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Abstract: We show that the average and typical ranks in a certain para-
metric family of elliptic curves described by D. Ulmer tend to infinity as
the parameter d → ∞. This is perhaps unexpected since by a result of
A. Brumer, the average rank for all elliptic curves over a function field of
positive characteristic is asymptotically bounded above by 2.3.
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1. Introduction

1.1. Background. Let Fq be the finite field of q elements of prime characteristic
p. We consider the parametric family of curves

Ed : y2 + xy = x3 − td

over the function field Fq(t), where d is a positive integer. Among other re-
sults, Ulmer [21, Proposition 6.4] has shown that the conjecture of Birch and
Swinnerton-Dyer holds for each Ed when d is not divisible p.
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Denote by Up the set of positive integers which divide some member of the
sequence pn + 1, for n = 1, 2, . . . . Let ϕ denote Euler’s function, and for a, b co-
prime integers with b > 0, let `a(b) be the multiplicative order of the residue class
a in the group (Z/bZ)×. We always have `a(b) | ϕ(b). Ulmer [21, Theorem 9.2]
has also shown that for every d ∈ Up, the rank Rq(d) of Ed over Fq(t) is given by

Rq(d) = Iq(d)− Cq(d), (1)

where

Iq(d) =
∑

e|d

ϕ(e)
`q(e)

and Cq(d) is an explicit correction term that always satisfies 0 ≤ Cq(d) ≤ 4.
(Note that d ∈ Up implies that gcd(e, q) = 1 for each e | d, so that Iq(d) is
defined.) Since members of Up are coprime to p, the Birch and Swinnerton-Dyer
conjecture holds for Ed for d ∈ Up, so that (1) holds as well for the analytic rank.

Ulmer [21] considers the specific case d = pn + 1 and q = p. Then `p(d) = 2n,
and each `p(e) | 2n, so that

Ip(pn + 1) ≥
∑

e|pn+1

ϕ(e)
2n

=
pn + 1

2n
.

Thus,

Rp(d) ≥ d log p

2 log d
− 4,

which compares very nicely with the upper bound

Rp(d) ≤ d log p

2 log d
+ O

(
d(log p)2

(log d)2

)

(uniformly over d and p) due to Brumer [2].

It is interesting that the expression Iq(d) occurs in other contexts. For example,
Moree and Solé [14] show that Iq(d) is the number of irreducible factors of td− 1
in Fq[t] and go on to apply Iq(d) to a combinatorial problem.

1.2. Our results. Using (1), we show that on average over all numbers d (with-
out the restriction that d ∈ Up), the rank of Ed is quite large. We do not know
how to bound the rank from above for integers d 6∈ Up, but we can show that the
average over Up is not quite as big as Brumer’s upper bound.
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Theorem 1. There exists an absolute constant α > 1/2 such that for all fi-
nite fields Fq and all sufficiently large large values of x (depending only on the
characteristic p of Fq),

1
x

∑

d≤x

Rq(d) ≥ xα. (2)

Moreover, for x sufficiently large depending on q,
( ∑

d≤x
d∈Up

1

)−1 ∑

d≤x
d∈Up

Rq(d) ≤ x1−(log log log x)/(2 log log x). (3)

A lower bound greater than 1/2 for α in (2) can be explicitly evaluated. More-
over, assuming the Elliott–Halberstam conjecture about the distribution of primes
in residue classes (described below), we show that α may be taken as any number
smaller than 1. Probably the upper bound (3) is close to the truth, but we do
conjecture that the “2” in the denominator of the exponent can be removed.

The average order is presumably skewed by a few numbers d where the rank is
especially big, at least that is the way we prove the lower bound in Theorem 1.
One might wonder about Rq(d) for a “typical” number d. We show that for
almost all numbers d, in the sense of asymptotic density, the rank is still fairly
large.

Theorem 2. Let Fq be a finite field of characteristic p and let ε > 0 be arbitrary.
As x →∞, except for op,ε(x) values of d ≤ x, we have

Rq(d) ≥ (log d)(1/3−ε) log log log d.

It has been shown by Brumer [2] that the average analytic rank over all elliptic
curves over a function field of positive characteristic is bounded above by 2.3
asymptotically. Since by a result of Tate [19] the algebraic rank is bounded by
the analytic rank, the same bound holds as well for the algebraic rank. Thus,
Theorems 1 and 2 show that the thin family consisting of the curves Ed is indeed
very special.

