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Spectral Multiplicity and Odd K-theory

Ronald G. Douglas and Jerome Kaminker

Abstract: In this paper we begin a study of families of unbounded self-
adjoint Fredholm operators with compact resolvant. The goal is to incor-
porate the information in the eigenspaces and eigenvalues of the operators,
particularly the role that the multiplicity of eigenvalues plays, in obtaining
topological invariants of the families.
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1. Introduction

In the early sixties, K-theory, a generalized cohomology theory was defined by
Atiyah and Hirzebruch, [2] based on a construction of Grothendieck used earlier
in algebraic geometry. Following some spectacular applications in topology, the
development of K-theory was intrinsically related the index theorem of Atiyah
and Singer, [3]. One result of this entanglement was the realization, by Atiyah,
[1] and Jänich, [8] of elements of the even group as homotopy classes of maps into
the Fredholm operators. For the odd group, Atiyah and Singer showed in [4] that
one could use homotopy classes of maps into the space of self-adjoint Fredholm
operators.

Singer raised the question, [14], of describing elements in the cohomology of
the space of self-adjoint Fredholm operators in a concrete way. The generator of
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the first cohomology group can be related to spectral flow and the eta invariant
following the work of Atiyah-Patodi-Singer, [6], on the index formula for certain
elliptic boundary value problems. This notion has proved pivotal in a number
of directions, including physics, where it was used in the study of anomalies, [5].
Let us be a little more precise.

In [4] Atiyah and Singer established homotopy equivalences between various
realizations of the odd K-theory group. The proofs involved, among other things,
a careful analysis of finite portions of the spectrum of the operators. However, the
precise relationships of some of these objects were left unresolved. In subsequent
years, there has been some follow up on these ideas but analyzing families has
turned to other notions such as gerbes which can involve ancillary structure. Our
goal in this paper is to return to the framework introduced in [4] and attempt to
relate the odd classes directly to the behavior of the self-adjoint operators.

One can show that spectral flow is determined by just a knowledge of the
behavior of the eigenvalues of the family, along with their multiplicities. However,
that is not true for the class in K-theory. To overcome this defect, one must
bring in the behavior of the eigenspaces as well. Hence, we seek to unravel this
dependence and understand how to obtain invariants similar to characteristic
classes. We believe it is likely that these relationships will have applications to
physics, such as “higher anomalies”, and lead to a study of “higher” spectral
flow and index theory in general. The authors would like to thank Ryszard
Nest for hospitality during a visit to the University of Copenhagen where this
project began. We would also like to thank Alan Carey who took part in initial
discussions on this topic and provided valuable insights.

This paper should be viewed as a first step in which some basic structure is
revealed and some results are obtained. One goal here is to formulate basic ques-
tions and frame critical issues which merit further investigation. Before providing
an overview of our results we need to introduce some definitions and notation.

We begin with more details on the space of self-adjoint operators. It is well
known that the space of bounded self-adjoint Fredholm operators on a separable
Hilbert space H, with the norm topology, is a classifying space for odd K-theory.
That is, for any compact Hausdorff space, X, one has

K1(X) ∼= [X,Fsa]. (1)
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Here we are letting Fsa denote the component of the space of bounded self-adjoint
Fredholm operators which have both positive and negative essential spectrum.
We will also consider the subspace, Fsa

0 , consisting of operators, T , with ‖T‖ ≤ 1
and the essential spectrum of T equal to {±1}.

In applications one is often provided with a family of unbounded Fredholm
operators parametrized by a locally path connected and connected space X. To
be more precise we will consider the following subset of unbounded self-adjoint
Fredholm operators.

Definition 1.1. The regular unbounded self-adjoint Fredholm operators, denoted
Fsa

R , consists of linear operators, T , which satisfy

i) T is closed and self-adjoint,
ii) (I + T 2)−1 is compact,
iii) T has infinitely many positive and infinitely many negative eigenvalues.

Remark 1.1. We may also consider non-self-adjoint operators, T , satisfying the
condition that T ∗T ∈ Fsa

R . Statements made about Fsa
R will hold with appropri-

ate modifications for such operators which we will denote by FR.

We shall study families of operators,

D = {Dx} : X → Fsa
R . (2)

Let Cb(R) denote the bounded continuous functions on R for which the limits
at ±∞ exist. We consider families which are continuous in the sense that the
function

Θ : Cb(R)×X → B(H) (3)

defined by Θ(f, x) = f(Dx) is norm continuous. There is a topology on the set
Fsa

R for which this holds.

With the Riesz topology, which is the one determined by the bounded trans-
form, D 7→ D(I + D2)−

1
2 , it has been shown by L. Nicolaescu in [13] that the

space of unbounded self-adjoint Fredholms satisfying (i) and (iii) in Definition
1.1, but not necessarily (ii), provides a classifying space for odd K-theory. There
is a related result by M. Joachim in [9] which states that those satisfying (ii) as
well also form a classifying space. We will not need to make use of these results
in the present paper, but they will be relevant for future work.
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The main examples will be families of Dirac operators on an odd-dimensional
manifold M parametrized by a compact space, X.

A family {Dx}, as above, determines an element of K1(X). It is obtained by
applying the function χ(x) = x(1 + x2)−1/2 to each operator Dx to obtain the
family of bounded self-adjoint Fredholm operators

{D̃x} = {χ(Dx)}. (4)

Then each operator in the resulting family {D̃x} is a bounded self-adjoint Fred-
holm operator and the homotopy class of the family yields an element of K1(X).

The Chern character of such a family, viewed in real cohomology, has compo-
nents only in odd degrees,

ch({χ(Dx)}) ∈
⊕

i≥0

H2i+1(X,R).

