate the nonlinear stability of the hyperbolic geometric
flow defined on the Euclidean space with the dimension larger than 4.

We now state the definition of nonlinear stability of the hyperbolic geometric
flow (1.1). Let .# be an n-dimensional complete Riemannian manifold. Given
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symmetric tensors g?j and gl-lj on . , we consider the following initial value prob-

lem
2
—=9ij(r,t) = =2R;;(x, 1),
atQ.g]( ) J( ) (4.1)

dgij
9ii(2.0) = 55(2) + gl (@), L (@,0) = eghy(@),

where € > 0 is a small parameter.

Definition 4.1. The Ricci flat Riemannian metric g,;(z) possesses the (locally)
nonlinear stability with respect to (g%, gz‘lj), if there exists a positive constant eg =
eo(g?j,gilj) such that, for any e € (0,e9], the initial value problem (4.1) has a

unique (local) smooth solution g;j(x,t);

9;5(x) is said to be (locally) nonlinearly stable, if it possesses the (locally) non-
linear stability with respect to arbitrary symmetric tensors g?j (z) and gilj () with

compact support.

In what follows, we consider the nonlinear stability of the flat metric of the
Fuclidean space R™ with the dimension n > 5. We have

Theorem 4.1. The flat metric g;; = 0;; of the Euclidean space R™ with n > 5 is
nonlinearly stable.

Remark 4.1. Theorem 4.1 gives the nonlinear stability of the hyperbolic geomet-
ric flow on the Euclidean space with dimension larger than 4. The situation for
the 3-, 4-dimensional Fuclidean spaces is very different, and will be studied in
the sequel by using null conditions. This is similar to the proofs of the Poincaré
congjecture in topology: the proofs for the three and four dimensional case and
n > 5 dimensional case are very different (see, for example, [6] and [1]). This
motivates us to understand the possibility of using hyperbolic geometric flow to
understand Poincaré conjecture.

Proof of Theorem 4.1. Define a 2-tensor h in the following way
Gij(x,t) = 035 + hij(z,t).
Let 6% be the inverse of ;5. Then, for small h
H 2 gl — § = _pii 4 01 (h2),

where ¥ = 6% hy; and O¥(h?) vanishes to second order at h = 0.
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As in Section 3, we choose the above elliptic coordinates {z'} around the origin
in R™. Then the initial value problem (4.1) can be written as

8? 02 Oh(z, 1)

@hl](ivat) = (5kl + Hkl) o1 k@ 1 + Hz] <(5kl + hkl(xat)’ W) ’
0

his(,0) = g (x), o hig(,0) = egly(),

where

- Ohy(x,t ~ Ogi(x,t
H;; <51<:z + hi(z,t), g;p)> = H;j <gkl(x7t)> gké(p)>

Jg k Jg
|:2g gpqrzk]'_‘jl + ngIwTSnggqs a p]q + g] P?‘Sgprgqs 8;:1
2 (5’“ + Hij) (Bpg + i) L (@ 4 H™) (5qb + qu)

] <8hai n 8hak B 6hlk) <6hbj 4 8hbl B 8h]~l>

oxk ozt oza oz! oxd  Oxb
— (O + Hi) (67" + HP") (6%° + HP)

1/ ka ia\ [ Ohar ~ Ohgs  Ohys\ Ohyg
2 (5 +H ) <8w3 + dzr 0 dxd
~ By Hy) (87 HIT) (5% 4 HY)
U/ N (Ohar  Ohas  Ohps Oy
2 (5 +H ) <8x5 T e T ae ) O
1 Ohgy;  Oh oh; Ohy;  Oh Oh,;
—_9.-. kl pa sqb ai qk _ ik bj b‘l _ 3l
4 07 0pg0™0 <8xk T ow T oo ozt " oad  oab

1 oh oh oh oh
_ T §. SPrsgs ka ar as T8 Pq
25lk6 oro <8x5 T o 8.75“) i

1 T as TS
_§5jk5pr(5q55k;a <6ha + oh N oh > ahpq +0 (|hkzl| + ‘ahkl

y

ox® ox” ox® ) Ozt oxP
— 5kl(5ab ahal ahak 8hzk ahb] ahbl 8h]l
2 8$k ﬂji 85[31 x] 8xb
1 ahzr his 6
DT $qS
2(S 0 <3x5 " > oxI
]' ah T 5 8 ahkjl 3
qs spr J _
25 o < Ox® 83:7" ) ozt <|hkl| + ‘ OxP > '
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Furthermore, (4.2) can be written as

