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Abstract: The ‘Equivariant Tamagawa Number Conjecture’ formulated by
Flach and the present author is a natural refinement of the seminal Tama-
gawa Number Conjecture that was originally formulated by Bloch and Kato
and then subsequently extended and refined by Kato and by Fontaine and
Perrin-Riou. We explain how the additional information implicit in this re-
finement entails a variety of explicit predictions concerning both the leading
terms and values of equivariant motivic L-functions and the module struc-
ture of integral motivic cohomology groups. We also discuss several con-
crete applications of this approach in the setting of Artin and Hasse-Weil
L-functions.
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1. Introduction

Let K/k be a finite Galois extension of number fields and set G := Gal(K/k).
For any motive M (in the sense of §4.1) that is defined over k we regard the
motive MK := h0(SpecK) ⊗h0(Spec k) M as defined over k and endowed with
a natural left action of the group ring Q[G] (via the first factor). We write
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ζ(C[G]) for the centre of C[G] and L∗(MK) for the leading term in the Taylor
expansion at s = 0 of the natural ζ(C[G])-valued L-function of MK . Then the
‘Equivariant Tamagawa Number Conjecture’ that is formulated by Flach and the
present author in [23, Conj. 4] predicts for the pair (MK ,Z[G]) an equality of
the form

δ(L∗(MK)) = χ(MK). (1)

Here δ is a canonical homomorphism from the unit group of ζ(R[G]) to the relative
algebraic K-group of the ring extension Z[G] ⊆ R[G] and χ(MK) is an Euler
characteristic that is defined by using virtual objects (in the sense of Deligne)
arising from the various motivic cohomology groups, realisations, comparison
isomorphisms and regulators associated to both MK and its Kummer dual. This
equality refines the seminal ‘Tamagawa Number Conjecture’ that was originally
formulated by Bloch and Kato in [9] and then extended and refined by both Kato
[64, 65] and Fontaine and Perrin-Riou [47].

Flach’s article [45] contains a survey of evidence in support of the Equivariant
Tamagawa Number Conjecture. Our aim in the present article however is to
help explain the interest of the conjecture by describing some general methods
for converting the rather involved conjectural equality (1) into predictions that
are much more explicit in nature. As such, this article is also in part a survey of
known results but in addition contains a variety of results and explicit predictions
that are, as far as we are aware, completely new. These predictions concern Euler
characteristic formulas, restrictions on the structures of natural arithmetic mod-
ules, formulas relating components of the leading term L∗(MK) to the Fitting
ideals of such modules and congruences between components of L∗(MK) that
involve natural algebraic height pairings. Most of the explicit relations we derive
from the conjectural equality (1) will depend on the fact that it is formulated
using structures in MK that are projective with respect to Z[G] rather than a
maximal order in Q[G] (so, in particular, most of the relations that we describe
for Tate motives do not follow from the Tamagawa Number Conjecture for Artin
motives that is described, for example, in [61, §1.2]) and hence do indeed re-
flect consequences of (1) that do not follow from the original ‘non-equivariant’
conjecture of Bloch and Kato.

Our basic approach to deriving explicit consequences of (1) is to abstract exist-
ing results and techniques from special cases to the general setting of ‘augmented
trivialized extensions’ that we introduce in §3. There are several ways in which
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this approach seems to be useful and interesting. Firstly, it shows that a wide
variety of well known, comparatively explicit and hitherto seemingly unrelated
conjectures (including, for example, conjectures formulated by Stark [90, 94],
Gross [56], Chinburg [29, 30, 31], Lichtenbaum [71], Chinburg, Kolster, Pap-
pas and Snaith [33], Brumer, Coates and Sinnott [36], Gross [55], Popescu [82],
Rubin [86], Tate [95] and Mazur and Tate [73]) are manifestations of a single
underlying principle. Secondly, it gives rise to concrete refinements of several
of these much studied conjectures and also to the formulation of new conjec-
tures of a rather concrete nature. These new conjectures include, under certain
hypotheses, Euler characteristic formulas for Tate motives (Remark 6.2.4) and
elliptic curves (Remark 6.2.5), restrictions on the module structure of algebraic
K-groups (Proposition 7.2.5) and Mordell-Weil groups (Remark 7.1.5 and Propo-
sition 7.2.6(i) and (iii)), an interplay between orders of Tate-Shafarevic groups
and orders of vanishing of motivic L-functions (Proposition 7.2.6(ii)) and a ‘strong
main conjecture’ of the kind that Mazur and Tate ask for in [73, Remark after
Conj. 3] (see Remark 8.2.5). Other explicit consequences of the approach de-
veloped here that will be considered in detail elsewhere include the predicted
existence in natural non-abelian contexts of ‘special elements’ in algebraic K-
groups and Mordell-Weil groups that are related to the first derivatives of Artin
and Hasse-Weil L-functions (Remark 5.1.5) and predicted congruences between
higher derivatives of Hasse-Weil L-functions (Remark 9.5.4). Further, modulo
certain standard expectations, our approach applies to motives far more general
than Tate motives and those obtained from elliptic curves (cf. §4.4) and in each
such case our methods should allow the formulation of similarly explicit predic-
tions. The third respect in which our approach is useful is that any evidence
for the explicit consequences of (1) that we derive would also constitute evidence
for the conjectures formulated by Fukaya and Kato in [51] and also for the main
conjecture of non-commutative Iwasawa theory formulated by Coates, Fukaya,
Kato, Sujatha and Venjakob in [35]. Indeed, whilst it is clear that (1) is a con-
sequence of the ‘non-commutative Tamagawa number conjecture’ formulated in
[51], in [28] Venjakob and the present author have shown that the relevant special
case of (1) also follows from (a natural refinement of) the central conjecture of
Coates et al in [35].
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In a little more detail the main contents of this article is as follows. In §2 we
review necessary algebraic preliminaries. In §3 we introduce a notion of ‘aug-
mented trivialized extension’ (or ‘a.t.e.’ for short) and in §4 we prove that in
many natural cases the conjectural equality (1) is equivalent to the vanishing of
the ‘Euler characteristic’ of a suitable a.t.e. In §5 we state our main algebraic re-
sults. These results describe certain explicit consequences of the vanishing of the
Euler characteristic of an arbitrary a.t.e. and are proved in §6-§9 using a suitable
abstraction of arguments that have already been used in special cases by pre-
vious authors. In these sections we also discuss several arithmetic applications
and formulate a variety of new and explicit conjectures (see Remark 5.1.2 for
more details regarding these conjectures). In an attempt to stress the principles
which underlie our general approach we choose to postpone the proofs of several
technical results to the end of the article. Such results include a natural ‘Hasse
Principle’ for morphisms in derived categories (in §10), the answer to a question
posed by Chinburg et al in [33] (in §11) and a detailed study of the conjectural
equality (1) for motives arising from elliptic curves (in §12).

An early version of this article was first circulated in 2004 and the article was
completed in 2007 when the author held a Leverhulme Research Fellowship. It is
a pleasure to thank Adebisi Agboola, Werner Bley, Matthias Flach, Dick Gross,
Kazuya Kato, Masato Kurihara and Jan Nekovář for stimulating discussions. I
am also very grateful to Griff Elder for providing me with a proof of Proposition
7.2.1, to Daniel Macias Castillo for corrections to an earlier version of §9.4 and to
the referee for several helpful remarks. John Tate has provided much inspiration
and generous encouragement to me and it is certainly a very great pleasure to
dedicate this article to him on the occasion of his eightieth birthday.

2. Algebraic Preliminaries

In this section we quickly review some necessary algebraic preliminaries. All
modules are to be considered, unless explicitly stated otherwise, as left modules.

2.1. Basic categories. LetR be any (associative unital) ring. We write PMod(R),
resp. PMod(R)•, for the category of finitely generated projective R-modules,
resp. of bounded complexes of such modules. We also write D(R) for the de-
rived category of complexes of R-modules and Dperf(R) for the full triangulated
subcategory of D(R) consisting of those complexes which are ‘perfect’ (that is,
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isomorphic in D(R) to an object of PMod(R)•). We say that an R-module N is
‘perfect’ if the complex N [0] belongs to Dperf(R).

2.2. Virtual objects. In [39] Deligne proves that there exists a ‘universal de-
terminant functor’ [·]R from the subcategory of PMod(R) where morphisms are
restricted to isomorphisms to the category V (R) of ‘virtual objects’ associated
to PMod(R). We recall that V (R) has a canonical bifunctor (L1, L2) 7→ L1L2

and ‘unit object’ 1R which induce on V (R) the structure of Picard category. In
particular, for each object L of V (R) there is an ‘inverse object’ L−1 in V (R) that
is unique up to unique isomorphism and an isomorphism LL−1 ∼−→ 1R in V (R).
The groups π0(V (R)) and π1(V (R)) are naturally isomorphic to the Grothendieck
group K0(R) of PMod(R) and to the Whitehead group K1(R) of R. We recall
that K1(R) can be described explicitly in terms of generators of the form (M,µ)
where M is any finitely generated projective R-module and µ is any element of
AutR(M) (cf. [37, (38.28)]).

If R is commutative, then V (R) identifies with the category of graded invertible
R-modules (and isomorphisms of such) and [·]R with the determinant functor
described by Knudsen and Mumford in [67] (see §8 for more details).

For further details concerning the general (non-commutative) case and the
extension of [·]R from PMod(R) to Dperf(R) see [23, §2].

2.3. Relative algebraic K-theory. Let Λ be a Dedekind domain of character-
istic zero and write F for its quotient field. We fix a finite dimensional semisimple
F -algebra A and a Λ-order A in A (so A is a subring of A that is finitely generated
as a Λ-module and generates A as an F -module). For any extension field E of F
and any A-module N we set NE := E ⊗F N , regarded as an AE-module in the
natural way.

Following [23] we define V (A, AE) to be the fibre product category

V (A, AE) := V (A)×V (AE) P0 −−−−→ P0y yF2

V (A) F1−−−−→ V (AE)

where P0 is the Picard category with unique object 1P0 and AutP0(1P0) = 0, F2

is the (monoidal) functor sending 1P0 to 1AE and F1([L]A) = [E⊗ΛL]AE for each
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object L of PMod(A). Then V (A, AE) is a Picard category and (from [23, Prop.
2.5]) there is a natural isomorphism of (abelian) groups

ιA,AE : π0(V (A, AE)) ∼= K0(A, AE).

The ‘relative algebraic K-group’ K0(A, AE) used here is defined as a quotient
of the free abelian group on symbols of the form (Q1, Q2;φ) where Q1 and Q2

belong to PMod(A) and φ is an isomorphism of AE-modules E⊗ΛQ1
∼= E⊗ΛQ2

(see [92, p. 215] for an explicit description of the relations used to define this
quotient). For each object X of Dperf(A) and morphism λ : [E ⊗Λ X] → 1AE in
V (AE) we set

[X,λ] := ιA,AE ((X,λ)) ∈ K0(A, AE).

(In Lemma 3.2.1 we give a description of such elements in terms of the explicit
generators of K0(A, AE)).

There is a natural commutative diagram of exact sequences of the form

K1(A) −→ K1(AE)
∂1

A,E−−−→ K0(A, AE)
∂0

A,E−−−→ K0(A) −→ K0(AE)

‖
xιE ι′E

x ‖
x

K1(A) −→ K1(A)
∂1

A,F−−−→ K0(A, A)
∂0

A,F−−−→ K0(A) −→ K0(A)

(2)

(cf. [92, Th. 15.5]). Here the homomorphisms ιE and ι′E are induced by the
scalar extensions φ 7→ E ⊗F φ and (Q1, Q2;φ) 7→ (Q1, Q2;E ⊗F φ) and are both
injective (indeed, we often regard these maps as inclusions). The homomorphism
∂1

A,E sends the class of an automorphism φ of AnE to (An,An;φ) and ∂0
A,E sends

(Q1, Q2;φ) to (Q1) − (Q2) where (Q) denotes the class in K0(A) of each Q in
PMod(A).

2.4. Reduced norms. We write ζ(R) and R× for the centre and unit group of
a ring R. If R is a finite dimensional semisimple algebra over either a global field
or the completion of such a field, then one can compute in K1(R) by using the
injective reduced norm homomorphism NrdR : K1(R) → ζ(R)× (as discussed in
[37, §45A]).

If G is a finite group, then the square of every element of ζ(R[G])× belongs to
im(NrdR[G]) but the inclusion im(NrdR[G]) ⊆ ζ(R[G])× can be strict (see (13)).
However, for each finitely generated subring Λ of Q there always exists a canonical
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‘extended boundary homomorphism’

δΛ : ζ(R[G])× → K0(Λ[G],R[G])

which satisfies
δΛ ◦NrdR[G] = ∂1

Λ[G],R (3)

on K1(R[G]) and is such that ζ(Q[G])× is equal to the full pre-image of K0(Λ[G],
Q[G]) under δΛ (cf. [23, §4.2]). If Λ = Z, then we often abbreviate δΛ to δ.

The Wedderburn decomposition of C[G] induces a canonical decomposition

ζ(C[G]) =
∏

χ∈Irr(G)

C (4)

where Irr(G) is the set of irreducible finite-dimensional C-valued characters of G.
We write x = (xχ)χ for the corresponding decomposition of each element x of
ζ(C[G]).

2.5. Involutions. Let G be a finite group and Λ a finitely generated subring of
Q. If Q belongs to PMod(Λ[G]), then the linear dual Q∗ := HomΛ(Q,Λ) also
belongs to PMod(Λ[G]) when endowed with the natural contragredient G-action.
Hence, one obtains involutions ψ∗ of both K0(Λ[G],R[G]) and K0(Λ[G]) by set-
ting ψ∗((Q1, Q2;φ)) := (Q∗

1, Q
∗
2; HomR(φ,R)−1) and ψ∗(Q) := (Q∗) respectively.

With these definitions it is clear that ∂0
Λ[G],R ◦ ψ

∗ = ψ∗ ◦ ∂0
Λ[G],R.

We write x 7→ x# for the involution of ζ(C[G]) that is induced by the C-linear
anti-involution of C[G] sending each element of G to its inverse. Then (x#)χ = xχ

for each χ ∈ Irr(G), where χ is the contragredient of χ. In addition, [23, Lem.
16] implies that for each x in ζ(R[G])× one has

ψ∗(δΛ(x)) = −δΛ(x#) ∈ K0(Λ[G],R[G]). (5)

2.6. Cohomological-triviality. Let G be a finite group and Λ a Dedekind do-
main. We say that a Λ[G]-module M is ‘cohomologically-trivial’, or occasionally
just ‘c-t’ for short, if for each subgroup J of G and each integer i the Tate co-
homology group Ĥ i(J,M) vanishes. This condition is equivalent to M having
finite projective dimension as a Λ[G]-module and is automatically satisfied in, for
example, each of the following cases:-

• M is a projective Λ[G]-module;
• M = Λ[G]⊗Λ N for any Λ-module N ;



90 David Burns

• M is a finite module of order prime to the order of G;
• The order of G is invertible in Λ.

If M is finitely generated, then it is cohomologically-trivial if and only if it
is perfect (in the sense of §2.1). Further, if M is any such module, and P • is
any object of PMod(Λ[G])• that is isomorphic in D(Λ[G]) to M [0], then the
Euler characteristic (M) :=

∑
i∈Z(−1)i(P i) is an element of K0(Λ[G]) that is

independent of the precise choice of P •.

2.7. Further notation. Unadorned tensor products are to be considered as
taken in the category of Z-modules. If Λ is clear from context, then for any
finite group G and Λ[G]-module N we set N∗ := HomΛ(N,Λ) and N∨ :=
HomΛ(N,Q/Λ), each endowed unless explicitly stated otherwise with contra-
gredient G-action. We also let Ntor denote the Λ-torsion submodule of N and
set Ntf := N/Ntor. We also write NG, resp. NG, for the maximal sub-module,
resp. quotient module, upon which G acts trivially. If E is a number field, resp.
discrete valuation ring, then OE will denote its ring of algebraic integers, resp.
valuation ring. For each prime p we write Z(p) and Zp for the p-localisation of Z
and the ring of p-adic integers respectively. The cardinality of a finite set X is
denoted |X|.

3. 2-Extensions

In this section we introduce the algebraic construction that plays an essential
role in our approach to describing explicit consequences of the conjectural equality
(1).

3.1. The definition. As in §2.3 we fix a Dedekind domain Λ of characteristic
zero and quotient field F , an extension field E of F , a finite dimensional semisim-
ple F -algebra A and a Λ-order A in A.

Given finitely generated A-modules H0 and H1 we shall say that an element ε
of Ext2A(H1,H0) is ‘perfect’ if it can be represented (as a Yoneda extension) by
an exact sequence

0 → H0 →M0 →M1 → H1 → 0

in which the A-modules M0 and M1 are both perfect.
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Perfect extension classes arise naturally in arithmetic in the following way.
If C• is an object of Dperf(A) that is acyclic outside degrees 0 and 1 and ιi :
H i(C•) ∼= H i is an isomorphism of A-modules for both i ∈ {0, 1}, then the
tautological exact sequence

0 → H0(C•) → C0/B0(C•) → Z1(C•) → H1(C•) → 0

(where B0(C•) and Z1(C•) are the boundaries and cocyles of C• in degrees 0
and 1) combines with ι0 and ι1 to specify an element ε of Ext2A(H1,H0). It
is straightforward to check that ε is perfect and also unchanged if one replaces
(C•, ι0, ι1) by any similar triple (C ′•, ι′0, ι

′
1) for which there is an isomorphism

ι : C• ∼= C ′• in Dperf(A) with ι′i ◦H i(ι) = ιi for both i ∈ {0, 1}. We shall say that
any such triple is a ‘representative’ of ε.

If now ε ∈ Ext2A(H1,H0) is perfect and ψ : E ⊗Λ H0 ∼= E ⊗Λ H1 is an
isomorphism of AE-modules, then we set

[ε, ψ] := ιA,AE (([C•]A;ψTriv)) ∈ K0(A, AE) (6)

where (C•, ι0, ι1) is any representative of ε and ψTriv is the composite

[E ⊗Λ C
•]AE →

∏
i∈Z

[H i(E ⊗Λ C
•)](−1)i

AE
→ [E ⊗Λ H

0]AE [E ⊗Λ H
1]−1
AE

→ [E ⊗Λ H
1]AE [E ⊗Λ H

1]−1
AE

→ 1AE

where the first arrow is the canonical morphism that is induced by the semisim-
plicity of the E-algebra AE (for an explicit description of this morphism see [12,
Rem. 3.2]), the second arrow is the morphism induced by the given isomorphisms
ι0 and ι1 and the fact that H i(E ⊗Λ C

•) = 0 if i /∈ {0, 1} and the third arrow is
the morphism induced by ψ. (It is easy to check that this definition of [ε, ψ] is
independent of the precise choice of (C•, ι0, ι1).)

Definition 3.1.1. An augmented E-trivialized extension of A-modules is a triple
τ = (ετ , λτ ,L∗τ ) comprising a perfect 2-extension ετ ∈ Ext2A(H1

τ ,H
0
τ ) of (finitely

generated) A-modules, an isomorphism λτ : E ⊗Λ H
0
τ
∼= E ⊗Λ H

1
τ of AE-modules

and an element L∗τ of ζ(AE)×. If F = Q, then by an a.t.e. of A-modules we
shall mean an augmented R-trivialized extension of A-modules. We define the
Euler characteristic χ(τ) of an augmented E-trivialized extension of A-modules
τ by setting

χ(τ) := [ετ , λτ ]− δΛ(L∗τ ) ∈ K0(A, AE).
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The arithmetical examples of augmented trivialised extensions that are to be
discussed in §4 show that it is reasonable to regard [ετ , λτ ] and δΛ(L∗τ ) as the
‘algebraic’ and ‘analytic’ components of χ(τ).

3.2. An explicit interpretation. The definition of the element [ε, ψ] in (6) in
terms of virtual objects is important both for comparison to the general con-
structions of Flach and the present author in [23] and also for the purposes of
routine calculations using the Euler characteristic formalism developed by Bre-
uning and the present author in [12] and by Breuning in [11]. However, in arith-
metic applications it is also often advantageous to use the following description
of the Euler characteristic of an a.t.e. in terms of explicit generating elements
of K0(Λ[G], F [G]). We note in particular that claim (ii) of the following result
shows that the vanishing of the Euler characteristic of an a.t.e. τ implies that
the element L∗τ satisfies a certain type of congruence relation.

For any G-module N and natural number d we write N 〈d〉 for the direct sum
of d copies of N .

Lemma 3.2.1. Let G be a finite group and Λ a finitely generated subring of Q.
Let τ be an a.t.e. of Λ[G]-modules for which H0

τ is torsion-free.

(i) There exist finitely generated projective Λ[G]-modules P 0 and P 1 lying in
an extension

0 → H0
τ → P 0 d−→ P 1 π−→ H1

τ → 0 (7)

of class ετ and for which

[ετ , λτ ] = (P 0, P 1; ι).

Here ι denotes the composite isomorphism

R⊗Λ P
0 ∼= (R⊗Λ H

0
τ )⊕ (R⊗Λ im(d))

∼= (R⊗Λ H
1
τ )⊕ (R⊗Λ im(d)) ∼= R⊗Λ P

1

where the first and third isomorphisms are induced by a choice of R[G]-
equivariant sections to the surjective homomorphisms R ⊗Λ P 0 →
R⊗Λ im(d) and R⊗Λ P

1 → R⊗Λ H
1
τ that are induced by d and π respec-

tively, and the second isomorphism is (−λτ )⊕ id.
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(ii) Let dτ ∈ {1, 2} be the least strictly positive integer such that (L∗τ )dτ belongs
to the image of NrdR[G]. If dτ ·χ(τ) = 0, then in claim (i) one can choose
P 0 and P 1 so that P 0〈dτ 〉 = P 1〈dτ 〉 is a finitely generated free Λ[G]-module
and in ζ(R[G])× one has

(L∗τ )dτ ≡ NrdR[G]((R⊗Λ P
0〈dτ 〉, ι〈dτ 〉))

modulo the image under NrdR[G] of im(K1(Λ[G]) → K1(R[G])), where
ι〈dτ 〉 is the automorphism of R ⊗Λ P

0〈dτ 〉 that is induced by ι, resp. by
ι⊕ ι, if dτ = 1, resp. dτ = 2.

Proof. We set ε := ετ , λ := λτ and H i := H i
τ for i = 0, 1.

If one computes Ext2Λ[G](H
1,H0) by means of a projective resolution of H1,

then it is clear that one can choose a representative (7) of ε in which P 1 is a finitely
generated free Λ[G]-module (of arbitrarily large rank). Then, having fixed such a
module P 1, the fact that ε is perfect implies that there exists a quasi-isomorphism
of complexes of Λ[G]-modules of the form α : Q• → P • where Q• belongs to
PMod(Λ[G])• and P • denotes the complex P 0 d−→ P 1, where P 0 is placed in degree
0. From the acyclicity of the mapping cone of α one then deduces that P 0 is both
finitely generated and cohomologically-trivial as a G-module. But, since both P 1

and (by assumption) H0 are torsion-free, the exactness of (7) implies that P 0 is
also torsion-free. Thus, by [2, Th. 8], P 0 is a finitely generated projective Λ[G]-
module, as claimed. In addition, the claimed equality [ε, λ] = (P 0, P 1; ι) follows
from results of [12]. Indeed, the element [ε, λ] = ιΛ[G],R[G](([P •]Λ[G];λTriv)) is
equal to the element χΛ[G],R[G](P •, λ) defined in [12, Def. 5.5], whilst (P 0, P 1; ι) is
equal to the element−χold(P •, (−λ)−1) that is defined at the beginning of [12, §6].
The equality [ε, λ] = (P 0, P 1; ι) thus follows upon combining the results of [12, Th.
6.2 and Rem. 6.4] with the fact that χold(P •, (−λ)−1) differs from χold(P •, λ−1)
by the image under ∂1

Λ[G],R of the element (R ⊗Λ H
0,−id) of K1(R[G]). This

completes the proof of claim (i).

To prove claim (ii) we assume that dτ · χ(τ) = 0. Then in K0(Λ[G]) one has
0 = ∂0

Λ[G],R(0) = ∂0
Λ[G],R(dτ · χ(τ)) = ∂0

Λ[G],R(dτ · [ε, λ]) − ∂0
Λ[G],R(δ((L∗τ )dτ )) =

∂0
Λ[G],R(dτ · [ε, λ]) = (P 0〈dτ 〉) − (P 1〈dτ 〉), where the penultimate equality follows

from (3), the exactness of the upper row of (2) and the containment (L∗τ )dτ ∈
im(NrdR[G]) and the last equality from the description of [ε, λ] that is given in
claim (i).
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Using the same argument as in the proof of claim (i), we now choose P 1 to be
a finitely generated free Λ[G]-module of rank at least two. From the existence of
λτ we may deduce that the Q[G]-modules Q⊗ΛH

0
τ and Q⊗ΛH

1
τ are isomorphic

(cf. [37, Exer. 6, p. 139]). In addition, for each prime p the algebra Qp[G] is
semisimple and so we may choose splittings of the exact sequence that results from
applying Qp⊗Λ− to (7): in this way, one finds that Qp⊗ΛP

0 is isomorphic to the
free Qp[G]-module Qp ⊗Λ P

1. Thus, since P 0 is projective, Swan’s Theorem [37,
Th. 32.1] implies that Zp⊗ΛP

0 is a free Zp[G]-module for each prime p ∈ Spec(Λ).
From Jacobinski’s Cancellation Theorem we may therefore deduce that P 0〈dτ 〉 is
isomorphic to P 1〈dτ 〉 as a Λ[G]-module: indeed, the equality (P 0〈dτ 〉) = (P 1〈dτ 〉)
in K0(Λ[G]) implies that P 0〈dτ 〉 is stably isomorphic to P 1〈dτ 〉 and then, since the
Λ[G]-rank of P 0〈dτ 〉 is at least two, this implies that P 0〈dτ 〉 is isomorphic to P 1〈dτ 〉

by [37, (49.3), (51.30)]. Hence we can assume that P 0〈dτ 〉 = P 1〈dτ 〉 is a finitely
generated free Λ[G]-module, as asserted in claim (ii). Further, in this case the
element dτ · (P 0, P 1; ι) is equal to ∂1

Λ[G],R((R⊗ΛP
0〈dτ 〉, ι〈dτ 〉) and so the exactness

of the upper row of (2) implies that if dτ · χ(τ) = 0, then (R ⊗Λ P
0〈dτ 〉, ι〈dτ 〉)

differs from the inverse image of (L∗τ )dτ under the (injective) map NrdR[G] by an
element of im(K1(Λ[G]) → K1(R[G])). It is then clear that the latter condition
is equivalent to the stated congruence. �

Remark 3.2.2. The element (P 0, P 1; ι)

Since the isomorphism ι defined in Lemma 3.2.1(i) involves the homomorphism
d the element (P 0, P 1; ι) depends upon the complex P 0 d−→ P 1 (and the identifi-
cation of its cohomology with H0

τ and H1
τ via the sequence (7)) rather than just

on the modules P 0 and P 1.

4. Arithmetic examples

In this section we show that the algebraic construction of Definition 3.1.1 arises
naturally in interesting arithmetic contexts. At a first reading, the reader may
prefer to look only at the general discussion of §4.1 and at the statements of
Propositions 4.2.2, 4.2.5, 4.2.6 and 4.3.1 (and perhaps also the discussion of §4.4)
and then pass straight on to §5.