Concerning the set Up for which the rank formula (1) holds, we show that the
number of elements in Up up to x is asymptotic to cpx/(log x)2/3 as x → ∞,
where cp is a positive constant, see Corollary 5 below. (A more precise formula
may be found in Moree [13, Theorem 5].)
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We remark that it seems very plausible that using the methods of [5] and [12]
one can show that under the assumption of the Generalized Riemann Hypothesis
for Kummerian fields over Q, we have

Rq(d) = (log d)(1+o(1)) log log log d

for almost all numbers d ∈ Up in the sense of asymptotic density. We hope to
take this up in a future paper.

Perhaps more importantly, it should be interesting to investigate the situation
for more families of elliptic curves than the one family of Ulmer that we consider
here. For example, in Darmon [3] many other families are considered each of
a similar flavor to Ulmer’s. One might not know the Birch and Swinnerton-
Dyer conjecture in these cases, but at least some statistical information might be
gleaned for the analytic ranks.

Acknowledgment. We wish to thank Douglas Ulmer for some helpful comments
and his encouragement. We also thank an anonymous referee for a careful reading.

2. Preparations

2.1. Notation. We always use the letters l, p, r, s, and t to denote prime num-
bers, while d, e, k, m, and n always denote positive integers. We let P (n) denote
the largest prime factor of n if n > 1, and P (1) = 1.

As usual, we use π(x; k, a) to denote the number of primes r ≤ x with r ≡ a

(mod k), and we let π(x) denote the total number of all primes r ≤ x.

Given a set A of positive integers, we use A(x) to denote the subset of a ∈ A
with a ≤ x.

For any real number x > 0 and any integer ν ≥ 1, we write logν x for the
function defined inductively by log1 x = max{log x, 1} (where log x is the natural
logarithm of x) and logν x = log1(logν−1 x) for ν > 1.

We use the order symbols O, o, ¿, À with their usual meanings in analytic
number theory, where all implied constants are absolute, unless indicated by
subscripts. (We recall that the notations A ¿ B, B À A and A = O(B) are
equivalent.)
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We use vl(n) to denote the (exponential) l-adic valuation of n; that is, vl(n) is
the exponent on the prime l in the prime factorization of n.

2.2. Structure of Up. Recall that Up is the set of natural numbers that divide
pn + 1 for some positive integer n.

Lemma 3. Let p be a prime number and suppose d ∈ Up.

(i) There is a positive integer k such that v2(`p(r)) = k for each odd prime
factor r of d.

(ii) If p > 2 and k = 1, then v2(d) ≤ v2(p+1), while if p > 2 and k > 1, then
v2(d) ≤ 1.

Proof. Suppose d ∈ Up and r is an odd prime factor of d. Since d | pn + 1 for
some positive integer n, we have r | pn + 1 and r - pn − 1. Thus, `p(r) | 2n and
`p(r) - n, so v2(`p(r)) = v2(2n) = v2(n) + 1. Thus, (i) follows with k = v2(n) + 1.
For (ii) note that from our proof of (i), k = 1 if and only if n is odd. But for odd
n we have v2(pn + 1) = v2(p + 1), so v2(d) ≤ v2(p + 1). And if k > 1, we have n

even, so pn + 1 ≡ 2 (mod 4) and v2(d) ≤ 1. ¤

For p prime and k a positive integer let Up,k denote the set of integers d coprime
to p such that for each odd prime r | d we have v2(`p(r)) = k; further, if p > 2,
k = 1, then v2(d) ≤ v2(p + 1), and if p > 2, k > 1, then v2(d) ≤ 1. Thus,
Lemma 3 implies that Up ⊂

⋃
k≥1 Up,k. In fact, they are equal.

Lemma 4. For each prime p, we have Up =
⋃

k≥1 Up,k.

Proof. Suppose d ∈ Up,k. We may assume d > 2. If d is a power of 2, then k = 1,
p > 2, and d | p + 1, so that d ∈ Up. If d is not a power of 2, let do be the
odd part of d and let m = `p(do). Then m is the least common multiple of the
numbers `p(ra) where ra runs over the odd prime power divisors of d. We have
`p(ra)/`p(r) | ra−1, so that if r is odd, we have v2(`p(ra)) = v2(`p(r)) = k. Thus,
v2(m) = k and we have r - pm/2 − 1. But ra | pm − 1, so we have ra | pm/2 + 1.
Thus, the odd part of d divides pm/2 + 1. If k > 1 and p > 2, then v2(d) ≤ 1, so
that the even part of d also divides pm/2 + 1. Further, if k = 1 and p > 2, then
v2(d) ≤ v2(p + 1). In this case, m/2 is odd, so that p + 1 | pm/2 + 1, and so the
even part of d again divides pm/2 + 1. We thus have that d | pm/2 + 1, and this
concludes the proof. ¤
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Let Rp,k denote the set of odd prime members of Up,k. That is,

Rp,k = {r an odd prime : r 6= p, v2(`p(r)) = k}.
Then, Up,k is the set of integers d all of whose odd prime factors come from Rp,k,
with v2(d) bounded as discussed above. After a classical result of Wirsing [23],
the distribution of the sets Up,k within the natural numbers follows from the
distribution of the sets Rp,k within the prime numbers in a way that is made
more precise below.