The class in H1(X,R) corresponds to spectral flow, and the class in H3(X,R)
is determined by the index gerbe, c.f. [10]. One goal of the present work is to
develop a method that leads to a different description of these classes and the
higher dimensional classes which obstruct the triviality of the K-theory class
associated to the family. These obstructions are to be determined explicitly in
terms of the spectrum and eigenspaces of the operators in the family. This is in
a spirit similar to spectral flow as we mentioned earlier. As a first step, in the
present paper we will consider the role that the multiplicity of eigenvalues plays.

2. The multiplicity of eigenvalues

We will recall some basic definitions and facts that we will use.

Proposition 2.1. Let D be an unbounded self-adjoint operator as above. Let λ

be an eigenvalue of D. Let δ > 0 be such that there is no other eigenvalue in
[λ− δ, λ + δ]. Then the spectral projection onto the eigenspace for λ is

Pλ(D) =
1

2πi

∫

|z|=δ

dz

(z −D)
. (5)

and the multiplicity of λ is given by m(λ,D) = rank(Pλ(D)).

Now, consider a family of operators, {Dx}. We introduce the following termi-
nology.
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Definition 2.2. The graph (or spectral graph) of the family {Dx}, Γ({Dx}) ⊆
X × R, is

Γ({Dx}) = { (y, λ) | λ is an eigenvalue of Dy }. (6)

Note that Γ({Dx}) is a closed subset of X × R. When the specific family is
clear from the context, we will simply use Γ and simply call it the graph, dropping
the term “spectral”.

Both the spectral projection and the multiplicity of eigenvalues define functions
on the graph of the family. We must consider continuity properties of these
functions.

Let (x, λ) ∈ Γ be a point in the graph of the family.

Definition 2.3. A canonical neighborhood of (x, λ) is one of the form V × (λ−
δ, λ + δ), where x ∈ V , δ > 0, such that

a) λ is the only eigenvalue of Dx in (λ− δ, λ + δ),
b) if k = m(Dx, λ), then, for each y ∈ V , one has

∑

(y,µ)∈(V×(λ−δ,λ+δ))∩Γ

m(Dy, µ) = k

for each y ∈ V .

Proposition 2.4. Every point (x, λ) in Γ admits a canonical neighborhood, V ×
(λ− δ, λ+ δ) such that if λ− δ < λ1(y) ≤ . . . ≤ λk(y) < λ+ δ are the eigenvalues
of Dy in the given interval, then each λj(y) is continuous on V .

Proof. This will follow from a corresponding statement for bounded operators
in [7]. However, we will need a precise form of this fact so we recall the steps.
Let f(t) = t/

√
1 + t2−λ/

√
1 + λ2, and consider the family of bounded operators

{f(Dx)}. Choose a δ > 0 so that there is no other eigenvalue of Dx in (λ−δ, λ+δ).
Assume m(Dx, λ) = k. Consider f(Dx) and f(δ) and apply [7, p. 138], to obtain
a neighborhood V of x such that for y ∈ V there are exactly k eigenvalues of
f(Dy) in (f(λ− δ), f(λ + δ)), which we will label

−f(δ) < λ̃0(y) ≤ λ̃1(y) ≤ . . . ≤ λ̃k(y) < f(δ),

Moreover, |λ̃j(y)− λ̃j(y′)| < ‖f(Dy)−f(Dy′)‖. Then λj(y) = f−1(λ̃j(y)), V , and
δ yield the conclusion. ¤
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As a corollary one obtains the following refinement.

Proposition 2.5. Let λ0(x) < . . . < λn(x) be a list of the distinct eigenvalues of
spec(Dx) which lie in a bounded interval of R. Then there are disjoint canonical
neighborhoods of each (x, λj(x)), all with the same base V .

Proof. This follows easily from the method of proof of Proposition (2.4) ¤

Note that there can be no points of the graph between the standard neighbor-
hoods obtained.

It follows easily from this argument that the multiplicity function will be lower
semi-continuous. The next result describes the conditions under which it is ac-
tually continuous at a point (x, λ) ∈ Γ.

Proposition 2.6. Let U be a canonical neighborhood of (x, λ) ∈ Γ. The following
are equivalent.

i) There is a positive integer k so that the multiplicity function is constantly
equal to k on U ,

ii) There is a δ > 0 and a neighborhood V of x so that, for each y ∈ V , Dy

has only one eigenvalue in the interval [λ− δ, λ + δ],
iii) The function associating the spectral projection to a point in the graph is

norm continuous on Γ ∩ (V × [λ− δ, λ + δ]).

Definition 2.7. The family {Dx} has constant multiplicity k at (x, λ) if it sat-
isfies the conditions in Proposition 2.6.

We will next consider criteria for the triviality of the K-theory class associated
to a family of self-adjoint operators.

Proposition 2.8. Let {Dx} be a continuous family of self-adjoint operators. The
following are equivalent.

i) The family defines the trivial element in K1(X),
ii) {Dx} is homotopic to a family {D′

x} for which there is a continuous func-
tion, σ : X → R, such that σ(x) is not an eigenvalue of D′

x for each x,
iii) {Dx} is homotopic to a family {D′

x} for which there is a norm continu-
ous family of projections {P ′

x} with range the sum of the eigenspaces for
positive eigenvalues.
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iv) There exists a spectral section for the family {Dx}, in the sense of Melrose-
Piazza, [11]. (i.e. there is a norm continuous family of projections which
agree with the projections onto the positive eigenspaces outside of a closed
interval, the interval itself depending continuously on x.)