. Phi; Ohw Py
z H’L j Y p 0 )
gz, t) Zaxka CR <h“ v Oxpaxq>
(4.3)
0
hig(2.0) = 2g@). -y (.0) = egh(x),
where
[ Oh 9hy o Ohij Oh
H;; <hklaaxpa 92P00d ) — =H Sk —|—H” Okt + ity m— Dp
=00 <6wk T ow T e ol T D2i Db
1 oh; oh; oh oh
__pryas o s rs Pq
25 g (83:3 T o T ow ) oxd
1 Oh; Oh; oh Oh
—_Z§pryes Jr Js 7'§ Pg
2 <8:L‘s + ox"  OxJ ) Ox!
0%hi; Ohyy 0%h \°
il ij
—h orFod T 0 <‘th‘ + ’ oav | | ozra ) '
Let

s Ohy  0%hy _
A= <hkl78xp7 OrPOLd (pa QakJ - 172 an)'

The nonlinear term

Hy(\) = A <h Ohyy 3hkz>

" 9ap 7 Dp O
in (4.3) is smooth in a neighborhood about A = 0 and satisfies
Hiy(3) = 0 (IAP) (i = 1,2, ;).
By the well-known global existence results for the nonlinear wave equation (e.g.,
see [2], [7], [8], [10]), there exists a unique global smooth solution (h;;(z,t)) for

the Cauchy problem (4.3) or (4.2). Thus, the proof of Theorem 4.1 is complete.
9

Remark 4.2. For general complete noncompact Riemannian manifold 4 , under
suitable bounded assumptions we can prove that any Ricci flat Riemannian metric
§Z-j(:1:) on M possesses the locally nonlinear stability. For the globally nonlinear
stability, when the space dimension n is large that 4, i.e., n > 5, under suit-

able assumptions, we can show that the Ricci flat Riemannian metric g;;(x) on
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M possesses the globally nonlinear stability, however when n = 3,4, this result
in general s not true, since in this situation the solution to the corresponding

nonlinear wave equation in general blows up in finite time.

5. WAVE CHARACTER OF THE CURVATURES

The hyperbolic geometric flow is a system of hyperbolic evolution equations
on the metrics. The evolution of the metrics implies a system of nonlinear wave
equations for the Riemannian curvature tensor R;jx;, the Ricci curvature tensor

R;; and the scalar curvature R which we will derive.

Let .# be an n-dimensional complete manifold. We consider the hyperbolic
geometric flow on ., that is,
82

@gij(ib,t) = —2Rij(a?,t). (51)

We now want to find the evolution equations for the Riemannian curvature tensor

R;j11, the Ricci curvature tensor R;; and the scalar curvature R.

Direct computations yield
rh — lghm (agmj Ogmi 59;‘1)

i ozx! oz ox™

O _ L (PG i Pgmi gy 19g"™ (dgm; | Ogmi  Dgji
oxtot  Oxidt  dx™ot 2 ot ozt dxi  Oxm )’

T =
ot It 2
0 h 162ghm (agmj + 8gml agjl) +9. laghm (aQQmj 82gml aQQJI )

92 0= o2 \oxt T ow  oxm 5 ot \ozlor " owiot  dxmor

1 (0 [ 2Gm; 0 (0*gmi 9 (g
39 (mz(atz Y ow o ) T aem o))

h _ (’)F?Z B ar?l

+rpry -1

il G Ord ip™ jl Jjp= il
2 ., 0 (9%, o (0% ., 9 A
o =3 (™) ~ 3w (gt + g (T0% - r),
02 02 h 0? n O%gnk Ognk 0
ez = gz (o) = anscg R + i =g 275, 5 i

9 [0 o (0% ,\ o
= gnk [W (atgl_‘?l> = 9w (atzréz) +or (F?pFZ - F?sz)]

Ogni | O (0 9 d 0 [rn A
o Lw <atfﬂ>‘axj (aﬁl + o (T )
h 829hk
T

+R
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We choose the normal coordinates around a fixed point p on .# such that

