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This paper is dedicated to my teacher John Tate. I am glad and honored to
be invited to contribute to this special volume celebrating his 80th birthday. The
goal of this paper is to give a quick survey of some important recent results and
open problems in the area of function field arithmetic, which studies geometric
analogs of arithmetic questions. We will sketch related developments and try to
trace the multiple influences of works of John Tate in this context. We mainly,
but not fully, limit ourselves to topics where these are clearly visible. Also, we
focus mainly on results simple to state, and leave variants or generalizations to
the references. General references for background on recent results in function

field arithmetic are [Ros02, Gos96, G192, G797, Tha04].

Received November 13, 2006.
*Supported in part by NSF grant.



2 Dinesh S. Thakur

Tate’s fundamental contributions to the foundations of function field studies
(sometimes in the context of global fields and sometimes over more general base
fields) and of non-archimedean studies have been very influential in the develop-
ment of number theory. Let us quickly recall some of them:

e Work with Artin on the function field basics and on the foundations of
global class field theory,

e Galois cohomology of global fields,

e Study of local constants in global context,

e Study of Milnor ring in global context,

e Work on theorems of Luroth, Castelnuovo-Severi,

e Work on genus change in inseparable extensions of function fields,

e Novel treatment of residues and Riemann-Roch,

e Tate conjectures and function field analog of Birch and Swinnerton-Dyer
conjectures,

e Rigid analysis in non-archimedean setting,

e Lubin-Tate’s treatment of local class field theory,

e Tate elliptic curves,

e Tate-Shafarevich elliptic curves giving arbitrary large Mordell-Weil rank
over global function fields,

e Tate’s formulation of the Stark conjectures in general global setting and
his proof of Stark-Stickelberger in the function field case,

e Conjectures of Mazur-Tate-Teitelbaum about p-adic Birch and Swinnerton-
Dyer and Mazur-Tate refined conjectures in various global settings.

I have omitted specific references, as they can be easily found out from his
bibliography obtainable, e.g., from MathSciNet.

It is hard to trace the influence of Tate’s work on other works accurately, as
the basic objects, ideas and theorems that he introduced have permeated (and
been generalized by others in well-developed standard theories) throughout math-
ematics as the following common terms show: Tate modules, Tate elliptic curves,
Tate uniformization, Tate’s ¢, Lubin-Tate theory, Honda-Tate theory, Sato-Tate
conjecture, p-divisible or Barsotti-Tate groups, Hodge-Tate decomposition, Tate
cohomology, Poitou-Tate duality, Serre-Tate parameters, Tate cycles, Tate con-
jectures, Mumford-Tate group, Mumford-Tate conjectures, Tate twists, Tate mo-

tives, Tate spaces, Tate ring, Tate algebra, Tate residue, Cassels-Tate pairing,
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Neron-Tate heights, Shafarevich-Tate groups, Koszul-Tate resolution (complex,
derivation) etc.

1. CLASS FIELD THEORY AND LANGLANDS CONJECTURES

We have already mentioned important contributions of Tate in the 1950’s to
global class field theory and its cohomological aspects.

In the 1930’s, Carlitz developed what is now called a Carlitz module and related
analogs for I [t] of the exponential, 27i, roots of unity and cyclotomic theory. His
contributions were forgotten to a large extent, probably because he wrote a huge
number of papers and because this theory was developed in a series of papers
with uninformative titles such as ‘A class of polynomials’, ‘A set of polynomials’,
‘Some properties of polynomials’ etc. Carlitz’s student David Hayes attended
Tate’s lectures at Harvard giving an exposition of explicit local class field theory
by the Lubin-Tate approach of formal groups and noticed a similarity with the
explicit cyclotomic approach that he learned from Carlitz. When he pointed this
out, Tate encouraged Hayes to develop it further.

As Hayes writes in [Hay|, while Artin, Weil and others were treating all places
of function fields on equal footing, Carlitz developed his theory by singling out
a distinguished place at infinity in analogy with the distinguished (archimedean
this time) place at infinity for the field of rational numbers. But doing this, he
missed some abelian extensions (those wildly ramified at infinity). Hayes [Hay74]
then developed the full explicit class field theory for the rational function field
and started considering the higher genus case.