Proof. This follows using the steps in the proof of Proposition 1 in Melrose-Piazza,
[11]. ¤

3. Spectral exhaustions and spectral flow

In this section we will prove the existence and essential uniqueness of spectral
exhaustions. Let {Dx} be a continuous family of operators parametrized by the
compact space X, which we assume for now is a simplicial complex.

Definition 3.1. A spectral exhaustion for the family {Dx} is a family, of con-
tinuous functions µn : X → R, indexed by Z, satisfying

i) µn(x) is an eigenvalue of Dx for each x,
ii) {µn(x) : n ∈ Z} exhausts the spectrum of Dx counting multiplicity, for

each x,
iii) for each x and for each n ∈ Z, µn(x) ≤ µn+1(x).

Remark 3.1. Note that, if the graphs of functions µn and µn−1 are disjoint
and the parameter space X is connected, then µn(x) > µn−1(x), for all x, so

σ(x) =
1
2
(µn(x) − µn−1(x)) satisfies condition (ii) of Proposition 2.8. Thus, the

K-theory class of a family admitting a spectral exhaustion with this property is
trivial.

Definition 3.2. An enumeration of the spectrum of an operator D ∈ Fsa
R is a

function eD : Z→ R mapping Z onto the spectrum of D and satisfying

i) if λ is an eigenvalue of D of multiplicity k, then there is an integer N

such that λ = eD(N) = eD(N + 1) = . . . = eD(N + k), and
ii) eD(n) ≤ eD(n + 1) for all n.

Our goal in this section is to show that, if the spectral flow of the family {Dx}
is zero, one can construct an enumeration of the the spectrum of Dx, for each x,
in such a way that the functions µn(x) = eDx(n) are continuous. Thus, we will
obtain a spectral exhaustion for {Dx}.
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Proposition 3.3. Given an operator, D, an enumeration of the spectrum always
exists and any two differ by translation by an integer.

Proof. Choose an eigenvalue, λ, of multiplicity k. We set eD(0) = λ and eD(−k+
1) = . . . = eD(0) = λ. One can now uniquely extend this labeling to the rest
of the spectrum. It is easy to check that this process provides an enumeration
of the spectrum of D. Now suppose that fD is another one. We will show that
there is an N such that fD(n + N) = eD(n) for all n. Let λ be a point in the
spectrum and let n0, m0 be the largest integers so that eD(n0) = λ = fD(m0).
Let N = m0−n0. Then it is easy to check that eD(n) = fD(n+N) for all n. ¤

Note that the existence of an integer n such that eD(n) = fD(n) is not sufficient
to guarantee that eD = fD. However, if there is an integer N such that eD(N) =
fD(N) and eD(N + 1) > eD(N), fD(N + 1) > fD(N), then it is the case that
eD = fD.

Fix x ∈ X and let λ be an eigenvalue of Dx. Choose an enumeration of the
spectrum of Dx satisfying

eDx(0) = λ

eDx(1) = λ′ > λ.

Find canonical neighborhoods W = V ×(λ−δ, λ+δ), W ′ = V ×(λ′−δ′, λ′+δ′)
of (x, λ) and (x, λ′) respectively.

Let µ0(y) = max{λ | λ ∈ spec(Dy) and (y, λ) ∈ W}. Similarly, let µ1(y) =
min{λ | λ ∈ spec(Dy) and (y, λ) ∈ W ′}.
Proposition 3.4. The functions µ0 and µ1 are continuous on V .

Proof. It will be sufficient to consider µ0, the case of µ1 being similar. Let
e0(y) ≤ . . . ≤ ek(y) be the part of the spectrum of Dy in (λ − δ, λ + δ). Then
µ0(y) = ek(y), and by the remark after Proposition 2.4, µ0(y) is continuous. ¤

Using µ0 and µ1 we define a spectral exhaustion over V by taking, for each
y ∈ V , the unique (not just up to translation) enumeration consistent with those
choices. Thus, we have µn(y) defined for each integer n and each y ∈ V .

Proposition 3.5. The functions µn are continuous on V and, hence, {µn} is a
spectral exhaustion over V .
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Proof. Choose a point y ∈ V . Taking a possibly smaller neighborhood V ′ of y, we
get n+1 disjoint canonical neigborhoods of the form V ′× (µ̃j(y)−δj , µ̃j(y)+δj),
where µ̃j(y) are the eigenvalues of Dy from µ0(y) to µn(y) listed multiply. Now,
for each z ∈ V ′, µn(z) is in the canonical neighborhood corresponding to the
greatest real interval and it corresponds to one of the eigenvalues λr(z) in it. We
claim it must be the same r for each z in V ′. To see this, let N be the number
of eigenvalues in the canonical neighborhoods below the top one and let r be the
index corresponding to µn(y). Then n = N + r. If we look at a point z and
µn(z) = λr′(z), then we still must have n = N + r′, so that r = r′. Thus, by
Proposition 2.4, µn(z) varies continuously. ¤

Doing this construction in a neighborhood of each point x ∈ X, we obtain a
family of spectral exhaustions, each over an element of an open cover, {Vi}, where
we may assume the open sets are connected. On the overlaps, any two exhaustions
differ by an integer, so we obtain an integer valued 1-cochain relative to {Vi}
by taking the difference of the partial exaustions, νij = µ0,i|Vi∩Vj − µ0,j |Vi∩Vj :
Vi ∩ Vj → Z. It is easily checked to be a cocycle and its cohomology class in
Ȟ1(X,Z) will be defined to be the spectral flow of the family, Sf({Dx}). It is
straightforward to see that this definition agrees with other definitions of spectral
flow. (c.f. [7]).

Theorem 3.6. A spectral exhaustion exists for the family {Dx} if and only if
the spectral flow of the family is zero, Sf({Dx}) = 0.