I'}(p) =0
or, equivalently,
agij
0.
Then we have
82
?Rijkl:
9 [18¢"™ (Ogmj  Ogm  Jgji 4o, 19" (Pgmi g i
Ik ori |2 02 \oxt " oz oxm 2 0t \ozlot ' dwiot  dxmot
o [L . [0 (0n; 0 (%gmi o (g
Tk {29 (W( oz ) T ow \ o ) T e \ o2
D [19g"™ (Ogmi | Ogmi  Oga 4o 19" (Pgmi | 0P  ga
Ik 12 02 \oxt T ozt oxm 2 0t \ oot | oxiot  drmot

O (1 o (O (Pgmi n d (Pgm\ O [gu
ghka J g ox! ot2 ot o2 orm o2

0 0 0 0 Ognk
2 A VR AV
+2Ghk <8t r TR TR ”) HEY

8gml

L0 (99" (O9ms , Ogmi _ Ogu\\ _ L O (99" (Ogmi .
2 Oxt ot Ox! oxI ox™ 2 OxJ ot Ox!
Ognk 1 4y O (O (Ogmj 39;1
200 29 o <8xl( ot 83;3 638"'

_ aghkl hm 0 i agmz agm
ot 29 ui \ o \ ot axz t

ox?

~ 9ga
Oxm
0gi1 *gh
~a0 (3)) + Rl

ot?

_1 82 him 0 agmj + ag'ml B 8g]l 3ghm agmz + 6gml - 8gil
T T g \ ot | 0w Oz &EJ ot \ ozt | ozt zm
o D29 (Ogmy  Ogmi _ Ogn N\ _  %¢"™" (Ogmi . Ogmi _ _Oga
Ik orior \ociot * owiot  oxmot) T orior \ oLt | oxiot  dxmot
w0 99 [ D (Ogms | Ogmi _ Ogu \ _ O (0gmi  Pgmi _ Ogu
9I5| ot \0L0t * 9x0t  0zmdt)  0x) \ 0Llot | Oxidt  dxmot

Jr} 0? % gi; n 0? Pgu %g;1
2 | Ozioxt \ Ot? OzidxI \ Ot2 Ozidxk \ Ot2

1T (P n * ([ Pgu\ P 8*gar
2 | 0zioxt \ Ot2 0zioxt \ Ot2 Oz 0xk \ Ot?

2 —TIh 1P h 2P
+egnk (8t wor i Bt rgr U
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. O9nk 3ghm O9mj , O9mi _ 9gjt\ 0 (Ogmi | Ogmu  Oga
875 Ox! 8:1:j oxm OxJ \ Ox! Oxt  Oxm
+thk wm | O [ O9msi | Ogmu 99j1 \ 0 (Ogmi | Ogmi  Oga

ot oxi \ oxlot = fxiot  Oxmot OxJ \ 0x'ot = Ozidt  Ox™mot
O gni
h
Rl S,
(5.2)
Noting ¢"™ g = 6;‘, we get
aghm _ _ghpgmq 8917‘1 anhm — _ 4hp ,mq 8gpq
ot ot ' Oxkot oxkot’
92 ghm b 0%g AGpq Og
— p,,mq__ IP9 hp rq ,sm_—JIP9 ZITS
12 gz 29 at ot
Thus, it follows from (5.2) that
o2 1 g Dgiq Og
Z R, = | —Zgpm_IEP rq  pm Z Ik ZITP
g Tkl < 29 o 99T g o >
o |2 (99mi , Ogm  Ogs & (Ogmi  Ogmi g \] o Grp
Oxt \ Ox! oxi  oxm )  Oxi \ oxl oxt  Ozm Oxtot
Pgmj | g 0%gj P gk (Pgmi | P g
oxlot  Oxiot  Oxmot 0xiot \ Oxlot  Oxiot  dx™ot
1 ?  (Ogi; n &  (Pgu\ 9 [(PPgn
2 | 0xioxt \ Ot2 0xt0xd \ Ot? oxtozk \ Ot?
1] PPk N ” ([ Pgu\ P (P
2 | 0xioxt \ Ot2 Ozl oxt \ Ot? Oxiozk \ Ot2
0., 0 _p 0 h 0 h 0? 9hk mp mqagnk 99pq
+ 20h (atrw ot 1L ot ot ”) T ot ot
O (0gmj | Ognu Ogji\ O (Ogmi  Ognu  9ga
Oxt \ Ox! OxJ  Ox™ OxJ \ Ox! Oxt  Oxm
_ 8 Jkp i P 0 Y e rqagkq agrp 9 P irp
o2 \ ozt it §gi U ot ot \oxi 3t gxi ¥
_a2gkp L gPm 9? 9mj 9? gmi aQle
0xiot oxlot ~ Oxiot  Oxmot
Py o (Pgmi | g P gi
aziot Y \ozlot T dxior ~ dxmar
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1 0? 0? 0?

