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Abstract: The theme of this paper is to ‘solve’ an absolutely irreducible
differential module explicitly in terms of modules of lower dimension and
finite extensions of the differential field K. Representations of semi-simple
Lie algebras and differential Galois theory are the main tools. The results
extend the classical work of G. Fano.
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Introduction

L. Fuchs posed the problem whether the n independent solutions of a scalar
linear differential equation of order n over K = C(z), under the assumption
that these solutions satisfy a non trivial homogeneous equation over C, could be
expressed in terms of solutions of scalar linear differential equations of lower order.
G. Fano wrote an extensive paper on this theme. His tools were an early form
of the differential Galois group and an extensive knowledge of low dimensional
projective varieties.

In the work of M.F. Singer and in a recent paper of K.A. Nguyen, a pow-
erful combination of Tannakian methods and representations of semi-simple Lie
algebras yields a complete solution to Fuchs’ problem. We note that a scalar
differential equation is essential for Fuchs’ problem. It is not clear whether this
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problem makes sense for a linear differential equation in the standard matrix form
Y ′ = AY (or in module form).

The theme of this paper is to explicitly ‘solve’ a differential equation of or-
der n in terms of differential equations of lower order, whenever possible. This
makes sense in terms of differential modules over K. It means that one tries
to obtain a given differential module M of dimension n, by constructions of lin-
ear algebra and, possibly, algebraic extensions of K, from differential modules
of smaller dimension. In the sequel, K will be a finite extension of C(z) (unless
otherwise stated). For actual computer computations, one has to replace C be
a ‘computable field’, like the algebraic closure of Q. We write V = V (M) for
the solution space of M and Gal(M) ⊂ GL(V ) for the differential Galois group
of M . Further (gal(M), V ) will denote the Lie algebra of Gal(M) acting on the
solution space V .

If M admits, for instance, a non trivial submodule N , then M is ‘solved’ by
N, M/N and an element in Ext1(M/N, N) (corresponding to some inhomoge-
neous equations y′ = f over the Picard-Vessiot field of N ⊕M/N). This is the
reason that we will only consider irreducible modules M .

Fix an algebraic closure K of K. A module M over K is called absolutely
irreducible if M := K ⊗K M is irreducible. Since Gal(M) = Gal(M)o, this
condition is equivalent to the statement that V is an irreducible Gal(M)o-module.

If an irreducible module M over K becomes reducible after tensorization with
K, then this is a case where M can be expressed, after a finite extension of K, into
modules of smaller dimension (see [C-W]). We will investigate this phenomenon in
a future paper and concentrate here (but not exclusively) on absolutely irreducible
modules.

We will use the notation: µn is the subgroup of order n of C∗, sometimes iden-
tified with scalar multiples of the identity matrix or map; 1 is the trivial module
of dimension one and for a module M of dimension m, we write det M = ΛmM ;
further M∗ or M−1 denotes the dual of M . The condition detM = 1 is equiv-
alent to: the matrix of ∂ with respect to a suitable basis of M has trace 0.
For an absolutely irreducible module M with det M = 1 the group Gal(M)o is
semi-simple and so is gal(M). Moreover V (M) is an irreducible representation
of gal(M). According to [S] and [N], M cannot be solved in terms of modules of
lower dimensions and finite field extensions of K if and only if gal(M) is simple
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and its representation V (M) has smallest dimension among its non trivial repre-
sentations. Let a scalar equation L of order n induce a representation of a simple
Lie algebra of smallest dimension, then it is still possible that the n independent
solutions of L satisfy a non trivial homogeneous relation F over C (in contrast
to L. Fuchs’ opinion). The following list gives a complete answer.

Simple Lie algebras, smallest dimension, degree of F

symbol Lie algebra smallest deg F

An n ≥ 1 sln+1 n + 1 NO
Bn n ≥ 3 so2n+1 2n + 1 2
Cn n ≥ 2 sp2n 2n NO
Dn n ≥ 4 so2n 2n 2
E6 e6 27 3
E7 e7 56 4
E8 e8 248 2
F4 f4 26 2
G2 g2 7 2

We note that : so3
∼= sl2, so4

∼= sl2 × sl2, so5
∼= sp4 and so6

∼= sl4.

The two cases where N can be solved by modules of smaller dimension and finite
field extensions of K are: (a) gal(N) = g1 × g2 and V = V1 ⊗ V2, where Vi is an
irreducible representation of gi for i = 1, 2. (b) g := gal(N) is simple and the
representation V (N) does not have smallest dimension.
In case (a) we produce an algorithm that expresses N (after possibly a finite
extension of K) as a tensor product N1 ⊗N2 with dimNi > 1.
In case (b) we produce a differential module M corresponding to a representation
of g of smallest dimension and a construction of linear algebra by which N is
obtained from M . In the case that Gal(N) is not connected a finite (computable)
extension of the field K might be needed.

Besides using the well known Tannakian methods (often called constructions
of linear algebra) a new construction (Theorem 1.3) is introduced which can be
explained as follows. An irreducible differential module N is called standard if
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Gal(N) is connected and the gal(N)-module V (N) is faithful of minimal dimen-
sion. Further an irreducible differential module M is called adjoint if Gal(M)
is connected and the Gal(M)-module V (M) is the adjoint representation. An
adjoint differential module M (for a given semi-simple Lie algebra) is obtained
as an irreducible submodule of Hom(N, N) where N is a standard differential
module (for the same semi-simple Lie algebra). The new construction uses Lie
algebra tools to go in the other direction, i.e., to obtain N from M . Together
with the Tannakian approach the new construction provides a complete solution
for both cases (a) and (b). For special cases there are shortcuts not using adjoint
differential modules.

For differential modules of small dimension we rediscover and extend Fano’s
work. The finite group Gal(M)/Gal(M)o introduces a technical complication in
the method and is responsible for the finite extension of K that are sometimes
needed. Our extensive use of representations of semi-simple groups and semi-
simple Lie algebras is a link between this paper and several chapters of [K].

1. Representations of semi-simple Lie algebras

1.1. General remarks on computations. (1) The fields C(z), Q(z) and their
finite extensions K are C1-fields. In particular a quadratic homogeneous form over
K in at least three variables has a non trivial zero and there are algorithms (if
K is a ‘computable field’) producing such a zero, needed in some of the proposed
computations.

For finite extensions of the second field there are efficient algorithms, due to
M. van Hoeij et al., implemented in Maple, for finding submodules of a given
‘input module’ P (or, equivalently, for factoring differential operators over K).
In particular, one can decide whether P is irreducible. This algorithm is less
efficient for the verification that P is absolutely irreducible. In the sequel we will
suppose that the ‘input module’ P is absolutely irreducible. If P happens to be
irreducible but not absolutely irreducible, then the algorithms that we propose
will either still work or demonstrate that P is not absolutely irreducible.

(2) Suppose that the input module P is (absolutely) irreducible. Then any module
N obtained by a construction of linear algebra from P is semi-simple (i.e., is a
direct sum of irreducible submodules). A computation of ker(∂, End(N)) (i.e., the
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rational solutions of End(N)) seems to be an efficient way to produce the direct
summands of N . The characteristic polynomial of any K-linear f : N → N

with ∂f = 0 has coefficients in C. Indeed, it coincides with the characteristic
polynomial of the induced map V (f) : V (N) → V (N). If f is not a multiple of
the identity on N , then any zero λ ∈ C of its characteristic polynomial yields a
proper submodule ker(f − λ,N) of N .

If N happens to be irreducible but is known to have direct summands after a
finite extension K+ of the base field K, then one can explicitly compute K+.

Consider, as an example (see also the example in Remarks 1.2 and the end of
Section 3), the case where it is a priori known that N = A1⊕A2, where A1, A2 are
non isomorphic irreducible differential modules over K. Then ker(∂, End(N)) =
Cp1 + Cp2, where p1, p2 are the projections onto the two factors A1, A2 and
p1 + p2 = 1. The group Gal(K/K) acts as a finite group H (faithfully) on this
2-dimensional vector space and the line C(p1 + p2) is invariant. Therefore, there
is another invariant line and H is a cyclic group of order d > 1. Thus End(N)
contains precisely two 1-dimensional submodules, a trivial one and a non trivial
one L with L⊗d = 1. Then L = Ke with ∂e = g′

dg for some g ∈ K∗ and the field
K+ equals K( d

√
g).

(3) (a) Suppose that two irreducible modules M1,M2 of the same dimension are
given. An efficient way to investigate whether M1 and M2 are isomorphic is to
compute ker(∂, Hom(M1,M2)). This space is non zero if and only if M1

∼= M2.

(b) Suppose that M2
∼= M1 ⊗ L holds for some unknown 1-dimensional mod-

ule L. In order to find L one considers the module E := Hom(M1,M2) =
Hom(M1,M1) ⊗ L and observes that L is a 1-dimensional direct summand of
E. Using the method of (2) above one can produce L.

(c) Suppose that M1,M2 are absolutely irreducible and that M1
∼= M2. Then

ker(∂, K ⊗ Hom(M1,M2)) is a 1-dimensional vector space Cξ. Then Gal(K/K)
acts as a cyclic group of order d on Cξ. Thus Kξ ⊂ K⊗Hom(M1,M2)) is invari-
ant under Gal(K/K) and induces a 1-dimensional submodule L of Hom(M1,M2)
with the properties L⊗d = 1 and M2

∼= M1 ⊗ L. Thus we can apply method (b)
to find L. As in (2), L defines a cyclic extension K+ ⊃ K of degree d and
K+ ⊗K M1

∼= K+ ⊗K M2.
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(4) Properties of a differential module M over K are often translated into proper-
ties of the (faithful) representation (Gal(M), V (M)) (and visa versa). By inverse
Galois theory, any faithful representation of any linear algebraic group over C
occurs for a differential field K which is a finite extension of C(z).

1.2. A table of irreducible representations. We present here a list of irre-
ducible representations V, dimV = d, of semi-simple Lie algebras, including the
decomposition of Λ2V and sym2V .
We adopt here and in the sequel of the paper the efficient notation of the online
program [LiE] for irreducible representations.
This is the following. After a choice of simple roots α1, . . . , αd, the Dynkin dia-
gram (with standard numbering of the vertices by the roots) and the fundamental
weights ω1, . . . , ωd are well defined. The irreducible representation with weight
n1ω1 + · · ·+ ndωd is denoted by [n1, . . . , nd]. In particular, [0, . . . , 0] is the trivial
representation of dimension 1.