Proof. If Sf({Dx}) = 0 then the cocycle, which is defined with respect to the
open cover {Vi}, is a coboundary, so that δ(σ) = ν for some cochain σ. Then the
0-cochain with components µn,i − σn,i can be used to define global functions µn.
These µn’s provide the required exhaustion.

For the converse, if an exhaustion exists, this determines the choices in con-
structing the cocycle representing Sf({Dx}), and since the locally defined exhaus-
tion functions all piece together to yield global functions, the class is equal to
zero. ¤

4. Families with spectrum of constant multiplicity

In this section we will obtain the first results relating spectral multiplicity to
K-theory. Recall that we assume that the parameter space is a finite simplicial
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complex. While this assumption is not always necessary, the topology issues that
would arise with additional generality are not fundamental ones.

Proposition 4.1. Suppose that the family {Dx} has constant multiplicity at each
point of a component, X̃, of Γ. Then pr1 : X̃ → X is a covering.

Proof. We use Proposition 2.6 (ii) which states that, for each x ∈ X and each
eigenvalue λ of Dx there is a neighborhood, V and a δ > 0 such that for each
y ∈ V , Dy has only one eigenvalue in the interval [λ−δ, λ+δ]. Then the function,
σx,λ : V → R, which sends y to that eigenvalue, is continuous.

It then follows that each component of Γ(Dx) is a covering of X. ¤

We defined the spectral flow of a family {Dx} to be a 1-dimensional cohomology
class,

Sf({Dx}) ∈ Ȟ1(X,Z).

This class defines a homomorphism, for which we will use the same notation,

Sf({Dx}) : π1(X) → Z. (7)

The following is an easy consequence of the definitions.

Proposition 4.2. If a component, X̃, of Γ is a covering, pr1 : X̃ → X, then it
corresponds to the homomorphism Sf({Dx}) : π1(X) → Z. i.e. image(pr1∗) =
ker(Sf({Dx})).

The next results give a criterion for the existence of a spectral exhaustion with
disjoint graphs.

Theorem 4.3. Let {Dx} be a family with spectrum of constant multiplicity; that
is, there exists an integer k such that m(Dx, λ) = k, for each (x, λ) in Γ. Assume
that the spectral flow of the family is zero,

Sf({Dx}) = 0.

Then a spectral exhaustion with functions having disjoint images, (except for
repeated functions due to multiplicity), exists.

Proof. Since the multiplicity of the covering is constant, each component is a
covering. Moreover, each of these coverings corresponds to the homomorphism

sf({Dx}) : π1(X, x0) → Z,
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given by spectral flow. Thus, if the spectral flow of the family is zero, each of the
coverings is a homeomorphism, so that Γ ∼= X×spec(Dx0), for some point x0 ∈ X.
Enumerate the spectrum of Dx0 as {λn(x0)} and let X̃n be the component of Γ
containing λn(x0). Then set µn(x) = pr2◦(pr1|X̃n

)−1. These functions satisfy the
requirements to be a spectral exhaustion, and their graphs, being the components
of Γ, are disjoint. ¤

We obtain the following corollary from Remark 3.1.

Corollary 4.4. Let {Dx} be a family with spectrum of constant multiplicity.
Assume that the spectral flow of the family is zero,

Sf({Dx}) = 0.

Then the family {Dx} is trivial in K-theory.

It is also worth noting the following result.

Corollary 4.5. Suppose that some component of Γ is compact. Then the K-
theory class of the family is trivial.

Proof. Let the component X̃ be compact. Then the number of sheets in the cover
is the cardinality of π1(X̃) ∼= image(Sf({Dx})), which must be finite. However,
this is a subgroup of Z, so it will have to be zero. Thus, the spectral flow of the
family is zero and its class is trivial by Proposition 4.4. ¤

Finally, we consider how the hypothesis of constant multiplicity can be replaced
by an asymptotic version.

Theorem 4.6. Let {Dx} be a family with Sf({Dx}) = 0 Suppose that there
exists an integer N such that if (x, λ) ∈ Γ and λ > N then the family, {Dx}, has
constant multiplicity at (x, λ). Then the class of the family is trivial in K1(X).

Proof. Let ΓR = {(x, λ) : λ > R}. We will show that there is an R > N so that
some component of ΓR is a covering of X. If so, then as in 4.3, Sf({Dx}) = 0 will
imply that this component is compact and by Corollary 4.5 the K-theory class of
the family will be trivial.

Thus, we must show that there is a path component, X̃, of Γ which is contained
in ΓR for some R > N . Since Sf({Dx}) = 0 a spectral exhaustion, µn, exists.
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Let Γn = image µn. For each x ∈ X there exists an nx and a neighborhood of x,
Ux, such that µn(y) > N + 1 for all y ∈ Ux. Get a finite subcover, Ux1 , . . . , Uxk

,
and let m = max{nxi}. Then µm(x) > N + 1 for all x ∈ X. This implies that
the image of µm is a cover of X and is compact and connected. ¤

5. Families with bounded multiplicity

In this section we will consider the question of when an element of odd K-
theory can be represented by a family with uniform bounded multiplicity. To
this end let, for n ≥ 1, Fsa

R (n) denote the operators with multiplicity less than
or equal to n. Then Fsa

R (n) ⊆ Fsa
R (n + 1) and we set Fsa

R (∞) =
⋃Fsa

R (n). We
do the same for FR. Throughout, X will be a compact space.

Recall that in Atiyah-Singer, [4], the following diagram was studied.