3 [(%ﬁ&cl (—2Ry) + OO (=2Rw) - Dzt dxk (=28 )}
1 0? 0? 0?

3 [ayaxz (Z2Rik) + gigar (2B ~ g “mﬁ}

a h a 8 h 8 8ghk agpq h
+2gnk [(%Fip . argl - Erjp : atrfl} — g7

ot ot
0 0 g,
2 < I r§l> + Rl

dz; I Oz ul” o2
1 0? 0? 0?
=3 [axaxz (2B ¥ iger (721~ gy <‘2le>]
L[ o 5 o gy
= (_ ) _ 7 (_ _ 7 (_9R.| — gpm _ZEP
> [&Iﬂﬁxl( 2Bi) + Giger (T2 — gg ZR”)} 9" Swion

(Pgmj | P Ogi o PGkp (0%gmi | Pgmi Oga
oxlot  Oxiot  Oxmot 0xiot \ oxlot ~ Ozidt  Ox™Oot

0 0 1o} 0
2 —Th .1 - —1h . TP ).
+2Gnk <8t v g i g ot ”)
(5.3)
On the one hand, we have

82

Y Rjk = Vilejk + szfk . ij + VZFZ . Rk:p-

Then
1 0?2 0?2 9?2
2

Ozt OxtOxI (=2Rk) = Oxioxk (_2Rﬂ)]
1 0? 52 92
E [axaaxl (F2Ri) + igas T2 ~ gk <‘2Rﬂ>}

= ViV Ryj — Vil Rjp — Vil}, Ry, — ViV Ry — Vil%, Ry, — Vil% Ry,

(—2Ry;) +

+ViViRj + Vil Ry, + Vil Rjp + ViViRyi + VI Ry + VT Ry
+V; ViR + VTP Ry + VTP Ry, — V;ViRy — VTP Ry — V,T% Ry

— —ViViRy; — ViVRiy + ViViRji + V;ViRii + V;ViRyi — V,; Vi Ry
+Rip (VT — V,;I0) + Rjp (=Vily, + ViTy)

Ry (~ViT}; = ViT% + VT + V)
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Ry (<l 4 Vil + VTG - VT )
=—V;ViRy; + ViV Rj + V;Vi Ry — V; Vi Ry
—Rijipg" Ry — Rijrpg"' Ry + Rip ( 2Rul)
=—ViViRy; + ViViRj + V;ViRy; — ViV Ry — ¢" (RijipRiq + RijipRig) -
On the other hand, we have

om PGk (0%gm; n Pgmi  Pgj o 02 Gkp
oziot \ 00t  Oxiot  Oxmot Oz ot

Pgmi | Pgm g O O O O
'<axlat T owiar 8a:m8t> + 2gni (atrw T 8tr2l>

om Pk (Pgmj | g Ogj
0x'ot \ 9z'ot ~ Oxiot  Ox™ot
o Pgrp (Pgmi | Pgmi  gi
0xiot \ Oxlot ~ Ozt  Ox™Ot

+1 om Pgri gy _ *gip PGmi . 0*Gm B %gi1
29" \owrat " aziot  ozkor ) \ostot T 9zior  dxrmot
L 0Pk N Parp  Pgip \ (Pgmi | P ga (5.5)
2 oxPOt  O0xiot  OxFot oxlot = Oxiot  Ox™mot

oxlot  0xiot  dxmot ) \ OzPdt  Oxkot  Oxiot

gmz gml 62.§7'L’l ) < 829kj a2gjp 82gkp) }

<529m] Pgmi gy > <829ki _ Pgip aQQkp>

210t ozt oxmat ) \ oot~ kot dwio

_9 L . 0 (0Ogr; L 99 gt 1 0 (Ogri  Ogis  Ogis
Ipa 129 5i \ ozt T 0x7 0 ) 29 9t \ows  0aF  ox

_lgpr 9 (Ogri N 9gri_ 9gu\ lgqs 0 (Ogkj  Ogjs  Ogis
27 ot \ ozt Ozt Oxm) 27 Ot

oxs  OxF  OxJ
0 0 0 0
= 20pq ((%FZ ({%ng — EI‘% . ({%ng) .