We now fix a number field k and an algebraic closure kc of k and set Gk :=
Gal(kc/k). We also fix a finite Galois extension K of k inside kc and set G :=
Gal(K/k).
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4.1. Motives. To formulate the Equivariant Tamagawa Number Conjecture it
is sufficient to regard motives over k as specified by their realisations and motivic
cohomology groups and the usual maps between these groups (that is, by a ‘mo-
tivic structure’ in the sense of Fontaine and Perrin-Riou [47]). In this subsection
we review a few details of this approach, referring any interested reader to [23,
§3] for further details.

If M = hn(X)(r) for a smooth projective variety X over k together with
an integer r and a non-negative integer n, then its realisations are as follows.
A filtered k-space HdR(M) := Hn

dR(X/k) with the natural decreasing filtration
F iHdR(M) := F iHn

dR(X/k) shifted by r; for each prime ` a compatible system of
`-adic representations H`(M) := Hn

ét(k
c ×k X,Q`(r)) of Gk; for each embedding

σ : k → C a Q-Hodge structure Hσ(M) := Hn(σX(C), (2πi)rQ) over either R or
C according to whether σ factors though the inclusion R ⊂ C or not.

For each motive M over k there is a natural left action of Q[G] on the motive
MK := h0(SpecK) ⊗h0(Spec k) M , where the tensor is the tensor product in the
category of motives (so, for example, if M = hn(X)(r) as above, then MK =
hn(K ×k X)(r)). For the realisations one has HdR(MK) = K ⊗k HdR(M) where
G acts in the natural way on K; H`(MK) = (

∏
τ Q`) ⊗Q` H`(M) where τ runs

over the set of k-embeddings K → kc, G acts only on the first factor (via pre-
composition with the embeddings) and Gk acts diagonally on both factors (on the
first factor via post-composition with the embeddings); Hσ(MK) = (

∏
σ′ Q) ⊗Q

Hσ(M) where σ′ runs over all embeddings K → C which restrict to σ on k and
G acts in the natural way on the set of such embeddings σ′.

In now Λ is any finitely generated subring of Q and A any Λ-order in Q[G] that
contains Λ[G], then the approach of [23] leads, in general modulo the validity of
certain standard conjectures, to the definition of a canonical element TΩ(MK ,A)
of K0(A,R[G]). The conjecture ‘ETNC(MK ,A)’ formulated in [23, Conj. 4(iv)]
for the pair (MK ,A) simply asserts that the element TΩ(MK ,A) vanishes. From
the functorial properties of the elements TΩ(MK ,A) it therefore follows that if Λ′

is any finitely generated subring of Q that contains Λ and B any Λ′-order in Q[G]
that contains A, then ETNC(MK ,A) implies ETNC(MK ,B) (and in particular
therefore that ETNC(MK ,Z[G]) implies ETNC(MK ,A) for all such orders A).
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4.2. Tate motives. For each integer r we always abbreviate the ‘Tate motive’
h0(SpecK)(r) to Q(r)K . We recall that for any Λ-order A in Q[G] with Λ[G] ⊆ A

the definition in [25, §3.1] of TΩ(Q(r)K ,A) is unconditional.

Remark 4.2.1. Supporting evidence

Before proceeding, we recall that there is by now a fair amount of evidence
in support of ETNC(Q(r)K ,Z[G]). In particular, this conjecture is known to be
valid in each of the following cases.

• r is any integer, K is any abelian extension of Q and k is any subfield of
K: this is proved by Flach and the present author in [25, Cor. 1.2].

• r = 0, k is an imaginary quadratic field of class number one and G is an
abelian group of order divisible only by primes which split completely in
k/Q: this is proved by Bley in [6, Th. 4.2].

• r = 0 and r = 1, k = Q and K belongs to a certain infinite family of fields
for which G is isomorphic to the Quaternion group of order eight: these
cases follow from results of Flach and the present author in [24, Th. 4.1]
and [25, (1) and Cor. 1.5] and rely heavily on results of Chinburg in [32].

• r = 0, k = Q and K is a particular field for which G is isomorphic to the
alternating group of order twelve: this is the main result of Navilarekallu
in [76, Th. 3].

In addition to the above cases in which ETNC(Q(r)K ,Z[G]) has been verified
completely, Nickel [79] has recently described evidence in favour of the conjecture
in the case that r = 0 and K is a tamely ramified CM Galois extension of a totally
real field k.

We now fix a finite set S of places of k that contains the set S∞ of archimedean
places and also all that ramify in K/k. For each character ψ ∈ Irr(G) we write
LS(ψ, s) for the S-truncated Artin L-function as defined (using the arithmetic
Frobenius!) in [94, Chap. 0, §4]. For each integer r we set L∗K/k,S(r) :=
(L∗S(ψ, r))ψ ∈ ζ(C[G])× where L∗S(ψ, r) is the leading term in the Laurent ex-
pansion of LS(ψ, s) at s = r. Then, since L∗S(ψ, r) is equal to the complex con-
jugate of L∗S(ψ, r) for each character ψ, the element L∗K/k,S(r) actually belongs
to ζ(R[G])×.
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4.2.1. Q(0)K . We write YK,S for the free abelian group on the set S(K) of places
of K which lie above those in S and XK,S for the kernel of the homomorphism
YK,S → Z that sends each element of S(K) to 1. We write OK,S for the subring
of K consisting of those elements that are integral at all places outside S(K) and
O×
K,S for the group of units of OK,S .

Proposition 4.2.2. There exists an a.t.e. of Z[G]-modules τ0 with all of the
following properties:-

• H0
τ0 = O×

K,S, (H1
τ0)tor = Pic(OK,S) and (H1

τ0)tf = XK,S;
• λτ0 is induced by −1 times the Dirichlet regulator map;
• L∗τ0 = L∗K/k,S(0)#;
• χ(τ0) = 0 if and only if ETNC(Q(0)K ,Z[G]) is valid.

Proof. The construction of [22, Prop. 3.1] defines a canonical object ΨS of
Dperf(Z[G]) that is acyclic outside degrees 0 and 1. Indeed, whilst the definition
of ΨS in [22] explicitly mentions the assumption Pic(OK,S) = 0, it is straightfor-
ward to check that if Pic(OK,S) 6= 0, then the methods of [22] define objects ΨS

and Ψ̃S of D(Z[G]) which satisfy all properties described in [22, Prop. 3.1] (with
the exception that in [22, (29)] the term XS is replaced by a G-module which is
a 1-extension of XK,S by Pic(OK,S)) and also lie in exact triangles of the form
[22, (31), (32), (85)].

To define τ := τ0 we first set H i
τ := H i(ΨS) for i = 0, 1 and then let ετ denote

the element of Ext2Z[G](H
1
τ ,H

0
τ ) that is represented by (ΨS , idH0(ΨS), idH1(ΨS)) in

the sense of §3.1. We also define λτ and L∗τ to be as in the statement of the
Proposition. Then [24, (29)] implies that

ψ∗(TΩ(Q(0)K ,Z[G])) = χ(τ0) (8)

and so ETNC(Q(0)K ,Z[G]) is indeed equivalent to the equality χ(τ0) = 0. �

Remark 4.2.3. Weil-étale cohomology

In [18, Rem. 3.7] the 2-extension ετ0 constructed above is interpreted in terms
of Lichtenbaum’s conjectural theory of the ‘Weil-étale cohomology with compact
support’ of Z on Spec(OK,S).

Remark 4.2.4. Tate sequences
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In [16, §2.3] it is shown that the conjectural vanishing of χ(τ0) is equivalent to
the ‘Lifted Root Number Conjecture’ formulated by Gruenberg, Ritter and Weiss
in [58]. In the same direction, Parker [81] has recently shown that the complex
ΨS used in the proof of Proposition 4.2.2 can be interpreted as a ‘Tate sequence’
in the sense described by Ritter and Weiss in [83].

4.2.2. Q(1)K . We fix a finitely generated projective Z[G]-submodule L of OK
such that for each non-archimedean place v in S the exponential map induces a
well defined injective homomorphism expL,v : Lv → K×

v . We let TrL : L → Z
denote the restriction of the trace map TrK/Q : K → Q. We write expL,S for the
composite

∏
v∈S Lv →

∏
v∈SK

×
v → CS(K) where the first arrow is

∏
v∈S expL,v

(with Lv = Kv if v is archimedean), CS(K) is the quotient of the idele class
group of K by the subgroup

∏
v/∈S O

×
Kv

(this quotient is the group belonging to
the S-class formation discussed in [74, Chap. I, §4]) and the second arrow is the
natural projection. We use the isomorphism

λS : R⊗ ker(expL,S) ∼= R⊗Q ker(TrK/Q)

induced by the natural projection
∏
v∈S Lv → R⊗Q K (cf. [13, Lem. 3.1(iii)]).

Proposition 4.2.5. There exists an a.t.e. of Z[G]-modules τ1 with all of the
following properties:-

• (H0
τ1)tor = cok(TrL)∨, (H0

τ1)tf = ker(TrL)∗, (H1
τ1)tor = cok(expL,S)∨ and

(H1
τ1)tf = ker(expL,S)∗;

• λτ1 is equal to the R-linear dual of λS;
• L∗τ1 = L∗K/k,S(1)#;
• If there exists a finite Galois extension K ′ of Q with K ′ complex, K ⊆ K ′

and such that K ′ validates Leopoldt’s conjecture, then χ(τ1) = 0 if and
only if ETNC(Q(1)K ,Z[G]) is valid.

Proof. We recall that [13, Lem. 3.1] defines an object ES(L) of Dperf(Z[G]) and
we set C• := RHomZ(ES(L),Z) and H i

τ1 := H i(C•) for i = 0, 1. It is clear
that C• belongs to Dperf(Z[G]). Also, in each degree i the universal coefficient
spectral sequence gives natural isomorphisms H i(C•)tor

∼= (H−i+1(ES(L))tor)∨

and H i(C•)tf ∼= H−i(ES(L))∗. The explicit descriptions of H0
τ1 and H1

τ1 given
above thus follow from the descriptions of the groups H i(ES(L)) in [13, proof of
Lem. 3.1]. The same argument shows that C• is acyclic outside degrees 0 and
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1 and hence that C• corresponds to a canonical element ετ1 of Ext2G(H1
τ1 ,H

0
τ1).

Thus, if we define λτ1 and L∗τ1 as in the statement of the Proposition, and use
the element TΩ(K/k, 1) = [ES(L), λ−1

S ] + δ(L∗K/k,S(1)) defined in [13, §3.2], then
(5) implies that

ψ∗(TΩ(K/k, 1)) = [ετ1 , λτ1 ]− δ(L∗K/k,S(1)#) = χ(τ1). (9)

The final claim of the Proposition thus follows from the equality TΩ(K/k, 1) =
TΩ(Q(1)K ,Z[G]) that is proved (under the stated hypotheses) by Breuning and
the present author in [14]. �

4.2.3. Q(r)K with r < 0. In this case, for each odd prime ` and integer i = 1, 2 the
Quillen-Lichtenbaum Conjecture predicts the existence of natural isomorphisms
[70, Conj. 2.5]

chi`,r : Z` ⊗K2−i−2r(OK,S) → H i
ét(Spec(OK,S [

1
`
]),Z`(r)), (10)

where K∗(OK,S) denotes Quillen’s K-theory of the ring OK,S . Such homomor-
phisms have been constructed by Soulé [89] and by Dwyer and Friedlander [41]
and proven to be surjective and to have finite kernel. Soulé used higher Chern
class maps, which approximate the maps chi`,r, and Dwyer-Friedlander used étale
K-theory. In the case ` = 2 maps chi2,r as above have been constructed and
studied by Kahn [63] and by Rognes and Weibel [84] and have been shown to be
bijective if, for example, K is totally imaginary (and shown not to be bijective in
general).

In the following result we set Z′ := Z[12 ].

Proposition 4.2.6. Let r be a strictly negative integer. If the Chern class maps
in (10) are bijective for all odd primes `, then there exists an a.t.e. of Z[G]-
modules τr with all of the following properties:-

• If K is totally imaginary, then H0
τr

= K1−2r(OK) and (H1
τr

)tor = K−2r(OK,S)

and (H1
τr

)tf = (
⊕

Hom(K,C)(2πi)
−rZ)Gal(C/R) where in the last term Gal(C/R)

acts diagonally on the direct sum. This description of H0
τr , resp. (H1

τr
)tor,

is also valid in any case for which r ≡ 0, 1 (mod 4), resp. r ≡ 0, 3
(mod 4), and in all cases one has Z′ ⊗ H0

τr
= Z′ ⊗ K1−2r(OK) and Z′ ⊗

(H1
τr

)tor = Z′ ⊗K−2r(OK,S) and Z′ ⊗ (H1
τr

)tf = (
⊕

Hom(K,C)(2πi)
−rZ′)Gal(C/R);

• λτr is induced by −1 times the Beilinson regulator map (as described in
[15]);
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• L∗τr = L∗K/k,S(r)#;
• χ(τr) = 0 if and only if ETNC(Q(r)K ,Z[G]) is valid.

Proof. See §11. �

Remark 4.2.7. The Quillen-Lichtenbaum Conjecture

If ` is odd, then the bijectivity of ch1
`,−1, resp. ch2

`,−1, has been proved by
Levine [69] and Merkuriev and Suslin [75], resp. by Tate [93]. The more recent
(2-adic) work of Kahn [63] and of Rognes and Weibel [84, 85] depends upon the
fundamental work of Voevodsky, Suslin and Rost on the Milnor and Bloch-Kato
conjectures and it seems widely believed that these methods should extend to
prove the bijectivity of chi`,r for all odd `, all strictly negative r and both i = 1, 2.

Remark 4.2.8. Q(r)K with r > 1

If r is any integer with r > 1, then it remains an open problem to construct
an a.t.e. of Z[G]-modules τr for which both L∗τr = L∗K/k,S(r)# and χ(τr) = 0 if
and only if ETNC(Q(r)K ,Z[G]) is valid.

4.3. Elliptic curves. Let E be an elliptic curve that is defined over Q and K

a finite Galois extension of Q for which the Tate-Shafarevic group X(E/K) of E
over K is finite. We set G := Gal(K/Q) and write disc(K) for the discriminant
of K/Q, cond(E) for the conductor of E and Sel(E/K) for the ‘integral Selmer
group’ of E/K that is defined by Mazur and Tate in [73, p. 720]. We recall in
particular that there is a canonical exact sequence of G-modules

0 → X(E/K)∨ → Sel(E/K) → HomZ(E(K),Z) → 0 (11)

where E(K) is the Mordell-Weil group of E/K and therefore also canonical iso-
morphisms Sel(E/K)tor

∼= X(E/K)∨ and Sel(E/K)tf ∼= HomZ(E(K),Z).

We write Sram for the (finite) set of prime divisors of disc(K) and for each
character ψ in Irr(G) we let L∗Sram

(E,ψ, 1) denote the leading term in the Tay-
lor expansion at s = 1 of the Sram-truncated ψ-twisted Hasse-Weil L-function
LSram(E,ψ, s). For each such ψ and each prime ` in Sram we also define, fol-
lowing [49, Chap. IV, §1], a ‘non-ramified characteristic’ element n`,ψ of Qc×

in the following way. We fix a place w of K above ` and write Gw and Iw for
the decomposition and inertia subgroups of w in G and Frw for the Frobenius
automorphism in Gw/Iw. For each χ ∈ Irr(Gw) we fix a representation space Vχ
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of character χ and then for each ψ ∈ Irr(G) we set

n`,ψ :=

det(−Frw | (VresGGwψ
)Iw), if (VresGGwψ

)Iw 6= 0,

1, otherwise.

For each character ψ in Irr(G) we then define a ‘modified Galois-Gauss sum’ by
setting

τ∗(ψ) := τ(ψ)
∏

`∈Sram

n−1
`,ψ

where τ(ψ) is the Galois-Gauss sum defined in [49, Chap. I, §5].

We also set Ω(E) := |
∫
γ+ ω| where γ+ is a generator of the submodule of

H1(E(C),Z) fixed by complex conjugation and ω is a Néron differential.

For each prime ` we write Ẽ` for the reduction of the minimal model of E
at ` and F` for the finite field of cardinality `. If ` divides cond(E), then for
each subfield F of K that is Galois over Q we write c`(E,F ) for the Tamagawa
factor at ` of the pair (h1(E/F )(1),Z[Gal(F/Q)]) (for a definition of this non-
zero integer see §12.1). For each prime ` in Sram we also write P`(E,K) for the
element of ζ(Q[G])× given by the value at s = 1 of the equivariant Euler factor
(L`(E,ψ, s))ψ at `, where ψ runs over Irr(G).

Proposition 4.3.1. Let E be an elliptic curve defined over Q. Let K be a finite
totally real Galois extension of Q and Λ a finitely generated subring of Q in which
2 is invertible and assume that at least one of the following conditions (A) and
(B) is satisfied.

(A) Any prime which either divides the degree of K/Q, or divides both disc(K)
and cond(E), is invertible in Λ.

(B) All of the following conditions (i)-(v) are satisfied:
(i) The degree of K/Q is a power of an odd prime p;
(ii) disc(K) is coprime to both p and cond(E);
(iii) p - |E(Q)tor|

∏
`|disc(K) |Ẽ`(F`)|;

(iv) p - cond(E);
(v) p -

∏
`|cond(E) c`(E,Q).

Set G := Gal(K/Q). Then then there exists an a.t.e. of Λ[G]-modules τE,Λ
with all of the following properties:-
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• One has

H0
τE,Λ

= (Λ⊗ E(K))⊕ (Λ⊗ (E(K)tor)∨)⊕ c0E,Λ(K),

H1
τE,Λ

= (Λ⊗ Sel(E/K))⊕ c1E,Λ(K)

where c0E,Λ(K) and c1E,Λ(K) are finite Λ[G]-modules which satisfy the fol-
lowing condition: if q is any prime divisor of |c0E(K)||c1E(K)|, then either
q divides disc(K)cond(E)

∏
`|cond(E) c`(E,K) or for some prime divisor

` of disc(K) the image of P`(E,K) in ζ(Qq[G])× ∼= K1(Qq[G]) does not
belong to the image of the natural map K1(Zq[G]) → K1(Qq[G]). If con-
dition (B) is satisfied, then also p does not divide |E(K)tor|, |c0E,Λ(K)| or
|c1E,Λ(K)|.

• λτE,Λ is induced by the Néron-Tate height pairing.
• (L∗τE,Λ)ψ = Ω(E)−ψ(1)τ∗(ψ)L∗Sram

(E,ψ, 1) for each ψ in Irr(G).
• χ(τE,Λ) vanishes if and only if ETNC(h1(E/K)(1),Λ[G]) is valid.

Proof. See §12. �

Remark 4.3.2. Conditions (A) and (B)

The significance of condition (A) in Proposition 4.3.1 is that, for a given el-
liptic curve E, it shows that our techniques can be used to derive explicit con-
sequences of ETNC(h1(E/K)(1),Λ[G]) for any totally real Galois extension K/Q
for which X(E/K) is finite. The more restrictive condition (B) is important
because, for a given E, it shows that there are natural families of extensions
K/Q for which our techniques can be used to derive explicit consequences of
ETNC(h1(E/K)(1),Z[12 ][G]) and working with Z[12 ][G] (rather than with Λ[G]
for a ring Λ in which |G| is invertible) is essential, for example, when dealing
with the G-valued height pairings we discuss in §9. In this regard we reassure the
reader that for any given elliptic curve E there are infinitely many primes p and
extensions K/Q which together satisfy all of the conditions listed in (B) above.
To explain this we first fix a finite set Σ of primes which does not contain any
prime divisor of cond(E) and consider the condition

(iii′) p - 2|E(Q)tor|
∏
`∈Σ |Ẽ`(F`)|.

Then it is clear that conditions (iii′), (iv) and (v) rule out only finitely many p.
Hence, if we fix any prime p that does not belong to Σ and satisfies conditions
(iii′), (iv) and (v), then one can ensure that all of the stated conditions (i)-(v) are
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satisfied by simply choosing K to be any totally real Galois extension of Q which
is of p-power degree, unramified at p and such that disc(K) is divisible only by
primes that belong to Σ.

Remark 4.3.3. Supporting evidence

If K = k, then ETNC(h1(E/K)(1),Z[Gal(K/k)]) is equivalent to the famous
conjecture of Birch and Swinnerton-Dyer for E/K (cf. [44, §5.4]). In the general
case it is known that ETNC(h1(E/K)(1),Z[Gal(K/k)]) is a consequence of (a
natural refinement of) the ‘main conjecture of non-commutative Iwasawa theory’
formulated by Coates, Fukaya, Kato, Sujatha and Venjakob in [35] (cf. the Intro-
duction). In addition to these compatibilities, Navilarekallu [77] and Bley [7] have
recently obtained convincing numerical evidence in support of the conjecture for
certain elliptic curves E and certain non-abelian Galois extensions of k = Q.

4.4. General motives. Modulo certain standard expectations the statement of
ETNC(MK ,Λ[G]) should be equivalent to the vanishing of the Euler character-
istic of a natural a.t.e. of Λ[G]-modules in far greater generality than already
described in §4.2 and §4.3.

To explain this we first recall that to each motive M over k (in the sense of
§4.1) there is associated a finite dimensional ‘motivic cohomology’ Q-vector space
H0(k,M). For example, if M = hn(X)(r) as in §4.1 then one possible explicit
definition of this space is

H0(k,M) :=

(CHr(X)/CHr(X)hom∼ 0)⊗Q, if n = 2r

0, otherwise

and for more general M one expects that an appropriate generalisation will be
given by defining H0(k,M) to be the group of homomorphisms from Q to M in
the ‘category of mixed motives over k’.

Then, since the category of motives Mk over k is expected to be semisimple,
for any M in Mk there should exist an object M̂ of Mk such that the spaces
H0(k, M̂) and H0(k, M̂∗(1)) both vanish and M decomposes in Mk as a direct
sum

M ∼= Q(0)dimQ(H0(k,M))
k ⊕Q(1)dimQ(H0(k,M∗(1)))

k ⊕ M̂.

In view of Propositions 4.2.2 and 4.2.5, when attempting to explicate the state-
ment of ETNC(MK ,Λ[G]), one can therefore assume that both of the spaces
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H0(k,M) and H0(k,M∗(1)) vanish. There are then two methods of applying the
approach of §3 to such M . The first extends the approach of §4.2.3 to motives
whose tangent space is also trivial (see Remark 11.3.1). The second generalises
the approach of §4.3. Indeed, whilst the latter approach extends directly to (suit-
able) abelian varieties, it can also be generalised to critical motives by replacing
the ‘finite support cohomology’ used in §12 by the ‘Selmer complexes’ introduced
by Nekovář in [78]. This aspect of the theory will be developed further elsewhere.

5. Statement of the main algebraic results

Motivated by the discussion of §4, and in particular by the final assertions
in each of Propositions 4.2.2, 4.2.5, 4.2.6 and 4.3.1, in §6-§9 we will investigate
certain explicit consequences of the vanishing of the Euler characteristic of an
arbitrary a.t.e. In each such case we will also discuss the (conjectural) conse-
quences which thereby arise in the context of the arithmetic examples described
in §4.

5.1. The general case. For the reader’s convenience, in the next result we
collect together some of the main algebraic results that are to be proved in §6-§9.

Theorem 5.1.1. Let Λ be any finitely generated subring of Q and τ an augmented
R-trivialized extension of Λ[G]-modules for which the Euler characteristic χ(τ)
vanishes. Then each of the following assertions is valid.

(i) (Algebraicity) Fix a Λ[G]-module homomorphism ϕ : H1
τ → H0

τ for which
Q ⊗Λ ϕ is bijective. For each character ψ ∈ Irr(G) choose a complex
vector space Vψ which realizes ψ and set

Aτϕ(ψ) := (L∗τ,ψ)−1detC((C⊗R λτ ) ◦ (C⊗Λ ϕ)|HomC[G](Vψ,C⊗Λ H
1
τ )) ∈ C×.

Then for every ψ ∈ Irr(G) and ω ∈ AutQ(C) one has

Aτϕ(ω ◦ ψ) = ω
(
Aτϕ(ψ)

)
.

(ii) (Explicit Euler characteristics) Assume the notation of claim (i). Fix
ψ ∈ Irr(G) and let E be any subfield of C which is both Galois and of finite
degree over Q and also large enough to ensure that, with OE,Λ denoting
the integral closure of Λ in E, there exists a finitely generated OE,Λ[G]-
lattice Tψ for which the C[G]-module C ⊗OE,Λ Tψ is isomorphic to Vψ.
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Then Aτϕ(ψ) belongs to E× and in E one has

Aτϕ(ψ)OE,Λ = charOE,Λ(cok(ϕ(ψ)))charOE,Λ(ker(ϕ(ψ)))−1, (12)

where ϕ(ψ) denotes the composite homomorphism

HomOE,Λ(Tψ,OE,Λ ⊗Λ H
1
τ )G

∑
g∈G g−−−−−→ HomOE,Λ(Tψ,OE,Λ ⊗Λ H

1
τ )
G

−→ HomOE,Λ(Tψ,OE,Λ ⊗Λ H
0
τ )
G.

Here the last arrow is induced by ϕ and for any finite OE,Λ-module F we
write charOE,Λ(F) for the (unique) ideal of OE,Λ which at every maximal

ideal p of OE,Λ satisfies charOE,Λ(F)p = (pOE,p)
lengthOE,p (Fp).

(iii) (Galois module structures) If Ψ0 and Ψ1 are any finitely generated cohomo-
logically-trivial Λ[G]-modules lying in a 2-extension

0 → H0
τ → Ψ0 → Ψ1 → H1

τ → 0

of class ετ , then the Euler characteristic

χ(ετ ) := (Ψ0)− (Ψ1) ∈ K0(Λ[G])

depends only upon the signs of L∗τ,κ for each irreducible complex symplectic
character κ of G. In particular, one has
• χ(ετ ) = 0 if G has no irreducible complex symplectic characters,
• 2χ(ετ ) = 0,
• (ψ∗ − 1)(χ(ετ )) = 0 where ψ∗ is the involution of K0(Λ[G]) defined

in §2.5.
(iv) (Strong main conjectures) Let G be abelian, let eτ denote the sum over

all primitive idempotents of C[G] which annihilate C⊗Λ H
0
τ and set

Lτ := L∗τeτ .

Then the element Lτ belongs to Q[G] and if (H0
τ )tor has finite projective

dimension as a Λ[G]-module one also has

FitΛ[G]((H
0
τ )tor) · Lτ = FitΛ[G](H

1
τ ).

Here we write FitΛ[G](M) for the (initial) Fitting ideal of any finitely
generated Λ[G]-module M .

(v) (Explicit congruences) Let G,Lτ and Λ be as in claim (iv), fix an element
α of FitΛ[G]((H0

τ )tor) and set

nτ := dimQ(Q⊗Λ H
1
τ,G).
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Then, with IG,Λ denoting the augmentation ideal of Λ[G], one has

α · Lτ ∈ InτG,Λ

and the image of α · Lτ in Λα ⊗Λ I
nτ
G,Λ satisfies

α · Lτ ≡ discα(τ) (mod Λα ⊗Λ I
nτ+1
G,Λ )

where Λα and discα(τ) are the subring of Q and the algebraic discriminant
defined in (32) and (33) respectively.