Table of the irreducible representations of dimension d ≤ 6.

d Lie alg repr Λ2 sym2

2 sl2 [1] [0] [2]

3 sl2 [2] [2] [4], [0]

3 sl3 [1, 0] [0, 1] [2, 0]

4 sl2 [3] [4], [0] [6], [2]

4 sl4 [1, 0, 0] [0, 1, 0] [2, 0, 0]

4 sp4 [1, 0] [0, 1], [0, 0] [2, 0]

4 sl2 × sl2 [1]⊗ [1] [0]⊗ [2], [2]⊗ [0] [0]⊗ [0], [2]⊗ [2]

5 sl2 [4] [6], [2] [8], [4], [0]

5 sp4 [0, 1] [2, 0] [0, 2], [0, 0]

5 sl5 [1, 0, 0, 0] [0, 1, 0, 0] [2, 0, 0, 0]

6 sl2 [5] [8], [4], [0] [10], [6], [2]

6 sl3 [2, 0] [2, 1] [4, 0], [0, 2]

6 sl4 [0, 1, 0] [1, 0, 1] [0, 2, 0], [0, 0, 0]

6 sl6 [1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [2, 0, 0, 0, 0]

6 sp6 [1, 0, 0] [0, 1, 0], [0, 0, 0] [2, 0, 0]

6 sl2 × sl2 [1]⊗ [2] [0]⊗ [0], [0]⊗ [4], [2]⊗ [2] [0]⊗ [2], [2]⊗ [0], [2]⊗ [4]

6 sl2 × sl3 [1]⊗ [1, 0] [0]⊗ [2, 0], [2]⊗ [0, 1] [0]⊗ [0, 1], [2]⊗ [2, 0]
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For the sln with n > 2 we have omitted duals of representations. Further we have
left out symmetric cases. The decompositions of the second symmetric power and
the second exterior power are useful to distinguish the various cases. We are here
especially interested in those representations which can be expressed in terms of
representations of lower dimension. In dimensions 7 − 11, one finds for the new
items of this sort (here we omit the case sl2 which is fully treated in section 2
and again we omit duals and symmetric situations) the list:
sl3 with [1, 1] (dim 8), [3, 0] (dim 10); sl4 with [2, 0, 0] (dim 10);
sl5 with [0, 1, 0, 0] (dim 10); so7 with [0, 0, 1] (dim 8); sp4 with [2, 0] (dim 10);
sl2 × sl2 with [1]⊗ [3] (dim 8), with [2]⊗ [2] (dim 9), with [1]⊗ [4] (dim 10);
sl2 × sl3 with [2]⊗ [1, 0] (dim 9); sl2 × sl4 with [1]⊗ [1, 0, 0] (dim 8);
sl2 × sp4 with [1]⊗ [1, 0] (dim 8), with [1]⊗ [0, 1] (dim 10);
sl2 × sl5 with [1]⊗ [1, 0, 0, 0] (dim 10); sl3 × sl3 with [1, 0]⊗ [1, 0] (dim 9);
sl2 × sl2 × sl2 with [1]⊗ [1]⊗ [1] (dim 8).

1.3. Comparison of the representations of G and g. For a connected semi-
simple group G with Lie algebra g one considers the categories ReprG of the
representations of G on finite dimensional vector spaces over C and Reprg, the
category of the representations of g on finite dimensional vector spaces over C.
Any representation of G on a vector space induces a representation of g on the
same vector space. This defines a functor T : ReprG → Reprg, which is fully
faithfull, i.e., HomG(V1, V2) → Homg(V1, V2) is a bijection. Further, G is simply
connected if and only if T is an equivalence.

For a representation W ∈ ReprG, we write {{W}} for the Tannakian subcat-
egory generated by W (i.e., the objects of this subcategory are obtained from
W by constructions of linear algebra). The action of G is faithful if and only if
{{W}} = ReprG. Similarly, for an object W ∈ Reprg one writes {{W}} for the
smallest Tannakian subcategory generated by W .

Suppose that g acts faithfully on W , then in general {{W}} 6= Reprg. Indeed,
let G+ be the simply connected group with Lie algebra g. Then W has a unique
structure as G+-module compatible with its structure as g-module. The kernel
Z ′ of the action of G+ on W is a finite group. Put H := G+/Z ′. Then W is a
faithful H-module and generates ReprH . Thus the subcategory {{W}} of Reprg
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is the image under T of ReprH .

Example: G = SL3 is simply connected and g = sl3. There is only one other
connected group with Lie algebra sl3, namely PSL3 = SL3/µ3. Let V be the
standard representation of SL3 with T -image (sl3, [1, 0]). Then sym3V is a faith-
ful representation for PSL3 and its image under T is W := (sl3, [3, 0]). Then
{{V }} = Reprsl3 and {{W}} is the full subcategory of Reprsl3 for which the
irreducible objects are the [a, b] with a ≡ b mod 3.
Consequences for differential modules. Let the input module P be an absolutely
irreducible differential module with detP = 1 which induces W := (sl3, [a, b])
with, say, [a, b] 6= [1, 0], [0, 1]. Now, we do not assume that Gal(P ) is con-
nected. There exists, as we know, a differential module M of dimension 3 in-
ducing (sl3, [1, 0]) such that P is obtained from M by constructions of linear
algebra and possibly a finite field extension of K.

If a 6≡ b mod 3, then [1, 0] is obtained from W by a construction cst1 of linear
algebra and [a, b] is (of course) obtained by a construction cst2 from [1, 0]. Let
M be obtained from P by construction cst1. Then cst2 applied to M yields a
module P̃ which is isomorphic to P over the algebraic closure of K. Case (3)(c)
of Subsection 1.1 solves this.

If a ≡ b mod 3, then one obtains by a construction of linear algebra a mod-
ule Q which induces (sl3, [1, 1]). The step from Q to a module which induces
(sl3, [1, 0]) cannot be done by constructions of linear algebra. This problem is an
example for the main theme of the remainder of this section.

In general, the problem has its origin in the possibilities for the connected
groups with a given (semi-) simple Lie algebra g. There is a simply connected
group G with Lie algebra g. Its center Z is a finite group. Any connected group
with Lie algebra g has the form G/Z ′ where Z ′ is a subgroup of Z. The list of the
groups Z that occur is, see [H], p. 231: Z/(n + 1)Z for An; Z/2Z for B`, C`, E7;
Z/2Z × Z/2Z for D` with ` even; Z/4Z for D` with ` odd; Z/3Z for E6; 0 for
E8, F4, G2. The following proposition, closely related to Corollary 2.2.2.1 of [K],
is a non constructive solution to our problem.

Proposition 1.1. Let G+ → G be a surjective morphism of connected linear
algebraic groups over C having a finite kernel Z. Let M be a differential module
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over K with Gal(M) = G. Suppose that K is a C1-field. Then there exists a
differential module N over K with Gal(N) = G+, such that the faithful represen-
tation (Gal(N), V (N)) has minimal dimension and such that M ∈ {{N}}.

Proof. The Picard-Vessiot ring PV R of M is a G-torsor over K. Since K is a
C1-field and G is connected, this torsor is trivial and thus PV R = K ⊗C C[G],
where C[G] is the coordinate ring of G. The G-action on PV R is induced by
the G-action on C[G]. The differentiation, denoted by ∂, commutes with the
G-action, but is not explicit. Now C[G] = C[G+]Z and this yields an embedding
PV R ⊂ R := K ⊗C C[G+]. The differentiation ∂ on PV R extends in a unique
way to R since PV R ⊂ R is a finite étale extension. The extended differentiation
commutes with the action of G+. Further, R has only trivial differential ideals
since R is finite over PV R and PV R has only trivial differential ideals. Let
W be a faithful representation of G+ of minimal dimension d. Then one writes
C[G+] = C[{Xi,j}i,j=1,...d,

1
D ]/J , where D = det(Xi,j) and J is the ideal defining

G+ as subgroup of GL(W ). Write xi,j for the image of Xi,j in C[G+]. Define
the matrix A, with entries in R, by (∂xi,j) = A(xi,j). Then A is invariant under
the action of G+ and therefore its entries are in K. It now follows that R is the
Picard-Vessiot ring for the differential equation Y ′ = AY . This equation defines
the required differential module N over K. ¤

Remarks 1.2. Non connected linear algebraic groups.
Let G be a linear algebraic group such that Go is semi-simple and G 6= Go. Let
g denote the Lie algebra of Go. As explained above, the functor T : ReprGo →
Reprg induces an equivalence of the first category with a well described full
subcategory of the second one. The forgetful functor F : ReprG → ReprGo is not
fully faithful. Indeed, one can easily construct an irreducible G-module W (i.e.,
a finite dimensional representation of G) which is, as Go-module, the direct sum
of several copies of an irreducible Go-module.

A more delicate situation occurs when Out(Go) := Aut(Go)/Inner(Go) is not
trivial. The group Out(Go) permutes the irreducible representations of Go. The
action by conjugation of G on Go induces a homomorphism G/Go → Out(Go). If
this homomorphism is not trivial, then one can construct an irreducible G-module
W such that W , seen as a Go-module, is a direct sum of distinct irreducible Go-
modules forming a single orbit under the action of G/Go.
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We recall that for a connected simple H the group Out is equal to the auto-
morphism group of the Dynkin diagram of its Lie algebra h. According to [J],
Theorem 4, p. 281, one has:
Out = S3 for so8; Out = Z/2Z for sln, n > 2, for so2n, n ≥ 3, n 6= 4 and for e6.
For the other simple Lie algebras Out is trivial. From this list one deduces Out

for any semi-simple Lie algebra, e.g., Out(sl2 × sl2 × sl2) = S3.

Example. Out(SL4) is generated by the element A 7→ (At)−1. This non trivial
element changes a representation [a, b, c] of sl4 (or of SL4) into its dual [c, b, a].
Choose a group G with Go = SL4, [G : Go] = 2 and G/Go → Out(Go) is
bijective. Then there is an irreducible G-module W which induces the sl4-module
[1, 0, 0]⊕ [0, 0, 1]. Thus W is reducible as Go-module.

Consequence for differential modules. Let M be an absolutely irreducible differ-
ential module with detM = 1 such that the gal(M)-module V (M) has a non
trivial direct sum decomposition. Then, in general, a finite field extension of K

is needed to obtain a corresponding direct sum decomposition of M .

1.4. Standard and adjoint differential modules. Let G be simply connected
semi-simple linear algebraic group over C with Lie algebra g. One writes G =
G1×· · ·×Gs and g = g1×· · ·×gs for the decompositions into simple objects. The
standard representation of G is the direct sum V = ⊕s

i=1Vi, where each Vi is the
faithful representation of Gi of smallest dimension. For the groups SLn, n > 2,
both the standard representation and its dual have smallest dimension. This
ambiguity in the above definition is of no importance for the sequel. The G-
module End(V ) = V ∗ ⊗ V has g as irreducible submodule. The action of G on g

is the adjoint representation. The kernel of this action is the finite center Z of G

and G/Z is the adjoint group.

A differential module M over K is called standard (adjoint resp.) for G if
Gal(M) is connected, det M = 1 and (Gal(M), V (M)) is isomorphic to the stan-
dard (adjoint resp.) representation of G. For any standard differential module
M , the module End(M) contains a unique direct summand which is an adjoint
differential module.

Let G be a simply connected semi-simple group with Lie algebra g and let
V be the standard representation of G. An explicit standard module for G is
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the following. Write M = K ⊗C V . Then g is identified, as before, with a
subspace of End(V ) and g(K) = K ⊗ g is identified with the K-vector space
K ⊗ g ⊂ EndK(M). Define the derivation ∂0 on M by ∂0 is zero on V . For any
element S of g(K) one defines the derivation ∂S := ∂0 + S on M . According to
Proposition 1.31 of [vdP-S], the differential Galois group of (M, ∂S) is contained
in G. We call M = (M, ∂S) an explicit standard module for G if the differential
Galois group is equal to G. According to Section 1.7 of [vdP-S], the differential
Galois group is equal to G for sufficiently general S. On the other hand, under
the assumption that K is a C1-field, every standard differential module for G has
an explicit representation (M, ∂S) by Corollary 1.32 of [vdP-S].