The following result should be compared with results in [13] and with [16,
Theorem 1.3]. We discuss the proof in Section 2.4.

Proposition 1. Let x be large and let p ≤ (log x)2/3 be a prime number. Let

E(x) =
x log2 x

(log x)7/6

For p > 2, we have

#Rp,1(x) =
1
3
π(x) + O(E(x)), #Rp,2(x) =

1
6
π(x) + O(E(x)),

∑

k≥3

#Rp,k(x) =
1
6
π(x) + O(E(x)).

Further,

#R2,1(x) =
7
24

π(x) + O(E(x)), #R2,2(x) =
1
3
π(x) + O(E(x)),

∑

k≥3

#R2,k(x) =
1
12

π(x) + O(E(x)).

For p a prime, let

Rp =




Rp,1 , p > 2

R2,2 , p = 2.

From Proposition 1 we have

#Rp(x) =
1
3
π(x) + O

(
x log2 x

(log x)7/6

)
. (4)

We can now establish the following result about the distribution of the sets Up.

Corollary 5. For each prime p, there is a positive constant cp such that

#Up(x) ∼ cpx/(log x)2/3
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as x →∞.

Proof. It follows directly from Proposition 1 and Wirsing’s theorem [23] (see
too [20, Chapter II.7, Exercise 9]) that there are positive constants cp such that

#Up,1(x) ∼ cpx/(log x)2/3 for p > 2 and #U2,2(x) ∼ c2x/(log x)2/3

as x →∞. Using the same tools, we have

#U2,1(x) ¿ x/(log x)17/24, #Up,2(x) ¿ x/(log x)5/6 for p ≥ 3,

#


⋃

k≥3

Up,k


 (x)¿ x/(log x)5/6 for all p.

The result thus follows from Lemma 4. ¤

Remark 1. As mentioned in the introduction, a more precise result, giving an
asymptotic expansion for #Up(x) is presented by Moree [13, Theorem 5].

We need an estimate on the cardinality of a somewhat more specialized set
which we use in the sequel. Suppose m is an odd integer not divisible by p. Let

Qp,m = {r ∈ Rp : r ≡ 1 (mod m)}. (5)

Proposition 2. Let x be large. Assume that a prime p and a positive odd integer
m not divisible by p satisfy the inequalities

p ≤ (log x)2/3 and m ≤ (log x)1/6

log2 x
.

We have

#Qp,m(x) =
1

3ϕ(m)
π(x) + O

(
x log2 x

(log x)7/6

)
.

2.3. Chebotarev density theorem and its applications. We let L be a finite
Galois extension of Q with Galois group G of degree k = [L : Q] and discriminant
∆. Let C be a union of conjugacy classes of G. We define

πC(x, L/Q) = #{p ≤ x : p unramified in L/Q, σp ∈ C},
where σp is the Artin symbol of p in the extension L/Q, see [8].

Combining a version of the Chebotarev density theorem due to Lagarias and
Odlyzko [11] together with a bound for a possible Siegel zero due to Stark [18],
we obtain the following result.
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Lemma 6. There are absolute constants A1, A2 > 0 such that if

log x ≥ 10k(log |∆|)2 (6)

then
∣∣∣∣πC(x, L/Q)− #C

#G
li (x)

∣∣∣∣ ¿ #C
#G

li
(
xβ

)
+ ‖C‖x exp

(
−A1

√
log x

k

)

with some β satisfying the inequality

β < 1− A2

max{|∆|1/k, log |∆|} ,

where ‖C‖ is the number of conjugacy classes in C.

We use Lemma 6 in the proofs of Propositions 1 and 2. It should be noted
that in these applications we are studying primes which split completely in certain
normal extensions of Q, and so we might have gotten by with just Landau’s prime
ideal theorem. However, to our knowledge the best explicit form of the prime
ideal theorem is that given in the more general Lemma 6.