Fsa
0 F̂ U(I +K) U∞

F̂n U(I + Fn) Un

//
exp(i·)

oo oo

OOÂ Â Â Â Â Â Â Â Â Â

//
exp(i·)

OOÂ Â Â Â Â Â Â Â Â Â

oo

OOÂ Â Â Â Â Â Â Â Â Â Â

(8)

Here, Fsa
0 is the bounded self-adjoint Fredholms with essential spectrum on both

sides of the origin, while F̂ is those operators with norm 1 and essential spectrum
±1. Also, U(I +Fn) is the unitary operators of the form I +K, with K of rank n,
F̂n is the operators in F̂ with finitely many eigenvalues in (−1, 1) and for which
exp(iT ) ∈ Un. The unlabeled arrows are inclusions. The Atiyah-Singer result
shows that the composition of the maps on the top row and their appropriate
homotopy inverses provide a homotopy equivalence which we shall denote by
χ̂ : Fsa

0 → U∞. There is an obvious inclusion map of Fsa
R into Fsa

0 and hence
into U∞.

To study the question of bounded multiplicity we make the following definition.

Definition 5.1. Let K1
(∞)(X) be the subset of K1(X) consisting of classes [α],

α : X → Fsa
R , such that there is an n and an α′ ' α with α′ : X → Fsa

R (n). Let
K0

(∞)(X) be defined in an analogous way using FR.

Note that the homotopy between α and α′ is allowed to run through all of Fsa
0 .
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Proposition 5.2. K∗
(∞)(X) is a natural subgroup of K∗(X).

Proof. This subgroup is clearly preserved by induced homomorphisms and con-
tains the identity element of K∗(X). Addition in K1(X) is induced by compo-
sition of operators which is homotopic to orthogonal direct sum. Thus, the sum
of classes represented by bounded multiplicity elements is also represented by a
family of bounded multiplicity. Moreover, since the inverse of an element given
by a family α : X → Fsa

0 is represented by −α, this operation preserves the
property of having bounded multiplicity. Thus, the result follows. ¤

Proposition 5.3. K∗
(∞)(X) is mapped to itself under Bott periodicity.

Proof. The Bott periodicity map is given by taking the product with the Bott
element of K̃0(S2). The product operation can be realized in the present con-
text by letting each operator in the family act on the Hilbert space obtained by
tensoring with the L2 sections of the bundles representing the K0 class. If the
bundle is trivial, then the multiplicity will by multiplied by its dimension. If
it is not trivial, then it is a summand of a trivial bundle and one can see that
restricting to the image of the projection onto the sections of the bundle can only
lower the multiplicity. Note that in this setting, the operators in the family will
commute with the projections onto the sections of the bundle. ¤

We will now make use of a construction which appears in a paper of Mickelsson,
[12]. It will be used to associate to a map into the finite dimensional unitary
group, Un, an explicit family of unbounded self-adjoint Fredholm operators with
the multiplicity of their spectrum uniformly bounded by n.

Let U ∈ Un. Consider the operator

−i
d

dx
: C∞([0, 1],Cn) → C∞([0, 1],Cn)

with the boundary condition
ξ(1) = Uξ(0).

This yields a self-adjoint Fredholm operator on L2([0, 1],Cn) which we will
denote DU . It is straightforward to compute the spectrum of DU and the result
is as follows. Let {z1, . . . , zn} be the spectrum of U . Let λj satisfy 0 ≤ λj < 1
and zj = e2πiλj . Then,

spec(DU ) = {m + λj | m ∈ Z, 1 ≤ j ≤ n}.
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The multiplicity of the eigenvalue m + λj is the same as that of the eigenvalue
zj of U , and it follows that the multiplicity of the spectrum of DU is less than or
equal to n.

Let µn : Un → Fsa
R be defined by µn(U) = DU . We will refer to µn as the

Mickelsson map.

Proposition 5.4. The Mickelsson map yields a map

µ : U∞ =
⋃

n≥1

Un → Fsa
R → Fsa

0 , (9)

which induces an isomorphism on homotopy groups,

µ∗ : πi(U∞) → πi(Fsa
0 ), (10)

for all i.

Proof. The first statement follows from the definitions while the second is a con-
sequence of the facts that the Mickelsson map commutes with periodicity and the
computation from [12] that it is an isomorphism for S3.

¤

Note that if X is a compact space, then µ∗ : [X, U∞] → [X,Fsa
0 ] actually maps

into K1∞(X).

These three propositions yield the following theorem.

Theorem 5.5. Let X be a compact metric space. Then one has

K∗
(∞)(X) = K∗(X).

Proof. It follows from Propositions 5.2 and 5.3 that K∗
(∞)(X) defines a cohomol-

ogy theory on compact spaces with a 6-term exact sequence of the same type
as that for K∗(X). The inclusion induces a map of 6-term sequences. Assume
first that X is a finite complex. Then applying the cohomology theories to the
sequence of skeletons,

X(k) → X(k+1) →
∨

S(k+1), (11)



Spectral Multiplicity and Odd K-theory 321

will yield the result by induction once one knows that it holds for spheres. How-
ever, for spheres the Mickelsson map composed with the inclusion,

πi(U∞) πi(Fsa
0 (∞)) πi(Fsa

0 )//
µ∗

//i (12)

agrees with the isomorphism from Atiyah-Singer, [4]. Here, Fsa
0 (∞) denotes

the subset of Fsa
0 homotopic to regular operators of bounded multiplicity. By

Proposition 5.4, µ∗ is an isomorphism on spheres, hence so is the inclusion, i.
This proves the result for finite complexes. By expressing a compact metric
space as an inverse limit of finite complexes one obtains the desired conclusion.

¤

Note that the same argument shows that the Mickelsson map is an isomor-
phism.