For any explicit standard module (M, ∂S), one considers the direct summand
N := K ⊗C g of EndK(M). Define the derivation ∂0 on N by ∂0 is zero on g.
One easily verifies that (M, ∂S) induces on N the derivation A 7→ ∂0(A) + [A,S].
In this way (M, ∂S) induces an adjoint differential module.

Theorem 1.3. Let N be an adjoint differential module for G. The C-Lie algebra
structure of g = V (N) induces a K-Lie algebra structure [ , ] on N satisfying
∂[a, b] = [∂a, b] + [a, ∂b] for all a, b ∈ N . This structure is unique up to multipli-
cation by an element in C∗.

The assumption that K is a C1-field implies that there exists an isomorphism
of K-Lie algebras φ : N → K ⊗C g. After choosing φ, there exists a unique
S ∈ g(K) such that N is isomorphic to the adjoint module induced by the explicit
standard module (M, ∂S).

Proof. By definition, (Gal(N), V (N)) is the adjoint action of G (or G/Z) on
g. The morphism of G-modules Λ2g → g, given by A ∧ B 7→ [A,B], is G-
equivariant and therefore is induced by a morphism of differential modules F :
Λ2N → N . The map F is a non zero element of ker(∂, Hom(Λ2N, N)), unique
up to multiplication by an element in C∗. Define for a, b ∈ N the expression
[a, b] = F (a ∧ b). The statement ∂F = 0 is equivalent to ∂[a, b] = [∂a, b] + [a, ∂b]
for all a, b ∈ N .

Let PV R(N) denote the Picard-Vessiot ring for N . The canonical isomorphism
PV R(N) ⊗C V (N) → PV R(N) ⊗K N is, by construction, compatible with the
Lie algebra structures on N and V (N) = g. Since Gal(N) is connected and K is
a C1-field, the Gal(N)-torsor Spec(PV R(N)) over K is trivial (see [vdP-S]). This
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means that there is a K-algebra homomorphism e : PV R(N) → K. One applies
e to both sides of the above canonical isomorphism and finds an isomorphism of
K-Lie algebras φ : K ⊗C g → N .

After choosing φ and identifying N with K⊗C g, one can define the derivation
∂0 on N by ∂0 is zero on g. Clearly, ∂0[a, b] = [∂0a, b] + [a, ∂0b] for all a, b ∈ N .
Therefore ∂ − ∂0 is a K-linear derivation of the semi-simple Lie algebra N and
there is a unique S ∈ N = g(K) such that ∂ − ∂0 = [ , S] (see [J], theorem 9,
p.80). Thus we find that ∂ on N is induced by (M, ∂S). ¤

Comments 1.4. . The computation of the Lie algebra structure F on N amounts
to computing a rational solution (i.e., with coordinates in K) of the differential
module Hom(Λ2N, N). The computation of S ∈ g(K) is an easy exercise on Lie
algebras. The computation of an isomorphism φ seems more complicated. It is
essentially equivalent to the computation of a Cartan subalgebra of N which is
‘defined’ over C. As an example we consider here the case g = sl2.

Since N ∼= K⊗C sl2, we know that there exists an element h ∈ N such that the
eigenvalues of ad(h), acting upon N , are 0,±2. Such an element h can be found
by solving some quadratic equation over K. Any other candidate h′ is conjugated
to h by an automorphism of the K-Lie algebra N . We choose an element e1 with
[h, e1] = 2e1 and an element e2 with [h, e2] = −2e2. The last element is multiplied
by an element in K∗ such that moreover [e1, e2] = h holds. The C-subspace of N

generated by h, e1, e2 is isomorphic to sl2 and we have found an isomorphism φ.

The element h, which generates a Cartan subalgebra for N , defined over C, is
essentially unique. The vectors e1, e2 can however be replaced by fe1, f

−1e2 for
any f ∈ K∗. This reflects the observation that the differential module M , with
det M = 1 and differential Galois group SL2, that induces the adjoint module N

is not unique. In fact, one can replace M by Ke⊗K M where the 1-dimensional
module Ke is given by ∂e = f ′

2f e with f ∈ K∗.

1.5. A general solution to the problem. We recall the following. DiffK will
denote the (neutral) Tannakian category of all differential modules over K. The
Tannakian group of this category is an affine group scheme U (this is the universal
differential Galois group), i.e., we have an equivalence DiffK → ReprU of Tan-
nakian categories. For any differential module P over K, we denote by {{P}} the
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full Tannakian subcategory generated by P . The module P corresponds a repre-
sentation ρ : U → GL(V (P )). Its image is Gal(P ). By differential Galois theory,
there is a natural equivalence of Tannakian categories {{P}} → ReprGal(P ).

We note that the constructions of linear algebra in the category Reprg for a
semi-simple g are known and can be found explicitly by, for instance, the online
program [LiE].

The problem. P is an input differential module. Find a differential module of
smallest dimension M such that P ∈ {{M}} or, more precisely, some differential
modules M1, . . . , Mr with max{dimMi} as small as possible such that P lies in
the Tannakian subcategory {{M1, . . . , Mr}} generated by {M1, . . . , Mr}.

A solution to the problem. Suppose that the input module P has the proper-
ties absolutely irreducible, det P = 1 and Gal(P ) is connected. Then g := gal(P )
is semi-simple. Let G be, as before, the simply connected group with Lie algebra
g. Then Gal(P ) = G/Z ′ for some subgroup Z ′ of the center Z of G. The ad-
joint representation (G/Z, g) lies in ReprG/Z′ . The construction of linear algebra
csrt(1) from (G/Z ′, V (P )) to (G/Z, g) can be read off in the equivalent subcate-
gory {{(g, V (P ))}} of Reprg. Using the equivalence of {{P}} and ReprG/Z′ one
can apply csrt(1) to P . This yields N ∈ {{P}} which maps to the adjoint repre-
sentation (G/Z, g). Thus N is an adjoint differential module for G. Theorem 1.3
provides a standard module M for G which induces N .

Using the equivalences {{M}} → ReprG → Reprg one finds an explicit con-
struction of linear algebra csrt(2) from M to a differential module Q with (Gal(Q),
V (Q)) = (Gal(P ), V (P )). Now P and Q are almost isomorphic.

What we know is that csrt(1) applied to P and Q produce N . Let ρ : U →
SL(V (P )) and ρ′ : U → SL(V (Q)) denote the representation corresponding to P

and Q. The fact that ρ and ρ′ yield the same representation ρ′′ : U → SL(g),
corresponding to N , implies that ρ and ρ′ are projectively equivalent, i.e., ρ(u) =
c(u)ρ′(u) for all u ∈ U and with c(u) ∈ C∗ (in fact c(u)n = 1 where n = dimK P ).
Let the 1-dimensional differential module L correspond to the representation
U → C∗, u 7→ c(u). Then P ∼= L ⊗K Q. Finally, L can be made explicit by
Subsection 1.1. part (3). Thus we have explicitly found P ∈ {{M, L}}. In the
case that G is semi-simple but not simple we write, as before, G = G1×· · ·×Gs.



186 K.A. Nguyen and M. van der Put

The standard module M is a direct sum M1 ⊕ · · · ⊕ Ms where each Mi is a
standard module for the simple Gi. Thus we have P ∈ {{M1, . . . , Ms, L}} and
this is a solution to our problem.

Comments 1.5. (1) Variations. In many cases there are shortcuts.
(1.1) If Z ′ = {1}, then {{P}} ∼= ReprG and there is an explicit construction
csrt(3) from (g, V (P )) to the standard module (g, V ). Then csrt(3) applied to
P yields the standard differential module M with P ∈ {{M}}.
(1.2) If Z ′ = Z, then there is a contruction of linear algebra from the adjoint
module N (obtained from P ) back to P .
(1.3) If the adjoint G-module g is not the faithful G/Z-module of smallest di-
mension, then we may use a faithful G/Z-module of smallest dimension at the
place of g. Example: For G = Sp4 the group Z = {±1} and Sp4/Z = SO5. The
natural representation of SO5 has dimension 5 and sp4 has dimension 10.

(2) Non connected groups. More generally, we may consider absolutely irre-
ducible differential modules P with det P = 1. This assumption is equivalent
to the statement that V (P ) is an irreducible Gal(P )o-module. The finite group
Gal(P )/Gal(P )o introduces (in general) two kinds of obstructions to the above
method. Consider namely a Gal(P )-module W , obtained by some construc-
tion of linear algebra from P and V (P ). The irreducible summands {Wi} of
(Gal(P )o,W ) can be permuted by Gal(P ) because the image of Gal(P )/Gal(P )o

in Out(gal(P )) is not trivial. The other possible obstruction can occur when some
Wi has multiplicity greater than one. A computable finite extension K̃ of the
base field K is needed to make this subspace invariant under the new (smaller)
differential Galois group of K̃ ⊗K P over K̃.

We study this in more detail for the case that (Gal(P )o, V (P )) is the adjoint
representation. After identifying V (P ) with g, the group Gal(P ) is contained in
the group G+ = G++ ∩ SL(g), where G++ is the normalizer of Go := Gal(P )o

in GL(g). An element T ∈ GL(g) belongs to G++ if and only if there exists a
constant c ∈ C∗ such that [TA, TB] = c[A,B] for all A,B ∈ g. One obtains an
exact sequence 1 → (µn · Go)/Go → G+/Go → Out(Go) → 1, where n is the
dimension of P .

If the image of Gal(P ) in Out(Go) is not trivial, then one has to compute a
finite field extension of K which kills this part of Gal(P ). If the image is trivial,
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then one can replace P by the direct summand P̃ of P ⊗ P ∗ which is an adjoint
representation and one obtains a standard module M̃ with P̃ ∈ {{M̃}}. Further
P ∼= P̃⊗L, where L is a 1-dimensional differential module such that L⊗n = 1. As
mentioned in Subsection 1.1, there is an easy algorithm for the computation of L.

(3) In the Sections 3–6 we investigate special cases of shortcuts and non connected
groups. This includes all cases, listed in Subsection 1.2, where a differential mod-
ule can be ‘solved’ in terms of modules of lower dimension and field extensions.

2. Symmetric powers of modules of dimension 2

In this section we make the method of Section 1 explicit for sl2. There are
two connected algebraic groups with Lie algebra sl2, namely SL2 and PSL2. The
first group corresponds to Reprsl2 and the second group to the full subcategory
of Reprsl2 for which the irreducible objects are {[2n] | n ≥ 0}.

By operations of linear algebra one can obtain from the object [2n] with n > 1,
the object [2]. Indeed, one has Λ2[2n] = ⊕n

k=1[4k − 2].

Similarly, consider the object [2n + 1] with n > 0. Then sym2[2n + 1] =
⊕n+1

k=1 [4k−2] and this yields [2]. Further [2]⊗ [2k+1] = [2k−1]⊕ [2k+1]⊕ [2k+3]
and this yields [2k−1]. In this way [1] is obtained by operations of linear algebra
from [2n+1]. The formulas, used here, follow easily from the characters formulas
for tensor products.