Let K be a function field of one variable over [F, of characteristic p, oo be
a place of K, A be the ring of elements of K integral outside oo, K., be the
completion of K, and Cy be the completion of an algebraic closure of K. We
then consider K, A, K., C as analogs of Q, Z, R, C respectively, with oo
corresponding to the archimedean place of Q. For a finite prime p of A, we can
consider A, as an analog of Q. For more on these analogies, see [Tha04, Sec.
1.1].

We start with the simplest case: K = Fy(t), A = F,[t], so that Ko =F,((1/t)).
Let us define C,(u) € Afu], for a € A, by
Cl (U) = u, Ct(u) =tu+ uqa Ct" (U) - Ct(Ctnfl(u))a
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and asking Cqy(u) to be F-linear as a function of a. Then the Cy(u) are analogs
of the cyclotomic polynomials ul™ — 1. Thus their roots, (,’s say, give analogs of
roots of unity (,’s. In this case,

n

e(2) = Z (19" —t)(ta" —ta) ... (14" —td" ")

n=0

gives an analog of the exponential function e® and satisfies e(az) = Cy(e(z))
analogous to e = (e*)". There is 7 € Cw, transcendental over K, with e(z) =0
if and only if z = 7ra, with a € A. This thus gives analog of 27i, because the kernel
of the usual exponential is 27iZ. (Note that 7 is well-defined up to multiplication
by an element of A* =Ty, just as 27 is well-defined up to multiplication by an
element of Z* = {£1}). Further, e(7a;/a) represent roots of Cy, for a; € A, just
as €2™k/" represent roots of the n-th cyclotomic polynomial.

Further, we have the following analog [Hay74, Hay] of cyclotomic theory (ex-
plicit class field theory) and Kronecker-Weber theorem over Q:

Theorem 1. With the notation as above, if a is a non-constant polynomial in
A, then K(e(7/a)) is an abelian extension of K, with Galois group (A/(a))*,
unramified outside co and the primes of A dividing a. The Frobenius at prime @
of A acts on the generator by applying C,.

The mazimal abelian extension of K can be obtained as the compositum of all
such extensions together with those obtained by doing the same procedure with
F,[1/t] replacing A = TFg[t].

For a proof, more details and generalization to any K, see [Gos96, Tha04,
Hay79, Hay85, Hay].

Around the same time, Drinfeld, again unaware of Carlitz work, but using ideas
of Lubin-Tate and taking a clue from Deligne’s work relating Galois representa-
tions to modular forms, developed [Dri74], what are now called Drinfeld modules,
in the setting of any function field K and any place at infinity (considered as an
analog of QQ or a totally imaginary field with unique archimedean infinity, where
we have explicit class field theory classically). He developed an attack not only on
class field theory (which corresponded to the case of rank one), but also on Gl,
Langlands conjecture analogs. (Deligne observed that the modularity theorem in
the function field case, now connecting elliptic curves over function fields to the
modular curves of Drinfeld modules, follows by Drinfeld’s work combined with
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previous works. See [Tha04, Pa. 215] for a sketch and note, in particular, that
one step is Zarhin’s proof of Tate’s isogeny conjectures for abelian varieties over
function fields.) Lafforgue [Laf02] finally succeeded in proving these, building on
this work of Drinfeld and of many others.

Theorem 2. Let K be a function field of characteristic p. Fix a prime |l # p
and an integer r > 1. Let Ax denote the adele ring of K and G be the absolute
Galois group of K.

Then there is an explicit bijection m — o(m) between (i) the set of irreducible
cuspidal automorphic representations w of Gl.(Ak) which have central character
of finite order, and (ii) the set of of irreducible representations o : G — Gl (Q;)
unramified outside a finite set of primes and with determinant of finite order,
with the property that Frobenius and Hecke eigenvalues (or equivalently the local
L factors) of m and o(w) match.