This result has connections to the paper of Nicolaescu, [13], in which the
relation of K1(X) and homotopy classes of maps into the space of unbounded self-
adjoint Fredholm operators with essential spectrum {±1}, but possibly having
some continuous spectrum, is addressed. From the vantage of this paper Theorem
5.5 shows that every element in K1(X) is represented by a family of regular
unbounded self-adjoint Fredholm operators.

As a consequence of this fact, one sees that any family is homotopic to a family
with bounded multiplicity. One can estimate the bound on the multiplicity in
a rough way using the dimension of X. It would be desirable to get a refined
estimate based on the topology of X.

Definition 5.6. Let {Dx} be a family on X. The minimal multiplicity of the
family is the least integer n such that {Dx} ∼= {Dx}′ where {Dx}′ is a family with
multiplicity bounded by n.

Proposition 5.7. Let [α] ∈ K1(X) and suppose the dimension of X is k. Then
[α] is represented by a family {Dx} with minimal multiplicity < [k+1

2 ], where [x]
denotes the largest integer less than or equal to x.

Proof. Suppose that α : X → UN is given. Using the fibrations Un−1 → Un →
S2n−1 one can inductively reduce the dimension of the unitary group to the least
possible, which is [k+1

2 ]. The result follows upon applying Theorem 5.5. ¤
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6. Multiplicity ≤ 2

As a sample of how conditions on the multiplicity beyond assuming constancy
can be used to study the K-theory class of a family, we will consider the case
when the multiplicity is less than or equal to 2. We will also assume that the
spectral flow of the family is zero. The main result of this section is that, if we
assume that the space X has no torsion in cohomology, then such a family is
trivial in K-theory if a certain 3-dimensional cohomology class vanishes. Thus,
the index gerbe will be zero also.

Let us assume that we have a family with mult({Dx}) ≤ 2 and recall the
standing assumption that the parameter space X is a connected finite simplicial
complex. Assume Sf({Dx}) = 0 and let {µn} be an exhaustion. Our procedure
will be to deform the family inductively over k-skeletons for increasing k, so that
the exhaustion for the deformed family, {µ̃n}, has µ̃0(x) < µ̃1(x) for all x. The
triviality will then follow from Proposition 2.8.

Let Ci,i+1 = { x | µi(x) = µi+1(x)}, for any i ∈ Z. Since mult({Dx}) ≤ 2 we
have C−1,0, C0,1 and C1,2 disjoint closed sets. Let Wi,i+1, i = −1, 0, 1, be disjoint
open neighborhoods of Ci,i+1. We assume the triangulation of X so fine that any
closed simplex which meets Ci,i+1 is contained in Wi,i+1. Thus, there are a finite
number of simplices, σl, such that

Ci,i+1 ⊆ interior(
n⋃

1

σl) ⊆
n⋃

1

σl ⊆ Wi,i+1.

Our procedure for deforming a family involves successive application of certain
types of “moves”. The first is a preliminary flattening process which allows one
to control the geometry of the sets over which the family has eigenvalues of
multiplicity 2. We will state things for C0,1 to simplify notation, but all results
hold for Ci,i+1 with the appropriate modifications.

Proposition 6.1 (Flattening). Let K be a closed subset of C0,1 and let W1,W2

be open sets with compact closures satisfying K ⊆ W1 ⊆ W̄1 ⊆ W2 ⊆ W̄2 ⊆ W0,1.
Assume further that K = C0,1 ∩ W2. Then there exists a family {D̃x} with
associated exhaustion {µ̃n}, which satisfies

i) K ⊆ W2 ∩ C̃0,1 = W̄1, where C̃0,1 = { x | µ̃0(x) = µ̃1(x)},
ii) D̃x = Dx for x ∈ X rW2, and
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iii) {D̃x} ' {Dx}.

Proof. Let φ : X → [0, 1] be a function satisfying

φ(x) =





0 for x ∈ X rW2

1 for x ∈ W̄1

Define
D̃x,t = Dx + tφ(x)(hx(Dx)−Dx,

where hx : R→ C is a continuous function satisfying

hx(t) =





t for t ≤ µ−1(x) or t ≥ µ1(x)

µ1(x) for µ0(x) ≤ t ≤ µ1(x)

λx(t) for µ−1(x) ≤ t ≤ µ0(x)

,

where λx(t) is the linear function with graph connecting (µ−1(x), µ−1(x)) to
(µ0(x), µ1(x))

Letting D̃x = D̃x,1, with associated exhaustion µ̃n(x), one checks that K ⊆
W2 ∩ C̃0,1 = W̄1 and that the conclusions of the proposition hold for the family
{D̃x}. ¤

Thus, the preceeding deformation allows one to determine the set precisely,
(W̄1 above), on which multiplicity of (x, µ̃0(x)) is 2. Next, we will modify the
family over neighborhoods of these sets.

Let X(0) be the 0-skeleton of the parameter space X. The first step will be to
deform the family {Dx} on a neighborhood of X(0).

Proposition 6.2. Let y ∈ X(0). Then there exists a contractible neighborhood V

with V ∩X(0) = {y} and a family {D̃x} satisfying

i) D̃x = Dx for x ∈ X r V ,
ii) {D̃x} ' {Dx}, and
iii) There is a neighborhood W of y such that µ̃0(x) < µ̃1(x) for x ∈ W ⊆

W̄ ⊆ V .

Proof. If µ0(y) < µ1(y) then this uniquely will hold in a neighborhood of y and
the original family will satisfy conditions (i)-(iii). If, on the other hand, y ∈ C0,1,
so that µ−1(y) < µ0(y) = µ1(y) < µ2(y), then we apply Proposition 6.1 to obtain
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a contractible neigborhood with compact closure, V , of y on which µ0(x) = µ1(x)
for x ∈ V .