Remark 5.1.2. New conjectures

In §6-§9 we will see that the predictions obtained by combining Theorem 5.1.1
with the results of §4 and the assumed validity of (relevant cases of) the Equi-
variant Tamagawa Number Conjecture recover a wide variety of well-known, and
hitherto seemingly unrelated, conjectures that have been much studied in the
literature. In several interesting cases we will also find that they give rise to
new conjectures that are of a very explicit nature. For example, as far as we are
aware, the conjectures discussed in each of Remarks 5.1.5, 6.2.4 (with τ = τ1),
6.2.5, 7.1.5, 8.2.4, 8.2.5, 8.2.6, 9.5.3 and 9.5.4 and in Propositions 7.2.3(ii), 7.2.5
and 7.2.6(ii) and (iii) are new.

Remark 5.1.3. The ETNC

The arguments in §6 will show that if one applies Theorem 5.1.1 in the setting
of the examples of §4, then the relations described in claims (i) and (ii) follow
from the validity of ETNC(MK ,M) where M is any choice of maximal order in
Q[G] with Λ[G] ⊆ M (see Remark 6.2.2). However, the relations described in
claims (iii), (iv) and (v) of Theorem 5.1.1 and also in Theorem 5.2.1(iv) below
are in general finer and do not follow from ETNC(MK ,M) for any such M.

Remark 5.1.4. Explicit congruences

Since IG,Λ ⊆ Λ[G], the containment α ·Lτ ∈ InτG,Λ in Theorem 5.1.1(v) provides
an explicit bound on the ‘denominator’ of the element Lτ of Q[G]. Further,
given the definition of discα(τ) in §9.2, the displayed congruence in Theorem
5.1.1(v) amounts to an explicit congruence relation between L∗τeτ and L∗τeG,
where eG := |G|−1

∑
g∈G g is the idempotent of Q[G] associated to the trivial

character of G. With further effort, our approach shows that the vanishing of
χ(τ) implies more general congruence relations between the different components



Equivariant Leading Terms and Values 107

of L∗τ (cf. Remark 9.5.4) and it seems likely that such congruences can be related
to congruences of the form studied by Kato in [66].

Remark 5.1.5. Special elements

We use the notation of Theorem 5.1.1(i) and (ii), we assume that ψ is such that
dimC(HomC[G](Vψ,C⊗Λ H

1
τ )) = 1 and we fix an element x of H1

τ,tf . In this case
it can be shown that if the equality Aτϕ(ω ◦ψ) = ω(Aτϕ(ψ)) of Theorem 5.1.1(i) is
valid for every ω ∈ AutQ(C), then for each element d of E, there exists a unique
element ε(ψ, x, d) of Q⊗Λ H

0
τ such that in R⊗Λ H

1
τ one has

λτ (ε(ψ, x, d)) =
∑

γ∈Gal(E/Q)

∑
g∈G

γ(d)(γ ◦ ψ)(g)L∗τ,ψγ · g(x).

It can also be shown that the validity of (12) translates into an explicit upper
bound on the denominator of d which ensures that ε(ψ, x, d) belongs to the sub-
lattice H0

τ,tf of Q⊗Λ H
0
τ . Now if τ = τ0 as in Proposition 4.2.2, k = Q and ψ has

degree one, then the elements ε(ψ, x, d) of H0
τ,tf = (O×

K,S)tf can be constructed
explicitly by using cyclotomic elements. Also, if τ = τ0, k = Q and ψ is an
odd irreducible complex representation of Gal(Qc/Q) that is of degree two, then
it is shown in [20] that this approach specialises to predict the existence of the
‘Stark units’ in O×

K that are discussed by Stark in [90] and conjectured to exist
by Chinburg in [30, Conj. 1]. However, if the degree of the irreducible character
ψ is greater than one and τ = τr as in Proposition 4.2.6, resp. τ = τE,Λ as in
Proposition 4.3.1, then the predicted existence of special elements ε(ψ, x, d) of
Z[12 ]⊗H0

τ,tf = Z[12 ]⊗K1−2r(OK)tf , resp. of H0
τ,tf = Λ⊗E(K)tf , which are explic-

itly related to derivatives of L-functions via the above displayed formula is new
and will be considered in detail elsewhere. For another prediction concerning the
existence of modules of ‘special elements’ see Theorem 5.2.1(iv)(c).

5.2. The cyclic case. In addition to the general results described in Theorem
5.1.1 in certain special cases our methods can also give structural information of
a very explicit nature. To state an example we recall that if G is abelian, then a
Zp[G]-module is said to be a ‘permutation lattice’ if it is isomorphic to a module
of the form ⊕

J

Zp[G/J ]〈nJ 〉

where J runs over the subgroups of G, each nJ is a non-negative integer and
Zp[G/J ]〈nJ 〉 denotes the direct sum of nJ copies of Zp[G/J ].
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We recall that if A is an order in Q[G], then a finitely generated A-module
N is said to be ‘locally-free’ if for every prime p the associated Zp ⊗ A-module
Zp ⊗N is free (and of rank independent of p).

For each subgroup J of G we write eJ for the idempotent |J |−1
∑

g∈J g of Q[G].

Theorem 5.2.1. Let G be a cyclic group of p-power order for some prime p

and Λ a finitely generated subring of Q in which p is not invertible. Let τ be an
a.t.e. of Λ[G]-modules and set H i := H i

τ for i = 0, 1. Assume that H0
tor is a

cohomologically-trivial G-module and that for every non-trivial subgroup J of G
the module of coinvariants Zp ⊗Λ H

1
J is torsion-free.

(i) Then Zp ⊗Λ H
0
tf is a permutation lattice.

(ii) The endomorphism ring EndQ[G](H0
tf) is generated over Λ[G] by the set

{eJ : J ≤ G and H0
tf = (H0

tf)
J}.

(iii) The following conditions are equivalent:-
(a) dimC(eχ(C⊗Λ H

0)) is independent of χ ∈ Hom(G,C×);
(b) dimC(eχ(C⊗Λ H

1)) is independent of χ ∈ Hom(G,C×);
(c) H0

tf is a locally-free Λ[G]-module;
(d) H0 is a cohomologically-trivial G-module;
(e) H1 is a cohomologically-trivial G-module;
(f) H0

tf is a locally-free EndQ[G](H0
tf)-module.

(iv) Assume that the conditions of claim (iii) are satisfied and that the Euler
characteristic χ(τ) vanishes.
(a) In K0(Λ[G]) one has (H0) = (H1).
(b) Let Λ′ be a finitely generated subring of Q which contains Λ and is

such that Λ′ ⊗Λ H
0
tor and Λ′ ⊗Λ H

1
tor both vanish. Then the Λ′[G]-

modules Λ′ ⊗Λ H
0 and Λ′ ⊗Λ H

1 are isomorphic.
(c) Let d be the (common) rank of the free Q[G]-modules Q ⊗Λ H

0 and
Q⊗ΛH

1. If the G-module H1
tor is cohomologically-trivial, then there

exists a free rank one Λ[G]-submodule E of ∧dΛ[G]H
0
tf which satisfies

both

Z(p) ⊗Λ (∧dR[G]λτ )(E) = Z(p) ⊗Λ (L∗τ · FittΛ[G](H
0
tor) ∧dΛ[G] H

1
tf)

and

Z(p) ⊗Λ AnnΛ[G]((∧dΛ[G]H
0
tf)/E) = Z(p) ⊗Λ FittΛ[G](H

1
tor).
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6. Algebraicity and explicit Euler characteristic formulas

In this section we prove claims (i) and (ii) of Theorem 5.1.1 and also discuss
arithmetic applications of these results in the setting of the examples described
in §4. The argument in this section is an abstraction of that given by Flach and
the present author in [24, §3] and is therefore closely modelled on previous work
of Stark, Tate [94], Gross [56], Chinburg [32] and Chinburg, Kolster, Pappas and
Snaith [33].

At the outset we recall that a character κ in Irr(G) is said to be ‘symplectic’
if the subfield Eκ of C that is generated by the values of κ is totally real and
EndR[G](Vκ) is isomorphic to the division ring of real Quaternions. We let Sym(G)
denote the subset of Irr(G) consisting of those characters that are symplectic.
Then, if E is either Q or R, the decomposition (4) combines with the Hasse-
Schilling-Maass Norm Theorem to imply that

im(NrdE[G]) = ζ(E[G])× ∩

 ∏
κ∈Sym(G)

R×
>0 ×

∏
κ∈Irr(G)\Sym(G)

(EκR)×

 (13)

where R×
>0 is the multiplicative group of strictly positive real numbers (cf. [37,

(7.48)]).

For typographic simplicity, in this section we shall usually omit explicit refer-
ence to the finitely generated ring Λ which occurs in Theorem 5.1.1, preferring
instead to write OE in place of OE,Λ and ⊗ in place of ⊗Λ etc.

6.1. The proof of Theorem 5.1.1(i). The existence of the isomorphism λτ

implies that the Q[G]-modules Q ⊗ H0
τ and Q ⊗ H1

τ are isomorphic (cf. the
proof of Lemma 3.2.1(ii)). We may therefore fix a G-module homomorphism
ϕ : H1

τ → H0
τ for which Q⊗ ϕ is bijective.

For each ψ ∈ Irr(G) we define Aτϕ(ψ) ∈ C× as in Theorem 5.1.1(i).

Lemma 6.1.1. The element χ(τ) belongs to K0(Λ[G],Q[G]) if and only if for
every ψ ∈ Irr(G) and ω ∈ AutQ(C) one has

Aτϕ(ω ◦ ψ) = ω
(
Aτϕ(ψ)

)
. (14)
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Proof. In view of the explicit description of im(NrdR[G]) given by (13), the Weak
Approximation Theorem guarantees the existence of an element ξ of ζ(Q[G])×

with

ξL∗τ ∈ im(NrdR[G]). (15)

We fix such an element ξ, set x := ξL∗τ and define y = (yψ)ψ in ζ(C[G])× by
setting

yψ := detC((C⊗R λτ ) ◦ (C⊗ ϕ)|HomC[G](Vψ,C⊗H1
τ ))

for every ψ ∈ Irr(G). Then δ(L∗τ ) − δ(x) = −δ(ξ) belongs to K0(Z[G],Q[G]).
Also y = NrdR[G](ŷ) where ŷ ∈ K1(R[G]) corresponds to the automorphism
λτ ◦ (R⊗ ϕ) of R⊗H1

τ and so [16, Prop. 1.2.1(iv)] implies that [ετ , λτ ]− δ(y) =
[ετ , ϕ−1] ∈ K0(Λ[G],Q[G]). Hence one has χ(τ) ∈ K0(Λ[G],Q[G]) if and only if
δ(yx−1) ∈ K0(Λ[G],Q[G]). Now δ(yx−1) belongs to K0(Λ[G],Q[G]) if and only if
ξyx−1 belongs to ζ(Q[G]) = H0(AutQ(C), ζ(C[G])). But for each ψ ∈ Irr(G) one
has (ξyx−1)ψ = Aτϕ(ψ) and so the AutQ(C)-invariance of ξyx−1 is thus equivalent
to the validity of the equalities (14), as claimed. �

6.2. The proof of Theorem 5.1.1(ii). We assume henceforth that χ(τ) belongs
to K0(Λ[G],Q[G]). We fix a field E and lattice Tψ as in Theorem 5.1.1(ii) and
set O := OE . Then Lemma 6.1.1 implies that Aτϕ(ψ) belongs to E× and we now
investigate the fractional O-ideal that is generated by this element.

For each ψ ∈ Irr(G) we define a left, resp. right exact functor on Λ[G]-modules
X by setting

Xψ := HomO(Tψ,O ⊗X)G,

Xψ := HomO(Tψ,O ⊗X)G

(where the Hom-sets are endowed with the natural diagonal G-action). For each
map of Λ[G]-modules f : X → Y we write fψ and fψ for the induced maps of
O-modules Xψ → Yψ and Xψ → Y ψ respectively. There is a natural map of
O-modules

Xψ
t(X,ψ)−−−−→ Xψ (16)

that is induced by multiplication with
∑

g∈G g on HomO(Tψ,O⊗X) and this map
is bijective if X is perfect because HomO(Tψ,O ⊗X) is then a cohomologically-
trivial G-module.



Equivariant Leading Terms and Values 111

As in Theorem 5.1.1(ii), for each ψ ∈ Irr(G) we define ϕ(ψ) to be the composite
homomorphism

H1
τ,ψ

t(H1
τ ,ψ)−−−−−→ H1,ψ

τ
ϕψ−−→ H0,ψ

τ

and then define an Euler characteristic ideal by setting

qτϕ(ψ) := charO(cok(ϕ(ψ)))charO(ker(ϕ(ψ)))−1.

Proposition 6.2.1. If χ(τ) belongs to K0(Λ[G],Q[G]), then it has finite order
if and only if for each ψ ∈ Irr(G) one has

Aτϕ(ψ)O = qτϕ(ψ). (17)

Proof. By replacing E by a larger field if necessary, we may (and will) assume
henceforth that for every ψ ∈ Irr(G) the lattice Tψ is a free O-module.

We write M for the maximal O-order
∏
ψ∈Irr(G) EndO(Tψ) in the E-algebra∏

ψ∈Irr(G) EndE(E ⊗O Tψ) ∼= E[G]. Setting T ∗ψ := HomO(Tψ,O), the theory of
Morita equivalence implies that the functor (

∏
ψ∈Irr(G) T

∗
ψ)⊗M− induces a group

isomorphism K0(M, E[G]) ∼−→
⊕

Irr(G)K0(O, E) (cf. [23, (37)]). In addition, for
each perfect Z[G]-module X one has a canonical isomorphism of O-modules

T ∗ψ ⊗M (M⊗O[G] (O ⊗X)) ∼−→ Xψ

and so [23, Lem. 11d)] implies that an element of K0(Λ[G],Q[G]) has finite order
if and only if for every ψ ∈ Irr(G) it belongs to the kernel of the homomorphism

ρψ∗ : K0(Λ[G],C[G]) → K0(O,C)

that is induced by the functor X 7→ Xψ. It therefore suffices for us to prove that
equality (17) is equivalent to the containment χ(τ) ∈ ker(ρψ∗ ).

To do this we set λ := λτ and ε := ετ , fix a representative of ε of the form
(Ψ•, id, id) where Ψi is finitely generated and of finite projective dimension for
i ∈ {0, 1} and Ψi = 0 for i /∈ {0, 1}, and we set H i := H i

τ and tiψ := t(Ψi, ψ) for
i ∈ {0, 1}. Then the tautological exact sequence

0 → H0 ι−→ Ψ0 d−→ Ψ1 π−→ H1 → 0 (18)
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induces a commutative diagram of O-modules with exact rows

Ψ0
ψ

dψ−−−−→ Ψ1
ψ

πψ−−−−→ H1
ψ −−−−→ 0

t0ψ

y t1ψ

y
0 −−−−→ H0,ψ ιψ−−−−→ Ψ0,ψ dψ−−−−→ Ψ1,ψ.

Both vertical morphisms here are bijective since the Λ[G]-modules Ψi are perfect
and so the diagram gives rise to an exact sequence of O-modules

0 → H0,ψ ιψ−→ Ψ0,ψ dψ−→ Ψ1,ψ
πψ◦(t1ψ)−1

−−−−−−→ H1
ψ → 0. (19)

Now O is a Dedekind domain and so any finitely generated O-module N is perfect
and hence gives rise to an associated object [N ] of the category V (O). If X and
Y are any finitely generated O-modules and µ : C ⊗O X → C ⊗O Y is any
isomorphism of C-modules, then we set

clO(X,Y ;µ) := ([X][Y ]−1, µtriv) ∈ K0(O,C)

where µtriv is the morphism [C⊗O X][C⊗O Y ]−1 → 1C induced by µ.

Hence, if we set tψ := C⊗O t(H1
τ , ψ), then the exact sequence (19) implies

ρψ∗ ([ετ , λ]) = [Ψψ,•, λψ] = clO(H0,ψ,H1
ψ; tψ,−1 ◦ λψ)

= − clO(H0
ψ,H

0,ψ; tψ) + clO(H0
ψ,H

1
ψ;λψ). (20)

Here Ψψ,• is the complex Ψ0,ψ dψ−→ Ψ1,ψ where the first term occurs in degree 0
and the cohomology is identified with H0,ψ and H1

ψ via the maps in (19), and the
third equality follows from the defining relations of K0(O,C).

To deduce the claimed result from (20) we use the natural isomorphism ι : IO ∼=
K0(O,C) where IO denotes the multiplicative group of invertible O-modules in
C. (This isomorphism is induced by the exact sequence (2) with A = O and
E = C together with the canonical isomorphisms K1(C) ∼−→ C× and K1(O) ∼−→
O×). Indeed, one has ι(qτϕ(ψ)) = clO(H1

ψ,H
0
ψ; C⊗O ϕψ) + clO(H0

ψ,H
0,ψ; tψ) and
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ι(O · L∗τ,ψ) = ρψ∗ (L∗τ ) and hence (20) implies that

ρψ∗ (χ(τ))

=ρψ∗ ([ετ , λτ ])− ρψ∗ (L∗τ )

=(ι(qτϕ(ψ)) + ρψ∗ ([ετ , λτ ]))− ι(qτϕ(ψ))− ρψ∗ (L∗τ )

= clO(H1
ψ,H

1
ψ;λψ ◦ (C⊗O ϕψ))− ι(qτϕ(ψ))− ι(O · L∗τ,ψ)

=ι((L∗τ,ψ)−1detC((C⊗R λ) ◦ (C⊗ ϕ)|HomC[G](Vψ,C⊗H1)) · qτϕ(ψ)−1)

=ι(Aτϕ(ψ) · qτϕ(ψ)−1).

Thus (17) is valid if and only if χ(τ) belongs to ker(ρψ∗ ), as required. �

Remark 6.2.2. Maximal orders

If M is any maximal Λ-order in Q[G] with Λ[G] ⊆ M, then K0(Λ[G],Q[G])tor
is the kernel of the natural homomorphism K0(Λ[G],Q[G]) → K0(M,Q[G]) [24,
Lem. 11d)] and TΩ(MK ,M) is the image of TΩ(MK ,Λ[G]) under this homomor-
phism [24, Th. 4.1]. From (8), (9), Lemma 11.1.2 and (60) it therefore follows
that, in the context of §4, the relations described in Theorem 5.1.1(i) and (ii) are
consequences of ETNC(MK ,M).

Remark 6.2.3. Degree zero components

If ψ is such that HomC[G](Vψ,C⊗H1
τ ) = 0, then (14) implies that Aτϕ(ψ)−1 =

L∗τ,ψ belongs to E×. In addition, since in this case both H0,ψ
τ and H1

τ,ψ are finite

O-modules, one has qτϕ(ψ) = charO(H0,ψ
τ )charO(H1

τ,ψ)−1 and hence (17) simplifies
to give an equality of fractional O-ideals

L∗τ,ψ · O = charO(H0,ψ
τ )−1charO(H1

τ,ψ).

Remark 6.2.4. Tate motives

• If τ = τ0 as in Proposition 4.2.2, then it is clear that (14) is equivalent to the
main conjecture of Stark at s = 0 (as reformulated by Tate in [94, Chap. I, Conj.
5.1]) and that (17) is equivalent to the ‘Strong-Stark Conjecture’ formulated by
Chinburg in [29, Conj. 2.2], and hence also to a special case of the conjecture
formulated by Lichtenbaum in [71]. In recent work of Johnston and the present
author [27] it has also been shown that in this case the equality (17) gives rise to
a natural Stickelberger-type theorem for non-abelian extensions.
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• If τ = τ1 as in Proposition 4.2.5, then [13, Prop. 3.6(i)] combines with (9)
to show that (14) is equivalent to the main conjecture of Stark at s = 1 (as
reformulated by Tate in [94, Chap. I, Conj. 8.2]). However, in this context the
(conjectural) equality (17) is new.

• If τ = τr with r < 0 as in Proposition 4.2.6, then (14) is easily shown to
be equivalent to the main conjecture formulated by Gross in [56] (cf. also [33,
Conj. 6.7]). In addition, in §11 we will show that (17) is in this case a refinement
of the conjecture formulated by Chinburg, Kolster, Pappas and Snaith in [33,
Conj. 6.12]. The final claim of Proposition 4.2.6 thus shows that [33, Conj. 6.12]
is a consequence of ETNC(Q(r)K ,Z[G]). This observation answers the question
posed by Chinburg et al [33, top of p. 357] of how their conjecture [33, Conj.
6.12] is related to Tamagawa number conjectures.

Remark 6.2.5. Elliptic curves

We assume the notation and hypotheses of §4.3 and fix a character ψ in Irr(G).
For each Z[G]-moduleN we writeNψ andNψ in place of (Λ⊗ZN)ψ and (Λ⊗ZN)ψ
respectively.

• The rank zero case. Assume first that L(E,ψ, 1) 6= 0. Then [23, Conj. 4(ii)]
for the pair (h1(E/K)(1),Q[G]) implies that E(K)ψ (and hence also Sel(E/K)ψ)
is finite. Thus E(K)ψ = (E(K)tor)ψ and so if p is any prime ideal of O which
does not divide the order of E(K)tor, then Op⊗OE(K)ψ vanishes. Hence Remark
6.2.3 combines with Proposition 4.3.1 to imply that if [23, Conj. 4(ii)] is valid for
the pair (h1(E/K)(1),Q[G]), if ETNC(h1(E/K)(1),Λ[G]) is valid and if X(E/K)
is finite, then Sel(E/K)ψ is finite and for all prime ideals p as above one has

valp(Ω(E)−ψ(1)τ∗(ψ)LSram(E,ψ, 1)) = lengthOp
(Op ⊗O Sel(E/K)ψ).

This explicit formula is in the same spirit as the predictions made by Coates,
Fukaya, Kato, Sujatha and Venjakob in [35, Cor. 5.10]. In particular, it should
be possible to obtain numerical evidence in support of the above formula by using
the kind of techniques developed by Dokchister and Dokchister in [40].

• The higher rank case. If L(E,ψ, 1) = 0, then the statements of Theorem
5.1.1(i) and (ii) with τ = τE,Λ can be interpreted as asserting the existence of
elements of Λ ⊗Z E(K) that are related (via the Néron-Tate height pairing) in
a precise way to the value at s = 1 of an appropriate derivative of L(E,ψ, s).
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Numerical evidence in favour of such predictions has recently been obtained by
Fearnley and Kisilevsky [43] and Bley [7].

7. Explicit module structures

In this section we prove both Theorem 5.1.1(iii) and Theorem 5.2.1 and also
discuss several explicit arithmetic applications of these results.

7.1. The general case. In this section we prove Theorem 5.1.1(iii). To this
end we recall that the image of the connecting homomorphism ∂0

Λ := ∂0
Λ[G],R in

diagram (2) is equal to the locally-free class group Cl(Λ[G]) of Λ[G] (as discussed,
for example, in [37, §49]). We also set

χ(ετ ) := ∂0
Λ([ετ , λτ ])

and

w(τ) := ∂0
Λ(δΛ(L∗τ )).

We recall (from §2.6) that each finitely generated cohomologically-trivial Λ[G]-
moduleN gives rise (via a choice of projective resolution) to an associated element
(N) of K0(Λ[G]). In particular, one has

χ(ετ ) = (Ψ0)− (Ψ1) (21)

where Ψ0 and Ψ1 are any finitely generated cohomologically-trivial Λ[G]-modules
lying in any representative (18) of the class ετ .

Before stating the next result we note that, in terms of the description (13),
one knows that L∗τ,κ belongs to R× for each κ in Sym(G) (as L∗τ ∈ ζ(R[G])×).

Proposition 7.1.1. If χ(τ) belongs to ker(∂0
Λ), then all of the following claims

are valid.

(i) χ(ετ ) depends only upon the sign of L∗τ,κ for each κ in Sym(G). In par-
ticular, if L∗τ,κ is strictly positive for each such κ, then χ(ετ ) = 0.

(ii) If Sym(G) is empty, then χ(ετ ) = 0.
(iii) 2χ(ετ ) = 0.
(iv) (ψ∗ − 1)χ(ετ ) = 0 with ψ∗ the involution of K0(Λ[G]) defined in §2.5.
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Proof. It is clear that χ(τ) belongs to ker(∂0
Λ) if and only if

χ(ετ ) = w(τ) ∈ Cl(Λ[G]). (22)

To prove claim (i) it therefore suffices to prove that w(τ) is determined by the
signs of L∗τ,κ for each κ in Sym(G) (and is trivial if none of these numbers
L∗τ,κ is negative). To show this we choose ξ ∈ ζ(Q[G])× satisfying (15). Then
δΛ(ξL∗τ ) = ∂1

Λ[G],R(Nrd−1
R[G](ξL

∗
τ )) ∈ im(∂1

Λ[G],R) = ker(∂0
Λ) and so the explicit

description of δΛ in [23, §4.2] implies that w(τ) = −δΛ(ξ) = −
∑

p∈Spec(Λ) δp(ξ)
where, for each such p, we write δp for the natural composite homomorphism
ζ(Q[G])× ↪→ ζ(Qp[G])× ∼= K1(Qp[G]) → K0(Zp[G],Qp[G]) ⊂ K0(Λ[G],Q[G]),
where the isomorphism is given by the bijective reduced norm map NrdQp[G].

We next recall the idelic descriptions of K0(Λ[G],Q[G]) and Cl(Λ[G]). To
do so, we write Jf (ζ(Q[G])) for the group of elements (up)p ∈

∏
p ζ(Qp[G])×

(product over all primes p in Spec(Λ)) such that up ∈ ζ(Zp[G])× for almost
all p. We regard ζ(Q[G])× as embedded diagonally inside Jf (ζ(Q[G])) and
let Nrd(Uf (Λ[G])) denote the subgroup of Jf (ζ(Q[G])) consisting of those el-
ements (up)p with up ∈ NrdQp[G](im(K1(Zp[G]) → K1(Qp[G]))) for all primes
p ∈ Spec(Λ). Then there is a commutative diagram

Jf (ζ(Q[G]))
Nrd(Uf (Λ[G]))

h−−−−→ K0(Λ[G],Q[G])yπ y∂0
Λ[G],Q

Jf (ζ(Q[G]))
im(NrdQ[G])Nrd(Uf (Λ[G]))

c−−−−→ Cl(Λ[G]),

where π is the natural projection map and h and c are the isomorphisms described
in [37, 49.17]. In terms of this diagram one has

∑
p δp(ξ) = h(ξ) and so w(τ) =

−c(ξ).

The equality (13) (with E = Q) makes it clear that the class c(ξ) depends
only upon the sign of the real number ξκ for each symplectic character κ ∈
Sym(G), and in conjunction with (15) further implies that, for each such κ, one
has ξκL∗τ,κ > 0. This proves both claims (i) and (ii).

In a similar way, claim (iii) is a consequence of the fact that the square of any
element of ζ(Q[G])× belongs to ker(∂0

Λ ◦ δΛ).

Finally we note that if ξ is any element of ζ(Q[G])×, then ψ∗(c(ξ)) = −c(ξ#)
(see §2.5) and so claim (iv) simply follows from the fact that (ξ#)κ = ξκ = ξκ for
each κ in Sym(G). �
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Remark 7.1.2. Explicit structural restrictions

Claims (ii) and (iii) of Proposition 7.1.1 combine with locally-free cancellation
to constitute strong restrictions on the structures of the Λ[G]-modules Ψ0 and Ψ1

in (21). For example, if we assume (as we may) that Ψ1 is a finitely generated free
Λ[G]-module and choose a resolution of Ψ0 of the form 0 → P → F → Ψ0 → 0
where F is a finitely generated free Λ[G]-module, then the relation described in
claim (ii), resp. (iii), of Proposition 7.1.1 would imply that the Λ[G]-module P ,
resp. P ⊕ P , is free.