In order to apply Lemma 6 we need an estimate for the discriminants of certain
number fields K ⊂ L, which we now present. Let ∆(L/K) denote the relative
discriminant of L over K and let ∆(L) = ∆(L/Q).

Lemma 7. Let n, d be positive integers with d | n and let a be an integer with
|a| > 1. Let h denote the largest integer for which a is an h-th power in Z and
assume gcd(d, h) = 1. For the field L = Q(e2πi/n, a1/d), we have

[L : Q] = dϕ(n) or dϕ(n)/2, |∆(L)| ≤ (dϕ(n)|a|)[L:Q].

Further, if a = a1a
2
2 where a1 is squarefree, then [L : Q] = dϕ(n)/2 if and only if

d is even and either a1 | n, a1 ≡ 1 (mod 4) or 4a1 | n, a1 6≡ 1 (mod 4).

Proof. The assertions about [L : Q] follow from [6, Lemma 2.2] (for the case
d = n, see also [10, Equations (12) and (13)] and [22, Proposition 4.1]). Let K be
the cyclotomic field Q(e2πi/n) and write [L : Q] = dϕ(n)/ϑ, where ϑ = 1 or 2. In
particular if ϑ = 2, then d is even and a1/2 ∈ K. Thus, the minimum polynomial
for a1/d over K is xd/ϑ − a1/ϑ = f(x), say. From elementary algebraic number
theory we have

∆(L) = ∆(K)[L:K]NK/Q(∆(L/K)).
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Now ∆(L/K) divides NL/K(f ′(a1/d)) (see [15, Proposition 2.9]) so that

NK/Q(∆(L/K)) | NK/Q(NL/K(f ′(a1/d))) = NL/Q((d/ϑ)a1/ϑ−1/d).

Since each conjugate of (d/ϑ)a1/ϑ−1/d has absolute value (d/ϑ)|a|1/ϑ−1/d, we have

|NK/Q(∆(L/K))| ≤ ((d/ϑ)|a|1/ϑ−1/d)[L:Q] ≤ (d|a|)[L:Q].

It is well-known and easy to see from Hadamard’s inequality for determinants that
|∆(K)| ≤ ϕ(n)ϕ(n). Thus |∆(K)|[L:K] ≤ ϕ(n)[L:K]ϕ(n) = ϕ(n)[L:Q]. Assembling
our estimates gives the lemma. ¤

For a prime p and natural numbers d, n with d | n, let

Lp,n,d = Q(e2πi/n, p1/d)

and let $p(x;n, d) denote the number of primes r ≤ x with r ≡ 1 (mod n) and
d | (r − 1)/`p(r). Thus, $p(x;n, d) is the number of primes r ≤ x which split
completely in Lp,n,d. We may thus use Lemmas 6 and 7 to estimate $p(x;n, d).

Lemma 8. For

p ≤ (log x)2/3 and n ≤ (log x)1/6

log2 x

and any number A > 0, we have

$p(x;n, d) =
1

[Lp,n,d : Q]
li (x) + OA

(
x

(log x)A

)
.

Proof. We apply Lemma 6 to the primes that split completely in Lp,n,d. Thus,
#C = 1 and #G = [Lp,n,d : Q]. Using Lemma 7 and the assumptions on p and
n, we have with ∆ = ∆(Lp,n,d),

[Lp,n,d : Q](log |∆|)2 ≤ (dϕ(n))3 (log(dnp))2 ≤ n6 (log2 x)2 = o(log x).

Thus, for x sufficiently large, the condition (6) of Lemma 6 is satisfied. Also

max{|∆|1/[Lp,n,d:Q], log |∆|} ≤max{dϕ(n)p, dϕ(n) log(dnp)}
≤ dn(log x)2/3 ≤ n2(log x)2/3 ≤ log x

(log2 x)2
.

Therefore,

β < 1− A2(log2 x)2

log x
,

so that
li (xβ) ≤ xβ ≤ x

(log x)A2 log2 x
.
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The second term in the inequality of Lemma 6 is smaller than this estimate under
the above restriction on the size of n, so we have the lemma. ¤

Remark 2. One can reduce the limit for p in Lemma 8 and get a much stronger
bound of the error term. However this does not affect our main results.

2.4. Proof of Propositions 1 and 2. We are now in a position to prove Propo-
sition 1. For example, take the case of Rp,1 for p > 2. Let

Np,k = $p(x; 2k, 2k−1)−$p(x; 2k, 2k)

−
(
$p(x; 2k+1, 2k−1)−$p(x; 2k+1, 2k)

)
.