Let E={(x, v)∈V×H | v is in the span of the eigenvectors for µ0(x) and µ1(x)}.
Then E → X is a 2-dimensional vector bundle on some, possibly smaller, neigh-
borhood of y which we continue to call V . Since V is contractible, the bundle is
trivial. Thus, there exists a framing {σ0, σ1}, where σj(x) is an eigenvector for
µj(x), for j = 0, 1. Shrink V to get W ⊆ W̄ ⊆ V and, using a bump function φ, we
extend σi to all of X. Let α(t, x) = tµ1(x)+µ2(x)

2 , and set D̃x,t = Dx+α(t, x)Pσ1(x),
where Pσ1(x) is the orthogonal projection onto the subspace spanned by σ1(x).
The family {D̃x,1} satisfies the requirements of the proposition.

We repeat this construction, with the obvious modifications, for vertices in
C−1,0. Alternatively, one may observe that it is possible to apply this method to
the vertices in both C−1,0 and C0,1 simultaneously. ¤

Thus, we have deformed our family so that µ0(x) < µ1(x) on a neighborhood
of the 0-skeleton. We will now proceed inductively to extend this separation to
all of X.

It is worth noting that the previous deformations and all future ones have the
property that they are monotone, in the sense that µi(x) ≤ µ̃i(x) for all i and
x ∈ X.

From now on, to simplify notation, we will drop the tilde and rename the
family resulting from a deformation as {Dx}.

Assume that our family has the property that µ0(x) < µ1(x) on a neighbor-
hood, W , of the (k-1)-skeleton. Let C2 → E → W be the 2-dimensional vector
bundle whose fiber over the point x is the span of the eigenspaces for µ0(x)
and µ1(x). For x ∈ W , define σ0(x) to be the orthogonal projection onto the
eigenspace for µ0(x). This defines a continuous field of projections over W . The
next result shows that one can obtain the desired deformation of {Dx} if the field
σ0 can be extended to the k-skeleton. We will construct the deformation simplex
by simplex.

Proposition 6.3. Let {Dx} be a family of operators with µ0(x) < µ1(x) on
a neighborhood, W , of the (k-1)-skeleton. Let ∆k be a k-simplex. Let ′∆k be
a smaller k-simplex with C0,1 ∩ ∆k ⊆ interior(′∆k) ⊆ ′∆k ⊆ interior(∆k). If
σ0|∂(′∆k) extends to a field of projections onto the eigenspaces for µ0(x) over ∆k,



Spectral Multiplicity and Odd K-theory 325

then there are neighborhoods, V and W ′, with X(k−1) ∪∆k ⊆ W ′ ⊆ W̄ ′ ⊆ V and
a family {D̃x} satisfying

i) D̃x = Dx for x ∈ X r V ,
ii) {D̃x} ' {Dx}, and
iii) µ̃0(x) < µ̃1(x) for x ∈ W ′.

Proof. Let φ(x) be a bump function which is 1 on W ′ and 0 on X \ V . Let
D̃x,t = Dx + tφ(x)(µ1(x)+µ2(x)

2 )σ0(x). Then it is straightforward to check that the
family Dx,1 satisfies conditions (i) – (iii). ¤

In order to use this construction to deform a family which is separated over
a neighborhood of X(k−1), we apply Proposition 6.1. For this, note that C0,1 is
contained in the interior of k-simplices. Consider one such simplex and find a sub-
simplex with parallel sides which contains its intersection with C0,1 in its interior.
We may assume that the boundary of the smaller simplex is contained in the open
set over which µ0(x) < µ1(x). Next one applies the flattening lemma to obtain a
new family which has the smaller simplex as exactly C0,1 ∩∆k. The projection
field is defined on ∂(′∆k). Thus, if one can alway extend these projection fields
from the boundary of a k-simplex to the interior, then we can accomplish the
deformation of the family to one for which µ0(x) < µ1(x) over a neighborhood of
the k-skeleton.

Note that, since ∆k is contractible, the bundle E → X is trivial over ∆k. Thus,
the existence of the extension is equivalent to the map σ0 : ∂∆k → Gr2(C2)
being null-homotopic. Here Gr2(C2) is the Grassmannian of lines in C2, which
is homeomorphic to S2. Since π0(S2) = π1(S2) = 0, one can always obtain a
deformed family for which µ0(x) < µ1(x) on a neighborhood of the 2-skeleton,
X(2). However, since π2(S2) = Z, it is not clear that one can proceed. We shall
address this in the application below.

Putting these facts together we briefly present a sample of the type of result
obtainable using these methods. Note that the result below makes the case that
the multiplicity of eigenvalues has a strong effect on the classification of families
of operators.

Theorem 6.4. Let {Dx} be a family on S2n+1 with n ≥ 2. If the multiplicity is
less than or equal to 2, then the family is rationally trivial in K-theory.
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Proof. We sketch the argument. Note that given a separation over an open set,
we get a continuous eigenprojection field over that set. Thus, as above, we may
obtain an eigenprojection field over a neighborhood of the 2-skeleton. For the
induction step, let k < 2n+1 and assume that in a neighborhood of the k-skeleton
we have µ−1(x) < µ0(x) < µ1(x). Thus there is a rank 1 eigenprojection field
over this neighborhood. We will deform the family so that this property holds
over the k-skeleton, hence on a neighborhood of it.