In addition to influence of Lubin-Tate work, Drinfeld’s work also used ideas
of rigid analysis, Tate curves, Tate uniformization, Honda-Tate theory, and Tate
modules. (Note that Tate modules of Drinfeld modules give Gl,,(A,) representa-
tions in contrast to Gla(Qy) representations given by elliptic curves over function
fields). Tate’s results on local-global analysis of L-functions, and local constants
also play an important role in the Langlands program.

Gaitsgory and de Jong, Bockle-Khare proved (see [Kha] for details and refer-
ences) the function field analog of Serre’s conjectures that a continuous, absolutely
irreducible, n-dimensional representation over a finite field of characteristic [ # p,
of the fundamental group of a geometrically irreducible smooth curve over a fi-
nite field of characteristic p, is automorphic. Because of Lafforgue’s theorem this
reduces to appropriate lifting theorems.

On the other hand, over Q, works of Hida, Ribet and especially of Wiles, Taylor
and others settling the modularity conjecture of Shimura-Taniyama-Weil, opened
up powerful methods of attack in the area of the original Langlands’ and Serre’s
conjectures. These works together with those of Bockle, Dieulefait, Khare, Kisin,
Taylor, Ramakrishna, Winterberger and many others have helped to settle most
of the original Serre conjectures. The level one case due to Khare [Kha06] has just
been published and the earlier manuscripts of Khare and Winterberger as well
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as those announcing the odd conductor case are available on the archives. For
general account and references, we refer to Khare’s excellent survey paper [Kha).

In the beautiful inductive method used for this proof, Tate’s 1973 proof [Tat94b]
of p = 2 case of Serre’s conjectures forms the base case. Also, p = 3 case
done by Serre by similar discriminant bound methods and other works using
this method of Tate are heavily used. Other influences of Tate’s foundational
works are seen [Kha] in uses of Barsotti-Tate representations, Hodge-Tate the-
ory, Poitou-Tate exact sequences. Schoof’s extensions of Fontaine’s famous result
that there is no abelian variety over Z played an important role in Khare’s work.
See [Ogg66] for Tate’s earlier observation and elementary proof of the one dimen-
sional case of elliptic curves.

2. ZETA FUNCTIONS: ARITHMETIC OF SPECIAL VALUES

Consider A = Fy[t] case again. Let A+ and Z+ denote the set of monic
polynomials and of positive integers respectively. Consider Carlitz zeta values

1
(s)= > — €Ku, sEL+.
a€A+

While ((1) makes sense, and ((sp) = ((s)?, in contrast to the Riemann zeta
function situation, Carlitz proved (analog of Euler’s result on Riemann zeta val-
ues) that the values of  at ‘even’ positive integers s are rational multiples of 7,
where ‘even’ now means a multiple of ¢ — 1, which is a cardinality of A* = F},
analogous to Z* = {£1}. In particular, they are transcendental, as 7 is transcen-
dental.

The nature of Riemann zeta values at odd positive integers is still a mystery.
On the other hand, we have

Theorem 3. If s is a positive integer, then ((s) is transcendental. If, further, s is
‘odd’, i.e., not divisible by q—1, then ((s)/7® as well as (,(s) are transcendental,
where C, is the interpolation due to Goss of ¢ at prime p of A.

How was this proved? Greg Anderson developed higher dimensional general-
ization ‘t-motives’ of Drinfeld modules, put them in a framework analogous to
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motives and constructed C®*, the s-th tensor power of the Carlitz motive (cor-
responding to the Carlitz module above). This Carlitz-Tate motive is analog of
the Tate twist Z(s) = Z(1)®% and has corresponding exponential and logarithm
attached to it. In [AT90], we constructed an algebraic point (torsion if and only
if s is ‘even’) on C'®* and expressed ((s) in terms of its logarithm. An analog
of the Hermite-Lindemann theorem on transcendence of logarithm values (and
its p-adic incarnation) was then proved [Yu91] by Jing Yu, which implied the

theorem above.

In [Tha04] multizeta values were defined by

1
C(s1,70+ 5 8K) = Z 51 5k
nl PEEEEY nk
[ [>++>|n
(where n; € A+) and their properties, relations between them and interpolations
were studied.