Let M be an absolutely irreducible differential module with detM = 1 and
(gal(M), V (M)) = (sl2, [n]). The above construction from [n] to [1] or [2] can
be copied for the differential module M , since the dimensions of the direct sum-
mands are distinct and thus these direct summands are not only invariant under
Gal(M)o but also under Gal(M). Moreover, one can verify that Gal(M) is con-
tained in µn+1 · symn(SL2) and this has the same consequence.
The essential problem to solve is: Let M be an absolutely irreducible module with
det M = 1 and (gal(M), V (M)) = (sl2, [2]). Produce a module N of dimension 2
with det N = 1 and sym2N = M .
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We start by a result due, in various forms, to G. Fano, M.F. Singer and M. van
Hoeij - M. van der Put. The result is based on the following observation. Let N

be a differential module with basis n1, n2 and detN = 1. Then M := sym2N

has basis m11 = n1 ⊗ n1, m22 = n2 ⊗ n2, m12 = n1 ⊗ n2. The element F =
m12 ⊗m12 −m11 ⊗m22 ∈ sym2M satisfies ∂F = 0 and F is a non degenerate
and has a non trivial isotropic vector.

Theorem 2.1. Let M be a differential module of dimension 3 with det M = 1.
Suppose that there exists F ∈ sym2M such that F is non degenerate and has a
non trivial isotropic vector (no further conditions on M or K). Then there exists
a differential module N of dimension 2 with det N = 1 and sym2N ∼= M .

Proof. F has the form m12⊗m12−m11⊗m22 for a suitable basis {m11,m22,m12}
of M . Consider a K-vector space N with basis n1, n2 and define an isomorphism
of K-vector spaces φ : sym2N → M by sending n1 ⊗ n1, n2 ⊗ n2, n1 ⊗ n2 to the
elements m11,m22,m12. We want to provide N with a structure of differential
module by putting ∂ni =

∑
αj,inj for a some matrix (αi,j) with trace 0, such

that φ becomes an isomorphism of differential modules. Let the matrix of ∂ on M

be given by ∂mij =
∑

γkl,ijmkl. The assumption ∂F = 0 leads to the relations

γ11,22 = γ22,11 = γ12,12 = γ11,11 + γ22,22 = 0, γ11,12 = γ12,22/2, γ22,12 = γ12,11/2 .

The condition that φ commutes with ∂ leads to the unique solution

α1,2 = γ11,12, α2,1 = γ22,12, α1,1 = γ11,22/2, α2,2 = γ22,22/2 .

¤

Corollary 2.2 (Test). (Let K be a C1-field). M is an irreducible module,
dimM = 3, det M = 1. Then M is isomorphic to a sym2N with dimN = 2,
det N = 1 if and only if sym2M contains a non trivial F with ∂F = 0.

Proof. The ‘only if’ part follows from the above observation. Now suppose that F

exists. Then F determines the symmetric bilinear form < a, b >= F (a⊗ b) ∈ K

on M∗. The subspace {a ∈ M∗| < a,M∗ >= 0} is invariant under ∂ because
∂F = 0. Since M is irreducible, this subspace is 0 and so F is non degenerate.
Further, F has a non trivial isotropic vector since K is a C1-field. ¤

Remarks 2.3. (1) An extension of the test 2.2 is the following (K is again a
C1-field). Suppose that M satisfies det M = 1, M = sym2N for some module N

of dimension 2 with L = det N . Suppose that L 6= 1. Then L⊗3 = det M = 1 and
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det(L⊗N) = 1 and M ′ := sym2(L⊗N) is equal to L⊗2 ⊗M . Thus sym2(M ′)
contains an element F ′ with the properties ∂F ′ = 0, F ′ non degenerate and
has a non trivial isotropic vector. This translates for M into the existence of a
1-dimensional submodule KF = L ⊗ KF ′ of sym2M with (KF )⊗3 = 1. This
submodule can be found, for instance, by computing ker(∂, End(sym2M)).
(2) For an absolutely irreducible M with det M = 1 and dimM = 3, the above
produces an algorithm for the required N with sym2N = M .
If dimM = n + 1 > 3, then an obvious test whether M ∼= symnN holds for
some N with dimN = 2, det N = 1 (or, more generally, M ∼= (symnN) ⊗ L

with dimL = 1) is to perform the algorithm (explained in the beginning of this
section) for producing N . If this does not fail, then one finally verifies whether
M is isomorphic to symnN (or, more generally, to (symnN)⊗ L).
(3) Theorem 2.1 is an example of the basic construction in Theorem 1.3. Indeed,
suppose that detM = 1 and that (gal(M), V (M)) = (sl2, [2]). Then one easily
sees that PSL2 = Gal(M)o ⊂ Gal(M) ⊂ µ3 · Gal(M)o. If Gal(M) = Gal(M)o,
then M is an adjoint module and the proof of Theorem 2.1 is a special case of
Theorem 1.3.
If Gal(M) 6= Gal(M)o, then sym2M contains a unique 1-dimensional submodule
with differential Galois group µ3 = Gal(M)/Gal(M)o, i.e., the module L from
the above (1). One can replace K by the Picard-Vessiot field K+ of L, which is
a 3-cyclic extension and observes that K+ ⊗M is an adjoint module. One may
also replace M by the adjoint module M ′ = L⊗2 ⊗M .
(4) Another test would be to find relations between the solutions V (M) of M .
Suppose for convenience that z = 0 is a non singular point for M . Then one can
(approximately) compute V (M) as ker(∂,C((z)) ⊗M) and it might be possible
to read off relations. This geometric approach is present in Fano’s paper and
is worked out by M.F. Singer. We present here a more detailed version of the
Fano-Singer theorem. 2

In order to apply the geometry of projective varieties of small dimension, Fano
has introduced the notion:
‘The solutions of a scalar equation of order n lie on a variety S ⊂ Pn−1’.
Let L ∈ K[∂] be monic of degree n. Its Picard-Vessiot ring has the form

K[Y1, . . . , Yn, Y
(1)
1 , . . . , Y (n−1)

n ,
1
W

]/I ,
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where W denotes the Wronskian and where I a maximal differential ideal. We
write yi for the image of Yi in this ring. Consider the homogeneous ideal H

in C[Y1, . . . , Yn] generated by the homogeneous elements h ∈ C[Y1, . . . , Yn] that
belong to I. (We note that this does not depend on the choice of the basis
Y1, . . . , Yn). It is clear that H is a prime ideal. Let S ⊂ P(Cy1+· · ·+Cyn) = Pn−1

be the variety defined by H. In Fano’s terminology this is called: ‘the solutions
of L lie on S’. Since the yi are linearly independent, S does not lie in a proper
projective subspace of Pn−1.

Theorem 2.4 (Fano–Singer).
Suppose that the solutions of the monic operator L of degree n lie on a curve.
Then one of the following holds:
(a) After a shift ∂ 7→ ∂ + v, all the solutions of L are algebraic.
(b) L is the (n− 1)th symmetric power of an order 2 operator L2.
(c) There is a monic operator L2 of degree 2, having a basis of solutions w1, w2,
such that the polynomial P := (X − w′1

w1
)(X − w′2

w2
) lies in K[X] and there exists

an integer N and a sequence 0 = i1 < i2 < · · · < in = N with g.c.d. 1, such that
S = {wik

1 wN−ik
2 | k = 1, . . . , n} ⊂ {ws

1w
t
2| s + t = N} is a basis of solutions for L.

Moreover, S is invariant under the permutation w1 ↔ w2 if P is irreducible.

Comments 2.5. Note that condition (a) does not at all imply that the solutions
lie on a curve. Indeed, algebraic elements y1, . . . , yn over K need not satisfy any
non trivial homogeneous relation over C. In case (b), a basis of the solutions of
L can be written in the form {yi

1y
j
2| 0 ≤ i, j; i + j = n} where y1, y2 is a basis of

the solutions of L2. The curve is then the normal curve in Pn−1.
Case (c). Suppose that P is reducible, i.e., vi := w′i

wi
∈ K for i = 1, 2. Let S

be a subset of n elements of {ws
1w

t
2| s + t = N}. Let V denote the C-vector

space generated by S. This vector space is invariant under the differential Galois
group and it follows that there is a unique monic operator L ∈ K[∂] with solution
space V . Further, the solutions of symNL2 lie on a normal curve in PN−1. The
projection, given by the subset of the homogeneous coordinates, of this curve is
a curve Γ in Pn−1. The solutions of L lie on this curve.

Now suppose that P is irreducible. Let K+ = K(v1, v2) with vi := w′i
wi

. Let S

be a subset of n elements of {ws
1w

t
2| s+ t = N}, invariant under the permutation

w1 ↔ w2. Let W be the C-vector space generated by S. Again, V is invariant
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under the differential Galois group and, as above, there is a unique monic op-
erator L ∈ K+[∂] with solution space W . Since S is invariant under w1 ↔ w2,
the operator L is invariant under conjugation by the non trivial automorphism
of K+/K. Thus L ∈ K[∂]. The solutions of symNL2 are still lying on a curve of
genus 0 in PN−1 and its projection is again a curve in Pn−1. We conclude that
the converses of (b) and (c) hold.

The condition on L2, imposed in (c), can be translated into: The differential
Galois group G ⊂ GL2 of L2 is contained in the group {(∗ 0

0 ∗
)} ∪ {(0 ∗

∗ 0

)}.
Let the polynomial X2 + cX + d = (X − v1)(X − v2) ∈ K[X] with discriminant
∆ := c2 − 4d 6= 0 be given. Then one can calculate that the corresponding
operator L2 = ∂2 + a∂ + b satisfies a = c− ∆′

2∆ and b = c + c′d−cd′
∆ .

The proof of the Fano–Singer theorem, revisited.

Proof. Suppose that the solutions of L lie on a curve Γ ⊂ P(V ), where V = Cy1 +
· · ·+Cyn is the solution space. Then the differential Galois group G ⊂ GL(V ) has
image pG ⊂ PGL(V ) which acts as a group of automorphisms of Γ. This action
of Γ is faithful since Γ does not lie in a proper projective subspace of P(V ). If
the genus of the normalization of Γ is > 1 or if its genus is 1 and Γ has a singular
point, then pG is finite. Then case (a) holds. If Γ is non singular of genus 1, then
(pG)o is contained in Γ seen as a group. However the group Γ is projective and
(pG)o is affine. Thus (pG)o = 1 and pG is finite. This is again case (a).

Suppose that the normalization of Γ has genus 0. Let φ : P1 → Pn−1 be the
morphism from the normalization of Γ to Γ. Then φ has explicitly the form
(s : t) 7→ (f1 : · · · : fn), where f1, . . . , fn are homogeneous polynomials of the
same degree in s, t and the g.c.d. of f1, . . . , fn is 1. Since Γ is not contained in
any hypersurface, the f1, . . . , fn are linearly independent over C. As φ : P1 → Γ
is birational, one has C( t

s) = C(f2

f1
, . . . , fn

f1
). Let d denote the degree of Γ. Then

the fi have degree d. Hence n ≤ d + 1.