Remark 7.1.3. Tate motives

We assume the notation of §4.2. Then L∗K/k,S(t) belongs to im(NrdR[G]) for
each strictly positive integer t and hence, for each integer t ≤ 0, the functional
equation of Artin L-functions implies that the question of whether L∗K/k,S(t)
belongs to im(NrdR[G]) is determined by the signs of epsilon constants at elements
of Sym(G) (this was first observed by Chinburg in [29]). This fact combines with
the argument of Proposition 7.1.1(i) to show that w(τr) is equal to 0, resp. to
the Cassou-Noguès-Fröhlich root number class w(K/k) defined in [31, p. 358], if
r ≥ 1, resp. r ≤ 0.

• If S is large enough to ensure Pic(OK,S) vanishes, then [22, Prop. 3.5]
implies that χ(ετ0) is equal to the element Ω(K/k, 3) defined by Chinburg in
[29, 31]. Thus χ(τ0) belongs to ker(∂0

Z) if and only if the ‘Ω3-Conjecture’ of loc.
cit. is valid for K/k.

• From (9) and [13, the proof of Prop. 3.6(ii)] one has χ(ετ1) = ψ∗(Ω(K/k, 1))
where Ω(K/k, 1) is the element defined by Chinburg in [31]. Thus χ(τ1) belongs
to ker(∂0

Z) if and only if the ‘Ω1-Conjecture’ of loc. cit. is valid for K/k.

• If r < 0, then χ(ετr) is equal to the element Ω−r(K/k) defined by Chinburg
et al in [33] (see §11 for a proof of this fact). Thus χ(τr) belongs to ker(∂0

Z) if and
only if the conjectural equality Ω−r(K/k) = w(K/k) discussed in [33, Question
1.3] and [34] is valid.

Remark 7.1.4. Classical Galois module theory

Set χloc(ετ1) := ψ∗([ετ1 , λτ1 ]) + [ετ0 , λτ0 ]. Recall also that if K/k is at most
tamely ramified, then the Z[G]-module OK is projective (by Noether’s Theorem).
Now the descriptions of χ(ετ0) and χ(ετ1) in Remark 7.1.3 combine with results of
Chinburg in [31] to imply that if K/k is at most tamely ramified, then the element
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∂0
Z(χloc(ετ1)) = ψ∗(χ(ετ1)) +χ(ετ0) is equal to UK/k := (OK)− [k : Q] · (Z[G]). In

this special case therefore, the predictions obtained by combining Propositions
4.2.2, 4.2.5 and 7.1.1 (for τ = τ0 and τ = τ1) recover the result that UK/k = 0
if Sym(G) = ∅, resp. that 2 · UK/k = 0, resp. that UK/k = ψ∗(UK/k). The last
three results are due to M. Taylor and are amongst the central results of classical
Galois module theory (for more details see, for example, [49, Chap. I, §6]). The
element χloc(ετ1) is also itself of some independent interest and there is by now
an extensive theory related to it (cf. [1, 8, 10, 87]).

Remark 7.1.5. Elliptic curves

Using the notation and hypotheses of Proposition 4.3.1 we set τ := τE,Λ. We
assume that Sym(G) is empty (as is automatically satisfied if, for example, |G|
is odd) so that Proposition 7.1.1(ii) shows ETNC(h1(E/K)(1),Λ[G]) implies that
χ(ετ ) vanishes. If now ` is any prime in Spec(Λ) which does not divide the order
of either E(K)tor, c

0
E,Λ(K) or c1E,Λ(K), then the conjectural vanishing of χ(ετ )

implies the existence of an exact sequence of finitely generated Z(`)[G]-modules
of the form

0 → Z(`) ⊗ E(K) → F → F → Z(`) ⊗ Sel(E/K) → 0,

where F is free. This shows, for example, that if ETNC(h1(E/K)(1),Λ[G]) is valid
and X(E/K) is finite, then for each such ` the Z(`)[G]-module Z(`) ⊗ Sel(E/K)
admits a presentation with the same number of generators and relations.

7.2. The case of p-groups. We assume throughout this section that G is a
group of p-power order for some prime p. We first prove Theorem 5.2.1 and
then discuss explicit arithmetic applications of this result in the context of the
examples described in §4.

We always abbreviate ‘cohomologically-trivial’ to ‘c-t’.

7.2.1. The proof of Theorem 5.2.1. In this subsection we assume the notation
and hypotheses of Theorem 5.2.1. Thus G is cyclic and p ∈ Spec(Λ).

At the outset we note that for each subgroup J of G the Tate cohomology group
Ĥ−1(J,H1) is a finite group of p-power order (which is trivial if J is the trivial
group) and hence identifies with a finite submodule of Zp ⊗Λ H

1
J . Hence, our

hypothesis that Zp ⊗Λ H
1
J is torsion-free for each non-trivial subgroup J implies

that Ĥ−1(J,H1) vanishes for all subgroups J .
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When considered in conjunction with the Tate cohomology of any sequence
of the form (18) this fact implies (since the G-modules Ψ0 and Ψ1 in (18) are
c-t) that Ĥ1(J,H0) = 0 for all J . But, since J is cyclic, its Tate cohomology
is periodic of order 2 and hence one also has Ĥ−1(J,H0) = 0. Finally, using
the assumption that the G-module H0

tor is c-t, we deduce from the tautological
exact sequence 0 → H0

tor → H0 → H0
tf → 0 that Ĥ−1(J,H0

tf) vanishes for each
subgroup J of G.

To prove Theorem 5.2.1(i) we need only therefore apply the following result
with N = Zp ⊗Λ H

0
tf .

Proposition 7.2.1. Let G be a cyclic group of p-power order and N a finitely
generated torsion-free Zp[G]-module. Then N is a permutation lattice if and only
if for every non-trivial subgroup J of G the group Ĥ−1(J,N) vanishes.

Proof. This is a consequence of a more general result of Yakovlev in [97] and can
also be proved directly [42]. �

At this stage we know that there is an isomorphism of Zp[G]-modules of the
form

Zp ⊗Λ H
0
tf
∼=
⊕
J≤G

Zp[G/J ]〈nJ 〉 (23)

for certain non-negative integers nJ .

To prove Theorem 5.2.1(ii) we write A for the Λ-order of Q[G] that is generated
over Λ[G] by the idempotents {eJ : J ≤ G and H0

tf = (H0
tf)

J} and M for the
(unique) maximal Λ-order in Q[G]. We also note that, since H0

tf is a finitely
generated Λ[G]-module, the ring B := EndQ[G](H0

tf) is a Λ-order in Q[G] that
contains Λ[G]. Hence one has A ⊆ B ⊆ M and so it suffices to prove that
Zq ⊗Λ B ⊆ Zq ⊗Λ A for all primes q in Spec(Λ).

If q 6= p, then Zq ⊗Λ A = Zq ⊗Λ M = Zq[G] and so there is nothing to
prove. To deal with the case q = p we use the fact that Zp ⊗Λ M is generated
over Zp[G] by the idempotents {eJ : J ≤ G} (cf. [5, §2.2, Lem. 2]). Indeed,
with this description, it is straightforward to check that Zp ⊗Λ A is the maximal
subring of Zp ⊗Λ M which preserves the right hand side of (23) (with respect
to the natural multiplication action). Hence the isomorphism (23) implies that
Zq ⊗Λ B ⊆ Zq ⊗Λ A, as required.



120 David Burns

Next we consider Theorem 5.2.1(iii). The isomorphism C ⊗R λτ : C ⊗Λ H
0 ∼=

C⊗ΛH
1 of C[G]-modules shows that the properties (iii)(a) and (iii)(b) are equiv-

alent. Now dimC(eχ(C ⊗Λ H
0)) is independent of χ if and only if C ⊗Λ H

0 is
a free C[G]-module, or equivalently (by [37, Exer. 6, p. 139]) that Qq ⊗Λ H

0

is a free Qq[G]-module for any (and therefore every) prime q ∈ Spec(Λ). This
makes it clear both that (iii)(c) implies (iii)(a) and, given the isomorphism (23),
that (iii)(a) is itself equivalent to asserting that Zp⊗ΛH

0
tf is a free Zp[G]-module.

Also, if Zp ⊗Λ H
0
tf is a free Zp[G]-module, then Q ⊗Λ H

0
tf is a free Q[G]-module

and hence Qq ⊗Λ H
0
tf is a free Qq[G]-module for all primes q 6= p. But for any

q 6= p the ring Zq[G] is regular so Zq ⊗Λ H
0
tf is a projective Zq[G]-module and

hence [37, Th. 32.1] implies that Zq ⊗Λ H
0
tf is a free Zq[G]-module. Thus (iii)(a)

implies (iii)(c).

Now property (iii)(c) implies that H0
tf is c-t and hence, since H0

tor is (by as-
sumption) also c-t, that H0 is itself c-t. On the other hand, the isomorphism
(23) makes it clear that if the module H0, and hence also Zp ⊗Λ H

0
tf , is c-t, then

Zp ⊗Λ H
0
tf is a free Zp[G]-module. Hence (iii)(c) is equivalent to (iii)(d).

Since the modules Ψ0 and Ψ1 in the exact sequence (18) are both c-t, it is also
clear that H0 is c-t precisely when H1 is c-t and hence that properties (iii)(d)
and (iii)(e) are equivalent.

Next we note that (iii)(c) implies (iii)(f). Indeed, if H0
tf is a locally-free Λ[G]-

module, then EndQ[G](H0
tf) = Λ[G] and so (iii)(f) is clear. To complete the proof

of Theorem 5.2.1(iii) it is thus enough to prove that (iii)(f) implies (iii)(a). But
if H0

tf is a locally-free EndQ[G](H0
tf)-module, then C⊗ΛH

0
tf is a free C[G]-module

and so (iii)(a) is clear.

We now consider Theorem 5.2.1(iv). We therefore assume that the (equiv-
alent) conditions of claim (iii) are valid. Then claim (iv)(a) follows directly
upon combining Proposition 7.1.1(ii) with equality (21) and the fact that, since
all modules in the exact sequence (18) are finitely generated and c-t, one has
(Ψ0)− (Ψ1) = (H0)− (H1) in K0(Λ[G]).

If Λ′ is as in (iv)(b), then (iv)(a) implies that (Λ′ ⊗Λ H
0
tf) = (Λ′ ⊗Λ H

1
tf) in

K0(Λ′[G]). But (iii) implies that Λ′ ⊗Λ H
0
tf and Λ′ ⊗Λ H

1
tf are locally-free Λ′[G]-

modules (of the same rank). Hence, by locally-free cancellation [37, (49.3)], the
Λ′[G]-modules Λ′ ⊗Λ H

0 = Λ′ ⊗Λ H
0
tf and Λ′ ⊗Λ H

1 = Λ′ ⊗Λ H
1
tf are isomorphic.

This proves claim (iv)(b).
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We defer the proof of Theorem 5.2.1(iv)(c) to §8.3.

7.2.2. Arithmetic applications. Before describing some arithmetic applications of
Theorem 5.2.1 we record the following useful result.

Lemma 7.2.2. Let G be a group of p-power order.

(i) For each intermediate field F of K/k we write τF,0 for the a.t.e. that is
described in Proposition 4.2.2 with K/k replaced by F/k. Then for each
subgroup J of G there is a canonical isomorphism of Zp[G/J ]-modules
Zp ⊗ (H1

τK,0
)J ∼= Zp ⊗H1

τ
KJ,0

.
(ii) The same assertions are valid if in claim (i) one replaces τ0 by either

τr for a strictly negative integer r (as in Proposition 4.2.6) or τE,Λ for
an elliptic curve E (as in Proposition 4.3.1), where in the latter case we
use the fact that if the pair (K/Q, E) satisfies either condition (A) or
condition (B) of Proposition 4.3.1, then so does the pair (KJ/Q, E) for
any subgroup J of G.

Proof. For each subgroup J we write ΨKJ ,S for the object of Dperf(Z[G/J ]) that
occurs in the proof of Proposition 4.2.2 with K/k replaced by KJ/k. Then there
is a canonical ‘projection formula’ isomorphism Z[G/J ] ⊗L

Z[G] ΨK,S
∼= ΨKJ ,S in

D(Z[G/J ]) (cf. [22, Lem. 11]). Also, since H i(ΨK,S) = 0 for all i > 1, there is
a canonical isomorphism of G/J-modules H1(ΨK,S)J ∼= H1(Z[G/J ]⊗L

Z[G] ΨK,S).
Claim (i) thus follows from the fact that the construction of Proposition 4.2.2
gives H1

τK,0
= H1(ΨK,S) and H1

τ
KJ,0

= H1(ΨKJ ,S).

Claim (ii) is proved by a very similar argument. Indeed, if τ = τr as in
Proposition 4.2.6, then the same assertions as in claim (i) follow from the explicit
construction of τ in §11 and the fact that for each prime p there is a ‘projection
formula’ isomorphism in D(Zp[G/J ]) of the form

Zp[G/J ]⊗L
Zp[G] RHomZp(RΓc(OK,S [

1
p
],Zp(r)),Zp[−2])

∼= RHomZp(RΓc(OKJ ,S [
1
p
],Zp(r)),Zp[−2]).

Lastly, if τ = τE,Λ is as in Proposition 4.3.1, then the required isomorphisms are
a consequence of the explicit construction of τ at the end of §12 and the fact that
for any subgroup J of G the definition of the complex RΓf (Q,Zp[G]⊗Zp Tp(E))
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via (54) ensures that there is a natural isomorphism in D(Zp[G/J ]) of the form

Zp[G/J ]⊗L
Zp[G] RΓf (Q,Zp[G]⊗Zp Tp(E)) ∼= RΓf (Q,Zp[G/J ]⊗Zp Tp(E)).

�

7.2.3. Q(0)K .

Proposition 7.2.3. Let G be a group of p-power order and write S for the (finite)
set of places of k comprising S∞ and those places which ramify in K/k.

(i) Assume G is cyclic and that p does not divide either |k×tor| or |Pic(OKJ ,S)|
for any non-trivial subgroup J of G. Then (O×

K,S)tf is a locally-free Z[G]-
module if and only if there exists a unique place of k which ramifies in
K/k and the decomposition subgroup of this place is equal to G.

(ii) Assume that p is odd and that there exists a unique place of k which rami-
fies in K/k and that the decomposition subgroup of this place is equal to G.
If p does not divide |Pic(Ok,S)|, then the G-modules O×

K,S and Pic(OK,S)
are both c-t. If ETNC(Q(0)K ,Z[G]) is also valid, then in K0(Z[G]) one
has

(O×
K,S)− |S∞| · (Z[G]) = (Pic(OK,S)).

In particular, if Λ is any finitely generated subring of Q for which both
Λ ⊗ (O×

K,S)tor and Λ ⊗ Pic(OK,S) vanish, then Λ ⊗ O×
K,S is a free Λ[G]-

module of rank |S∞|.

Proof. Let τ denote the a.t.e. τ0 defined in Proposition 4.2.2.

We first assume the hypotheses of claim (i). Then, since G is a p-group and
the order of k×tor is prime to p, the order of K×

tor = H0
τ,tor is also prime to p.

In addition, Lemma 7.2.2(i) implies that the torsion subgroup of (H1
τ )J is iso-

morphic to Pic(OKJ ,S) for each subgroup J of G and so the stated hypotheses
imply that τ satisfies the hypotheses of Theorem 5.2.1. From Theorem 5.2.1(iii)
it therefore follows that (O×

K,S)tf = H0
τ,tf is a locally-free Z[G]-module if and

only if dimC(eχ(C⊗H1
τ )) = dimC(eχ(C⊗XK,S)) is independent of χ. But every

archimedean place splits completely in K/k (since the condition p - |k×tor| im-
plies that |G| is odd) and so the explicit structure of XK,S makes it clear that
dimC(eχ(C ⊗ XK,S)) is independent of χ precisely when there exists a unique
place of k which ramifies in K/k and the decomposition subgroup of this place is
equal to G. This proves claim (i).



Equivariant Leading Terms and Values 123

Next we assume the hypotheses stated in the first two sentences of claim (ii).
Then, since p is odd, all archimedean places of k split completely in K/k and
so H1

τ,tf = XK,S is a free Z[G]-module of rank |S∞|. This fact combines with
Lemma 7.2.2(i) to imply that (Zp ⊗ Pic(OK,S))G = Zp ⊗ (H1

τ,tor)G is isomorphic
to Zp ⊗ (H1

τ )G,tor = Zp ⊗ Pic(Ok,S) = 0 and so Nakayama’s Lemma implies that
Zp⊗Pic(OK,S) = 0. It is thus clear that the G-module H1

τ,tor = Pic(OK,S) is c-t.
Since H1

τ,tf is a free G-module it follows that H1
τ is also c-t. By considering Tate

cohomology of the sequence (18) this then implies that H0
τ = O×

K,S is c-t.

We now assume in addition that ETNC(Q(0)K ,Z[G]) is valid. Then Proposi-
tion 4.2.2 shows that χ(τ) = 0 and so, by the same argument as used to prove The-
orem 5.2.1(iv)(a), we deduce that 0 = (H0

τ )− (H1
τ ) = (H0

τ )− (H1
τ,tor)− (H1

τ,tf) =
(O×

K,S)− (Pic(OK,S))−|S∞|(Z[G]) in K0(Z[G]). This is the equality in claim (ii).

Lastly, we fix a ring Λ as in the statement of claim (ii). Then Λ ⊗ O×
K,S is a

torsion-free c-t Λ[G]-module and Q⊗O×
K,S is isomorphic to the free Q[G]-module

Q ⊗ XK,S . Taken together, these facts imply that Λ ⊗ O×
K,S is a locally-free

Λ[G]-module (cf. the proof of Lemma 3.2.1). But the displayed equality in claim
(ii) induces an equality (Λ⊗O×

K,S) = |S∞|(Λ[G]) in K0(Λ[G]) and so locally-free
cancellation implies that Λ⊗O×

K,S is indeed a free Λ[G]-module of rank |S∞|. �

Remark 7.2.4. Explicit unit structures

Let p be an odd prime and K a p-power degree abelian extension of k = Q in
which precisely one (non-archimedean) prime ` ramifies. Then G := Gal(K/Q)
is necessarily cyclic, the inertial subgroup of ` is equal to G and for any subgroup
J of G the unique place of KJ above ` is principal. Further, it is known that
the cardinality of Pic(OKJ ,S) = Pic(OKJ ) is coprime to p (cf. [48]) and that
ETNC(Q(0)K ,Z[G]) is valid (see Remark 4.2.1). Proposition 7.2.3(ii) therefore
specialises to imply that (O×

K,S)−(Z[G]) = (Pic(OK)) in K0(Z[G]). This equality
recovers the result of Fröhlich in [50, Th. 5] and the same approach also gives
analogous results in the case that k is an imaginary quadratic field of class number
one.

7.2.4. Q(r)K with r < 0.

Proposition 7.2.5. Let p be an odd prime and G a group of p-power order. Let
S denote the (finite) set of places of k comprising S∞ and those places which
ramify in K/k.
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Fix a strictly negative integer r and assume that the Chern class maps in (10)
are bijective for all odd primes `. Let s1 and s2 denote the number of real and
complex places of k respectively and set dk,r := s2 + 1

2(1 + (−1)r)s1.

If p does not divide |K−2r(Ok,S)|, then the G-modules K1−2r(OK) and K−2r(OK,S)

are both c-t. Further, if ETNC(Q(r)K ,Z[G]) is valid, and we set Z′ := Z[12 ], then
in K0(Z′[G]) one has

(Z′ ⊗K1−2r(OK))− dk,r · (Z′[G]) = (Z′ ⊗K−2r(OK,S)).

In particular, if Λ is any finitely generated subring of Q which contains Z′ and is
such that both Λ⊗K1−2r(OK)tor and Λ⊗K−2r(OK,S) vanish, then Λ⊗K1−2r(OK)
is a free Λ[G]-module of rank dk,r.

Proof. Let τ denote the a.t.e. τr defined in Proposition 4.2.6.

We note first that no archimedean place ramifies in K/k (since |G| is odd) and
hence that Z′ ⊗ H1

τ,tf = (
⊕

Hom(K,C)(2πi)
−rZ′)Gal(C/R) is a free Z′[G]-module

of rank dk,r. This fact combines with Lemma 7.2.2(ii) to imply that (Zp ⊗
K−2r(OK,S))G = Zp⊗(H1

τ,tor)G is isomorphic to Zp⊗(H1
τ )G,tor = Zp⊗K−2r(Ok,S)

= 0 and so Nakayama’s Lemma implies Zp ⊗ (H1
τ,tor) ∼= Zp ⊗ K−2r(OK,S) van-

ishes. It is thus clear that the G-module H1
τ,tor, and hence also K−2r(OK,S), is

c-t. Since H1
τ,tf is also c-t we deduce that H1

τ is itself c-t. By considering Tate
cohomology of the sequence (18) this then implies that K1−2r(OK) is also c-t.

We now assume that ETNC(Q(r)K ,Z[G]) is valid. Then Proposition 4.2.6 im-
plies that χ(τ) vanishes and so, by the same argument as used to prove Theorem
5.2.1(iv)(a), one has equalities 0 = (Z′ ⊗ H0

τ ) − (Z′ ⊗ H1
τ ) = (Z′ ⊗ H0

τ ) − (Z′ ⊗
H1
τ,tor)− (Z′ ⊗H1

τ,tf) = (Z′ ⊗K1−2r(OK))− (Z′ ⊗K−2r(OK,S))− dk,r · (Z′[G]) in
K0(Z′[G]). This is the displayed equality in the Proposition. Also, the final as-
sertion of the Proposition can be deduced from this equality in just the same way
that the final assertion of Proposition 7.2.3(ii) was deduced from the displayed
equality in that result. �

7.2.5. Elliptic curves. In this section we assume the hypotheses and notation of
Proposition 4.3.1. In particular, we assume that condition (B) of Proposition
4.3.1 is satisfied and take (as we may in this case) Λ = Z′ := Z[12 ].
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Proposition 7.2.6. Under the above conditions we further assume that G is a
cyclic group of p-power order and that p does not divide the order of X(E/KJ )
for any non-trivial subgroup J of G.

(i) Then the Zp[G]-module Zp ⊗ E(K) is a permutation lattice.
(ii) If [23, Conj. 4(ii)] is valid for the pair (h1(E/K)(1),Q[G]), then as χ

varies over Hom(G,C×), the order of vanishing of L(E,χ, s) at s = 1 is
a decreasing function of the order of χ. Further, the order of vanishing of
L(E,χ, s) at s = 1 is independent of χ if and only if E(K)tf is a locally-
free Z[G]-module and if this is the case, then p does not divide the order
of X(E/K).

(iii) Assume that [23, Conj. 4(ii)] is valid for the pair (h1(E/K)(1),Q[G]) and
that the order of vanishing of L(E,χ, s) at s = 1 is independent of χ.
Then each of the Z′[G]-modules Z′ ⊗ E(K),Z′ ⊗ X(E/K), c0E,Z′(K) and
c1E,Z′(K) is both finitely generated and c-t. In addition, if the statement
of ETNC(h1(E/K)(1),Z′[G]) is valid, then in K0(Z′[G]) one has

(1− ψ∗)(Z′ ⊗ E(K)) = (Z′ ⊗X(E/K))− (c0E,Z′(K)) + (c1E,Z′(K))

where ψ∗ is the involution of K0(Z′[G]) defined in §2.5. In particular, if
Λ is any finitely generated subring of Q in which 2 is invertible and the
modules Λ⊗E(K)tor, Λ⊗X(E/K), Λ⊗Z′ c

0
E,Z′(K) and Λ⊗Z′ c

1
E,Z′(K) all

vanish, then the Λ[G]-modules Λ⊗E(K) and Λ⊗E(K)∗ are isomorphic.

Proof. We let τ be the a.t.e. τE,Z′ defined in Proposition 4.3.1 and for each G-
module M set M ′ := Z′ ⊗M . Then Lemma 7.2.2(ii) implies that the torsion
subgroup of (H1

τ )J is isomorphic to X(E/KJ )∨′ ⊕ c1E,Z′(K
J) for each subgroup

J of G. Further, the module H0
τ,tor = E(K)′tor ⊕ (E(K)tor)∨

′ ⊕ c0E,Z′(K) is of
order prime to p and hence is c-t. The stated hypotheses therefore imply that
τ satisfies the hypotheses of Theorem 5.2.1 and so Theorem 5.2.1(i) implies that
Zp ⊗Z′ H

0
τ = Zp ⊗ E(K) is a permutation lattice of the form described in (23).

This proves claim (i).

Now if [23, Conj. 4(ii)] is valid for (h1(E/K)(1),Q[G]), then for each charac-
ter χ in Hom(G,C×) the order of vanishing ords=1L(E,χ, s) of L(E,χ, s) at
s = 1 is equal to dimC(eχ(C ⊗ E(K))). But the isomorphism (23) implies
that the C[G]-module C ⊗ E(K) is isomorphic to

⊕
J≤G C[G/J ]〈nJ 〉 and so it

is clear that ords=1L(E,χ, s) is a decreasing function of the order of χ. For
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the same reason, Theorem 5.2.1(iii) implies that ords=1L(E,χ, s) is independent
of χ precisely when E(K)′tf is a locally-free Z′[G]-module. Further, if E(K)′tf
is a locally-free Z′[G]-module, then it, and hence also its linear dual E(K)∗′,
is a projective Z′[G]-module and so the image under Z′ ⊗ − of the exact se-
quence (11) splits to give an isomorphism Sel(E/K)′ ∼= X(E/K)∨′⊕E(K)∗′. The
module of G-coinvariants (X(E/K)∨′)G is therefore isomorphic to a subgroup
of Sel(E/K)′G,tor ⊆ (H1

τ )G,tor
∼= X(E/Q)∨′ ⊕ c1E,Z′(Q). Since, by assumption,

|X(E/Q)| is prime to p and, by Proposition 4.3.1, |c1E,Z′(Q)| is prime to p, it
follows that |X(E/K)∨′)G| is also prime to p and hence (by Nakayama’s Lemma
and the fact that p is odd) that |X(E/K)| is prime to p. This proves claim (ii).

We now assume the hypotheses of claim (iii). Then claim (ii) implies that
the Z′[G]-module E(K)′tf , and hence also H1

τ,tf
∼= HomZ(E(K)tf ,Z)′ = E(K)∗′,

is locally-free and therefore c-t. Since E(K)′tor is also c-t (by Proposition 4.3.1
and the fact that G is a p-group) we deduce that the module E(K)′ is itself c-t.
From claim (ii) we also know that the Z′[G]-module X(E/K)∨′ has order prime
to p and so is c-t and Proposition 4.3.1 implies that the same is true for the
modules c0E,Z′(K) and c1E,Z′(K). Further, if ETNC(h1(E/K)(1),Z′[G]) is valid,
then Proposition 4.3.1 implies that χ(τ) vanishes and so Theorem 5.2.1(iv)(a)
implies that in K0(Z′[G]) there are equalities

0 = (H0
τ )− (H1

τ ) = (H0
τ )− (H1

τ,tor)− (H1
τ,tf) =

(E(K)′) + ((E(K)tor)∨
′) + (c0E,Z′(K))

− (X(E/K)∨′)− (c1E,Z′(K))− (E(K)∗′).