Theorem 4. [APT| The multizeta values defined above are periods of explicit

2

iterated extension of C®% ’s and thus transcendental.

The relations satisfied by them are under investigation. These relations are
not quite the classical sum-shuffle and integral-shuffle relations and involve subtle

‘digit phenomena’.

Further in [AT], the analogs of Thara power series, Deligne-Soule cocycles and
higher circular units are constructed. Thara power series occurs in Grothendieck-
Thara program of the study of absolute Galois group over QQ by realizing it in the
automorphism group of the algebraic fundamental group of the projective line
minus three points. When we consider the more manageable nilpotent quotient of
the fundamental group, the mixed motive structure of iterated extensions of Tate
twists shows up, with multizeta values occurring in the DeRham-Betti aspects
and Thara power series and Deligne-Soule cocycles occurring in the etale aspects of
the meta-abelian simplification. We have these ingredients, as we have the mixed
Tate-motives theory in function fields, but we have no good understanding of the
fundamental group background yet!

David Goss (see [Gos96]) interpolated the zeta values at positive integers above
to a much larger continuous space containing, in particular, the negative integers.
(Cohomological aspects of L-functions in this situation have been developed by
Taguchi, Wan [TW96], Pink and Béckle [B6c02]). The special values at positive
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as well as negative integers are related in a way analogous to the Herbrand-Ribet
theorem to class groups of cyclotomic extensions, with the values at positive
integers linking to the class groups of integral closures of Fy[t] in the cyclotomic
extensions, while the values at the negative integers linking to the full Pic? of the
cyclotomic extensions. But still no functional equation connecting the two sets of
values is understood in contrast to the Riemann zeta function functional equation
whose nice analysis was done in Tate’s thesis. We do have good analogs [Tha04]
of Gamma functions, but do not understand them as a factor at infinity for zeta

as in Tate’s thesis.

Classically, a simple analysis of poles of gamma factors occurring in the func-
tional equations of general zeta functions leads to determination of orders of
vanishing of zeta functions at negative integers. In function fields, the story is
not even conjecturally fully understood. There is some interesting systematic
‘extra vanishing’ phenomena of zeta at —s depending on digit combinatorics of s
and Weierstrass gaps [Tha04, Sec. 5.4] and [Gos].

3. ZETA FUNCTIONS: STARK CONJECTURES

Tate generalized Brumer and Stark conjectures (giving ideal class annihilators
and abelian extensions via analytic processes in the ground field) to global set-
tings, considered refined conjectures and systematically worked out many basic
functorialities and results on them.

For a finite abelian extension L of a global field K with Galois group G and
a non-empty set 1" of places of K containing at least all those ramified in L, by
character/Fourier theory, there is a unique 6 = 67,1, € C[G] such that

¥(0) = Lr(0,¢)

for all complex valued characters ¢ of G (extended linearly to the group algebra),
where the L function

Lr(s,v) = [] (1 = ¢(Frob,)Norm(p)~*) ™", Re(s) > 1
pgT

s

is a rational function in ¢~ and is finite at 0. Let p be the number of roots of

unity in L and w := pf.

Theorem 5. (Tate and Deligne [Tat84]) Let K be a function field and P any
prime divisor of L. We have
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(1) we 7[G),
(2) If |T| > 2, then P“ is a principal divisor () of some { € L,

(3) If T = {v}, then P¥ is (£) + nvr, for some a € L and n € Z and where vy,
denotes the simple sum of places of L above v.

(4) If M = ¢, then L(X) is abelian over K.

Let us give a quick sketch of Tate’s nice proof of (2) for a geometric extension
of a function field (an analog of the Stickelberger theorem on ideal class annihila-
tors): The class group of a curve is the group of F-rational points i.e., the part of
the E—points of its Jacobian where the Frobenius F' acts as the identity, whereas
its L-function is essentially the characteristic function of the Frobenius on the
corresponding component of the Jacobian or rather the Tate module. Hence it
kills the component when ¢t = F' by the Cayley-Hamilton theorem. Hence w which
is just a linear combination of L-values at s = 0 (i.e. ¢ = 1) kills the class group.
(See [Tha04] and references there for more details.) Using one-motives in place
of Jacobian, Deligne generalized from a geometric extension to any extension and

proved the theorem above.