Then Np,k is precisely the number of primes r ≤ x with v2(`p(r)) = 1, and
v2(r − 1) = k. Indeed, the first two terms count those primes r satisfying these
conditions plus some additional primes r for which v2(r − 1) > k, and the last
two terms remove from the count these extra primes r. Thus,

#Rp,1(x) =
∑

k≥1

Np,k. (7)

By Lemma 7 and also Lemma 8 (used with A = 2), if

2k+1 ≤ (log x)1/6/ log2 x,

we have

Np,k =
(

1
22k−2

− 1
22k−1

− 1
22k−1

+
1

22k

)
li (x) + O

(
x

(log x)2

)

=
1

22k
li (x) + O

(
x

(log x)2

)
.

(8)

We apply (8) in (7) for those values of k with 2k+1 ≤ (log x)1/6/ log2 x, and
for larger values of k we use that by the Brun–Titchmarsh theorem, see [20,
Chapter I.4, Theorem 9],

Np,k ≤ π(x; 2k, 1) ¿ π(x)
2k

for 2k ≤ x1/2,

and also the elementary estimate

Np,k ≤ π(x; 2k, 1) ≤ x

2k
,

used when 2k > x1/2. We thus obtain

#Rp,1 =
1
3
li (x) + O

(
x log2 x

(log x)7/6

)
=

1
3
π(x) + O

(
x log2 x

(log x)7/6

)
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by the prime number theorem.

The remaining cases of Proposition 1 follow in a similar manner, noting that
when p = 2 we can be in the situation when [Lp,n,d : Q] = dϕ(n)/2.

The same method can be used to prove Proposition 2. Indeed, in the expression
for Np,k put a factor m in the four middle arguments and then use Lemma 8 if
m2k+1 ≤ (log x)1/6/ log2 x, the Brun–Titchmarsh theorem for (log x)1/6/ log2 x <

m2k+1 ≤ x1/2, and the trivial bound for m2k+1 > x1/2. We suppress the details.

2.5. Ranks of curves Ed. We need the following inequality which allows us to
study the rank of Ed for an arbitrary d ≥ 1.

Lemma 9. For positive integers f, d with f | d, we have Rq(d) ≥ Rq(f).

Proof. It is clear that Ed contains the subgroup of points (x(tg), y(tg)), where
g = d/f . This subgroup is isomorphic to Ef . ¤

Remark 3. It is clear from the definition of Iq(d), that if f | d then Iq(d) ≥ Iq(f).

For d a positive integer and p a prime, let dp be the largest divisor of d whose
every prime factor comes from Rp, that is,

dp =
∏

r∈Rp

rvr(d). (9)

We are now able to combine Lemma 9 with (1) to get the following result.

Proposition 3. Let Fq be a finite field of characteristic p. For every positive
integer d we have

Rq(d) ≥
∑

e|dp

ϕ(e)
`q(e)

− 4.

Let λ denote the Carmichael function; it is defined for each integer d ≥ 1 as the
largest order of an element in the multiplicative group (Z/dZ)×. More explicitly,
for any prime power lν , one has

λ(lν) =

{
lν−1(l − 1), if l ≥ 3 or ν ≤ 2,

2ν−2, if l = 2 and ν ≥ 3,

and for an arbitrary integer d ≥ 2,

λ(d) = lcm [λ(lν) : lν | d] .
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Note that λ(1) = 1.

If d is coprime to q, then as is immediate from the definitions,

`q(d) ≤ λ(d).

We conclude from Proposition 3 that for any finite field Fq of characteristic p and
any positive integer d, we have

Rq(d) ≥ ϕ(dp)
λ(dp)

− 4. (10)

3. Proof of Theorem 1

We begin with the upper bound (3) since it is easier. Note that
∑

d∈Up(x)

Rq(d)≤
∑

d∈Up(x)

Iq(d) =
∑

d∈Up(x)

∑

e|d

ϕ(e)
`q(e)

≤ x
∑

e∈Up(x)

ϕ(e)
e`q(e)

≤ x
∑

e∈Up(x)

1
`q(e)

≤ x
∑

n≤x

1
n

∑

e≤x
gcd(e,q)=1

`q(e)=n

1.