To deduce the displayed equality of claim (iii) we thus need only note that the
Cassels-Tate pairing induces an isomorphism of G-modules X(E/K)∨ ∼= X(E/K)
and that if N is any finitely generated Z′[G]-module for which both Ntor and
Ntf are c-t, then N∗ and (Ntor)∨ are also both c-t and in K0(Z′[G]) one has
ψ∗(N) = (N∗)− ((Ntor)∨).

Finally we fix Λ as in the statement of claim (iii). Then the above displayed
equality implies that there is an equality (Λ⊗E(K)) = (Λ⊗E(K)∗) in K0(Λ[G]).
But Λ ⊗ E(K), and hence also Λ ⊗ E(K)∗ = HomΛ(Λ ⊗ E(K),Λ), is a locally-
free Λ[G]-module (by claim (ii)) and so the equality (Λ⊗E(K)) = (Λ⊗E(K)∗)
combines with locally-free cancellation to imply that the Λ[G]-modules Λ⊗E(K)
and Λ⊗ E(K)∗ are isomorphic. �
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8. Strong main conjectures

In this section we prove Theorem 5.1.1(iv) and Theorem 5.2.1(iv)(c) and also
discuss some explicit arithmetic applications of these results. We assume through-
out that G is abelian.

8.1. Preliminaries. We first quickly recall some details concerning the deter-
minant functor used by Knudsen and Mumford in [67]. For any commutative
associative unital ring R we write P(R) for the category of graded invertible R-
modules and isomorphisms of such and DetR for the determinant functor of loc.
cit.

We let Λ be a finitely generated subring of Q. Then [23, §2.5] implies that
K0(Λ[G],R[G]) can be identified with the multiplicative group of invertible Λ[G]-
lattices in R[G]. In addition, the reduced norm map NrdR[G] is bijective (since G
is abelian) and, with respect to the above identification, the equality (3) implies
that

δΛ(x) = ∂1
Λ[G],R(Nrd−1

R[G](x)) = Λ[G] · x ⊂ R[G]

for every x in ζ(R[G])×. Further, the element [ε, ψ] defined in (6) (with A = Λ[G]
and E = R) can be computed in the following manner. The isomorphism ψ

induces an isomorphism in P(R[G])

ϑψ : R⊗Λ (DetΛ[G]C
•) ∼−→ (R[G], 0)

by means of the composite

R⊗Λ (DetΛ[G]C
•)

∼−→DetR[G](R⊗Λ H
0(C•))⊗P(R[G]) DetR[G](R⊗Λ H

1(C•))−1

∼−→DetR[G](R⊗Λ H
1(C•))⊗P(R[G]) DetR[G](R⊗Λ H

1(C•))−1

∼−→ (R[G], 0).

Here the first, resp. second, resp. third, isomorphism is induced by [67, Rem.
b) following Th. 2] and the fact that the algebra R[G] is semisimple, resp.
the isomorphism DetR[G](ψ) ⊗ id, resp. the evaluation pairing on the module
DetR[G](R ⊗Λ H

1(C•)). The element [ε, ψ] is then equal to the invertible Λ[G]-
submodule of R[G] which underlies ϑψ(DetΛ[G]C

•).
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Remark 8.1.1. Explicit computations

Assume the conditions and notation of Lemma 3.2.1. If G is abelian, then the
above observations regarding the Λ[G]-lattice [ε, ψ] lead to the following method
of explicit computation. We set P ∗

1 := HomΛ[G](P 1,Λ[G]), P 0
R := R ⊗Λ P 0,

P 1
R := R ⊗Λ P

1 and P ∗
1,R := R ⊗Λ P

∗
1 . It is enough to compute Z(p) ⊗Λ [ε, ψ] at

each prime p ∈ Spec(Λ). But, for each such p, the Z(p)[G]-modules Z(p) ⊗Λ P
0

and Z(p) ⊗Λ P
∗
1 are both free of the same rank, n say. After choosing ordered

bases {ai}1≤i≤n and {b∗j}1≤j≤n for each of them, and identifying ∧nR[G]P
∗
1,R with

HomR[G](∧nR[G]P
1
R,R[G]) in the natural way, Z(p) ⊗ [ε, ψ] is the Z(p)[G]-sublattice

of R[G] generated by the image of the element ∧ni=1ι(ai)⊗R[G] ∧nj=1b
∗
j under the

evaluation pairing

∧nR[G]P
1
R ⊗R[G] HomR[G](∧nR[G]P

1
R,R[G]) → R[G]

(where ι is the isomorphism P 0
R → P 1

R defined in Lemma 3.2.1(i)).

8.2. The proof of Theorem 5.1.1(iv). For each χ ∈ Irr(G) we set eχ :=
|G|−1

∑
g∈G χ(g)g−1 ∈ C[G]. We then obtain an idempotent of Q[G] by setting

eτ :=
∑
χ∈Υτ

eχ

where Υτ is the subset of Irr(G) comprising characters χ with eχ(C⊗Λ H
0
τ ) = 0

(and eτ belongs to Q[G] since Υτ is a union of orbits under the natural action of
AutQ(C) on Irr(G)). We also define

Lτ := L∗τeτ ∈ R[G]×eτ = (R[G]eτ )×

and to study this element we set A := Λ[G]eτ and A := Q[G]eτ . For any A-
module W we set W ∗ := HomΛ(W,Λ), endowed with its natural structure as
A-module (that is, a(θ)(w) = θ(aw)). For brevity we shall also often identify
graded invertible A-modules of the form (I, 0) with the underlying invertible
module I.

For any commutative ring R and finitely generated R-module N we write
FitR(N) for the (initial) Fitting ideal of N .

Theorem 8.2.1. Assume that G is abelian and that χ(τ) vanishes.

(i) If Ψ• is any complex as in (18), then in (R[G], 0) one has

(Λ[G] · L∗τ , 0) = ϑλτ (DetΛ[G] Ψ
•).
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(ii) Lτ belongs to Q[G].
(iii) If (H0

τ )tor is Λ[G]-perfect, then FitΛ[G]((H0
τ )tor) · Lτ = FitΛ[G](H1

τ ).

Proof. Claim (i) is an easy consequence of the explicit descriptions of [ετ , λτ ] and
δΛ(L∗τ ) given by the discussion in §8.1. Regarding claim (ii) we first observe that,
since C⊗Λ H

1
τ is isomorphic to C⊗Λ H

0
τ as a C[G]-module, for each ψ ∈ Υτ the

space HomC[G](C[G]eψ,C⊗ΛH
1
τ ) vanishes and hence, in the notation of Theorem

5.1.1(i), one has Aτϕ(ψ) = (L∗τ,ψ)−1 for each such ψ. Claim (ii) thus follows
directly from Lemma 6.1.1 and our assumption that the Euler characteristic χ(τ)
vanishes.

We now turn to claim (iii). If W is any Λ[G]-module, then we endow W ⊗Λ A

with its natural structure as (Λ[G],A)-bimodule (so, in particular, each element
g of G acts on the tensor via g ⊗Λ g

−1). We also let WA and WA denote the
associated A-modules (W ⊗Λ A)G and (W ⊗Λ A)G ∼= W ⊗Λ[G] A. We recall that
if N is any finite A-module of projective dimension at most one, then FitA(N) is
an invertible ideal of A and in P(A) one has

DetA(N) = (FitA(N)−1, 0). (24)

We fix a concrete complex Ψ• as in claim (i) and set Ψ•
A := Ψ• ⊗Λ[G] A. Then,

since each term of Ψ• is a perfect Λ[G]-module, there is a natural isomorphism
in Dperf(A) between Ψ•

A and Ψ• ⊗L
Λ[G] A (see the proof of Lemma 8.2.2 below).

Claim (i) therefore implies that in A one has

Lτ · A = ϑλτ (DetΛ[G] Ψ
•)A

= ϑ0
τ ((DetΛ[G] Ψ

•)⊗Λ[G] A)

= ϑ0
τ (DetA(Ψ• ⊗L

Λ[G] A))

= ϑ0
τ (DetA Ψ•

A), (25)

where ϑ0
τ := ϑλτ ⊗R[G] R[G]eτ .

To compute this expression we observe that the same kind of argument as used
just after (18) gives an exact sequence of A-modules

0 → H0,A → Ψ0
A → Ψ1

A → H1
A → 0. (26)

where we set H i := H i
τ for i = 0, 1. Now our choice of e := eτ implies that

the modules H0,A
Λ and H1

Λ,A in this sequence are finite. This implies both that

H0,A
Λ = T 0,A, where we set T 0 := H0

tor, and also that R ⊗Λ Ψ•
A is acyclic so
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that the isomorphism ϑ0
τ in (25) is the isomorphism R⊗Λ (DetA Ψ•

A) ∼= (R[G]e, 0)
that is induced by scalar extension and the obvious equality DetR[G](R⊗Λ Ψ•

A) =
DetR[G]e(0) = (R[G]e, 0).

We now assume that the Λ[G]-module T 0 is perfect and recall that the Λ[G]-
modules Ψ0 and Ψ1 are also perfect. Then (since H0,A = T 0,A) Lemma 8.2.2
below implies that the first three modules in (26) are of projective dimension at
most one. The exactness of (26) then implies that the projective dimension of the
A-module H1

A is finite and hence (by the argument of Lemma 8.2.2) at most one.
When taken in conjunction with [67, Rem. b) following Th. 2] and equalities of
the form (24), the exact sequence (26) thus implies that

ϑ0
τ (DetA Ψ•

A) = FitA(T 0,A)−1FitA(H1
A) ⊂ A.

Now Fitting ideals commute with scalar extension and so both

FitA(H1
A) = FitΛ[G](H

1)A = FitΛ[G](H
1)e

and
FitA(T 0,A) = FitA(T 0

A) = FitΛ[G](T
0)e.

Putting things together, we deduce from (25) that

FitΛ[G](T
0) · Lτ = FitΛ[G](H

1)e, (27)

and so it is enough to prove

FitΛ[G](H
1)e = FitΛ[G](H

1).

Hence, since 1 = e + (1 − e), it suffices to prove FitΛ[G](H1)(1 − e) = 0, or
equivalently that in C[G] one has FitΛ[G](H1)eχ = 0 for every χ ∈ Irr(G) \ Υτ .
To do this we fix such a character χ, set Aχ := Λ[χ][G]eχ (where Λ[χ] denotes
the ring generated over Λ by the values of χ), and choose a resolution of the
Λ[G]-module H1 of the form Λ[G]m θ−→ Λ[G]n → H1 → 0. This sequence induces
an exact sequence

Am
χ

θχ−→ An
χ → H1

χ → 0,

where θχ = θ⊗Λ[G] Aχ and H1
χ := H1 ⊗Λ[G] Aχ. The latter sequence implies that

FitΛ[G](H1) ·Aχ = FitAχ(H
1
χ) is equal to the image I(θχ) of ∧nAχθχ in ∧nAχ(A

n
χ) ∼=

Aχ. But, since χ /∈ Υτ , the Aχ-rank of H1
χ is at least one and so the exactness

of the last displayed sequence also implies that the Aχ-rank of im(θχ) is at most
n− 1. The module ∧nAχ im(θχ) is thus finite and so therefore is its image I(θχ) in
Aχ. But Aχ is torsion-free and so I(θχ) = 0, as required. �
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Lemma 8.2.2. If N is a perfect Λ[G]-module, then the A-modules NA and NA

are isomorphic and have projective dimension at most one.

Proof. If B is any Λ-order, then for each prime p ∈ Spec(Λ) the ring Zp⊗B is a
product of local rings of Krull dimension one. The result of [4, Th. 1.9] therefore
implies that the projective dimension of any finitely generated B-module is either
infinite or at most one.

In particular, our assumption that N is Λ[G]-perfect implies that there exists
an exact sequence of finitely generated Λ[G]-modules 0 → P → Q → N → 0
in which P and Q are both projective. Now Tor1Λ[G](Q,A) = 0 and so there is
an associated exact sequence of A-modules 0 → Tor1Λ[G](N,A) → PA → QA →
NA → 0. But Tor1Λ[G](N,A) is finite and PA is Λ-torsion-free and so one must have
Tor1Λ[G](N,A) = 0. Since both QA and PA are projective A-modules the latter
exact sequence therefore implies that the A-module NA has projective dimension
at most one. (This fact lies behind the natural isomorphism in Dperf(A) between
Ψ•

A and Ψ• ⊗L
Λ[G] A that is used in (25).)

Finally we note that the G-moduleN⊗ΛA is c-t and hence that the tautological
exact sequence of A-modules

0 → Ĥ−1(G,N ⊗Λ A) → NA → NA → Ĥ0(G,N ⊗Λ A) → 0

induces an isomorphism NA
∼= NA. �

Remark 8.2.3. Perfection

Regarding Theorem 8.2.1(iii), we note that the module (H0
τ )tor is Λ[G]-perfect

if the order of Ĥ i(J, (H0
τ )tor) is invertible in Λ for every subgroup J of G and every

integer i and hence a fortiori if the highest common factor of |G| and |(H0
τ )tor| is

invertible in Λ.

Remark 8.2.4. Tate motives

We assume that k is totally real and that K is a CM field and let κ denote
the (unique) non-trivial element of Gal(K/K+) where K+ is the maximal real
subfield of K. For each integer r with r ≤ 0 and each character ψ ∈ Irr(G) the
function LS(ψ, s) is holomorphic at s = r and so we may define LK/k,S(r) to be
the (unique) element of R[G] with LK/k,S(r)ψ = LS(ψ, r) for every character ψ.
We set Z′ := Z[12 ] and N ′ := Z′ ⊗N for each G-module N .
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• Set τ := τ0 (as in §4.2.1). Then [94, Chap. I, Prop. 3.4] implies that
Lτ = LK/k,S(0)#. Also, H0

τ,tor is the (cyclic) group µK of roots of unity in K and
so FitZ[G](H0

τ,tor) = AnnZ[G](µK). We assume that µ′K is a perfect Z′[G]-module.
Then Theorem 8.2.1(iii) implies AnnZ′[G](µ′K) · LK/k,S(0)# = FitZ′[G]((H1

τ )
′). If

now κ is contained in the decomposition subgroup of every place v in S (so
K/k is ‘nice’ in the terminology of Greither - see [52] or [53, §3]), then eτ =
e− := (1 − κ)/2 ∈ Z′[G] and it is easy to check that e−(H1

τ )
′ = e−Pic(OK)′.

Thus, in this case, Theorem 8.2.1(iii) specializes to show that the validity of
ETNC(Q(0)K ,Z′[G]) implies the following refinement of Brumer’s Conjecture

AnnZ′[G](µ
′
K) · LK/k,S(0)# = FitZ′[G]e−(e−Pic(OK)′).

Greither [54] has in fact recently refined this approach to show that for any CM
abelian extension K/k the validity of ETNC(Q(0)K ,Z′[G]) implies a similarly
explicit formula for FitZ′[G]e−(e−(Pic(OK)∨)′).

• Set τ := τ1 (as in §4.2.2). Then eτ1 = 0 unless k = Q in which case eτ1 = e1G
where 1G is the trivial character of G. In particular, in this case the equality of
Theorem 8.2.1(iii) with Λ = Z is easy to verify directly (but see Remark 8.2.6
below).

• Set τ := τr with r < 0 (as in §4.2.3). Then eτr = (1 − (−1)rκ)/2 ∈ Z′[G],
Z′⊗H0

τ,tor = H0(GK ,Q/Z′(r)) and Lτr = LK/k,S(r)#. In this case it can be shown
that if ETNC(Q(r)K ,Z[G]) is valid, then the equality of Theorem 8.2.1(iii) both
refines and generalizes the inclusion conjectured by Coates and Sinnott in [36,
Conj. 1]. For further details in this regard, and also a discussion of connections
to other related work, see [26, §5].

Remark 8.2.5. Elliptic curves

In the setting of Proposition 4.3.1, the module

(H0
τE,Λ

)tor = (Λ⊗ E(K)tor)⊕ (Λ⊗ (E(K)tor)∨)⊕ c0E,Λ(K)

has order prime to |G| and so Theorem 8.2.1(iii) can be applied. Thus, since
FitΛ[G](Λ⊗E(K)tor) = FitΛ[G](Λ⊗ (E(K)tor)∨) (as can be seen by applying [26,
Lem. 6]), we deduce that if X(E/K) is finite, then the conjectural vanishing of
χ(τE,Λ) implies that

FitΛ[G](Λ⊗ E(K)tor)2
FitΛ[G](c0E,Λ(K))

FitΛ[G](c1E,Λ(K))
LτE,Λ = FitΛ[G](Λ⊗ Sel(E/K))
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where (LτE,Λ)ψ = Ω(E)−ψ(1)τ∗(ψ)LSram(E,ψ, 1) for all ψ ∈ Irr(G). This (conjec-
tural) equality is a ‘strong main conjecture’ of the kind that Mazur and Tate ask
for in [73, Remark after Conj. 3]. It would be interesting to know the precise
relation between the above formula and the explicit conjectural formulas for the
Fitting ideals of Selmer groups that are formulated by Kurihara in [68].

Remark 8.2.6. Q(1)K

If τ is equal to τr with r ≤ 0 as in Remark 8.2.4, then Υτ is equal to the subset
of Irr(G) comprising those characters ψ at which (L∗τ )

#
ψ is equal to the value at

s = r of the appropriate Artin L-function. If τ = τE,Λ as in Remark 8.2.5, then a
similar description of Υτ would follow as a consequence of the validity of [23, Conj.
4(ii)]. However, if τ is equal to τ1 as in Remark 8.2.4 then, unless K = k = Q,
Υτ is not equal to the subset of Irr(G) comprising those characters ψ at which
(L∗τ )

#
ψ is equal to a multiple of the value at s = 1 of the Artin L-function and

this accounts for the fact that the formula of Theorem 8.2.1(iii) is trivial in this
case. Nevertheless, in this case a more interesting variant of Theorem 8.2.1(iii)
arises if one replaces eτ1 by a different idempotent. Indeed, in his recent thesis
[62] Andrew Jones has shown that the image under multiplication by e− of the
equality of Theorem 8.2.1(i) with τ = τ1 implies a natural refinement of the
‘integrality conjecture’ that is formulated by Solomon in [88].

Remark 8.2.7. Generalisations

In his recent thesis [81], Andrew Parker has proved generalisations of Theorem
8.2.1 (and of the explicit examples discussed in Remarks 8.2.4 and 8.2.5) in both
of the following contexts.

• Gorenstein rings. If A := Λ[G]eτ is isomorphic to HomΛ(A,Λ) as an A-module,
then there is an analogue of Theorem 8.2.1(iii) even if the Λ[G]-module (H0

τ,Λ)tor
is not perfect.

• Non-abelian extensions. If G is non-abelian (but (H0
τ,Λ)tor is still perfect), then

there is an analogue of Theorem 8.2.1(iii) that involves a natural notion of Fitting
invariant for modules over non-commutative rings.

8.3. The proof of Theorem 5.2.1(iv)(c). We now use the notation and hy-
potheses of Theorem 5.2.1(iv)(c).
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Under the stated hypotheses the Λ[G]-modules H0
tor and H1

tor are finite and of
projective dimension at most one and the Λ[G]-modules H0

tf and H1
tf are locally-

free of rank d. Thus, if Ψ• is any complex as in (18), then [67, Rem. b) following
Th. 2] induces a canonical isomorphism

DetΛ[G](Ψ
•) ∼= DetΛ[G](H

0)⊗P(Λ[G]) DetΛ[G](H
1)−1,

whilst (24) implies that for i = 0, 1 one has

DetΛ[G](H
i) = FittΛ[G](H

i
tor)

−1(∧dΛ[G]H
i
tf , d)

in DetQ[G](Q⊗ ΛH i) = (Q⊗Λ ∧dΛ[G]H
i, d). In this case the equality of Theorem

8.2.1(i) is thus equivalent to an equality of the form

∧dR[G]λτ (FittΛ[G](H
1
tor) ∧dΛ[G] H

0
tf) = L∗τ · FittΛ[G](H

0
tor) ∧dΛ[G] H

1
tf .

Now the Λ[G]-module FittΛ[G](H0
tor)∧dΛ[G] H

1
tf is locally-free of rank one (indeed,

the second factor is obviously locally-free of rank one, whilst the first factor
is an invertible ideal of Λ[G] since the projective dimension of H0

tor is at most
one). In particular, the last displayed equality shows that the Z(p)[G]-submodule
Ep := Z(p)⊗Λ FittΛ[G](H1

tor)∧dΛ[G]H
0
tf of Z(p)⊗Λ ∧dΛ[G]H

0
tf is both free of rank one

and such that

∧dR[G]λτ (Ep) = Z(p) ⊗Λ L∗τ · FittΛ[G](H
0
tor) ∧dΛ[G] H

1
tf .

For this choice of Ep it is also clear that there is an isomorphism of finite Z(p)[G]-
modules (∧dZ(p)[G](Z(p) ⊗Λ H

0
tf))/Ep ∼= Z(p) ⊗Λ Λ[G]/FittΛ[G](H1

tor) and hence an
equality

AnnZ(p)[G]((∧dZ(p)[G](Z(p) ⊗Λ H
0
tf))/Ep)

= Z(p) ⊗Λ AnnΛ[G](Λ[G]/FittΛ[G](H
1
tor))

= Z(p) ⊗Λ FittΛ[G](H
1
tor).

Thus, to complete the proof of Theorem 5.2.1(iv)(c), and hence also of Theo-
rem 5.2.1 itself, it only remains to choose a free rank one Λ[G]-submodule E of
FittΛ[G](H1

tor) ∧dΛ[G] H
0
tf for which one has Z(p) ⊗Λ E = Ep. Indeed, such a mod-

ule E exists as a consequence of Roiter’s Lemma [37, (31.6)] and the fact that
FittΛ[G](H1

tor) ∧dΛ[G] H
0
tf is a locally-free Λ[G]-module of rank one.
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9. Explicit congruences for the degree zero component

In this section we prove Theorem 5.1.1(v) and then discuss arithmetic appli-
cations in the setting of the examples discussed in §4. The argument used in this
section is a natural abstraction of that used in [17].

We assume that the Λ[G]-module (H0
τ )tor is perfect (cf. Remark 8.2.3) and set

nτ := dimQ(Q⊗ΛH
1
τ,G). Then the composite surjectionH1

τ � H1
τ,G � (H1

τ,G)tf ∼=
Λnτ implies FitΛ[G](H1

τ ) ⊆ FitΛ[G](Λnτ ) = FitΛ[G](Λ)nτ . But FitΛ[G](Λ) is equal
to the kernel IG,Λ of the homomorphism of Λ[G]-modules ε : Λ[G] → Λ with
ε(g) = 1 for each g in G. Hence, from Theorem 8.2.1(iii), one has

FitΛ[G]((H
0
τ )tor) · Lτ ⊆ InτG,Λ. (28)

We note in passing that this inclusion provides an explicit bound on the denom-
inator of the element Lτ of Q[G].

For the rest of this section we fix an element α of FitΛ[G]((H0
τ )tor) and describe

the image of α · Lτ under the projection InτG,Λ → InτG,Λ/I
nτ+1
G,Λ in terms of the

discriminant of a natural algebraic height pairing.

9.1. G-valued height pairings. The pairing we define here is motivated by the
formalism of height pairings developed by Nekovář in [78, §11].

At the outset we fix a bounded complex of perfect Λ[G]-modules C• and set
C•
G := Λ ⊗L

Λ[G] C
• and C•,G := RHomΛ[G](Λ, C•). Then, since each term of

C• is perfect, there is a natural isomorphism in D(Λ) between C•
G, resp. C•,G,

and the complex which in each degree i is equal to (Ci)G, resp. (Ci)G, and in
which the differentials are induced by those of C•. For this reason, the action of
TrG :=

∑
g∈G g ∈ Z[G] on each module Ci induces an isomorphism in D(Λ) from

C•
G to C•,G.

Taken in conjunction with the isomorphism C•
G
∼= C•,G described above, the

tautological exact sequence 0 → IG,Λ → Λ[G] → Λ → 0 induces an exact triangle
in D(Λ[G]) of the form

IG,Λ ⊗L
Λ[G] C

• → C• → C•,G → IG,Λ ⊗L
Λ[G] C

•[1] (29)

If now C• is also acyclic outside degrees 0 and 1, then there are natural iden-
tifications H0(C•,G) = H0(C•)G, H1(IG,Λ ⊗L

Λ[G] C
•) ∼= IG,Λ ⊗Λ[G] H

1(C•) and
H1(C•)G ∼= H1(C•

G) ∼= H1(C•,G) (where the second isomorphism is induced by
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the isomorphism C•
G
∼= C•,G described above). In this case the cohomology se-

quence of (29) therefore induces an exact sequence of Λ[G]-modules

H0(C•) TrG−−→ H0(C•,G) → IG,Λ ⊗Λ[G] H
1(C•), (30)

as well as a G-equivariant ‘Bockstein homomorphism’

βC•,G : H0(C•)G = H0(C•,G) → IG,Λ ⊗Λ[G] H
1(C•) → IG,Λ/I

2
G,Λ ⊗Λ H

1(C•,G),

where the last arrow is induced by passing to G-coinvariants and then identifying
H1(C•)G with H1(C•,G) in the manner described above. We set H1(C•,G)∗ :=
HomΛ(H1(C•,G),Λ) = HomΛ(H1(C•,G)tf ,Λ) and write

ρC•,G : H0(C•)G ×H1(C•,G)∗ → IG,Λ/I
2
G,Λ,

for the pairing induced by βC•,G. Then, in keeping with the philosophy of Mazur
and Tate in [73] and of Gross in [55], the canonical isomorphism IG,Λ/I

2
G,Λ

∼= Λ⊗G
allows one to regard ρC•,G as taking values in the group Λ⊗G ⊆ G.

9.2. Statement of the main result. If Ψ• is any complex as in (18), then the
assumed containment χ(τ) ∈ K0(Λ[G],Q[G]) implies that DetR[G] λτ restricts to
give an isomorphism in P(Q[G])

DetQ[G](H
0(Ψ•)⊗Λ Q) ∼−→ L∗τ ·DetQ[G](H

1(Ψ•)⊗Λ Q),

and hence also (after multiplying by TrG) an isomorphism of Q-lines

∧nτR λGτ : ∧nτQ (H0(Ψ•)G ⊗Λ Q) ∼−→ L∗τ · ∧
nτ
Q (H1(Ψ•,G)⊗Λ Q).

In particular, after fixing ordered Λ-bases x. := {xi : 1 ≤ i ≤ nτ} and y. :=
{yj : 1 ≤ j ≤ nτ} of (H0(Ψ•)G)tf and H1(Ψ•,G)tf respectively, we may define a
rational number rα,x.,y. by means of the equality

αL∗τ · ∧1≤i≤nτ yi = rα,x.,y. · (∧nτR λGτ )(∧1≤j≤nτxj) ∈ ∧nτR (H1(Ψ•,G)⊗Λ R). (31)

We then define a subring of Q by setting

Λα := Λ[rα,x.,y. ] (32)

(this subring is indeed independent of the choice of ordered bases x· and y·) and
a ‘discriminant element’ by setting

discα(τ) := rα,x.,y. · det(ρΨ•,G(xi, y∗j )1≤i,j≤nτ ) ∈ Λα ⊗Λ I
nτ
G,Λ/I

nτ+1
G,Λ (33)

where y∗j denotes the element of H1(Ψ•,G)∗ that is dual to yj (so, for all indices
i and j, one has y∗j (yi) = 1 if i = j and y∗j (yi) = 0 otherwise).
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Lemma 9.2.1. discα(τ) is well-defined and depends only upon α and ρτ .