Consider the case n = d + 1. After a change of coordinates in Pn−1 we may
suppose that φ has the form (s : t) 7→ (sn−1, sn−2t : · · · : stn−2 : tn−1) and Γ is
the ‘rational normal curve’. Put y1 = sn−1, y2 = ss−2t, · · · , yn = tn−1. Then
this basis of the solution space of L has the relations y1y3 − y2 = 0, y2y4 − y2

3 =
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0, etc.. It follows that the differential Galois group G of L is a subgroup of
Zn · symn−1(GL2(C)), where Zn = {λ · 1| λn = 1}.

Write PV ⊃ K for the Picard-Vessiot field of L over K. Consider the extension
PV + = PV (u) of PV , defined by the equation un−1 = y1. Define v by un−2v =
y2. Then yi = un−ivi−1 for all i = 1, . . . , n. Let G+ be the group of the differential
automorphism of PV +/K. Every element σ ∈ G has an extension σ+ to G+.
Indeed, σ(y1) has the form (au+bv)n−1 and the formula σ+(u) = ζ(au+bv) (any
ζ with ζn−1 = 1) produces σ+. Then one finds the following exact sequence

1 → Gal(PV +/PV ) → G+ → G → 1 .

Consider the vector space W = Cu + Cv and the unique monic differential op-
erator L2 ∈ PV +[∂] of degree 2 with solution space W . Since W is invariant
under the action of G+, so is L2. Further, one easily verifies that (PV +)G+

= K.
Hence L2 ∈ K[∂]. Now clearly, L is the (n− 1)th symmetric power of L2.

Consider the case d + 1 > n. The group pG acts faithfully on Γ and this induces
an action of pG on the normalistation P1 of Γ. This embeds pG into PGL2 with
its usual action on P(Cs+Ct) and induced action on P(Csd +Csd−1t+ · · ·+Ctd).
The projective subspace P(Cf1 + · · · + Cfn) is invariant under pG and under
(pG)o. The possibilities for (pG)o 6= 1 are: {(∗ ∗0 1

)}, {(1 ∗
0 1

)}, {(∗ 0
0 1

)}.
In the first case pG = (pG)o and the invariant subspace under pG are the:

< {satb| a + b = d, b ≤ i} > for i = 0, 1, . . . , d. If < f1, . . . , fn > is a proper
subspace, then the g.c.d. of f1, . . . , fn is not 1, contradicting the form of φ. The
second case is excluded in the same way.

The third case has two subcases: pG = (pG)o and [pG : (pG)o] = 2.
In the first subcase, the pG invariant subspaces of dimension n (with g.c.d. 1)
have the form < {yi := sd−aitai | 0 = a1 < a2 < · · · < an = d} >. As before
one makes an extension PV + = PV (u, v) of the Picard-Vessiot field PV of L

over K by equations ud−aivai = yi for i = 1, . . . , n. The subspace Cu + Cv is
invariant under the action of the group G+ and yields the required monic operator
L2 ∈ K[∂] of degree 2 with solution space Cu + Cv.
In the second subcase, one shows that pG =< (pG)o,

(
0 1
1 0

)
>. This poses the

extra condition on the pG invariant subspaces, namely: for every i there is a j

with d− ai = aj . Now one proceeds as in the first subcase. ¤
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3. Differential modules with Lie algebra sl3

According to Section 1, the essential case to consider is a differential module
N with detN = 1 and (gal(N), V (N)) = (sl3, [1, 1]).

We make the following observation. If N is the direct summand of End(M)
for some M with dimension 3, then SL3 ⊂ Gal(M) ⊂ GL3 and Gal(M) acts as
PSL3 on N . Hence N satisfies this property if and only if Gal(N) is connected.

In general, Gal(N) is not connected and we will compute the minimal field
extension K+ ⊃ K such that Gal(K+ ⊗K N) is connected.

We identify V (N) with sl3. The group Gal(N) is contained in the normalizer
G+ of Go := Gal(N)o = PSL3 in SL(sl3). The element σ ∈ GL(sl3), defined by
σ(A) = −At for all A ∈ sl3, has the property σGoσ−1 = Go and σ maps to the
non trivial element of Out(PSL3). The determinant of σ is −1 and thus τ , defined
by τ = e2πi/16σ, lies in G+. Let h be any element of G+. Then, after multiplying
h by τ ε with ε ∈ {0, 1}, we may suppose that the image of h in Out(PSL3) is 1.
Thus there is an element s ∈ PSL3 with hgh−1 = sgs−1 for all g ∈ Go. Since the
Go-representation sl3 is irreducible, s−1h = λ · 1 with λ8 = 1. It follows that G+

is generated by τ and Go and [G+ : Go] = 16. The possible groups Gal(N) satisfy
Go ⊂ Gal(N) ⊂ G+ and are determined by the integer d := [Gal(N) : Gal(N)o]
dividing 16.

The map [ , ] : Λ2sl3 → sl3 is Go-invariant and one verifies that τ([ , ]) =
e2πi/16 · [ , ]. The G+-module Hom(Λ2sl3, sl3) has a unique 1-dimensional sub-
module, namely C[ , ]. On this module τ acts as multipication by e2πi/16.Then
Hom(Λ2N, N) has a unique 1-dimensional submodule L. Now d is minimal such
that L⊗d = 1. The d-cyclic extension K+ ⊃ K, defined by L, has the property
that K+ ⊗K N is an adjoint module. The algorithm of Theorem 1.3 computes
the 3-dimensional differential module M over K+ with differential Galois group
SL3 such that Hom(M, M) = K+ ⊗N .

An alternative method for the sl3 case.
Consider the differential module N ⊗ N∗. There corresponds the sl3-module:
[3, 0]⊕ [0, 3]⊕ [2, 2]⊕ [1, 1]⊕ [1, 1]⊕ [0, 0]. The term [3, 0]⊕ [0, 3] is invariant under
the action of G+, more precisely τ interchanges the terms [3, 0], [0, 3] and τ2 is
the identity. Let A be the submodule of N ⊗N∗ corresponding to [3, 0]⊕ [0, 3].
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If τ belongs to Gal(N), then one computes with the method of Subsection 1.1,
the quadratic extension K2 ⊃ K such that K2 ⊗ A splits as a direct sum. Let
B be the direct summand corresponding to (sl3, [3, 0]). If τ does not belong to
Gal(N), then we write K2 = K.

Now Gal(B) = PSL3. Using the following constructions of linear algebra:
Λ2[3, 0] = [4, 1] ⊕ [0, 3] and [3, 0] ⊗ [0, 3] = [0, 0] ⊕ [1, 1] ⊕ [2, 2] ⊕ [3, 3], one ob-
tains a module C corresponding to (sl3, [1, 1]) and Gal(C) = PSL3. Thus C is
an adjoint module over K2 and is induced by a standard module M over K2 for
SL3. The adjoint module Ñ induced by M is over the algebraic closure of K2

isomorphic to the input module N . Using Subsection 1.1 one finds the required
extension K+ of K2.

Test. Let the input module N be an absolutely irreducible differential module
with dimN = 8, det N = 1. Then (gal(N), V (N)) ∼= (sl3, [1, 1]) if and only if
the irreducible direct summands of sym2N have dimensions 1, 8, 27 and the irre-
ducible direct summands of Λ2N have dimensions 8, 10, 10, or 8, 20.

The above construction generalizes to the case of a module N where the represen-
tation (g(N), V (N) is the adjoint representation of sln.
The element σ, as defined above, has determinant 1 for n ≡ 1, 2 mod 4 and −1
for n ≡ 0, 3 mod 4. In the first case, the normalizer G+ of PSLn in SL(sln) is
generated by {σ, e2πi/(n2−1) · 1} and PSLn. In the second case G+ is generated
by τ = e2πi/(2n2−2) · σ and PSLn. In both cases [G+ : PSLn] = 2(n2 − 1).

Surprisingly enough, we have to distinguish the two cases det σ = 1 and
det σ = −1. In the second case, the group G+/PSLn acts faithfully on the 1
dimensional vector space C[ , ]. The corresponding unique 1-dimensional factor
L of Hom(Λ2N, N) yields, as before, the required extension K+.

In the first case the action of G+/PSLn on C[ , ] has kernel {1, σ}. If σ lies
in the image of Gal(N)/Gal(N)o, then we first want to determine the quadratic
extension K2 ⊃ K which kills σ (in other words, σ does not lie in the image
of Gal(K2 ⊗ N)/Gal(K2 ⊗ N)o). The alternative method for sl3 works here as
well. Indeed, the module N ⊗N∗ contains a unique irreducible direct summand
A which corresponds to the sln-module [2, 0, . . . , 0, 1, 0] ⊕ [0, 1, 0, . . . , 0, 2]. We
note that σ interchanges the two factors. The other irreducible summands of
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N ⊗N∗ correspond to irreducible sln-modules which are invariant under σ. The
quadratic extension K2 of K for which K2 ⊗ A is a direct summand of two
irreducible submodules is the extension which kills σ. Now we replace K by K2,
in case σ lies in the image of Gal(N)/Gal(N)o, and proceed as in the first case.

4. Differential modules with Lie algebra sl4

There are three connected linear algebraic groups with Lie algebra sl4, namely
SL4, SL4/µ2 = SO6, SL4/µ4 = PSL4. They correspond to the category Reprsl4 =
{{[1, 0, 0]}} and the two Tannakian subcategories {{[0, 1, 0]}} and {{[1, 0, 1]}}.
The irreducible objects of the second category are the [a, b, c] with a−c+2b ≡ 0, 2
mod 4 and for the third category these objects are [a, b, c] with a − c + 2b ≡ 0
mod 4. As noted before, the group Out(SL4) has two elements and the non
trivial element σ in this group changes the representation [a, b, c] into its dual
[c, b, a]. In Section 3 we treated the case of a module which induces the sl4-
module [1, 0, 1] and this solves in principle the problem. For modules P with
det P = 1 such that (gal(P ), V (P )) is an irreducible object of {{[0, 1, 0]}} not
lying in {{[1, 0, 1]}}, there is a construction of linear algebra producing a module
M satisfying det M = 1 and (gal(M), V (M)) = (sl4, [0, 1, 0]). And there is a
construction of linear algebra from M to P (or maybe to a module P̃ which is
isomorphic to P over K).
Example. Consider P with detP = 1 and (gal(P ), V (P )) = (sl4, [2, 0, 0]). To
obtain M , one makes for instance the steps: sym2[2, 0, 0] = [4, 0, 0] ⊕ [0, 2, 0];
[2, 0, 0]⊗ [0, 2, 0] has direct summand [1, 1, 1]; [2, 0, 0]⊗ [1, 1, 1] contains the direct
summand [1, 0, 1]; [2, 0, 0]⊗ [1, 0, 1] contains the term [0, 1, 0].
Now we describe a shortcut for modules of the above type M .