"
<8

Therefore, it follows from (5.3), (5.4) and (5.5) that

82
@Rijkl =—V;ViRy; + V;VyRj; + V;V Ry, — ViV Ry
0 0 0 0
— ¢" (Rijqi Rip + RijrgRip) + 29pq ( (%FZ m% ~ o e mrgk) -
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Similar to Hamilton [6], we have

Theorem 5.1. Under the hyperbolic geometric flow (5.1), the Riemannian cur-
vature tensor R;ji satisfies the evolution equation

2

@szkl = ARjji + 2 (Biji — Bijik — Biji + Bikji)

=" (RpjuiRgi + RipriRgj + Rijpi R + Rijiplg) (5.6)
8 vy q a ¥y 6 q
+20pq (atril “aitik T pylat etk )

where Biji = " g% Rpiqi Rekst and A is the Laplacian with respect to the evolving
metric.

Remark 5.1. In Theorem 5.1 and Theorem 5.2 below, the term
9 p 90 q 9 p . 9 q
29pq (atril : arjk - arﬂ : @Fik
can be written in the covariant form. For the sake of simplicity, we omit it.

For the Ricci curvature tensor, we have

0? 0?

jl
A G
92 o . 0 827!
— Jl . 9 Jl . . .
g o2 Rzykl + 8tg atRmkl + Rzgkl o2

5 02 1 Ogpg O 0%
= g]l@Rijkl - g]pglqiaztgq aRijkl - g””glq—at;"’ Rijk

: 99pq 99
+ 297 g g™ H =D Rija.

Thus, we obtain

Theorem 5.2. Under the hyperbolic geometric flow (5.1), the Ricci curvature
tensor satisfies

82

@Rzk’ = ARzk + QQPTQqSRpiqurs - QQPququk

» 0 _, 0 0 0
+29ﬂgpq (&frflatr‘?k - mrﬁlatrgk> (5.7)

0 OQpg O , 0Gpq 0g
—QQJPQZqT?]aRz‘jM + 29”’9“’95187? 628 Rijit.
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For the scalar curvature, we have

223 -2 <gikRik)

ot2 ot? .
:gm;;mk+2iRm';¢k+RMi§?
_ g““g;Rik - 2gipgkqag]tm agz;k 'R, <_gipgkqa;§2pq n 2gipgrqgskag§q 8§;s> :
On the other hand,
29" 97 gpq (;Pﬁgtrgk - ;rglgt%)
_ ggikzgjlgrsvr(ag;j )Vs(ag?l) — %g’"svr(gik 8gzk)vs(gﬂaggl)
1247V, (g 8;;’“ )Vl(agf) - g““gﬂg’"svr(ag;j )Vz(ag';s)
B 29ikgjzgrsvi(8g’;’“)Vj(agf ).
Then, we get

Theorem 5.3. Under the hyperbolic geometric flow (5.1), the scalar curvature

satisfies
82
@R = AR + 2|Ric|?
+30% 71V SRV () — e, (4 )9 g T
12019 v, (202) — gegityre, (20, (e (5.8)
_Qgikgjlgrsvi(aglzr W]‘(agf) B 2gikgjpgmag?1;]{ijm
29ipgkqa§1t°qag;“‘? + 4Rikgipgrqgska§i°q ag/;s.