We now try to extend the eigenprojection field over the 3-skeleton. Proceeding
as above by flattening and deforming, we obtain an eigenprojection field over
the boundaries of 3-simplices. We take a slightly different approach to complete
the deformation process. We first try to extend to simply a general projection
field. This can be done if the eigenprojection fields defined on the boundaries
of the 3-simplices, S2 → Gr1(H), are null-homotopic. Since Gr1(H) = CP∞,
this is not automatic. However, obstruction theory applies and there is a class
in H3(S2n+1, π2(Gr1(H)) which must vanish in order for the extension to exist
(after going back and redefining over lower skeleta). Since we are working with a
sphere of dimension greater than 5, this group vanishes and the extension exists.

We now proceed by induction. We have a field over all of S2n+1 which is
an eigenprojection field over a neighborhood of the k-skeleton. We next try to
push this field down to be an eigenprojection field over the (k + 1)-skeleton. We
consider the set of (k+1)-simplices and their boundaries. There are two cases. If
a (k+1)-simplex doesn’t contain any singular points, then we have two projection
fields over it–an eigenprojection field and the general one we just obtained. Any
two are homotopic relative to the boundary because only the second homotopy
group of Gr1(H) is non-zero. We will assign 0 to such a simplex. For the others,
using the flattening procedure described above, we will get an element in the
relative homotopy group, πk(Gr1(H), Gr1(C2)) ∼= πk−1(Gr1(C2)) = πk−1(S2).
This will define an obstruction class in Hk+1(S2n+1, (S2n+1)(k);πk−1(S2)).

We note that, for any complex X, one has Hj(X, X(k)) = 0 if j ≤ k, and
Hj(X, X(k)) ∼= Hj(X) if j > k. Thus, the only group which can be non-zero
is H2n+1(S2n+1, (S2n+1)(2n));π2n−1(S2)), a torsion group. For k < 2n + 1 we
extend the restriction of the eigenprojection field to the (k − 1)-skeleton to the
(k + 1)-skeleton and use this to deform the family so it is separated there. For
the case of the top dimension the following procedure takes care of this obstacle.
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We have a possibly non-trivial, obstruction class which would belong to H2n+1

(S2n+1;π2n(Gr1(H), Gr1(C2))). Since n ≥ 2, π2n(Gr1(H), Gr1(C2)) ∼= π2n−1(S2)
is a finite group, say of order N . We will show that N{Dx} is trivial, and hence
{Dx} is rationally trivial. Let ∆ be a 2n + 1-simplex which meets C0,1 in its
interior and let ∆′ be a sub-simplex obtained by flattening. Thus, we may assume
that the family has multiplicity two at each point of ∆′ and there is a rank 1
eigenprojection field along the boundary. Now, consider the family N{Dx}. We
trivialize each 2-dimensional eigenbundle separately and get a map

c(∆) : (∆′, ∂∆′) → (Gr1(H)× . . .×Gr1(H), Gr1(C2)× . . .×Gr1(C2))

defining a class in π2n(Gr1(H), Gr1(C2))⊕ . . .⊕π2n(Gr1(H), Gr1(C2)). The map
induced by addition on homotopy groups sends the class of this map to zero in
π2n(Gr1(H), Gr1(C2)). From the commutative diagram,

π2n(Gr1(H), Gr1(C2))⊕ . . .⊕ π2n(Gr1(H), Gr1(C2)) π2n(Gr1(H), GrN (C2N ))

π2n(Gr1(H), Gr1(C2))
²²
Â Â
Â Â
Â Â
Â

+

//
inc∗

33gggggggggggggggggggggggggg
inc∗

we see that we may deform the map c(∆) : ∆′ → Gr1(H) to one mapping into
GrN (C2N ). Using the same deformation as in the rank 1 case, we obtain a new
family for which µ0(x) < µ1(x) for all x ∈ ∆′. Doing this process over each
n-simplex yields the required trivial family. ¤

7. Concluding remarks

The intention of the present paper was to begin a study of the manner in
which the variation of the eigenvalues and eigenspaces of a family of self-adjoint
Fredholm operators effects the K-theory class of the family. While we showed
that the behavior of the multiplicity function can effect the topology of the family,
there is much yet to be resolved. Some questions which seem essential to making
further progress are listed below.

• How is the 3-dimensional integral cohomology class which arises when
applying obstruction theory related to the index gerbe, c.f. Lott, [10].
If they determine each other, can one obtain all the components of the
Chern character of the family using these methods?
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• Suppose [α] ∈ K1(X) and there is an α′ with α ' α′ and with the
multiplicity of α′ bounded by n. Let M([α]) be the least such n. If
[α] 6= 0 then M([α]) > 1. How are the topological invariants of [α]
related to M([α])?

• The equivalence relation generated by the “moves” we are using to deform
the families is possibly stronger than homotopy. Is one obtaining a more
refined type of K-theory in this way?

• It would be interesting to know in what sense the K-theory class of a
family is determined by a finite part of the spectrum. To be more precise,
suppose {Dx} is a family with multiplicity bounded by n. Is there an
integer N (n) so that the part of the graph of the family,

⋃
|k|<N (n) µk(X),

along with the corresponding eigenspaces, determines whether the family
is trivial (or rationally trivial) in K-theory?

• Although various partial results similar to those in the last section are
known to the authors, the appropriate general statement has not yet been
obtained. We expect that the following will hold. Assume the parameter
space of the family, X, is an n-dimensional finite complex and the spectral
flow of the family is zero. Further, suppose there is an element of the
exhaustion, µk such that the multiplicity at any point of µk(X) is N or
N + 1, where N > n. Then, if the 3-dimensional obstruction obtained
above is zero, the family is rationally trivial in K-theory.
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Ronald G. Douglas
Department of Mathematics
Texas A&M University
College Station, TX 77843-3368
E-mail: rdouglas@math.tamu.edu

Jerome Kaminker
Department of Mathematics
UC Davis
Davis, CA 95616
E-mail: kaminker@math.ucdavis.edu