In [17, Theorem 1] it is shown that
∑

m≤x
m odd

`2(m)=n

1 ≤ x1−(3+log3 x)/(2 log2 x)

for all sufficiently large x, uniformly in n. An examination of the proof shows
that for any integer a and all sufficiently large x depending only on a,

∑

m≤x
gcd(m,a)=1

`a(m)=n

1 ≤ x1−(3+log3 x)/(2 log2 x)

for all n. Using this estimate in the calculation above, we have
∑

d∈Up(x)

Rq(d) ≤ x2−(3+log3 x)/(2 log2 x)
∑

n≤x

1
n
≤ x2−(2+log3 x)/(2 log2 x)

for all sufficiently large x depending on the choice of q. Using Corollary 5 com-
pletes the proof of (3).

To prove the lower bound (2) in Theorem 1 we loosely follow the construction
from Erdős [4] to construct integers v with many solutions to the equation ϕ(n) =
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v. When p, the characteristic of Fq, is odd, let u be an integer such that u ≡ 3
(mod 4) and the Legendre symbol (u/p) is −1; and if p = 2, let u = 5. Let
1/12 > δ > 0 be a small absolute constant to be chosen shortly, let z be large,
and let

I = [z1/2−2δ, z1/2−δ], R = {r prime : r ≡ u (mod 4p), P (r − 1) ∈ I}.

Note that any prime r ≡ u (mod 4p) is in Rp, so in particular, we have R ⊂ Rp.
Let r, s, t denote prime variables. We have

#R(z) =
∑

s∈I

∑

r≤z
r≡u (mod 4p)
r≡ 1 (mod s)

1 −
∑

s∈I

∑

s<t<z/s

∑

r≤z
r≡u (mod 4p)
r≡ 1 (mod st)

1 = S1 − S2,

say. Indeed, any integer n ≤ z is divisible by either 0, 1, or 2 distinct primes that
are greater than z1/2−2δ, so S1 counts 0, 1, or 2 correspondingly if r− 1 has 0, 1,
or 2 primes in I; and S2 makes the necessary correction in the case of 2 primes,
or in the case that r − 1 is also divisible by a larger prime.

We now recall the Bombieri–Vinogradov theorem which states that for each A

there is some number B such that

∑

m≤z1/2/ logB z

max
gcd(a,m)=1

∣∣∣∣π(z;m,a)− 1
ϕ(m)

li (z)
∣∣∣∣ ¿

z

logA z
, (11)

see [20, Chapter II.8, Theorem 11].

Using (11) and p fixed, we have by the Mertens formula

S1 ∼ log((1− 2δ)/(1− 4δ))
ϕ(4p)

π(z) as z →∞. (12)

We reorganize S2 by letting (r − 1)/st = a, so that

S2 =
∑

a<z4δ

∑

s∈I

∑

s<t<z/as
ast+1≡u (mod 4p)

ast+1 prime

1.
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Note that since z/as ≥ z1/2−3δ, we have by Brun’s method (see [9, Theorem 2.3])
that the double sum on s and t is

∑

s∈I

∑

s<t<z/as
ast+1≡u (mod 4p)

ast+1 prime

1¿
∑

s∈I

z

ϕ(4pas) log2(z/as)

¿ log((1− 2δ)/(1− 4δ))
ϕ(4pa)

z

log2 z
.

Thus,

S2 ¿
∑

a<z4δ

log((1− 2δ)/(1− 4δ))
ϕ(4pa)

z

log2 z
¿ δ

log((1− 2δ)/(1− 4δ))
ϕ(4p)

π(z),

where we use the estimate
∑

a<Z

1
ϕ(a)

=
∑

a<Z

1
a

∑

d|a

µ2(d)
ϕ(d)

≤
∑

d<Z

1
ϕ(d)

∑

b<Z/d

1
db

¿ log Z
∑

d

1
ϕ(d)d

¿ log Z.

Thus, there is an absolute choice for δ > 0 such that for all large z depending
on the choice of p, we have S2 ≤ S1/4. We now fix such a value of δ. Note that
the identity #R(z) = S1 − S2 and the asymptotic formula (12) applied to z/2
show that #R(z/2) ≤ (1/2 + o(1))S1. We conclude that for z sufficiently large,
depending on the choice of p, that

#(R∩ [z/2, z]) ≥ log((1− 2δ)/(1− 4δ))
5ϕ(4p)

π(z). (13)

Let x be large, and let

y =
log x

log2 x
and z = y2/(1−2δ).