Shortcut. Let the differential module M satisfy det M = 1 and (gal(M), V (M)) =
(sl4, [0, 1, 0]). We note that [0, 1, 0] = Λ2[1, 0, 0] and thus Gal(M)o = SL4/µ2.
The canonical morphism f : [0, 1, 0]⊗ [0, 1, 0] → Λ4[1, 0, 0] = C is a non degener-
ate symmetric form. The group SL4/µ2 indentifies with SO(f) ∼= SO6. The nor-
malizer of SO6 in SL6 is µ3 ·SO6. Thus SO6 = Gal(M)o ⊂ Gal(M) ⊂ µ3Gal(M)o.
The module sym2M has a unique 1-dimensional submodule L corresponding to
Cf ⊂ sym2[0, 1, 0]. If Gal(M) = Gal(M)o, then L = KF where F is a non
degenerate symmetric form on N with ∂F = 0. If Gal(M) 6= Gal(M)o, then L
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determines a cyclic extension K3 ⊃ K such that K3 ⊗K L = K3F where F is a
non degenerate symmetric form and ∂F = 0. The following theorem, which is an
algorithm, finishes the description of the shortcut.

Theorem 4.1. Let M be a differential module of dimension 6. The following
properties of M are equivalent (no conditions on M and K).
(1) M ∼= Λ2N for some module of dimension 4 with det N = 1.
(2) There exists F ∈ sym2M with ∂F = 0 such that F is non degenerate and M

has a totally isotropic subspace of dimension 3.

Proof. (1)⇒(2). Choose a basis n1, n2, n3, n4 of N such that the corresponding
matrix of ∂ has trace 0. Then {ni,j := ni ∧ nj | 1 ≤ i < j ≤ 4} is a basis of
M = Λ2N . The element F = n12n34 − n13n24 + n14n23 is clearly non degenerate
and has a totally isotropic subspace of dimension 3 over K. The operation ∂

on N is given by a matrix (βi,j), i.e., ∂ni =
∑

j βj,inj , such that
∑

βi,i = 0. A
straightforward computation shows that ∂F = 0.
(2)⇒(1). By assumption F can be written in the form m1m2 +m3m4 +m5m6 for
a suitable basis m1, . . . , m6 of M . For notational reason we write F = m12m34−
m13m24 + m14m23 for a basis m12, . . . , m34 of M . Let (αij,kl) be the matrix of ∂

on M with respect to this basis, i.e., ∂mij =
∑

αkl,ijmkl. The equality ∂F = 0
is equivalent to the set of equalities

αij,kl = 0 if {i, j, k, l} = {1, 2, 3, 4} ; αij,ij + αkl,kl = 0 for ij 6= kl ;

αik,jk = ±αik′,jk′ if {i, j, k, k′} = {1, 2, 3, 4} and

the sign is − for {i, j} = {1, 3}, {2, 4} and is + for the other tuples {i, j}. (Note
that in the last set of relations we do not insist on i < k, j < k etc.).

We consider a vector space N over K with basis n1, . . . , n4 and define the
K-linear bijection f : Λ2N → M by sending nij := ni ∧ nj to mij for all i, j

with 1 ≤ i < j ≤ 4. On N we consider an operation of ∂ given by a matrix
(βi,j) (as above). The condition that f is an isomorphism of differential modules
is equivalent to a set of equations for the βi,j . This set of equations can be
computed to be

βi,i + βj,j = αij,ij for 1 ≤ i < j ≤ 4 , βa,b = αaj,bj if a < b, a < j, b < j ;

βa,b = −αai,ib if a < b, a < i, i < b ; βa,b = αia,ib if a < b, i < a, i < b ;
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βa,b = αaj,bj if b < a, a < j, b < j ; βa,b = −αja,bj if b < a, j < a, b < j ;

βa,b = αia,ib if b < a, i < a, i < b .

This overdetermined set of equations has a unique solution. Indeed, one finds

β1,1 = (α12,12 + α13,13 − α23,23)/2, β2,2 = (α23,23 + α24,24 − α34,34)/2 ,

β3,3 = (α23,23 + α34,34 − α24,24)/2, β4,4 = (α24,24 + α34,34 − α23,23)/2 .

For each a 6= b the above list gives two equations for βa,b. The two equations
coincide, due to the relations αik,jk = ±αik′,jk′ , listed above. ¤

Corollary 4.2. Let the differential field K be a C1-field and let M be an ir-
reducible differential module of dimension 6. Suppose that there exists an F ∈
sym2M with F 6= 0 and ∂F = 0. Then there exists an extension K+ ⊃ K of de-
gree ≤ 2 and a differential module N over K+ such that K+⊗K M is isomorphic
to Λ2N . Moreover det N = 1.

Proof. F yields a symmetric bilinear form on M∗ defined by (a, b) = F (a ⊗ b).
The property ∂(a, b) = (∂a, b)+(a, ∂b) follows from ∂F = 0. The K-vector space
{a ∈ M∗| (a,M∗) = 0} is invariant under ∂. Since M∗ is irreducible one finds
that this space is 0 and F is non degenerate.

Using that K is a C1-field one finds an expression m1m2 +m3m4 + am2
5 + bm2

6

for F with a, b ∈ K∗. If b/a is a square in K∗, then F has a totally isotropic
subspace of dimension 3 and one can apply the theorem.

In the other case, F has a totally isotropic subspace of dimension 3 after
tensorization with the field K+ := K(

√
b/a). Finally, the βii, found in the proof

of the Theorem 4.1, satisfy
∑4

i=1 βi,i = 0 and thus det(N) = 1. ¤

5. Differential modules with Lie algebra sp4

The two groups associated to sp4 are Sp4 and Sp4/µ2 = SO5. Apart from op-
erations of linear algebra in the category Reprsp4

we have to consider differential
modules M with detM = 1 and (gal(M), V (M)) = (sp4, [0, 1]).

Proposition 5.1 (Test). Let M be absolutely irreducible of dimension 5 and
det M = 1. The pair (gal(M), V (M)) is isomorphic to (sp4, [0, 1]) if and only if
sym2M is a direct sum of two irreducible spaces of dimensions 1, 14.
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Proof. (1) Suppose that (gal(M), V (M)) = (sp4, [0, 1]), then Gal(M)o has Lie
algebra sp4 and can only be Sp4 or SO5 = Sp4/{±1}. Since Sp4 has no faithful 5-
dimensional irreducible representation one has Gal(M)o = SO5. Further SO5 ⊂
Gal(M) ⊂ (O5 · C∗) ∩ SL(V (M)). The latter group is µ5 · SO5.

Now sym2V (M) splits as a direct sum of irreducible Gal(M)-modules of di-
mensions 1, 14. Thus sym2M = L⊕R with L,R irreducible of dimensions 1, 14.
If Gal(M) = SO5, then L = 1. In the other case L 6= 1 but L⊗5 = 1. This L

determines a cyclic extension of K of degree 5.
(2) Suppose that sym2M is the direct sum of irreducible modules of dimensions
1,14. The table of subsection 1.2 shows that (gal(M), V (M)) ∼= (sp4, [0, 1]). ¤

Algorithm. Assume that M passes the test. We want to produce a module N ,
of dimension 4 with detN = 1 and (gal(N), V (N)) = (sp4, [1, 0]), such that M is
a direct summand of Λ2N .

First we study the possibilities for N . One easily finds that Gal(N)o = Sp4

and Sp4 ⊂ Gal(N) ⊂ (Sp4 ·C∗)∩SL(V ) and thus Gal(N) is either Sp4 or Sp4 ·µ4

(and then [Gal(N) : Gal(N)o] = 2). Now Λ2N = L ⊕ R, and L generated by
an element F such that ∂F = aF with a = b′

2b for some b ∈ K∗. We try to find
an isomorphism R → M . The Galois group of R equals SO5 or SO5 · µ2. The
latter is not contained in SL(V (M)) and we conclude that the N that we want
to produce has Gal(N) = Sp4.

If Gal(M) 6= SO5, then we have to replace K by a cyclic extension K+ of
degree 5, in order to produce an isomorphism. The term L in the proof of Propo-
sition 5.1 has the form L = Kb with ∂b = f ′

5f b for a suitable f ∈ K∗ and thus
K+ = K( 5

√
f) is the required extension.

After replacing K by K+ (in case L 6= 1), there is a H ∈ sym2M with
H 6= 0, ∂H = 0. Since M is irreducible the form H is non degenerate. As
K is a C1-field, H has an isotropic subspace of dimension 2. We consider now
M+ = M ⊕Ke, with ∂e = 0 and extend H to a non degenerate symmetric form
H+ on M+ with ∂H+ = 0 and such that H+ has an isotropic subspace of dimen-
sion 3 (after possibly a quadratic extension of K). An application of Theorem
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4.1 yields a module N with detN = 1 and Λ2N ∼= M+. From the form of M+

one concludes that N is the required module with (gal(N), V (N)) = (sp4, [1, 0]).

We note that from an ‘input module’ P with det P = 1 and (gal(P ), V (P )) =
(sp4, [2, 0]), one obtains a module M with detM = 1 and (gal(M), V (M) =
(sp4, [0, 1]) by the step sym2[2, 0] = [4, 0]⊕ [0, 2]⊕ [0, 1]⊕ [0, 0].

5.1. The cases (sl5, [0, 1, 0, 0]) and (so7, [0, 0, 1]). Both cases are ‘solved’ by
constructions of linear algebra. Indeed, sym2[0, 1, 0, 0] = [0, 2, 0, 0] ⊕ [0, 0, 0, 1]
and the dual of [0, 0, 0, 1] is [1, 0, 0, 0]. Further, Λ2[0, 0, 1] = [0, 1, 0]⊕ [1, 0, 0].

6. Some semi-simple Lie algebras

6.1. sl2× sl2. SL2×SL2 is the simply connected group with Lie algebra sl2× sl2.
The other connected groups with this Lie algebra are obtained by dividing the
group SL2×SL2 by a subgroup of its center µ2×µ2. The category Reprsl2×sl2 has
therefore four full Tannakian (proper) subcategories, namely the ones generated
by one of the four modules [1]l⊗ [1]r, [1]l⊗ [2]r, [2]l⊗ [1]r, [2]l⊗ [2]r. A generator
for the category itself is ([1]l⊗ [0]r)⊕ ([0]l⊗ [1]r). We note that Out(SL2×SL2) is
equal to Z/2Z. The non trivial element in this group is represented by (A1, A2) 7→
(A2, A1). For an absolutely irreducible differential module M with detM = 1
and (gal(M), V (M)) equal to one the above four cases (and other cases listed
in Subsection 1.2), we will construct a differential module N with det N = 1
and (gal(N), V (N)) = ([1]l ⊗ [0]r)⊕ ([0]l ⊗ [1]r) such that (possibly after a field
extension of K) one has M ∈ {{N}}.

6.1.1. sl2 × sl2 with [1]l ⊗ [1]r. The problem. M is a given absolutely irreducible
module of dimension 4 and detM = 1. Test whether M is, after a finite extension
K+ of K, equal to N1⊗N2 with dimNi = 2. Develop an algorithm for computing
K+, N1, N2 in the positive case.

Proposition 6.1 (Test). M := K ⊗K M is isomorphic to a tensor product
N1⊗N2 of modules with dimension 2 if and only if sym2M has a 1-dimensional
factor L such that L⊗4 = 1.

Proof. (1) Suppose that M ∼= N1 ⊗ N2. Without loss of generality we may
assume that det M = det N1 = det N2 = 1. Let V be the solution space of M
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and V1, V2 those of N1, N2. Then V = V1 ⊗ V2 and the differential Galois group
Gal(M) = Gal(M)o of N1 ⊗N2 is an algebraic subgroup of SL(V1)⊗ SL(V2). It
is not a proper subgroup since M is irreducible.