Theorems 5.1-5.3 show that the curvatures of the hyperbolic geometric flow
possess the wave character. We will apply techniques from hyperbolic equations
to the above wave equations of curvatures to derive various geometric results.
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6. DISCUSSIONS

The hyperbolic geometric flow describes the wave character of the metrics and
curvatures of manifolds. Many hyperbolic systems in nature provide natural
singular sets, the typical example is the Einstein equations in general relativity
which form a hyperbolic system with a well-posed Cauchy problem. If one starts
with smooth initial data, one may end up with a singular space-time. One of the
most challenging problems is to describe the kind of natural singularity. The fa-
mous cosmic censorship conjecture due to Penrose is an attempt to describe such
singularities (see [12]). In Kong and Liu [11], we construct some exact solutions
of the hyperbolic geometric flow, these solutions possess the singularities which
are nothing but those described by Penrose’s conjecture. By these examples, we
believe that the hyperbolic geometric flow is a very natural and powerful tool to
understand the singularities in the nature, in particular, the singularity described
by Penrose cosmic censorship conjecture.

The Einstein equations play an essential role in general relativity. Consider a

space-time with Lorentzian metric
ds* = gpdatde”  (u,v=0,1,2--- n). (6.1)
The vacuum Einstein equations read
Guw =0, (6.2)

where G, is the Einstein tensor. We now consider the following metric with
orthogonal time-axis

ds? = —dt* + g;j(z, t)dz"dx’ . (6.3)
Substituting (6.3) into (6.2), we can obtain the equations satisfied by the metric
Gij

9%gi; 1 .09 Oy dgip 0g;
= _9R,. — — P12 ZIP4 pq I 2919
o2 759 o ot 9 ot ot

Neglecting the lower order terms gives the hyperbolic geometric flow (1.1). There-

(6.4)

fore, in this sense, the hyperbolic geometric flow can be viewed as the leading
terms in the vacuum Einstein equations with respect to the metric (6.3). Since
the hyperbolic geometric flow only contains the main terms in the Einstein equa-
tions, it not only becomes simpler and more symmetric, but also possesses rich
and beautiful geometric properties. In particular, in mathematics, its Cauchy
problem is well-posed and easier to handle some fundamental problems such as
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the global existence and formation of singularities; on the other hand, it can
be applied to re-understand the singularity of the universe and other impor-
tant problems in physics and cosmology (see [16]). We also believe that there
should be some relations between the solutions of the Einstein equations and the
corresponding hyperbolic geometric flows. On the other hand, from the above
discussions we have seen that the hyperbolic geometric flow also possesses many
beautiful features similar to those of the Ricci flow, and some of the techniques
in the study of the Ricci flow can be directly used to understand the hyperbolic
geometric flow. The deep study on the hyperbolic geometric flow may open a
new way to understand the complicated Einstein equations.

It is well known, in general relativity there is a constraint system of equations
involving an asymptotically flat metric tensor and another symmetric tensor.
There are four constraint equations and it is therefore over-determined. Unlike
this, since the time axis is orthogonal to other space axes, the hyperbolic geo-
metric flow does not need to satisfy any additional constraint. More precisely,
for the Cauchy problem of the hyperbolic geometric flow, in order to determine
the solution we need two initial conditions: one is the metric flow itself g;;(x,0),

another is its derivative agzj (z,0), since the time axis is orthogonal to other axes,

these initial data do not need to satisfy any additional constraint, and therefore
it is a determined system. This is another main new feature of the hyperbolic

geometric flow.

Many mathematicians, for example Shatah et al [13]-[15], have investigated
the Cauchy problem for some geometric wave equations. The model at hand
is the harmonic map problem, which is the study of maps from the Minkowski
space-time into complete Riemannian manifolds. This kind of geometric wave
equations is a system of partial differential equations of second order, which is the
Euler-Lagrange equations of the action integral of the harmonic map. It satisfies
certain linear matching condition, and then under suitable assumptions, has a
unique small smooth solution for all time, and possesses some interesting (decay,
energy and regularity) estimates. On the other hand, the hyperbolic geometric
flow is determined by the Ricci curvatures of a family of Riemannian metrics on
the manifold under consideration. That is to say, the hyperbolic geometric flow
possesses itself intrinsic geometric structure and can be used to describe the wave
character of metrics and curvatures. This is essentially different from the above
harmonic map problem.
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As well-known, one can understand the heat kernel from the kernel of wave
equation. This indicates that we should be able to derive various information of
the Ricci flow from that of the hyperbolic geometric flow. Therefore it is also
interesting to understand the relations between the hyperbolic geometric flow
and the Ricci flow, the singularities of its solutions and its relation with the

geometrization theorem. This will be another interesting topic in the sequel.
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