Let My denote the least common multiple of the integers in [1, y] and let

Q = {r ∈ R ∩ [z/2, z] : r − 1 | My}.
We note that for r ∈ Q, we have P (r − 1) ≤ y = z1/2−δ. The number of primes
r ≤ z such that `k|r − 1 for some prime power `k > y with k ≥ 2 is bounded by

∑

2≤k≤log z/ log 2

∑

` : `k≥y

z

`k
¿ z

∑

2≤k≤log z/ log 2

1
ky1−1/k

¿ z log z

y1/2
.
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Combining this with (13) we have

#Q ≥ κ
z

log z
(14)

for z sufficiently large depending on the choice of p, where

κ =
log((1− 2δ)/(1− 4δ))

6ϕ(4p)
.

We now put

m =
⌊

log x

log z

⌋

and consider the set S of all products of m distinct primes from Q. Clearly

x ≥ d ≥ (z/2)m = x1+o(1) (15)

for every d ∈ S. Recalling (14), we also have

#S =
(

#Q
m

)
≥

(
#Q
m

)m

≥
(

κz

log x

)m

≥ 1
z

(
κz

log x

)log x/ log z

= x exp
(
− log x

log z
(log2 x + O(1))

)

= x exp
(− (1/2− δ) log x + O(log x log3 x/ log2 x)

)
= x1/2+δ+o(1).

Note that for every d ∈ S we have

`q(d) | λ(d) | My.

Thus, from the prime number theorem, we obtain that

`q(d) ≤ exp((1 + o(1))y) = xo(1).

By the construction of S and Lemma 4 we have d ∈ Up so that (1) can be applied
to compute Rq(d). Therefore, (15) and a standard estimate for ϕ(d) imply that

Rq(d) ≥ Iq(d)− 4 ≥ ϕ(d)
`q(d)

− 4 =
d1+o(1)

xo(1)
= x1+o(1).

Thus, using our estimate for #S, we have
∑

d≤x

Rq(d) ≥ x1+o(1)#S ≥ x3/2+δ+o(1)

which concludes the proof.
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Remark 4. A key step in the proof is the use of the Bombieri–Vinogradov
theorem (11). We have applied this result in the proof to moduli 4ps with s ∈ I.
The Elliott–Halberstam conjecture looks superficially the same, but the range for
m is allowed to be much larger: For every ε > 0, A > 0,

∑

m≤z1−ε

max
gcd(a,m)=1

∣∣∣∣π(z;m,a)− 1
ϕ(m)

li (z)
∣∣∣∣ ¿

z

logA z
.

Assuming this conjecture, the above proof gives Theorem 1 for every value of
α < 1. The idea is similar to the proof of Theorem 3 in [1] and is also mentioned
in [7]. Let k be an arbitrarily large integer, let Ik = [z1/k−1/k2

, z1/k], and let R be
the set of primes r ≡ u (mod 4p) with r−1 divisible by k−1 primes from Ik. The
primes r ≤ z constructed in this way have P (r−1) ≤ zη, where η = 1−(k−1)2/k2.
Further, by the Elliott–Halberstam conjecture, there are at least ck,pπ(z) such
primes r, where ck,p > 0 depends only on k and p. Let y = log x/ log2 x as before
and let z = y1/η. We do not have to worry about taking only those values of r

that are ≥ z/2, since each r is already guaranteed to be at least z1−η, so that
the values of d formed at the end of the proof are ≥ x1−η+o(1). Each of these
values of d has lq(d) ≤ xo(1) as before, so that Rq(d) ≥ x1−η+o(1). Moreover, as
before, there are x1+o(1)/ exp(log x log2 x/ log z) = x1−η+o(1) values of d, so that
the average in Theorem 1 is at least x1−2η+o(1). Since k is arbitrary, this then
proves that the average is x1+o(1).

4. Proof of Theorem 2

Our proof closely follows the proof of Theorem 2 in [5]. This result gives
the normal order of λ(n), showing that for almost all n (that is, on a set of
asymptotic density 1), we have λ(n) = n/(log n)(1+o(1)) log3 n. Since for all n we
have n ≥ ϕ(n) À n/ log2 n, it follows that for almost all n we have

ϕ(n)
λ(n)

= (log n)(1+o(1)) log3 n

as n →∞.

We first note the elementary fact that

m | n =⇒ ϕ(m)
λ(m)

∣∣∣∣
ϕ(n)
λ(n)

. (16)

Indeed, by the Chinese remainder theorem, there is an integer a such that for each
prime power lν | n we have `a(lν) = λ(lν). Then `a(n) = λ(n) and `a(m) = λ(m).
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The canonical epimorphism from (Z/nZ)× to (Z/mZ)× induces an epimorphism
from (Z/nZ)×/〈a〉 to (Z/mZ)×/〈a〉, so that (16) follows.