The geometric interpretation, in the spirit of [F], of the tensor product V =
V1 ⊗ V2 is the embedding P(V1) × P(V2) → P(V ). The group Go := Gal(M)o =
SL(V1)⊗ SL(V2) preserves this embedding. From this one deduces that the nor-
malizer G+ of Go in SL(V1 ⊗ V2) is generated by Go and an element τ which
can be described as follows. Let σ : V1 → V2 be a linear bijection. Then
τ(v1 ⊗ v2) = e2πi/8 · (σ−1v2) ⊗ (σv1). It is easy to verify that τ ∈ G+. Ob-
viously τ permutes the two factors of the tensor product. Any g ∈ G+ preserves
the set of pure tensors {v1 ⊗ v2| v1 ∈ V1, v2 ∈ V2}. Then g can also permute
the two factors of the tensor product or preserve them. After multiplication by
τ , if needed, we may suppose that g has the form A1 ⊗ A2 with Ai ∈ GL(Vi)
and we may write g = λ · (B1 ⊗ B2) with λ ∈ C∗ and Bi ∈ SL(Vi) for i = 1, 2.
Then λ4 = 1 and since τ2 = i, one has that λ = τ2j for some j. This proves
the statement concerning G+. Further [G+ : Go] = 4 since τ4 = −1 ∈ Go. The
group Gal(M) lies between Go and G+ and there are the following possibilities:
G = G+ =< Go, τ >, G =< Go, τ2 >, G = Go.

Take a basis e1, e2 of V1 and put f1 = σe1, f2 = σe2. The element h :=
(e1 ⊗ f1)⊗ (e2 ⊗ f2)− (e1 ⊗ f2)⊗ (e2 ⊗ f2) in sym2(V1 ⊗ V2) is invariant under
G. Moreover, Ch is the unique line in sym2(V1⊗V2), invariant under G. Further
τh = i · h. There corresponds a unique 1-dimensional submodule L ⊂ sym2M .
Let d ≥ 1 be minimal with L⊗d = 1. The three possibilities for G correspond to
d = 4, 2, 1.

(2) Let the 1-dimensonal L be given. Then L = Ke with ∂e = g′
4ge for some

g ∈ K∗. After replacing K by K( 4
√

g), one has that L = KF with ∂F = 0. The
symmetric quadratic form F is non degenerate since M is (absolutely) irreducible.
After possibly a quadratic extension of K, the form F has an isotropic subspace
of dimension 2. Now we apply Theorem 6.2. ¤

Theorem 6.2. Let M be a differential module over K of dimension 4 with
det M = 1 (no further conditions on M and K). Then M is isomorphic to
A⊗ B for modules A,B of dimension 2 and with det A = det B = 1 if and only
if there exists F ∈ sym2M , ∂F = 0, F is non degenerate and has an isotropic
subspace of dimension 2.
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Proof. Suppose that M = A⊗B, with dimA = dim B = 2 and detA = det B = 1.
There is a canonical isomorphism

sym2M → ((sym2A)⊗ (sym2B))⊕ ((Λ2A)⊗ (Λ2B)).

The second factor is by assumption 1 and is therefore generated by an element
F with ∂F = 0. More explicitly, chose bases a1, a2 for A and b1, b2 for B such
that the matrices for ∂ on these bases have trace 0. Put mij = ai⊗ bj . Then the
element F := m11 ⊗m22 −m12 ⊗m21 ∈ sym2M satisfies ∂F = 0. Further, the
symmetric form F is non degenerate and has an isotropic subspace of dimension 2.

Suppose now that F ∈ sym2M with the required properties exists. Then for
a suitable basis {mij | 1 ≤ i, j ≤ 2} one has F = m11 ⊗ m22 − m12 ⊗ m21. We
consider now K-vector spaces A and B with bases a1, a2 and b1, b2. Define a K-
isomorphism φ : A⊗B → M by sending ai⊗bj to mij for all 1 ≤ i, j ≤ 2. We make
A and B into differential modules by putting ∂ai =

∑
αj,iaj and ∂bi =

∑
βj,ibj .

The two matrices (αi,j), (βi,j) are as yet unknown. We only require that their
traces are 0.

Let ∂ on M be given by ∂mij =
∑

γkl,ijmkl. The assumption ∂F = 0 leads to
the following equalities

γ11,22 = γ22,11 = γ12,21 = γ21,12 = 0, γ11,11 + γ22,22 = γ12,12 + γ21,21 = 0,

γ12,11 = γ22,21, γ21,11 = γ22,12, γ12,22 = γ11,21, γ21,22 = γ11,12 .

The assumption that φ is an isomorphism of differential modules leads to a
unique solution for the matrices (αi,j), (βi,j), namely

α1,2 = γ11,21 = γ12,22, α2,1 = γ22,12 = γ21,11,

α1,1 = (γ11,22 + γ12,12)/2, α2,2 = (γ21,21 + γ22,22)/2,

β1,2 = γ11,12 = γ21,22, β2,1 = γ22,21 = γ12,11,

β1,1 = (γ11,22 + γ21,21)/2, β2,2 = (γ12,12 + γ22,22)/2.

¤

Remarks 6.3.
(1) Assume that M satisfies det M = 1 and M = A⊗B with dimA = dim B = 2
and no condition on det A, det B.
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Write A = L1 ⊗ A1, B = L2 ⊗ B1 where L1, L2 are modules of dimension
1 and detA1 = det B1 = 1. Put L = L1 ⊗ L2, then L⊗4 = det M = 1 and
sym2M = L⊗2 ⊗ sym2(A1 ⊗ B1). The term sym2(A1 ⊗ B1) contains F1 as
constructed in the first part of the proof of Theorem 6.2. The corresponding
factor L⊗2 ⊗KF1 in sym2M is a trivial module if L⊗2 = 1. Otherwise, we have
to determine in sym2M a 1-dimensional submodule R with R⊗2 = 1. Then one
can either replace K by the quadratic extension defined by R or replace M by
L⊗M , where L is any 1-dimensional module with L⊗2 = R, in order to be able
to apply Theorem 6.2.
(2) In [F], p.496, one considers a differential operator M of order 4 and assumes
that M is not solvable by (possibly inhomogeneous) differential equations of order
one and algebraic extensions. Moreover, it is assumed that a basis of solutions
of M satisfies a non trivial homogeneous equation over C. The assertion is that
there exists a differential operator M̃ , equivalent to M , such that M̃ = M1⊗M2

with Mi of order 2. Moreover, for M̃ and also for the Mi quadratic extensions
of K might be needed (see [vdP-S] for the notion of tensor product of operators
and equivalence of operators).
(3) In [vH] an experimental algorithm for testing and solving L = L1⊗L2 (with L

of order 4 and Li of order 2) is given. Again a quadratic extension of K might be
needed. The possibilities of reducing order 4 differential operators to operators
of smaller order are also studied in [P]. 2

6.1.2. sl2× sl2 with [1]l⊗ [2]r (or [2]l⊗ [1]r). Let M be an absolutely irreducible
differential module with detM = 1 and (gal(M), V (M)) = (sl2 × sl2, [1]l ⊗ [2]r).
The method of the later Subsection 6.2, combined with Section 2, yields the
required decomposition M = N2 ⊗N3.

6.1.3. sl2 × sl2 with [2]l ⊗ [2]r. Let M be an absolutely irreducible differential
module with detM = 1 and (gal(M), V (M)) = (sl2 × sl2, [2]l ⊗ [2]r). Write
V = V (M) = sym2V1 ⊗ sym2V2, where V1, V2 are the 2-dimensional standard
representations of the two components of sl2 × sl2. The group Go = Gal(M)o

equals PSL(V1) ⊗ PSL(V2) = PSL(V1) × PSL(V2). Let σ : V1 → V2 be a linear
isomorphism. Define τ ∈ SL(V ) by τ : a⊗b 7→ e2πi/18·(sym2(σ−1)b)⊗(sym2(σ)a).
The normalizer G+ of Go in SL(V ) is seen to be < Go, τ > and [G+ : Go] = 18.
Further Go ⊂ Gal(M) ⊂ G+.
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Λ2M induces the sl2 × sl2-module

([2]l ⊗ [0]r)⊕ ([0]l ⊗ [2]r)⊕ ([2]l ⊗ [4]r)⊕ ([4]l ⊗ [2]r)

with terms of dimensions 3, 3, 15, 15. If τ ∈ Gal(M), then Λ2M has two ir-
reducible components, dimensions 6, 30. Otherwise Λ2M has four irreducible
components. In both cases Λ2M contains a unique summand A with solution
space ([2]l ⊗ [0]r) ⊕ ([0]l ⊗ [2]r) on which Gal(M) acts faithfully. In particular,
M can be obtained from A by constructions of linear algebra. Let P1, P2 denote
the projections of ([2]l ⊗ [0]r)⊕ ([0]l ⊗ [2]r) onto its components. One calculates
that τP1 = e2πi/9P2, τP2 = e2πi/9P1 and thus τ(P1 − P2) = −e2πi/9(P1 − P2).
Thus End(A) contains precisely two 1-dimensional submodules, a trivial one cor-
responding to C(P1 + P2) and L corresponding to C(P1 − P2). Let d > 0 be
minimal with Ld = 1, then d = [Gal(M) : Go] is a divisor of 18. Write L = Ke

with ∂e = g′
dge for some g ∈ K∗ and define K+ = K( d

√
g). Then K+ ⊗ A has

differential Galois group Go and decomposes as a direct sum of two differential
modules of dimension 3 with differential Galois group PSL2. An application of
Section 2 finishes this case.

An alternative method is the following. The solution space of M can be identi-
fied with g = sl2×sl2. The cyclic group G+/Go acts faithfully on the space C[ , ],
where [ , ] : Λ2g → g is the Lie operation. This induces a unique 1-dimensional
submodule L of Hom(Λ2M, M). Let d > 0 be minimal with L⊗d = 1. Then
d = [Gal(M) : Gal(M)o] is a divisor of 18 and L defines a cyclic extension
K+ ⊃ K of dimension d. The module K+ ⊗ M is an adjoint module and an
application of Theorem 1.3 finishes the algorithm.

6.1.4. sl2× sl2 with [1]l⊗ [3]r and [1]l⊗ [4]r. Let the absolutely irreducible differ-
ential module M satisfy det M = 1 and (gal(M), V (M)) = (sl2 × sl2, [1]l ⊗ [3]r).
We want to reduce this module to the case [1]l ⊗ [1]r. One writes V (M) =
V1 ⊗ sym3(V2) where V1, V2 are the standard representations of dimension 2 of
the two factors sl2. Then Gal(M)o = SL(V1)⊗ sym3SL(V2). The group Gal(M)
is contained in the normalizer of Gal(M)o in SL(V (M)), which is µ8 ·Gal(M)o.
In particular, every decomposition as gal(M)-modules is also a decomposition as
Gal(M)-module. Now Λ2([1]l⊗ [3]r) contains the irreducible summand [0]l⊗ [2]r.
Further ([0]l ⊗ [2]r)⊗ ([1]l ⊗ [3]r) contains the direct summand [1]l ⊗ [1]r.
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We want to reduce the case [1]l ⊗ [4]r to [1]l ⊗ [2]r. One has SL2 ⊗ PSL2 =
Gal(M)o ⊂ Gal(M) ⊂ µ10·Gal(M)o and every decomposition as sl2×sl2-modules
is also a decomposition as Gal(M)-module. Now sym2([1]l ⊗ [4]r) contains the
submodule [0]l ⊗ [2]r and ([1]l ⊗ [4]r)⊗ ([0]l ⊗ [2]r) contains [1]l ⊗ [2]r.