Proof. If Ψ•, x. and y. are fixed, then det(ρΨ•,G(xi, y∗j )1≤i,j≤nτ ) is well-defined
because (H0

τ )tor is Λ[G]-perfect. Indeed, this combines with the exactness of (30)
(with C• = Ψ•) to imply that (H0(Ψ•)G)tor = ((H0

τ )tor)
G = TrG((H0

τ )tor) ⊆
ker(βΨ•,G).

We must show that discα(τ) is independent of the choices of Ψ•, x. and y.. But
if Ψ• is fixed (as in (18)) then the definition of rα,x.,y. combines with standard
formulas for the change in discriminant resulting from a change of bases to ensure
that discα(τ) is independent of the choices of ordered bases x. and y.. On the
other hand, if Ψ̃• is any other choice of complex as in (18), then there is an
isomorphism ι : Ψ̃• ∼= Ψ• in Dperf(Λ[G]) such that H i(ι) is the identity map
for i = 0, 1. The naturality with respect to ι of the construction of Bockstein
homomorphisms thus implies that ρΨ̃•,G = ρΨ•,G, as required. �

We can now state the main result of this section.

Theorem 9.2.2. If α is any element of FitΛ[G]((H0
τ )tor), then the image of α ·Lτ

in Λα ⊗Λ I
nτ
G,Λ satisfies α · Lτ ≡ discα(τ) (mod Λα ⊗Λ I

nτ+1
G,Λ ).

This result is clear if nτ = 0. Indeed, in this case the augmentation map
ε : Λ[G] → Λ induces an isomorphism InτG,Λ/I

nτ+1
G,Λ = Λ[G]/IG,Λ ∼= Λ and both

discα(τ) = rα,x.,y. = ε(α · L∗τ ) and ε(eτ ) = 1 and so the stated congruence is
equivalent to the obvious equality ε(α · Lτ ) = ε(α · L∗τ ).

In the remainder of the argument we therefore assume (and without further
explicit comment) that nτ > 0. In particular, since in this case InτG,Λ/I

nτ+1
G,Λ is

a quotient of the nτ -th symmetric power of Λ ⊗ G, it is a finite group of order
dividing a power of |G|. The argument we use in this case is closely modelled on
that given in [17, §5.3-5].

9.3. An explicit version of Theorem 8.2.1(i). We set n := nτ and for any
natural number m let |m| denote the set of integers i with 1 ≤ i ≤ m. We also
set T := (H0

τ )tor.

Lemma 9.3.1. There exists a complex Ψ• as in (18) and an endomorphism
φ of a finitely generated free Λ[G]-module F which satisfy both of the following
conditions.
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Let F • denote the complex F
φ−→ F , where the first term is placed in degree 0.

(i) There is a short exact sequence of perfect complexes of Λ[G]-modules

0 → F • %−→ Ψ• → Q[0] → 0

where Q is a finite cohomologically-trivial Λ[G]-module which contains T
and is such that |Q/T | is coprime to |G|.

(ii) There exists an integer n′ with n′ ≥ n and an ordered Λ[G]-basis {bi : i ∈
|n′|} of F which satisfies both of the following conditions.
(a) The Λ[G]-module F1 generated by {bi : i ∈ |n|} satisfies FG1 =

ker(φG) and, for each i ∈ |n|, TrG(bi) is a pre-image of yi under
the composite homomorphism

FG1 ⊆ FG � cok(φG) → H1(Ψ•,G)tf ,

where the second map is tautological and the third is induced by
H1(RHomΛ[G](Λ, %)).

(b) The Λ[G]-module F2 generated by {bi : n < i ≤ n′} satisfies φG(FG2 ) ⊆
FG2 .

Proof. We first fix a complex Ψ• as in (18) for which Ψ1 is a finitely generated
free Λ[G]-module (this is always possible) and set F := Ψ1. Then, since T is
a perfect Λ[G]-module, P := Ψ0/T is a finitely generated Λ[G]-module which
is both cohomologically-trivial as a G-module and torsion-free as a Λ-module.
Any such Λ[G]-module P is projective [3, Th. 8]. In addition, the Q[G]-modules
Q ⊗Λ H

0(Ψ•) and Q ⊗Λ H
1(Ψ•) are isomorphic and so, just as in the proof of

Lemma 3.2.1(ii), we may deduce from Swan’s Theorem that for each prime q in
Spec(Λ) the Zq[G]-modules Zq ⊗Λ P and Zq ⊗Λ F are isomorphic. We may thus
apply Roiter’s Lemma [37, (31.6)] to deduce that there exists a Λ[G]-submodule
P ′ of P for which the quotient P/P ′ is finite and of order coprime to |G| and there
is an isomorphism of Λ[G]-modules ι : F ∼= P ′. We choose a lift ι̃ : F → Ψ0 of ι
through the tautological surjection Ψ0 → P and then set ς := d0 ◦ ι̃ ∈ EndΛ[G](F )
with d0 the differential in degree 0 of Ψ•.

The exact sequence of Λ-modules 0 → ker(ςG) → FG → im(ςG) → 0 splits
and so there is a submodule D of FG which ςG maps bijectively to im(ςG).
Also, if N is the pre-image of cok(ςG)tor under the tautological surjection FG →
cok(ςG), then the exact sequence 0 → N → FG → cok(ςG)tf → 0 splits and so
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there is a submodule D′ of FG which maps bijectively to cok(ςG)tf under the
natural surjection. Now D′ and ker(ςG) have the same Λ-rank since there are
isomorphisms Q⊗Λ D

′ ∼= Q⊗Λ cok(ςG) ∼= Q⊗Λ cok(ς)G ∼= Q⊗Λ ker(ς)G ∼= Q⊗Λ

ker(ςG). The direct sum decompositions ker(ςG) ⊕D = FG = N ⊕D′ therefore
imply that there exists an automorphism ψ′ of FG with both ψ′(N) = D and
ψ′(D′) = ker(ςG). Then one has ψ′ ◦ ςG(D) ⊆ D and ker(ψ′ ◦ ςG) = ker(ςG) maps
bijectively to cok(ψ′ ◦ςG)tf under the tautological surjection FG → cok(ψ′ ◦ςG)tf .

Since F is a free Λ[G]-module we may choose ψ̃ in AutΛ[G](F ) with ψ̃G = ψ′.
We set φ := ψ̃ ◦ ς ∈ EndΛ[G](F ) and let % denote the morphism of complexes from
the complex F • described in the statement of Lemma 9.3.1 to Ψ• that is equal
to ι̃ in degree 0 and to ψ̃−1 in degree 1. It is easily checked that this gives rise to
a short exact sequence as in claim (i) in which Q/T ∼= P/P ′.

Now φG = ψ′ ◦ ςG and so the above remarks imply both that φG(D) ⊆ D

and that the natural map ker(φG) → cok(φG)tf is bijective. We next observe
that the decomposition FG = ker(φG) ⊕ D lifts to a direct sum decomposition
F = F1 ⊕ F2 of Λ[G]-modules in which both F1 and F2 are free (of ranks n and
n′ − n respectively), FG1 = ker(φG) and FG2 = D. We write κ for the displayed
composite homomorphism in claim (ii)(a). Then the above observations imply
κ is bijective and so {κ−1(yi) : i ∈ |n|} is a Λ-basis of FG1 = TrG(F1). It is
then easily shown that there exists a Λ[G]-basis {bi : i ∈ |n|} of F1 such that
TrG(bi) = κ−1(yi) for each i ∈ |n|. To complete the proof of claim (ii) we then
simply let {bi : n < i ≤ n′} be any choice of (ordered) Λ[G]-basis of F2. �

For any Λ-module X, resp. homomorphism of Λ-modules κ, we set XR :=
R⊗Λ X and κR := R⊗Λ κ. Then, by applying DetΛ[G] to the exact sequence in
Lemma 9.3.1(i), one finds that

ϑλτ (DetΛ[G] Ψ
•) = FitΛ[G](Q)−1ϑλ%τ (DetΛ[G] F

•)

= FitΛ[G](T )−1 FitΛ[G]((Q/T ))−1ϑλ%τ (DetΛ[G] F
•)

where λ%τ denotes the composite isomorphism

H1(%)−1
R ◦ λτ ◦H0(%)R : H0(F •)R ∼= H1(F •)R.
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On the other hand, an explicit computation (or [17, Lem. A1]) shows that

ϑλ%τ (DetΛ[G] F
•) = detR[G](〈λ%τ , φ〉ι1,ι2) · Λ[G]

where ι1 and ι2 are a choice of R[G]-equivariant sections to the tautological
surjections FR → im(φ)R and FR → cok(φ)R and 〈λ%τ , φ〉ι1,ι2 is the (unique)
element of AutR[G](FR) that is equal to ι2◦λ%τ on ker(φ)R and to φR on ι1(im(φ)R).
The assumed equality of Theorem 8.2.1(i) therefore implies the existence of an
element cα of Q[G]× with both

αL∗τ = cα · detR[G](〈λ%τ , φ〉ι1,ι2) ∈ R[G]× (34)

and

Λ[G] · cα = αFitΛ[G](T )−1 FitΛ[G]((Q/T ))−1 ⊆ FitΛ[G]((Q/T ))−1 (35)

(where the last inclusion is valid because α belongs to FitΛ[G](T )).

9.4. The eτ -component. Since the C[G]-module C⊗Λ ker(φ) is isomorphic (via
C⊗ΛH

0(ς)) to C⊗ΛH
0(Ψ•) = C⊗ΛH

0
τ the definition of eτ at the beginning of §8.2

ensures that for each ψ ∈ Irr(G) one has eψeτ 6= 0 if and only if eψ(C⊗Λker(φ)) =
0. It follows that 〈λ%τ , φ〉ι1,ι2 agrees with φR on eτFR and that detΛ[G](φ) =
eτdetΛ[G](φ) and hence that (34) implies

α · Lτ = αeτ · L∗τ = cα · detR[G](〈λ%τ , φ〉ι1,ι2 | eτFR) = cα · detΛ[G](φ). (36)

This equality is key to the proof of Theorem 9.2.2. Indeed, Lemma 9.3.1(ii)
implies that the matrix of φ with respect to the ordered basis {bi : i ∈ |n′|} of F
is a block matrix of the form (

AB

C D

)
(37)

where A ∈ Mn(IG,Λ), D ∈ Mn′−n(Λ[G]) and all entries of both B and C belong
to IG,Λ. But αLτ ∈ InG,Λ (by (28)), det(A) ∈ InG,Λ and cα acts naturally on
InG,Λ/I

n+1
G,Λ (by (35) and the fact that |Q/T | is coprime to |G|) and so the matrix

representation (37) combines with (36) to imply that

α · Lτ ≡ ε(cα)ε(det(D)) · det(A) (mod In+1
G,Λ ). (38)

To compute the term ε(cα)ε(det(D)) we first multiply (34) by the idempotent
eG := |G|−1TrG to get

αL∗τ · eG = ε(cα)detR(〈λ%τ , φ〉ι1,ι2 | FGR ) · eG. (39)
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Now, by making a suitable choice of sections ι1 and ι2 and then computing with
respect to the ordered Λ-basis {TrG(bi) : 1 ≤ i ≤ n′} of FG, one finds that the
restriction of 〈λ%τ , φ〉ι1,ι2 to FGR is represented by a matrix of the form(

A′ B′

0 ε(D)

)
.

Here ε(D) ∈ Mn′−n(Λ) is the matrix with ε(D)ij = ε(Dij) for all i and j and
A′ ∈ Mn(Λ) is the matrix of the composite isomorphism

R⊗Λ F
G
1 = R⊗Λ ker(φG)

R⊗ΛH
0(%G)−−−−−−−→ R⊗Λ H

0(Ψ•)G

λGτ−−→ R⊗Λ H
1(Ψ•,G) → R⊗Λ F

G
1

where we set %G := RHomΛ[G](Λ, %) and the last arrow denotes the inverse of the
composite isomorphism in Lemma 9.3.1(ii)(a). But det(A′) is the determinant of
the matrix of the map

∧nRλGτ : R⊗Λ ∧nΛ(H0(%G)(FG1 )) → R⊗Λ ∧nΛH1(Ψ•,G),

as computed with respect to the R-bases ∧j∈|n|H0(%G)(TrG(bj)) and ∧i∈|n|yi.
Thus (39) implies that

αL∗τ · ∧i∈|n|yi =αL∗τeG · ∧i∈|n|yi (40)

= ε(cα)ε(det(D))det(A′) · ∧i∈|n|yi
= ε(cα)ε(det(D)) · (∧nRλGτ )(∧j∈|n|H0(%G)(TrG(bj)))

= ε(cα)ε(det(D))det(b) · (∧nRλGτ )(∧j∈|n|xj),

where the matrix b := (bij) ∈ Mn(Λ) is defined via the equalities

H0(%G)(TrG(bi)) =
∑
j∈|n|

bijxj ∈ (H0(Ψ•)G)tf . (41)

Comparing (40) with (31) shows that rα,x.,y. = ε(cα)ε(det(D))det(b) and so

α · Lτ ≡ rα,x.,y.det(b)−1det(A) (mod In+1
G,Λ )

by (38).
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9.5. Completion of the proof. Given the congruence at the end of the last sec-
tion our proof of Theorem 9.2.2 will be completed if we can show that discα(τ) :=
rα,x.,y.det(ρΨ•,G(xi, y∗j )1≤i,j≤n) is equal to the image of rα,x.,y.det(b)−1det(A) in
Λα ⊗Λ I

n
G,Λ/I

n+1
G,Λ .

As a first step we compute explicitly the pairing ρF •,G.

Lemma 9.5.1. With respect to the ordered Λ-bases {TrG(bi) : i ∈ |n|} and
{(H1(%G)−1

R (yj))∗ : j ∈ |n|} of H0(F •)G and H1(F •,G)∗ respectively, the matrix
of ρF •,G is equal to the image of A in Mn(IG,Λ/I2

G,Λ).

Proof. We write π and π′ for the tautological surjections TrG(F ) = FG →
cok(φG) and IG,Λ → IG,Λ/I

2
G,Λ respectively. Then βF •,G can be computed as

the connecting homomorphism which arises when applying the Snake lemma to
the following commutative diagram (in which both rows and the third column
are exact and the first column is a complex)

0y
ker(φ)Gy

0 −−−−→ IG,Λ ⊗Λ[G] F
⊆−−−−→ F

TrG−−−−→ FG −−−−→ 0yid⊗Λ[G]φ

yφ yφG
0 −−−−→ IG,Λ ⊗Λ[G] F

⊆−−−−→ F
TrG−−−−→ FG −−−−→ 0yπ′⊗Λ[G](π◦TrG)

IG,Λ/I
2
G,Λ ⊗Λ cok(φG).

By computing this connecting homomorphism using the matrix representation
of φ given in (37) and observing that Lemma 9.3.1(ii) implies π factors through
the projection FG → FG1 , one finds that

βF •,G(TrG(bi)) =
∑
j∈|n|

(Aij (mod I2
G,Λ))⊗Λ π(TrG(bj)).

This then implies the claimed result since H1(%G)(π(TrG(bj))) = yj by Lemma
9.3.1(ii)(a). �



Equivariant Leading Terms and Values 143

We write det(A) for the image of det(A) under the natural projection InG,Λ →
Λα⊗Λ I

n
G,Λ/I

n+1
G,Λ . Then the description of Lemma 9.5.1 combines with the natu-

rality with respect to the morphism % of the height pairing ρF •,G to imply that
in Λα ⊗Λ I

n
G,Λ/I

n+1
G,Λ one has

rα,x.,y.det(A) =rα,x.,y.det(ρF •,G(TrG(bi), (H1(%G)−1
R (yj))∗)1≤i,j≤n)

=rα,x.,y.det(ρΨ•,G(H0(%G)(TrG(bi)), y∗j )1≤i,j≤n)

=rα,x.,y.det(b)det(ρΨ•,G(xi, y∗j )1≤i,j≤n)

=det(b)discα(τ)

where the third equality is a consequence of the definition of the matrix b via the
equalities (41).

Now {TrG(bi) : 1 ≤ i ≤ n} is a Λ-basis of H0(F •,G) (by Lemma 9.3.1(ii)(a))
whilst {xi : 1 ≤ i ≤ n} was chosen to be a Λ-basis of (H0(Ψ•)G)tf and so the
definition of b implies that det(b) · Λ = FitΛ(cok(H0(%G)′)) where H0(%G)′ is
the map H0(F •,G) → (H0(Ψ•)G)tf = (H0(Ψ•)/T )G induced by H0(%G). But,
since |Q/T | is coprime to |G|, the long exact sequence of cohomology of the
exact sequence in Lemma 9.3.1(i) implies that | cok(H0(%G)′)| is coprime to |G|.
Since InG,Λ/I

n+1
G,Λ is a finite group of order dividing a power of |G| this means

that multiplication by det(b) induces an automorphism of Λα ⊗Λ I
n
G,Λ/I

n+1
G,Λ . In

particular, we may multiply the last displayed equality by det(b)−1 and in so doing
deduce that discα(τ) is equal to the image of the element rα,x.,y.det(b)−1det(A)
in Λα ⊗Λ I

n
G,Λ/I

n+1
G,Λ , as required.

This completes the proof of Theorem 9.2.2.

Remark 9.5.2. Tate motives

If τ = τ0 as in Proposition 4.2.2, then H0
τ,tor is equal to the torsion subgroup

µK of K× and there are ‘natural’ choices of α in (Theorem 5.1.1(v) and) Theorem
9.2.2. Indeed, if T is any finite set of places of k disjoint from S and such that the
(finite index) subgroup of O×

K,S comprising those elements congruent to 1 modulo
all places in T (K) is torsion-free, then the element αT :=

∏
v∈T (1 − Fr−1

v Nv)
belongs to FitZ[G](µK), where Frv and Nv are the frobenius automorphism of v
in G and the absolute norm of v. In addition, nτ0 = |S| − 1 and the explicit
computation of Bockstein homomorphisms provided by [17, §5.5] shows that if
the conjectural equality χ(τ0) = 0 is valid, then the congruence of Theorem 9.2.2
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implies the ‘refined class number formula’ conjectured by Gross in [55, Conj.
4.1]. With further effort the hypothesis that the Z[G]-module µK is perfect can
be removed from this argument. For full details see [19].

Remark 9.5.3. Elliptic curves

If we assume that the conjectural equality χ(τ) = 0 is valid for τ = τE,Z[ 1
2
] as

defined in Proposition 4.3.1 under condition (B), then the congruence of Theorem
9.2.2 is in precisely the same spirit as the ‘Birch-Swinnerton-Dyer type conjecture’
formulated by Mazur and Tate in [73, Conj. 4].

Remark 9.5.4. Congruences for higher order derivatives

If eτ = 0, then the congruence of Theorem 9.2.2 is satisfied trivially (since (38)
implies that both sides of the congruence vanish). However, in such cases it is
still sometimes possible to derive from the conjectural vanishing of χ(τ) a non-
trivial congruence relation for the element L∗τe′τ with e′τ :=

∑
χ eχ where χ runs

over characters in Irr(G) with dimC(eχ(C ⊗Λ H
0
τ )) = min{dimC(eψ(C ⊗Λ H

0
τ )) :

ψ ∈ Irr(G)}. The extent to which such congruences can be made explicit then
depends upon the structure of (H1

τ )tf as an abstract G-module. For example, if
τ = τ0, then (H1

τ )tf = XK,S has a very explicit structure and such an approach
can be used to prove that ETNC(Q(0)K ,Z[G]) implies a natural generalisation
and refinement of the conjectures formulated by Gross in [55], by Rubin in [86], by
Popescu in [82] and by Tate in [95] and of the conjecture discussed by Hayward in
[60]. For further details in this regard, and also for details of explicit connections
between this approach and other ‘refined abelian Stark conjectures’, see [19]. (In
the same setting, Macias Castillo has also recently shown that in many cases for
which eτ = 0 a variant of the approach of [19] shows that ETNC(Q(0)K ,Z[G])
implies a generalisation of Stickelberger’s Theorem in which the values of higher-
order derivatives of L-functions are used to construct annihilators of natural
class groups.) In the context of elliptic curves E and extensions K/Q which
together satisfy condition (B) of Proposition 4.3.1 the same approach shows that
ETNC(h1(E/K)(1),Z′[G]) with Z′ = Z[12 ] implies explicit analogues of Theorem
9.2.2 in which LτE,Z′ is replaced by an element which interpolates the values at
s = 1 of derivatives of Hasse-Weil L-functions. This interesting aspect of the
theory will be further developed in a subsequent article.
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10. A Hasse Principle for morphisms

In this section we prove a natural local-to-global principle for morphisms in
derived categories. This general result will be used in §11 and may well also be
of some independent interest.

10.1. Statement of the result. We fix a Z-order A in a finite dimensional Q-
algebra A. For each prime p we set Ap := Zp ⊗ A and Ap := Qp ⊗Q A. We also
set D := D(A) and Dp := D(Ap).

Theorem 10.1.1. (A Hasse Principle for morphisms) Let C•
1 and C•

2 be bounded
complexes of finitely generated A-modules and, for each prime p, suppose given
an element ψp of HomDp(Zp ⊗ C•

1 ,Zp ⊗ C•
2 ).

(i) There exists an element ψZ of HomD(C•
1 , C

•
2 ) with Zp ⊗ ψZ = ψp for all

primes p if and only if for every integer d there exists an element ψdQ of
HomA(Hd(Q⊗C•

1 ),Hd(Q⊗C•
2 )) with Qp⊗Q ψ

d
Q = Qp⊗ZpH

d(ψp) for all
primes p.

(ii) If a morphism ψZ exists as in claim (i), then it is unique.
(iii) If a morphism ψZ exists as in claim (i), then it is an isomorphism in D

if and only if ψp is an isomorphism in Dp for all primes p.

The proof of this result will occupy the rest of this section.

10.2. A preliminary result. As a first step in proving Theorem 10.1.1 we con-
sider a special case. More precisely, we assume to be given data of the following
kind:-

• for each i ∈ {1, 2} we are given an exact triangle in D of bounded com-
plexes of finitely generated A-modules

C•
i1 → C•

i2 → C•
i3 → C•

i1[1]; (42)

• we are also given a commutative diagram of homomorphisms of the form
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HomD(C•
12, C

•
22)

α3−→ HomD(C•
13, C

•
23)∥∥∥ y

HomD(C•
12, C

•
22) HomD(C•

12, C
•
22) −→ HomD(C•

12, C
•
23)

α1

y y
HomD(C•

11, C
•
21) −→ HomD(C•

11, C
•
22)

(43)

in which all unlabelled arrows represent the homomorphisms that are
induced by the relevant exact triangles in (42).

Example 10.2.1.

(i) For each i ∈ {1, 2} we suppose that there is a finitely generated A-module Ci
such that C•

i2 = Ci[0] and we take C•
i1 = (Ci)tor[0] and C•

i3 = (Ci)tf [0] respec-
tively. We take α1 and α3 in (43) to be the obvious maps that are induced by
the natural isomorphisms HomD(C•

12, C
•
22) ∼= HomA(C1, C2), HomD(C•

11, C
•
21) ∼=

HomA(C1,tor, C2,tor) and HomD(C•
13, C

•
23) ∼= HomA(C1,tf , C2,tf). We take (42) to

be the triangle induced by the tautological exact sequences

0 → (Ci)tor → Ci → (Ci)tf → 0.

(ii) For any complex C• and integer m we write σ≤mC
• and σ>mC

• for the
truncations of C• in degrees less than or equal to m and in degrees greater
than m respectively (so H i(σ≤mC•) = H i(C•) and H i(σ>mC•) = 0 if i ≤ m and
H i(σ≤mC•) = 0 and H i(σ>mC•) = H i(C•) if i > m). We suppose given bounded
complexes of finitely generated A-modules C•

12 and C•
22 and for both i ∈ {1, 2}

we set C•
i1 := σ≤kC

•
i2 and C•

i3 := σ>kC
•
i2 for some fixed integer k. Then we can

take α1 and α3 in (43) to be induced by the functors σ≤k and σ>k respectively
and (42) to be the canonical exact triangle which relates σ≤kC•

i2, C
•
i2 and σ>kC•

i2

(cf. [59, Chap. I, §7, (2)]).

With the above notation, for both j = 1 and j = 3 there is a natural commuting
diagram

HomD(C•
12, C

•
22)

∆−−−−→
∏
p HomDp(Zp ⊗ C•

12,Zp ⊗ C•
22)

αj

y yα∗j
HomD(C•

1j , C
•
2j)

∆j−−−−→
∏
p HomDp(Zp ⊗ C•

1j ,Zp ⊗ C•
2j)

(44)
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in which ∆ and ∆j are the obvious diagonal maps, and α∗j =
∏
p(Zp ⊗ αj).

Proposition 10.2.2. We assume to be given data as in (42) and (43). We also
assume that there exists an integer k such that the following three conditions are
satisfied:-

(a) For both i ∈ {1, 2} one has Ha(C•
i1) = 0 in all degrees a > k and

Hb(C•
i3) = 0 in all degrees b < k;

(b) HomA(Hk(C•
13),H

k(C•
21)) is finite;

(c) HomA(Hk(C•
11),H

k(C•
23)) = 0.

Then for any element ψ of
∏
p HomDp(Zp ⊗ C•

12,Zp ⊗ C•
22) one has ψ ∈ im(∆)

if and only if α∗j (ψ) ∈ im(∆j) for both j ∈ {1, 3}, where α∗j and ∆j are as in
diagram (44).

Proof. For each pair of complexes of A-modules X• and Y • we set 〈X•, Y •〉 :=
HomD(X•, Y •). Then from the given exact triangles (42) we obtain a commuta-
tive diagram of abelian groups with exact rows and columns

〈C•
11[1], C•

21〉 −→ 〈C•
11[1], C•

22〉 −→ 〈C•
11[1], C•

23〉 −→ 〈C•
11[1], C•

21[1]〉y y y y
〈C•

13, C
•
21〉 −→ 〈C•

13, C
•
22〉 −→ 〈C•

13, C
•
23〉 −→ 〈C•

13, C
•
21[1]〉y y f2

y y
〈C•

12, C
•
21〉 −→ 〈C•

12, C
•
22〉 −→ 〈C•

12, C
•
23〉 −→ 〈C•

12, C
•
21[1]〉y y y y

〈C•
11, C

•
21〉

f1−→ 〈C•
11, C

•
22〉 −→ 〈C•

11, C
•
23〉 −→ 〈C•

11, C
•
21[1]〉)y y y y

〈C•
13[−1], C•

21〉 −→ 〈C•
13[−1], C•

22〉 −→ 〈C•
13[−1], C•

23〉 −→ 〈C•
13[−1], C•

21[1]〉.

To analyse this diagram we use the following observations.

Lemma 10.2.3.

(i) For any integers r and s with r ≥ s one has 〈C•
11[r], C

•
23[s]〉 = 0.
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(ii) The group 〈C•
13, C

•
21〉 is finite.

Proof. There are natural isomorphisms

〈C•
11[r], C

•
23[s]〉 ∼= 〈C•

11, C
•
23[s− r]〉 ∼= H0(RHomA(C•

11, C
•
23[s− r])), (45)

and the latter group can be computed by using the spectral sequence

Ep,q2 =
∏
t∈Z

ExtpA(Ht(C•
11),H

q+t+s−r(C•
23)) ⇒ Hp+q(RHomA(C•

11, C
•
23[s− r]))

from [96, III, 4.6.10]. But condition (a) implies that Ht(C•
11) = 0 for t > k and

that Hq+t+s−r(C•
23) = 0 for t < k + (r − s) − q. Hence, since both r ≥ s and

ExtpA(−,−) = 0 for p < 0, it follows that

H0(RHomA(C•
11, C

•
23[s− r]) =

0, if r > s

HomA(Hk(C•
11),H

k(C•
23)), if r = s.