Let x be large and let y = log2 x. In view of (10), it suffices to show that

log ϕ(dp)− log λ(dp) =
1
3
y log y + Op(y log2 y) (17)

for all d ≤ x with at most op(x) exceptions, where dp is given by (9). (In fact (17)
is somewhat stronger than required in that we really only need a lower bound for
the left side. Nevertheless it is interesting to know the true order of ϕ(dp)/λ(dp)
for almost all integers d.) For all d we have

log ϕ(dp) =
∑

l

vl(ϕ(dp)) log l, log λ(dp) =
∑

l

vl(λ(dp)) log l,

where the sums are over all primes l. It follows from (6) and (19) in [5] that
∑

l≤y log y

vl(λ(dp)) log l ≤
∑

l≤y log y

vl(λ(d)) log l = y log2 y + O(y)

for all but o(x) values of d ≤ x. Using (16), we have for each prime l,

vl(ϕ(dp))− vl(λ(dp)) ≤ vl(ϕ(d))− vl(λ(d)).

Also, from (20), (21), and (22) in [5] we have
∑

l>y log y

(vl(ϕ(d))− vl(λ(d))) log l ≤ y log2 y

log y
+ (log y)2

for all but o(x) values of d ≤ x. It thus follows that
∑

l>y log y

(vl(ϕ(dp))− vl(λ(dp))) log l ≤ y log2 y

log y
+ (log y)2

for all but o(x) values of d ≤ x. Thus, to prove that (17) holds for all but op(x)
values of d ≤ x, it suffices to show that

∑

l≤y log y

vl(ϕ(dp)) log l =
1
3
y log y + Op(y log2 y) (18)

holds for all but op(x) values of d ≤ x.

We prove (18) using the Turán–Kubilius inequality, arguing along the same
lines as in [5]. We recall, that for real-valued additive functions g(n) the Turán–
Kubilius inequality asserts that if

E(g, x) =
∑

rν≤x

g(rν)
rν

(
1− 1

r

)
and V (g, x) =

∑

rν≤x

g(rν)2

rν
,
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then ∑

n≤x

(g(n)− E(g, x))2 ≤ 10xV (g, x), (19)

see [20, Chapter III.3, Theorem 1]. Let

h(n) =
∑

l≤y log y

vl(ϕ(n)) log l, hp(n) = h(np) =
∑

l≤y log y

vl(ϕ(np)) log l,

so that h and hp are both additive functions. It is shown in [5, pp. 366–367] that

V (h, x) ¿ y(log y)2.

Since V (hp, x) ≤ V (h, x), we have V (hp, x) ¿ y(log y)2.

For the determination of E(hp, x) we use Proposition 2. Since hp(rν) ≤ log(rν),
we have

E(hp, x) =
∑

rν≤x

hp(rν)
rν

(
1− 1

r

)
=

∑

r≤x

hp(r)
r

+ O(1).

Now
∑

r≤x

hp(r)
r

=
∑

l≤y log y

∑

r≤x
r∈Rp

vl(r − 1) log l

r
=

∑

l≤y log y

log l
∑

i≥1

∑

r≤x
r∈Rp

vl(r−1)=i

i

r
.

The inner sum is O
(
iy/li

)
, so the contribution for values of i > 1 is O(y). We

conclude that

E(hp, x) =
∑

l≤y log y

log l
∑

r≤x
r∈Rp

r≡1 (mod l)

1
r

+ O(y). (20)

Recall the notation Qp,m from (5). We use partial summation on the inner sum
in (20) getting

∑

r∈Qp,l(x)

1
r

=
#Qp,l(x)

x
+

∫ x

2

#Qp,l(z)
z2

dz.

We use the estimate #Qp,l(z) ≤ π(z; l, 1) ¿ π(z)/l for z ≤ exp(l7), and we use
Proposition 2 for larger values of z, getting that

∑

r∈Qp,l(x)

1
r

=
y

3(l − 1)
+ O

(
log l

l

)
.
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Putting this into (20) we get that

E(hp, x) =
∑

l≤y log y

y log l

3(l − 1)
+ O(y) =

1
3
y log(y log y) + O(y).

We now use this estimate for E(hp, x) and our earlier estimate for V in the
Turán-Kubilius inequality (19) applied to the function hp. We get that the num-
ber of d ≤ x with ∣∣∣∣hp(d)− 1

3
y log y

∣∣∣∣ > y log2 y

is O
(
xy(log y)2/(y log2 y)2

)
= o(x). This concludes the proof of (18) and so

proves the theorem.
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