6.2. sl2× sl3 with [1]⊗ [1, 0] and [2]⊗ [1, 0]. Let M be an absolutely irreducible
differential module with detM = 1, (gal(M), V (M)) = (sl2 × sl3, [1] ⊗ [1, 0]).
The problem is to decompose M as N2 ⊗ N3 with dim Ni = i, det Ni = 1 and
(gal(N2), V (N2)) = (sl2, [1]) and (gal(N3), V (N3)) = (sl3, [1, 0]).

The construction follows from the observation that [1] ⊗ [1, 0] ‘generates’ the
Tannakian category Reprsl2×sl3 . Explicitely, ([1]⊗[1, 0])⊗([1]⊗[1, 0]) is the direct
sum of [0]⊗ [2, 0], [0]⊗ [0, 1], [2]⊗ [2, 0], [2]⊗ [0, 1] of dimensions 6, 3, 18, 9. The
corresponding direct sum decomposition of M⊗M is already present over K, since
the Galois group Gal(K/K) cannot permute subspaces of distinct dimensions.
Choose N3 to be the dual of the factor of M ⊗M of dimension 3.

Next, we consider ([1]⊗ [1, 0])⊗ ([0]⊗ [0, 1]) which is the direct sum of
[1] ⊗ [0, 0], [1] ⊗ [1, 1] of dimensions 2, 16. As before, M ⊗ N∗

3 , has a direct
summand of dimension 2 that we will call N2. Then, by construction M and
N2⊗N3 are isomorphic. The solution space V (M) has a decomposition as tensor
product V2 ⊗ V3 of spaces of dimensions 2 and 3. This is the unique decompo-
sition, invariant under Gal(M)o. Therefore this decomposition is also invariant
under Gal(M). Hence every element of Gal(M) has the form A2 ⊗ A3 with
Ai ∈ GL(Vi). Combining this with the assumption that Gal(M) ⊂ SL(V (M))
yields Gal(M) = Gal(M)o. Thus the isomorphism between M and N2 ⊗ N3 is
in fact an isomorphism between M and N2 ⊗N3.

For the case [2] ⊗ [1, 0] one writes the solution space of a corresponding dif-
ferential module M as V (M) = (sym2V1) ⊗ V2, dimV1 = 2, dimV2 = 3. One
verifies that Gal(M)o = (sym2SL(V1))⊗SL(V2) and that Gal(M) is contained in
µ9 · Gal(M)o. The homomorphism Gal(M)/Gal(M)o → Out(Gal(M)o) is triv-
ial since the latter group has order two. Thus any direct sum decomposition of
gal(M)-modules is also a decomposition of Gal(M)-modules and of differential
modules. Now one makes the following steps: the dual of [2]⊗ [1, 0] is [2]⊗ [0, 1];
([2]⊗ [1, 0])⊗ ([2]⊗ [0, 1]) contains [2]⊗ [0, 0]; ([2]⊗ [0, 0])⊗ ([2]⊗ [1, 0]) contains
[0]⊗ [1, 0].
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6.3. sl2×sl4 with [1]⊗[1, 0, 0] and similar cases. Let the absolutely irreducible
differential module M , with detM = 1, induce the above case. Write V (M) =
V1 ⊗ V2 with dim V1 = 2, dimV2 = 4. The group Go = Gal(M)o is equal to
SL(V1)⊗SL(V2) has the normalizer G+ = µ8 ·Go and [G+ : Go] = 2. The module
M ⊗ M∗ has a 3-dimensional summand A3 corresponding to [2] ⊗ [0, 0, 0] and
with differential Galois group PSL(V1). Using Section 2, one computes a module
A2 with detA2 = 1 and sym2A2 = A3.

Then A2 ⊗M corresponds to ([0] ⊗ [1, 0, 0]) ⊕ ([2] ⊗ [1, 0, 0]). The first term
produces a direct summand B4. Then M is isomorphic to A2 ⊗ B4 up to multi-
plication by a 1-dimensional module L with L⊗2 = 1.

The following cases can be ‘solved’ in a similar way: sl2 × sp4 with [1]⊗ [1, 0]
and [1]⊗ [0, 1], sl2 × sl5 with [1]⊗ [1, 0, 0, 0].

6.4. sl3×sl3 with [1, 0]l⊗[1, 0]r. This is a rather complicated case. Let M satisfy
det M = 1 and (gal(M), V (M)) = (sl3 × sl3, [1, 0]l ⊗ [1, 0]r). The solution space
V = V (M) has a decomposition V1 ⊗ V2 with dimV1 = dimV2 = 3. The group
Go = Gal(M)o = SL(V1) ⊗ SL(V2) acts in the obvious way. The normalizer G+

of Go in SL(V ) can be seen to be < Go, τ > where τ is defined as follows. Choose
a linear isomorphism σ : V1 → V2, then τ : v1 ⊗ v2 7→ e2πi/18 · (σ−1v2) ⊗ (σv1).
Then τ2 is multiplication by e2πi/9 and τ6 ∈ Go. Thus [G+ : Go] = 6 and
Go ⊂ Gal(M) ⊂ G+.

Consider M⊗M∗. The tensor product ([1, 0]l⊗[1, 0]r)⊗([0, 1]l⊗[0, 1]r) has the
irreducible components: [1, 1]l⊗[0, 0]r, [0, 0]l⊗[1, 1]r, [0, 0]l⊗[0, 0]r, [1, 1]l⊗[1, 1]r.
If τ 6∈ Gal(M), then all components belong to direct summands of M ⊗M∗ and
thus we find differential modules M1,M2 corresponding to the first two terms.

If τ ∈ Gal(M), then τ interchanges the first two terms and τ2 is the identity.
Thus M⊗M∗ has an irreducible summand A of dimension 16, which decomposes
as a direct sum of two components after a quadratic extension of K. This qua-
dratic extension is found as described in Subsection 1.1 part (2).

After, if needed, replacing K by a quadratic extension, we may suppose that
we know the modules M1,M2 corresponding to [1, 1] ⊗ [0, 0] and [0, 0] ⊗ [1, 1].
The method of Section 3 produces, after possibly quadratic extensions of K,
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differential modules N1, N2 of dimension 3 and detNi = 1, such that Mi is the
kernel of the obvious morphism Ni ⊗N∗

i → 1 for i = 1, 2.

We note that Ni is not unique, one may replace it by its dual N−1
i and/or

multiply it by a 1-dimensional differential module L with L⊗3 = 1. Thus, up to
such a 1-dimensional differential module, there are four candidates for the tensor
decomposition M , namely N±1

1 ⊗N±1
2 . For a candidate C one computes whether

the differential module Hom(C, M) has a 1-dimensional summand L such that
L⊗3 = 1. If such L exists then M ∼= C ⊗ L. This solves the problem.

We observe that the finite extension of K, needed (together with two differ-
ential modules of dimension 3) to ‘solve’ M can be found by operations with
Λ2M . The group Gal(M) acts faithfully on the corresponding solution space
([2, 0]l ⊗ [0, 1]r) ⊕ ([0, 1]l ⊗ [2, 0]r). The action of τ on P1, P2, the projections
onto the two factors, can be seen to be τP1 = e2πi/9P2, τP2 = e2πi/9P1. Thus
τ(P1−P2) = −e2πi/9(P1−P2) and there corresponds a 1-dimensional submodule
L of End(Λ2M). Let d > 0 be minimal with L⊗d = 1. Then d divides 18 and L

defines an explicit cyclic extension K+ of K.

6.5. sl2 × sl2 × sl2 with [1]l ⊗ [1]m ⊗ [1]r. Here l, m, r stand for left, middle,
right. This is again a rather complicated case. Consider a differential module
M with det M = 1 which induces the above representation of the Lie algebra of
Gal(M) on V (M). One writes V (M) = V1 ⊗ V2 ⊗ V3 and chooses identifications
ai : C2 → Vi for i = 1, 2, 3. Then Gal(M)o = Go = SL(V1) ⊗ SL(V2) ⊗ SL(V3)
and the normalizer G+ of Go in SL(V (M)) has the form (µ8 · Go) n S3. We
note that [µ8 ·Go : Go] = 4 and that the action of S3 on V (M) is given by: the
permutation π maps v1⊗v2⊗v3 to a1a

−1
π(1)vπ(1)⊗a2a

−1
π(2)vπ(2)⊗a3a

−1
π(3)vπ(3). One

has Go ⊂ Gal(M) ⊂ G+. For convience we write [a; b; c] for the sl2 × sl2 × sl2-
module with [a]l ⊗ [b]m ⊗ [c]r.

The module V (M)⊗ V (M)∗ decomposes into the irreducible factors:
[0; 0; 0], [2; 0; 0], [0; 2; 0], [0; 0; 2], [0; 2; 2], [2; 0; 2], [2; 2; 0], [2; 2; 2]. The group µ8G

o

acts here via its quotient PSL(V1) ⊗ PSL(V2) ⊗ PSL(V3) and S3 permutes the
summands in the obvious way. We consider now the most complicated case
Gal(M) = G+ and leave the other cases to the imagination. Then M ⊗ M∗

has irreducible direct summands of dimensions 1, 9, 27, 27. The summand A of
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dimension 9 has module [2; 0; 0] ⊕ [0; 2; 0] ⊕ [0; 0; 2]. Then A = B1 ⊕ B2 ⊕ B3

where B1, B2, B3 correspond to [2; 0; 0], [0; 2; 0], [0; 0; 2].

Thus ker(∂, End(A)) = CP1 + CP2 + CP3, where Pi is the projection onto Bi

for i = 1, 2, 3. It follows that the differential module End(A) has a summand
corresponding to C(P1 + P2 + P3) and a 2-dimensional summand T correspond-
ing to the S3-invariant subspace {λ1P1 + λ2P2 + λ3P3| λi ∈ C,

∑
i λi = 0}. By

construction, the differential Galois group of T is the group S3 and the Picard-
Vessiot field K+ of T is the field extension of K needed for the decomposition
of M as a tensor product with three factors. The Kovacic algorithm (slightly
changed because S3 6⊂ SL2) computes K+. The terms Ai of the decomposi-
tion K+ ⊗K A = A1 ⊕ A2 ⊕ A3 have differential Galois groups PSL(Vi). Using
Section 2, one computes a module Mi with detMi = 1 and sym2Mi

∼= Ai.
Then K+ ⊗K M is isomorphic to (M1 ⊗M2 ⊗M3) ⊗ L−1 where L is a suitable
1-dimensional module with L⊗4 = 1. The term L is the unique summand of
Hom(K+ ⊗K M, M1 ⊗M2 ⊗M3) of dimension 1.
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