Claim (i) is therefore a consequence of condition (c) in Proposition 10.2.2.

Claim (ii) is proved by making a similar calculation of 〈C•
13, C

•
21〉 and then

using both condition (b) of Proposition 10.2.2 and the following fact: for any
finitely generated A-modules M and N and any strictly positive integer p the
group ExtpA(M,N) is finite. �

Lemma 10.2.3(i) implies that the maps labelled f1 and f2 in the above com-
mutative diagram are bijective. When combined with the given commutative
diagram (43) this fact gives rise to an exact sequence of the form

〈C•
13, C

•
21〉 → 〈C•

12, C
•
22〉

(α1,α3)−−−−→ 〈C•
11, C

•
21〉 ⊕ 〈C•

13, C
•
23〉 → Q (46)

with Q := cok((α1, α3)).

For each prime p and each set of integers i, j, r, s we define 〈ij; rs〉p := HomDp(Zp⊗
C•
ij ,Zp⊗C•

rs). Then by repeating the above argument one obtains for each prime
p a precise analogue of the exact sequence (46) with each complex C•

ij replaced
by Zp ⊗ C•

ij , and hence a natural commutative diagram

〈C•
13, C

•
21〉 −→ 〈C•

12, C
•
22〉

(α1,α3)−−−−−→ 〈C•
11, C

•
21〉 ⊕ 〈C•

13, C
•
23〉 −→ Q

κ1

y ∆

y ∆1⊕∆2

y κ2

y∏
〈13; 21〉p −→

∏
〈12; 22〉p −→

∏
(〈11; 21〉p ⊕ 〈13; 23〉p) −→

∏
Qp

(47)
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in which the products run over all primes p and both rows are exact. To analyse
this diagram we use the following result.

Lemma 10.2.4. If X and Y are bounded complexes of finitely generated A-
modules, then for each p the canonical homomorphism Zp ⊗ HomD(X,Y ) →
HomDp(Zp ⊗X,Zp ⊗ Y ) is bijective. In particular therefore, the canonical map
from HomD(X,Y ) to

∏
p HomDp(Zp⊗X,Zp⊗Yp), where p runs over all primes,

is injective, resp. bijective if HomD(X,Y ) is finite.

Proof. See [22, proof of Lem. 17]. �

In the context of diagram (47), Lemma 10.2.4 implies that Qp is canonically
isomorphic to Zp ⊗ Q for each p and hence that the map κ2 is injective. In
addition, Lemma 10.2.4 also combines with Lemma 10.2.3(ii) to imply that the
map κ1 in (47) is bijective. Using these facts the result of Proposition 10.2.2
follows by an easy diagram chase using (47). �

10.3. The proof of Theorem 10.1.1. To prove Theorem 10.1.1(i) we set `(C•
i )

:= {d ∈ Z : Hd(C•
i ) 6= 0} and argue by induction on |`(C•

1 )| + |`(C•
2 )|. If firstly

|`(C•
1 )| + |`(C•

2 )| = 0, then the complexes C•
1 , C

•
2 ,Zp ⊗ C•

1 and Zp ⊗ C•
2 are all

acyclic and so Theorem 10.1.1(i) is obvious. To deal with the inductive step we
observe first that unless `(C•

1 ) = `(C•
2 ) and |`(C•

1 )| = 1, then there exists an
integer k such that |`(σ≤kC•

1 )|+ |`(σ≤kC•
2 )| and |`(σ>kC•

1 )|+ |`(σ>kC•
2 )| are both

strictly less than |`(C•
1 )|+ |`(C•

2 )|. Hence, if either `(C•
1 ) 6= `(C•

2 ) or |`(C•
1 )| 6= 1,

then Theorem 10.1.1(i) can be deduced by fixing such an integer k, applying
Proposition 10.2.2 in the context of Example 10.2.1(ii) (it is easy to check that
the conditions (a), (b) and (c) of Proposition 10.2.2 are satisfied in this setting)
and then using the inductive hypothesis with C•

1 and C•
2 replaced by σ≤kC•

1 and
σ≤kC

•
2 , resp. by σ>kC•

1 and σ>kC
•
2 . On the other hand, if `(C•

1 ) = `(C•
2 ) = {d}

for some integer d, then there exist finitely generated A-modules X and Y such
that C•

1 and C•
2 are isomorphic in D to X[−d] and Y [−d] respectively. Hence, in

this case HomD(C•
1 , C

•
2 ) and HomDp(Zp ⊗C•

1 ,Zp ⊗C•
2 ) are naturally isomorphic

to HomA(X,Y ) and HomAp(Zp⊗X,Zp⊗Y ) respectively, and so the assertion of
Theorem 10.1.1(i) is equivalent to the following result.

Lemma 10.3.1. Let X and Y be finitely generated A-modules and for each prime
p let ψp be an element of HomAp(Zp ⊗X,Zp ⊗ Y ). Then there exists an element
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ψ of HomA(X,Y ) with Zp⊗ψ = ψp for all primes p if and only if there exists an
element ψQ of HomA(Q⊗X,Q⊗ Y ) with Qp ⊗Q ψQ = Qp ⊗Zp ψp for all primes p.

Proof. This follows by applying Proposition 10.2.2 (with k = 0) in the context
of Example 10.2.1(i) (it is easy to check that the conditions (a), (b) and (c) of
Proposition 10.2.2 are satisfied in this setting). Indeed, in this case Lemma 10.2.4
implies that the map ∆1 in diagram (44) is bijective and so Proposition 10.2.2
implies that

∏
p ψp belongs to im(∆) if and only if there exists an element ψtf of

HomA(Xtf , Ytf) with Zp⊗ψtf = (Zp⊗α3)(ψp) for all primes p. But the existence
of such a homomorphism ψtf is easily seen to be equivalent to the existence of a
homomorphism ψQ as in the statement of the lemma. �

This completes our proof of Theorem 10.1.1(i). Further, if the morphism ψZ

exists as in claim (i), then Lemma 10.2.4 implies that it is unique (and this proves
Theorem 10.1.1(ii)). In addition, it is clear that ψZ is an isomorphism in D if
and only if the homomorphism Hd(ψZ) is bijective in all degrees d. Claim (iii) of
Theorem 10.1.1 thus follows directly from the fact that Zp ⊗ ker(ψZ) = ker(ψp)
and Zp⊗cok(ψZ) = cok(ψp) for all primes p. This completes our proof of Theorem
10.1.1.

11. Tate motives of strictly positive weight

In this section we prove Proposition 4.2.6 and the relevant claims in both
Remarks 6.2.4 and 7.1.3.

11.1. The proof of Proposition 4.2.6. At the outset we fix a finite set of
places S of k as in §4.2 and a strictly negative integer r and define a G-module
by setting

H+
r := (

⊕
Hom(K,C)

(2πi)−rZ)Gal(C/R)

where Gal(C/R) acts diagonally on the direct sum. For each prime p we also set

C•
p,r := RHomZp(RΓc(OK,S [

1
p
],Zp(r)),Zp[−2])

where RΓc(OK,S [1p ],Zp(r)) is the complex of Zp[G]-modules given by the coho-
mology with compact support defined in [23, p. 522]. We assume throughout
that the Chern class maps ch1

p,r and ch2
p,r in (10) are bijective for all odd primes

p.
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Lemma 11.1.1. The complex C•
p,r belongs to Dperf(Zp[G]). It is also acyclic

outside degrees 0 and 1 and there are canonical isomorphisms of Zp[G]-modules
of the form:-

(i) H0(C•
p,r) ∼= Zp ⊗K1−2r(OK) if either p is odd, or p = 2 and K is totally

imaginary, or p = 2 and r ≡ 0, 1 (mod 4);
(ii) H1(C•

p,r)tor
∼= Zp ⊗ K−2r(OK,S) if either p is odd, or p = 2 and K is

totally imaginary, or p = 2 and r ≡ 0, 3 (mod 4);
(iii) H1(C•

p,r)tf ∼= Zp ⊗ H+
r if either p is odd, or p = 2 and K is totally

imaginary. In general one has Q2 ⊗Z2 H
1(C•

2,r)tf ∼= Q2 ⊗H+
r .

Proof. For each prime p set D•
p,r := RΓc(OK,S [1p ],Zp(r)). Then it is well known

that D•
p,r, and hence also its (shifted) linear dual C•

p,r, belongs to Dperf(Zp[G])
and that D•

p,r is acyclic outside degrees 1, 2 and 3 (indeed, for more general
results see [44, Th. 5.1]). One also knows that H3(D•

p,r) is finite and it is
straightforward to show thatH1(D•

p,r) is Zp-torsion-free and, taken in conjunction
with the universal coefficient spectral sequence, these facts imply that C•

p,r is
acyclic outside degrees 0 and 1. Further, global duality induces (via, for example,
the long exact cohomology sequence of the central column of the diagram in
[22, Prop. 4.1]) canonical isomorphims H0(C•

p,r) ∼= H1
ét(Spec(OK,S [1p ]),Zp(r))

and H1(C•
p,r)tor

∼= H2
ét(Spec(OK,S [1p ]),Zp(r)) and also Λ⊗Zp H

1(C•
p,r)tf ∼= Λ⊗Zp⊕

wH
0(Kw,Zp(−r)) where in the last sum w runs over all archimedean places of

K and Λ is equal to Zp if either p is odd or K totally imaginary and is otherwise
equal to Q2.

Given the above description of H0(C•
p,r) the isomorphism in claim (i) results

from the fact that the natural localisation map K1−2r(OK) → K1−2r(OK,S) is
bijective (see, for example, [33, Prop. 5.7]), our assumption that ch1

p,r is bijective
if p is odd and the fact that ch1

2,r is known to be bijective if either K is totally
imaginary or r ≡ 0, 1 (mod 4) and that in all cases Q2 ⊗Z2 ch1

2,r is known to
be bijective [63, Th. 1]. In a similar way, the isomorphism in claim (ii) results
from our assumption that ch2

p,r is bijective if p is odd and the fact that ch2
2,r is

known to be bijective if either K is totally imaginary or r ≡ 0, 3 (mod 4) [63, Th.
1]. Lastly, the isomorphisms in claim (iii) are obtained by combining the above
description of Λ⊗ZpH

1(C•
p,r)tf with the canonical p-adic comparison isomorphism⊕

wH
0(Kw,Zp(−r)) ∼= Zp ⊗ H+

r (which depends on the choice of a topological
generator of Zp(−r)). �



152 David Burns

The descriptions of Lemma 11.1.1(i) and (iii) combine with [37, Prop. 4.21]
to prove the existence of a (unique) full Z[G]-sublattice Nr,0 of Q ⊗K1−2r(OK)
and Nr,1 of Q⊗H+

r with the property that for both a = 0, 1 the maps in Lemma
11.1.1(i) and (iii) induce isomorphisms

µp,a : Zp ⊗Nr,a
∼= Ha(C•

p,r)tf

for all primes p. From the descriptions of Lemma 11.1.1(i) and (ii) we also know
that, for both a = 0, 1, the module

⊕
pH

a(C•
p,r)tor is finite, where in the sum p

runs over all primes.

Now for any finitely generated G-modules M and N and any strictly positive
integer i there is a natural isomorphism

ExtiZ[G](N,M) ∼=
⊕
p||G|

ExtiZp[G](Zp ⊗N,Zp ⊗M). (48)

In particular, for both a = 0, 1 this observation (with i = 1, N = Nr,a and
M =

⊕
pH

a(C•
p,r)tor) proves the existence of a finitely generated G-module N ′

r,a

such that for every prime p there exists an isomorphism of Zp[G]-modules

µ′p,a : Zp ⊗N ′
r,a
∼= Ha(C•

p,r) (49)

which induces on Zp ⊗ (N ′
r,a)tf the isomorphism µp,a fixed above.

By now applying (48) with i = 2, N = N ′
r,1 and M = N ′

r,0, the isomorphisms
µ′p,0 and µ′p,1 combine to give an isomorphism

Ext2Z[G](N
′
r,1, N

′
r,0) ∼=

⊕
p||G|

Ext2Zp[G](H
1(C•

p,r),H
0(C•

p,r)). (50)

Hence we may define an a.t.e. of Z[G]-modules τr by means of the following
conditions:-

• Ha
τr = N ′

r,a for both a = 0, 1;
• ετr is the element of Ext2Z[G](H

1
τr ,H

0
τr) that corresponds under (50) to⊕

p||G|C
•
p,r (note that ετr is perfect since C•

p,r belongs to Dperf(Zp[G]) for
each prime divisor p of |G|);

• λτr is induced by −1 times the Beilinson regulator map;
• L∗τr = L∗K/k,S(r)#.

With this construction of τr the descriptions of H0
τr and H1

τr given in Propo-
sition 4.2.6 are an easy consequence of the isomorphisms µ′p,a for a = 0, 1 and
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the descriptions of Ha(C•
p,r) in Lemma 11.1.1. The proof of Proposition 4.2.6 is

therefore now completed by the following result.

Lemma 11.1.2. ψ∗(TΩ(Q(r)K ,Z[G])) = χ(τr).

Proof. By [13, Lem. 2.1], it suffices to prove that for each prime p and em-
bedding j : R → Cp one has ιj(TΩ(Q(r)K ,Z[G])) = ιj(ψ∗(χ(τr))) with ιj the
homomorphism K0(Z[G],R[G]) → K0(Zp[G],Cp[G]) induced by j.

But (5) implies that ιj(ψ∗(χ(τr))) = [D•
p,r, λj ] + ιj(δ(L∗K/k,S(r))) with D•

p,r :=
RΓc(OK,S [1p ],Zp(r)) and λj : [Cp⊗ZpH

1(D•
p,r)]

−1[Cp⊗ZpH
2(D•

p,r)] → 1Cp[G] the
morphism in V (Cp[G]) that is induced by (the Cp-linear duals of) Cp⊗R,j λτr and
the image under Cp ⊗Zp − of the isomorphisms in Lemma 11.1.1. The required
equality thus follows because [D•

p,r, λj ] is equal to the image under ιj of the
element

TΩ(Q(r)K ,Z[G])− δ(L∗K/k,S(r))

= (TΩ(Q(r)K ,Z[G])− δ(L∗K/k,S∞(r)))− δ(L∗K/k,S(r)/L∗K/k,S∞(r)).

Indeed, if G is abelian, then the latter claim can be proved by comparing the
definition of [D•

p,r, λj ] with the definition of TΩ(Q(r)K ,Z[G]) − δ(L∗K/k,S∞(r))
via [25, (9)] and [23, Conj. 4(iii)] and then using [22, (11),(12)] and the fact that
(in the notation of loc. cit.) 1−Nv−rfv belongs to Zp[G]× for each place v of k
above p. The formalism of virtual objects then allows a direct extension of this
argument to the general non-abelian case. �

11.2. Justifying Remark 7.1.3. In this subsection we prove the equality χ(ετr)=
Ω−r(K/k) that is used in Remark 7.1.3. To do this we apply Theorem 10.1.1 in
the setting of [22, §4]. We therefore first recall that

Ω−r(K/k) = χ(K(1− r))− (ZΣ∞) ∈ K0(Z[G]), (51)

where K(1− r) is the perfect complex of Z[G]-module which occurs in [22, (106)]
and Σ∞ is the G-set Hom(K,C). We also recall from loc. cit. that there ex-
ists a perfect complex of Z[G]-modules ∆ := ∆(1 − r) with all of the following
properties:-

(a) For each prime p the left hand column of [22, Prop. 4.1] combines with
the isomorphisms τp and σp of [22, (106), resp. Prop. 4.2] to give an exact
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triangle in D(Zp[G]) of the form

Zp ⊗∆[1]
ψp−→ Zp ⊗K(1− r) → C•

p,r → Zp ⊗∆[2];

(b) [22, Prop. 4.2] implies that in each degree i there exists a homomorphism
of Q[G]-modules ψiQ : Q⊗H i+1(∆) → Q⊗H i(K(1− r)) which makes the
following diagram commute

Qp ⊗H i+1(∆)
Qp⊗Qψ

i
Q−−−−−→ Qp ⊗H i(K(1− r))

∼=
y ∼=

y
H i+1(Qp ⊗∆)

Qp⊗ZpH
i(ψp)

−−−−−−−−−→ H i(Qp ⊗K(1− r)),

where the vertical arrows are the canonical isomorphisms;
(c) ∆ is isomorphic in D(Z[G]) to a complex ZΣ∞ → ZΣ∞ → ZΣ∞, where

the first term is placed in degree 1 (cf. [22, Lem. 18]).

Property (b) implies that the criterion of Theorem 10.1.1(i) is satisfied with
A = Z[G], C•

1 = ∆[1], C•
2 = K(1 − r) and ψp as in property (a) and hence there

exists a morphism ψZ : ∆[1] → K(1 − r) in D(Z[G]) with Zp ⊗ ψZ = ψp for all
primes p.

Using the terminology of §3, we now fix a representative (Ψ•, ι0, ι1) for the
extension class ετr defined just prior to Lemma 11.1.2. If X is any complex of
Z[G]-modules which lies in an exact triangle in D(Z[G]) of the form

∆[1]
ψZ−→ K(1− r) → X → ∆[2], (52)

then for each prime p there exists an isomorphism λp in D(Zp[G]) which makes
the following diagram commute

Zp ⊗∆[1]
Zp⊗ψZ−−−−→ Zp ⊗K(1− r) −→ Zp ⊗X −→ Zp ⊗∆[2]∥∥∥ ∥∥∥ λp

y ∥∥∥
Zp ⊗∆[1]

ψp−→ Zp ⊗K(1− r) −→ Zp ⊗Ψ• −→ Zp ⊗∆[2].

Here the upper row is the scalar extension of (52) and the lower row is the exact
triangle induced by property (a) and a choice of isomorphism θp : C•

p,r
∼= Zp⊗Ψ•

in D(Zp[G]) for which, for both a = 0, 1, the composite (Zp ⊗ ιa) ◦ Ha(θp) is
equal to the inverse of the isomorphism µ′p,a in (49). (Note that the existence of
such an isomorphism θp is an easy consequence of the definition of ετr .) Now the
commutative diagram of [22, (115)] combines with the above diagram to imply
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that the criterion of Theorem 10.1.1(i) is satisfied if one takes A = Z[G], C•
1 =

X,C•
2 = Ψ• and ψp = λp for all p and so by Theorem 10.1.1(i), (iii) there

exists an isomorphism X ∼= Ψ• in D(Z[G]) and hence also an exact triangle in
Dperf(Z[G]) of the form ∆[1] → K(1 − r) → Ψ• → ∆[2]. By the additivity of
Euler characteristics on exact triangles of perfect complexes one therefore has

χ(Ψ•) = χ(K(1− r))− χ(∆[1]) = Ω−r(K/k) + (ZΣ∞) + χ(∆) = Ω−r(K/k)

where the second equality is by (51) and the third by the description of ∆ given
in (c) above. Since, by definition, χ(ετr) := χ(Ψ•) we thus deduce the required
equality χ(ετr) = Ω−r(K/k).

11.3. Justifying Remark 6.2.4. At this stage it only remains to prove that, as
claimed in Remark 6.2.4, the equality (17) with τ = τr refines [33, Conj. 6.12].
(We recall that this observation answers the question raised by Chinburg et al in
[33, top of p. 357].) To do this we set Λ := Z[12 ] and XΛ := Λ⊗X for any module
X and use the notation of [33] (but with ‘N ’ and ‘r’ of loc. cit. replaced by K
and 1 − r respectively). Then [33, Prop. 3.9] implies that the map ch1 induces
an isomorphism K1−2r(OK,S)Λ ∼= (K∗

1−2r ∩ ker(d1))Λ. Also each of the modules
Y3−2r,Λ,DivZ(Σ∞)Λ and Y1−2r,Λ which occur in [33] are projective Λ[G]-modules.
Hence, for each character ψ ∈ Irr(G), the diagram of [33, Cor. 6.3] induces a
commutative diagram of Λ⊗O-modules of the form

0 −→ (Y3−2r,Λ)ψ −→ (DivZ(Σ∞)Λ)ψ −→ (Y1−2r,Λ)ψ −→ 0

φψY ◦t1
y (φ′)ψ◦t2

y φψ◦t3

y
0 −→ Y ψ

3−2r,Λ −→ (K ′
1−2r,Λ)ψ −→ K1−2r(OK,S)ψΛ −→ 0

in which t1, t2 and t3 denote t(Y3−2r,Λ, ψ), t(DivZ(Σ∞)Λ, ψ) and t(Y1−2r,Λ, ψ) in
the notation of (16), and each vertical arrow in the diagram is injective (and thus
has finite cokernel). We write ϕ for the composite H1

τr,Λ
� (H1

τr,tf
)Λ = H+

r,Λ →
Y1−2r,Λ → K1−2r(OK,S)Λ where the first arrow is the tautological projection, the
second is the isomorphism induced by multiplication by (2πi)r and the third is in-
duced by the map φ in diagram [33, (6.6)]. Then by applying the Snake lemma to
the above diagram and taking account of both [33, (6.10)] (with V = Vψ) and the
equality K−2r(OK,S)Λ = K ′

−2r,Λ one finds that the ideal (Aτrϕ (ψ)qτrϕ (ψ)−1)Λ which
occurs in (17) is equal to the image under Λ⊗− of the ideal A(Vψ, φ′)qTψ(φ′)−1

which occurs in [33, Conj. 6.12]. Hence, from the conjectural equality (17) with
τ = τr, we deduce that the ideal E(Vψ, φ′) · O in [33, Conj. 6.12] should be
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supported entirely above 2. It is clear that this refinement of [33, Conj. 6.12] is
consistent with the result of [33, Cor. 6.16].

Remark 11.3.1. Generalisations

Let M be any motive defined over k for which both of the spaces H0(k,M)
and H0(k,M∗(1)) vanish. Then for every prime p, every full Galois stable Zp-
sublattice Tp of Hp(M) and every large enough finite set of places S of k it
can be shown that the complex RHomZp(RΓc(Ok,S [1p ],Zp[G] ⊗Zp Tp),Zp[−2])
belongs to Dperf(Zp[G]) and is acyclic outside degrees 0 and 1. If now M has
trivial tangent space (that is, HdR(M) = F 0HdR(M)) and also satisfies certain
standard expectations (including the ‘Coherence hypothesis’ of [23, p. 525]), then
it is possible to mimic the construction of τr given above to obtain an a.t.e. of
Z[G]-modules τM with the property that ETNC(MK ,Z[G]) is valid if and only if
χ(τM ) vanishes.

12. The proof of Proposition 4.3.1

Throughout this section we assume the notation and hypotheses of Proposition
4.3.1. To prove this result we adapt the argument given in [21, §1.5.1, §1.7].

For convenience, we shall therefore adopt the notation of [21, §1.5]. In par-
ticular, if q is any odd prime which does not divide disc(K)cond(E), then we
define a finitely generated (free) Zq[G]-module by setting Dq := Dcr,q(Tq) ∼=
OK,q ⊗Zq Dcr,q(Tq(E)) where OK,q := Zq ⊗ OK and Dcr,q is the quasi-inverse to
the functor of Fontaine and Lafaille that is used by Niziol in [80]. For each such
q we also write φq for the natural (Zq[G]-equivariant) Frobenius on Dq.

We write Sram and Sbad for the (finite) sets of primes which divide disc(K)
and cond(E) respectively and also define S := Sram ∪ Sbad.

12.1. Tamagawa factors. We first define the Tamagawa factors of the pair
(h1(E/F )(1),Z[Gal(F/Q)]) which occur in Proposition 4.3.1.

For each prime q we write Tq(E) for the q-adic Tate module of E and for each
finite degree Galois extension F of Q we set Tq,F := Zq[Gal(F/Q)] ⊗Zq Tq(E)
which we regard as a (left) module over GQ ×Gal(F/Q) in the natural way. For
each prime ` we write Qun

` for the maximal unramified extension of Q` in a fixed
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algebraic closure Qc
` and set I` := Gal(Qc

`/Qun
` ). We then consider the group

C`(E,F ) :=
⊕
q

H0(Q`,H
1(I`, Tq,F )tor),

where in the direct sum q runs over all primes. This group is finite: indeed,
each summand is clearly finite and it is known that almost all summands are
isomorphic to a subgroup of the direct sum over all characteristic ` residue fields
κ of F of the (finite) group of connected components of the special fibre of a
Néron model of E/F over κ (cf. [57, Exp. IX, (11.3.8)]). We may therefore define
the Tamagawa factor at ` of the pair (h1(E/F )(1),Z[Gal(F/Q)]) by setting

c`(E,F ) := |C`(E,F )|.

12.2. Cohomology with finite support. If F = K, then in the sequel we shall
always abbreviate Tq,F to Tq and set Vq = Qq ⊗Zq Tq (again regarded as a (left)
module over GQ ×G in the natural way).

For each pair of primes ` and q we write H1
f (Q`, Tq)BK for the finite support

cohomology group defined by Bloch and Kato in [9]. If q is any prime which does
not divide |G| we then define for each prime ` a complex of Zq[G]-modules by
setting

RΓf (Q`, Tq) := H1
f (Q`, Tq)BK[−1].

If condition (B) of Proposition 4.3.1 is satisfied, in which case |G| is a power of
a prime p, then for each prime ` we also define a complex of Zp[G]-modules by
setting

RΓf (Q`, Tp) :=

T
I`
p

1−Fr−1
`−−−−−→ T I`p , if ` 6= p

F 0Dp
1−φ0

p−−−→ Dp, if ` = p

where Fr` is the natural Frobenius in Gal(Qun
` /Q`), φ0

p is the restriction of φp to
F 0Dp ⊆ Dp and in both cases the first term is placed in degree 0. (Note that in
defining RΓf (Qp, Tp) in this way we are using the conditions (B)(ii) and (B)(iv).
For further observations regarding our definitions of the complexes RΓf (Q`, Tq)
see Remark 12.4.2 below.)

We fix a place w of K above ` and write Gw for the decomposition subgroup
of w in G (which we identify with Gal(Kw/Q`)) and Iw for the image of I` in Gw.

Lemma 12.2.1. For all primes ` and q the complex RΓf (Q`, Tq) belongs to
Dperf(Zq[G]).
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Proof. If q - |G|, then the algebra Zq[G] is regular and so RΓf (Q`, Tq) belongs to
Dperf(Zq[G]) simply because H1

f (Q`, Tq)BK is a finitely generated Zq[G]-module.

We shall therefore assume that condition (B) is satisfied and restrict to the
case q = p. To deal with the case ` = p we note that OK,p is a free Zp[G]-module
(as p is unramified in K/Q by condition (B)(ii)). Thus both F 0Dp ∼= OK,p ⊗Zp
F 0Dcr,p(Tp(E)) and Dp ∼= OK,p ⊗Zp Dcr,p(Tp(E)) are finitely generated Zp[G]-
modules that have finite projective dimension and so it is clear that RΓf (Qp, Tp)
belongs to Dperf(Zp[G]).

If ` 6= p and ` /∈ Sram, then T I`p = Zp[G]⊗Zp Tp(E)I` is a free Zp[G]-module and
so the result is also clear. It thus suffices to prove that if (` 6= p and) ` ∈ Sram,
then RΓf (Q`, Tp) is acyclic. To do this we let d0

`,p denote the differential (in degree

0) of RΓf (Q`, Tp). Then ker(d0
`,p) = T

Gal(Qc`/Q`)
p vanishes and hence it is enough

to show that cok(d0
`,p) vanishes or equivalently, since both G and cok(d0

`,p) are
finite p-groups, that cok(d0

`,p)G vanishes. Now condition (B)(ii) implies that E
has good reduction at ` and so T I`p = Zp[G/Iw]⊗Zp Tp(E). The (finite) Zp-module
cok(d0

`,p)G is therefore isomorphic to the cokernel of the (injective) endomorphism
of the (free) Zp-module Tp(E) that is induced by the action of 1 − Fr−1

` and so
| cok(d0

`,p)G| is equal to the maximum power of p which divides detZp(1 − Fr−1
` |

Tp(E)) in Zp. But the latter determinant is equal to the value at t = 1 of the
Euler factor 1 − (` + 1 − |Ẽ`(F`)|)t + `t2 and this value is |Ẽ`(F`)| which, by
condition (B)(iii), is a unit in Zp. �

For all primes q and ` we write RΓ(ZS [1q ], Tq) and RΓ(Q`, Tq) for the usual
complexes of continuous cochains. Then if either q - |G| or q = p and con-
dition (B) is satisfied, the argument of [21, §1.5.1] gives a natural morphism
$`,q : RΓf (Q`, Tq) → RΓ(Q`, Tq) in D(Zq[G]). Following [21, (1.33)], we define
RΓ/f (Q`, Tq) to be a complex of Zq[G]-modules which lies in an exact triangle in
D(Zq[G]) of the form

RΓf (Q`, Tq)
$`,q−−−→ RΓ(Q`, Tq)

$′
`,q−−−→ RΓ/f (Q`, Tq) → RΓf (Q`, Tq)[1]. (53)

We then define the complex RΓf (Q, Tq) so that it lies in an exact triangle in
D(Zq[G]) of the form

RΓf (Q, Tq) → RΓ(ZS [
1
q
], Tq)

θ−→
⊕

`∈S∪{q}

RΓ/f (Q`, Tq) → RΓf (Q, Tq)[1] (54)
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where the `-component of θ is equal to the composite of the natural localisation
morphism RΓ(ZS [1q ], Tq) → RΓ(Q`, Tq) and the morphism $′

`,q.

In each degree i we set H i
f (Q, Tq) := H i(RΓf (Q, Tq)).

Lemma 12.2.2. If either q - |G| or condition (B) is satisfied, then the complex
RΓf (Q, Tq) belongs to Dperf(Zq[G]). Further, it is acyclic outside degrees 1, 2 and
3 and there are canonical isomorphisms

H i
f (Q, Tq) ∼=


Zq ⊗ E(K), if i = 1,

Zq ⊗ Sel(E/K), if i = 2,

Zq ⊗ (E(K)tor)∨, if i = 3.

Proof. We first consider the cohomology modules. In fact, if either i /∈ {1, 2} or
q - |G|, then the description of H i

f (Q, Tq) given above follows immediately from
the argument of [21, p. 86-87]. For the remaining case that condition (B) is
satisfied, q = p and i ∈ {1, 2} the argument of loc. cit. gives a canonical exact
sequence of Zp[G]-modules

0 → H1
f (Q, Tp) −→ Zp ⊗ E(K) →

⊕
`∈S

H0(Q`,H
1(I`, Tp)tor)

→ H2
f (Q, Tp) → Zp ⊗ Sel(E/K) → 0

and so we must show that H0(Q`,H
1(I`, Tp)tor) = 0 for all ` in S. The natural

isomorphism

H0(Q`,H
1(I`, Tp)tor) ∼= Zp[G]⊗Zp[Gw] H

0(KIw
w ,H1(KwQun

` , Tp(E))tor)

therefore implies that we must prove that H0(KIw
w ,H1(KwQun

` , Tp(E))tor) van-
ishes for all ` in S. Now if ` /∈ Sbad, then the group H1(KwQun

` , Tp(E)) =
Homcont(Gal(Qc

`/KwQun
` ), Tp(E)) is torsion-free and so the result is clear. On

the other hand, if ` ∈ Sbad, then condition (B)(ii) implies that ` /∈ Sram.
This implies KIw

w = Kw and KwQun
` = Qun

` and hence we must show that
H0(Kw,H

1(I`, Tp(E))tor) = 0. But Gw is a p-group and so this is true be-
cause H0(Kw,H

1(I`, Tp(E))tor)Gw = H0(Q`,H
1(I`, Tp(E))tor) = 0, where the

last equality follows from condition (B)(v) (and the definition of c`(E,Q)).

At this stage it suffices to prove that RΓf (Q, Tq) belongs to Dperf(Zq[G]). If
q - |G|, then Zq[G] is regular and so RΓf (Q, Tq) belongs to Dperf(Zq[G]) by virtue
of the fact that each moduleH i

f (Q, Tq) is a finitely generated Zq[G]-module (which
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is zero for almost all i). Lastly, if q = p and condition (B) is satisfied, then (q
is odd so) each complex RΓ(ZS [1q ], Tq) and RΓ(Q`, Tq) belongs to Dperf(Zq[G])
(see, for example, [44]) and so Lemma 12.2.1 combines with the exact triangles
(53) and (54) to imply that the same is true of RΓf (Q, Tq). �

12.3. An auxiliary a.t.e. We assume first that condition (B) of Proposition
4.3.1 is satisfied. Then G is a p-group and so, if p ∈ Spec(Λ), then Lemma 12.2.2
combines with (48) to give a canonical isomorphism

Ext2Λ[G](Λ⊗ Sel(E/K),Λ⊗ E(K)) ∼= Ext2Zp[G](H
2
f (Q, Tp),H1

f (Q, Tp)). (55)

Now the cardinality of E(Q)tor = E(K)Gtor is prime to p by condition (B)(iii).
Hence (since G is a p-group) the cardinality of E(K)tor is also prime to p and so
Lemma 12.2.2 implies that RΓf (Q, Tp) is both perfect and acyclic outside degrees
1 and 2. We may therefore define an a.t.e. of Λ[G]-modules τ ′ with the following
properties:-

(a) H0
τ ′ = (Λ⊗ E(K))⊕ (Λ⊗ (E(K)tor)∨) and H1

τ ′ = Λ⊗ Sel(E/K);
(b) ετ ′ is the element of

Ext2Λ[G](H
1
τ ′ ,H

0
τ ′) = Ext2Λ[G](Λ⊗ Sel(E/K),Λ⊗ E(K))

that corresponds under (55) to the shifted complex RΓf (Q, Tp)[1];
(c) λτ ′ is induced by the Néron-Tate height pairing;
(d) (L∗τ ′)ψ = L∗(E,ψ, 1) for each ψ ∈ Irr(G).

If on the other hand either condition (B) is satisfied and p is invertible in Λ or
condition (A) of Proposition 4.3.1 is satisfied, then |G| is invertible in Λ and so
all groups of the form Ext2Λ[G](−,−) vanish. In these cases therefore we simply
let τ ′ be the unique a.t.e. of Λ[G]-modules which satisfies the conditions (a), (c)
and (d) above.

We also set M := h1(E/K)(1) and tdR(M) := H1(E/K ,OE/K ) ∼= H0
dR(M)/F 0

and define a free rank one Λ[G]-module by setting

H+
B,Λ := Λ[G]⊗H0(Gal(C/R),HomZ(H1(E(C),Z), 2πiZ))

∼= H0(Gal(C/R),HomZ(
⊕

σ:K→C
H1(σE/K(C),Z), 2πiΛ)),

where the last isomorphism follows from the fact that K is assumed to be totally
real. We also write EK for the Néron model of E over OK . Then Λ⊗H1(EK ,OEK )
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is a full sublattice of tdR(M) which is also a projective Λ[G]-module (see Lemma
12.5.1 below) and so we may define an element of K0(Λ[G],R[G]) by setting

ξ := χ(τ ′) + TΩ(M,Λ[G]) + (H+
B,Λ,Λ⊗H1(EK ,OEK );π)−

∑
`∈Sram

ε`.

Here π : R⊗ΛH
+
B,Λ

∼= R⊗Q tdR(M) is the canonical period isomorphism described
by Deligne in [38, §4.1] and for each prime q we set

εq := δΛ(Lq(Q[G]M, 0)) ∈ K0(Λ[G],Q[G]),

where Lq(Q[G]M, 0) ∈ ζ(Q[G])× is the value at s = 0 of the equivariant local
L-factor Lq(Q[G]M, s) defined in [23, §4.1, Rem. 7].

Lemma 12.3.1. ξ belongs to the subgroup K0(Λ[G],Q[G]) of K0(Λ[G],R[G]).

Proof. We write RΩ(M,Λ[G]) for the image in K0(Λ[G],R[G]) of the element
RΩ(M,Z[G]) of K0(Z[G],R[G]) that is defined in [23, §3.4, just before Lem. 7].
Then TΩ(M,Λ[G]) is, by definition, equal to RΩ(M,Λ[G])+δΛ(L∗τ ′). Hence, since
χ(τ ′) := [ετ ′ , λτ ′ ] − δΛ(L∗τ ′) and each ε` belongs to K0(Λ[G],Q[G]) it is enough
to show that the sum [ετ ′ , λτ ′ ] + (H+

B,Λ,Λ⊗H1(EK ,OEK );π) +RΩ(M,Λ[G]) be-
longs to K0(Λ[G],Q[G]). It is therefore enough to show that the images under
the natural map K0(Λ[G],R[G]) → K0(Q[G],R[G]) of the elements [ετ ′ , λτ ′ ] +
(H+

B,Λ,Λ ⊗ H1(EK ,OEK );π) and −RΩ(M,Λ[G]) coincide. But, unwinding def-
initions, it is easily seen that the image of both of these elements is equal to
(Q ⊗ E(K),Q ⊗ E(K)∗; ι) + (Q ⊗Λ H

+
B,Λ, tdR(M);π) where ι is induced by the

Néron-Tate height pairing. �

We recall (from, for example, [23, (13)]) that there is a natural direct sum
decomposition of abelian groups

K0(Λ[G],Q[G]) =
⊕

`∈Spec(Λ)

K0(Z`[G],Q`[G]).

Following Lemma 12.3.1 we may therefore define for each prime ` ∈ Spec(Λ) an
element ξ` of K0(Z`[G],Q`[G]) by setting

ξ =
∑

`∈Spec(Λ)

ξ`.
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12.4. Computation of the elements ξ`. For each prime q we write tq(Vq) for
the tangent space DRq(Vq)/F 0 of Vq and κq : Qq ⊗Q tdR(M) ∼= tq(Vq) for the
canonical comparison isomorphism. We also define a space H1

f (Qq, Vq) := Qq⊗Zq
H1
f (Qq, Tq)BK and write expBK

q : tq(Vq) → H1
f (Qq, Vq) for the isomorphism given

by the Bloch-Kato exponential map. For each embedding j : R → Cq we write
πj : Cq ⊗ΛH

+
B,Λ

∼= Cq ⊗Qq tq(Vq) for the composite (Cq ⊗Qq κq) ◦ (Cq ⊗R,j π). We
also set Jq := κq(Zq ⊗H1(EK ,OEK )) ⊂ tq(Vq) and let Iq denote the intersection
of expBK

q (Jq) with H1
f (Qq, Tq)BK,tf ⊂ H1

f (Qq, Vq).

In order to state the next result we note that if q - |G|, then Zq[G] is a regular
ring. Hence for any finitely generated Zq[G]-modules X and Y , extension field F
of Qq and isomorphism of F [G]-modules µ : F ⊗Zq X

∼= F ⊗Zq Y we can define
an element clq(X,Y ;µ) := ([X][Y ]−1, µtriv) of K0(Zq[G], F [G]) just as in §6. In
particular, for any finite Zq[G]-module X we may set clq(X) := clq(X, 0; 0) ∈
K0(Zq[G],Qq[G]).

Lemma 12.4.1. Recall that in §12.3 we defined for each prime q an element εq of
K0(Λ[G],Q[G]) and for each prime q in Spec(Λ) an element ξq of K0(Zq[G],Qq[G]).

(i) If q does not belong to S and does not divide 2|G|, then the image of εq in
K0(Zq[G],Qq[G]) is equal to clq(expBK

q (Jq)/Iq)− clq(H1
f (Qq, Tq)BK/Iq).

(ii) If q ∈ Spec(Λ) does not divide |G|, then ξq is equal to

ξ′q +
∑

`∈Sbad\{q}

clq(H0(Q`,H
1(I`, Tq)tor)) +

∑
`∈Sram\{q}

clq(cok(1 − Fr−1
` | T I`q ))

with ξ′q = 0 if q /∈ S and

ξ′q = [clq(H1
f (Qq, Tq)BK/Iq) + clq(Aq)]− [clq(expBK

q (Jq)/Iq) + clq(Bq)]

if q ∈ S, where Aq and Bq are finite Zq[G]-modules such that clq(Aq) −
clq(Bq) is equal to 0, resp. to the image of εq in K0(Zq[G],Qq[G]), if
q ∈ Sram, resp. q ∈ Sbad.

(iii) If condition (B) is satisfied and p ∈ Spec(Λ), then ξp = 0.

Proof. We first fix any odd prime q which does not belong to S (= Sram ∪ Sbad).
Then the theory of Fontaine and Messing [46] implies that Jq = Dq/F 0Dq. In
this case it is also known that there is a natural short exact sequence of perfect
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complexes of Zq[G]-modules (with vertical differentials)

0 −−−−→ Dq/F 0Dq
(0,id)−−−−→ Dq ⊕Dq/F 0Dq

(id,0)−−−−→ Dq −−−−→ 0x (1−φq ,π)

x 1−φq
x

0 −−−−→ 0 −−−−→ Dq
id−−−−→ Dq −−−−→ 0

(56)

in which the term Dq/F 0Dq in the first complex occurs in degree 1, π is the tau-
tological projection and expBK

q maps the cohomology in degree 1 of the second
complex bijectively to H1

f (Qq, Tq)BK. Now the differential 1−φq of the third com-
plex in (56) is injective and so the associated long exact sequence of cohomology
gives both an inclusion expBK

q (Jq) ⊂ H1
f (Qq, Tq)BK (so that Iq = expBK

q (Jq)) and
an isomorphism H1

f (Qq, Tq)BK/expBK
q (Jq) ∼= cok(1 − φq | Dq). To deduce claim

(i) from this we therefore need only note that if also q - |G|, then the descrip-
tion of Lq(Q[G]M, s) in terms of the action of 1 − φq on Qq ⊗Zq Dq implies that
− clq(cok(1 − φq | Dq)) is equal to the image of εq in K0(Zq[G],Qq[G]) (cf. [23,
§4.1, Rem. 7]).

To prove claim (ii) we fix a prime q in Spec(Λ) with q - |G| and set

C•
q := RΓ(R, Tq)⊕RΓf (Qq, Tq) ∼= H0(Gal(C/R), Tq)[0]⊕H1(RΓf (Qq, Tq))[−1].

Then the definitions of RΓc(ZS [1q ], Tq) and RΓf (Q, Tq) combine to give a natural
exact triangle in Dperf(Zq[G]) of the form

RΓc(ZS [
1
q
], Tq) → RΓf (Q, Tq) → C•

q ⊕
⊕

`∈S\{q}

RΓf (Q`, Tq) → . (57)

For each embedding j : R → Cq we write ιj for the induced embedding of rela-
tive K-groups K0(Λ[G],R[G]) → K0(Zq[G],Cq[G]). Then the very definition of
RΩ(M,Λ[G]) makes it clear that

ιj(RΩ(M,Z[G])) = [RΓc(ZS [
1
q
], Tq), θq] ∈ K0(Zq[G],Cq[G])

where the morphism θq : [Cq ⊗Zq RΓc(ZS [1q ], Tq)] → 1Cq [G] is constructed using
(57), the canonical comparison isomorphisms associated to M and the morphism
λj : [Cq⊗ZqRΓf (Q, Tq)] → 1Cq [G] that is induced by the displayed exact sequence
in the proof of Lemma 12.2.2 and the image under Cq ⊗R,j − of the Néron-Tate
height pairing. On the other hand, the definition of the a.t.e. τ ′ in §12.3 implies
that

ιj([ετ ′ , λτ ′ ]) = [RΓf (Q, Tq)[1], λ−1
j ] = −[RΓf (Q, Tq), λj ] ∈ K0(Zq[G],Cq[G]).
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Now, as recalled in the proof of Lemma 12.3.1, TΩ(M,Λ[G]) = RΩ(M,Λ[G]) +
δΛ(L∗τ ′) and therefore [ετ ′ , λτ ′ ] + RΩ(M,Λ[G]) = χ(τ ′) + TΩ(M,Λ[G]). Hence,
upon combining the above displayed formulas for ιj(RΩ(M,Z[G])) and ιj([ετ ′ , λτ ′ ]),
making an explicit comparison of all of the maps involved and taking account of
the remark which immediately follows [23, (24)] one finds that

ιj(χ(τ ′) + TΩ(M,Λ[G])) (58)

= ιj([ετ ′ , λτ ′ ] +RΩ(M,Λ[G]))

= − clq(Zq ⊗Λ H
+
B,Λ,H

1
f (Qq, Tq)BK; expBK

q ◦ πj)

+
∑

`∈S∪{q}

ιj(ε`) +
∑

`∈S\{q}

clq(H1
f (Q`, Tq)BK).

One also has

clq(Zq ⊗Λ H
+
B,Λ,H

1
f (Qq, Tq)BK; expBK

q ◦ πj)

= ιj((H+
B,Λ,Λ⊗H1(EK ,OEK );π))

+ clq(Zq ⊗H1(EK ,OEK ),H1
f (Qq, Tq)BK; expBK

q ◦ κq)

= ιj((H+
B,Λ,Λ⊗H1(EK ,OEK );π))

+ clq(expBK
q (Jq)/Iq)− clq(H1

f (Qq, Tq)BK/Iq).

In addition, for each ` ∈ S \ {q} the exact sequence

0 → cok(1− Fr−1
` | T I`q ) → H1

f (Q`, Tq)BK → H0(Q`,H
1(I`, Tq)tor) → 0

of [21, (1.38)] combines with [23, Rem. 7] to imply that

clq(H1
f (Q`, Tq)BK) + ιj(ε`) = clq(H0(Q`,H

1(I`, Tq)tor)).

Taking account of these formulas, and noting that H0(Q`,H
1(I`, Tq)tor) vanishes

for every ` /∈ Sbad, it is straightforward to check that (58) implies the explicit
formula for ξq given in claim (ii).

To prove claim (iii) we now assume that condition (B) is satisfied, that q = p

and that p ∈ Spec(Λ) (the latter condition being automatically satisfied if, for
example, Λ = Z[12 ]). Then Lemmas 12.2.1 and 12.2.2 combine to imply that
there is an exact triangle of perfect complexes of Zp[G]-modules of the form (57)
(here we are also using the fact that p is odd). In addition, our assumptions
(B)(ii) and (B)(iv) on p together imply that p /∈ S and hence both that there is
a short exact sequence of perfect complexes of the form (56) with q = p and that
κp(Zp ⊗H1(EK ,OEK )) = Dp/F 0Dp. By using these facts an argument similar to
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the above shows that if j is any embedding R → Cp, then the correct analogue
of (58) is the formula

ιj(χ(τ ′) + TΩ(M,Λ[G])) (59)

=− (Zp ⊗Λ H
+
B,Λ,Dp/F

0Dp;πj) +
∑

`∈Sram

ιj(ε`)

=− ιj((H+
B,Λ,Λ⊗H1(EK ,OEK );π)) +

∑
`∈Sram

ιj(ε`),

or equivalently, ιj(ξ) = 0. It is therefore clear that ξp = 0, as required. �

Remark 12.4.2. Finite support cohomology

The second complex in the sequence (56) is naturally quasi-isomorphic to the

complex F 0Dq
1−φ0

q−−−→ Dq in which the first term occurs in degree 0. In addition,
it is acyclic in degree 0 and so expBK

q induces a quasi-isomorphism from it to
the complex H1

f (Qq, Tq)BK[−1]. This shows that for any odd prime q which does
not belong to S it is possible to define the complex RΓf (Qq, Tq) introduced at
the beginning of §12.2 in exactly the same way as we defined RΓf (Qp, Tp) under
condition (B).

12.5. Completion of the proof.

Lemma 12.5.1. Under the conditions of Proposition 4.3.1 the Λ[G]-module Λ⊗
H1(EK ,OEK ) is projective of rank one and in K0(Λ[G],R[G]) one has

(H+
B,Λ,Λ⊗H1(EK ,OEK );π) = δΛ((Ω(E)ψ(1)τ∗(ψ)−1)ψ).

Proof. Under either condition (A) or (B) of Proposition 4.3.1 the highest common
factor of cond(E) and disc(K) is invertible in Λ and so EK,Λ is isomorphic to
OK,Λ ×Z E where E is the Néron model of E over Z (cf. [2, Cor. 1.4]). Hence
Λ ⊗ H1(EK ,OEK ) is isomorphic as a Λ[G]-module to OK,Λ ⊗ H1(E ,OE). Thus,
since either |G| is invertible in Λ (under condition (A)) or K/Q is tamely ramified
(under condition (B)), Noether’s Theorem implies that the Λ[G]-module OK,Λ,
and hence also OK,Λ ⊗H1(E ,OE) ∼= Λ⊗H1(EK ,OEK ), is projective of rank one.
We fix a free (rank one) OΛ[G]-submodule F of OK,Λ.

Now, by Serre duality, H1(E ,OE) is canonically isomorphic to the linear dual
H0(E ,Ω1

E)
∗ := HomZ(H0(E ,Ω1

E),Z). Further, by choosing Z-bases θ and φ of the
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groups H0(Gal(C/R),HomZ(H1(E(C),Z), 2πiZ)) and H0(E ,Ω1
E)
∗ and a Λ[G]-

basis α of F , and then computing the matrix of π with respect to the Λ[G]-bases
1⊗ θ and α⊗ φ of H+

B,Λ and F ⊗H0(E ,Ω1
E)
∗ one finds that

(H+
B,Λ,Λ⊗H1(EK ,OEK );π)

= (H+
B,Λ,F ⊗H0(E ,Ω1

E)
∗;π) + (F ;OK,Λ; id)

= δΛ((Ω(E)ψ(1))ψ)− (F ,Λ[G]; π̂) + (F ;OK,Λ; id)

= δΛ((Ω(E)ψ(1))ψ)− (OK,Λ,Λ[G]; π̂)

where π̂ is the canonical isomorphism R ⊗Q K ∼=
∏

Hom(K,C) R ∼= R[G] (which
exists since K is totally real). It remains to compute the element (OK,Λ,Λ[G]; π̂)
and to do this we use results of Bley and the present author from [8]. Indeed,
if condition (B) is satisfied, then K/Q is tamely ramified and the results of [8,
Cor. 7.7 and Rem. 3.5] combine to imply that (OK ,Z[G]; π̂) = δ((τ∗(ψ))ψ). On
the other hand, if condition (A) is satisfied, then |G| is invertible in Λ and the
results of [8, Cor. 7.6, Prop. 7.1 and Rem. 3.5] can be combined to deduce that
(OK,Λ,Λ[G]; π̂) = δΛ((τ∗(ψ))ψ). The claimed equality is now clear. �

To proceed we write Σ for the set of all primes in Spec(Λ) which do not divide
|G|. We then define Λ[G]-modules by setting

c0E,Λ(K) :=
⊕
q∈Σ∩S

[Bq ⊕ expBK
q (Jq)/Iq]

and

c1E,Λ(K) :=
⊕
q∈Σ∩S

[Aq ⊕H1
f (Qq, Tq)BK/Iq]

⊕
⊕
q∈Σ

`∈Sbad\{q}

H0(Q`,H
1(I`, Tq)tor)⊕

⊕
q

`∈Sram\{q}

cok(1− Fr−1
` | T I`q ).

Here we use the notation of Lemma 12.4.1 and in the last direct sum q runs
over the finite set of primes in Σ for which there exists a prime ` in Sram \ {q}
such that the image clq(cok(1− Fr−1

` | T I`q )) of −ε` under the natural projection
K(Z[G],Q[G]) → K0(Zq[G],Qq[G]) is non-zero. Note that, in terms of the nota-
tion used in Proposition 4.3.1, the last condition is equivalent to asserting that
the image of P`(E,K) in ζ(Qq[G])× ∼= K1(Qq[G]) does not belong to the image
of the natural map K1(Zq[G]) → K1(Qq[G]). Now whilst c0E,Λ(K) is clearly finite
the module c1E,Λ(K) is also finite because for each prime ` in Sbad the direct
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sum
⊕

q∈ΣH
0(Q`,H

1(I`, Tq)tor) is finite (see §12.1). Hence we can define τE,Λ
to be the a.t.e. of Λ[G]-modules which differs from τ ′ only in the respect that
H0
τE,Λ

:= H0
τ ′ ⊕ c0E,Λ(K), H1

τE,Λ
:= H1

τ ′ ⊕ c1E,Λ(K) and

(L∗τE,Λ)ψ := (L∗τ ′)ψ · Ω(E)−ψ(1)τ∗(ψ)
∏

`∈Sram

L`(Q[G]M, 0)ψ

= Ω(E)−ψ(1)τ∗(ψ)L∗Sram
(E,ψ, 1)

for each ψ in Irr(G). A straightforward computation shows that, with this defi-
nition of τE,Λ, the results of Lemmas 12.4.1 and 12.5.1 combine to imply

χ(τE,Λ) = −TΩ(h1(E/K)(1),Λ[G]) (60)

and hence that all of the claims made in Proposition 4.3.1 are valid.
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Notes in Math. 288, Springer Verlag, 1972.

[58] K. W. Gruenberg, J. Ritter, A. Weiss, A Local Approach to Chinburg’s Root Number

Conjecture, Proc. London Math. Soc. 79 (1999) 47-80.

[59] R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer, New York,

1966.

[60] A. Hayward, A class number formula for higher derivatives of abelian L-functions, Compo-

sitio Math. 140 (2004) 99-129.

[61] A. Huber, G. Kings, Bloch-Kato conjecture and main conjecture of Iwasawa theory for

Dirichlet characters, Duke. Math. J. 119 (2003) 393-464.

[62] A. Jones, Dirichlet L-functions at s = 1, Ph.D. Thesis, King’s College London, 2007.

[63] B. Kahn, The Quillen-Lichtenbaum Conjecture at the prime 2, preprint.

[64] K. Kato, Iwasawa theory and p-adic Hodge theory, Kodai Math. J. 16 no 1 (1993) 1-31.

[65] K. Kato, Lectures on the approach to Iwasawa theory of Hasse-Weil L-functions via BdR,

Part I, In: Arithmetical Algebraic Geometry (ed. E.Ballico), Lecture Notes in Math. 1553

(1993) 50-163, Springer Verlag, New York, 1993.

[66] K. Kato, K1 of some non-commutative completed group rings, K-Theory 34 (2005), no. 2,

99-140.

[67] F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves I: Prelimi-

naries on ‘det’ and ‘Div’, Math. Scand. 39 (1976) 19-55.

[68] M. Kurihara, Iwasawa theory and Fitting ideals, J. Reine u. Angew. Math. 561 (2003)

39-86.

[69] M. Levine, The indecomposable K3 of a field, Ann Sci. École Norm. Sup. 22 (1989) 255-344.
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