These ideas inspired the proof [GS85] of the Herbrand-Ribet analog (using the
zeta values at negative integers) that was mentioned in the last section

Tate then suggested to Hayes that his Drinfeld module work might imply
another proof of this theorem giving A (as in the Theorem) explicitly (after the
reduction technology developed in [Tat84] is used). This was proved in [Hay85]

In 1987, Mazur and Tate [MT87] developed a refinement of L-function conjec-
tures in the case of elliptic curves. They ran a seminar at Harvard working out
these ideas in various situations, where Gross and Hayes worked out (and Hayes
proved [Hay88]) the refined p-adic abelian Stark conjectures in the number field
and the function field case respectively. See works of Ki Seng Tan and Joongul
Lee for some results on the refined elliptic curves case.

In a very interesting recent work, Greg Anderson has a refinement of the Stark
conjectures [And06] (see also his recent preprints for proofs using Lang-Serre
geometric class field theory and Drinfeld’s shtukas) which involves two rather
than one variable algebraic functions. This generalizes his earlier work [And] in
the Fy[t] case. For a long time, examples suggested existence of a generalization,
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but a good formulation was not at all clear. Anderson generalizes to higher
genus (see also [And94]) by using an adelic harmonic analysis formulation in the
language and framework of Tate’s thesis.

4. DIOPHANTINE GEOMETRY

Tate’s foundational work developing tools of group schemes, Tate modules, p-
divisible groups, Hodge-Tate decompositions, Neron-Tate heights, p-adic sigma
functions, Tate curves (with their place in moduli studies) etc. has played an
important role in Diophantine geometry over global fields. Works of Serre, Mazur,
Faltings, Fontaine and others made heavy use of these tools.

Tate’s conjectures and his results on them have also been very influential. For
a nice presentation of the precise statements and of the connections between Tate
conjectures relating algebraic cycles on varieties over fields finitely generated over
the prime fields, galois invariant cohomology classes, order of poles of their zeta
functions, Tate conjectures on isogenies of abelian varieties, Tate’s analogs of
conjectures of Birch and Swinnerton-Dyer (BSD) in the function field case, as
well as for the summary of evidence, see [Tat94a.

Tate proved the Tate conjecture for abelian varieties over finite fields basically
via a Shafarevich type finiteness result (trivial over finite fields). Faltings reversed
the direction to deduce the Shafarevich finiteness conjecture from his Tate’s con-
jecture proof, which in turn was modelled on Tate’s original proof together with
Zarhin’s ideas which proved Tate conjectures for function fields. Faltings then de-
duced Mordell’s finiteness conjecture from the Shafarevich conjecture using ideas
of Pashin in Parshin’s proof of the Mordell conjecture over function fields.

In many respects, Drinfeld modules (of rank two, for best analogies) are analogs
of elliptic curves. Their higher dimensional generalizations, such as t-motives
or A-motives, are analogs of abelian varieties (or of motive representing their
Hy). Drinfeld modules also have ‘characteristic’ which can be generic (analog of
characteristic zero) or finite prime p € A, and we can consider Drinfeld modules
in finite field, local or global setting. Thus many theorems or conjectures about
abelian varieties have two different analogs in function fields: in terms of abelian

varieties over function fields or in terms of ¢-motives.
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In addition to proofs of Tate, Zarhin, Faltings respectively, over finite fields,
function fields, number fields respectively of Tate conjectures mentioned, let us
look at the function field situation in this t-motive realm:

For Drinfeld modules over finite fields, an analog of the Tate isogeny theorem
was proved [Dri77] by Drinfeld. For Drinfeld modules of generic characteristic (in
fact, in a much more general setting), the analog of the Tate conjecture/Faltings
theorem was established by Tamagawa and Taguchi [Tam94, Tag95, Tag96]. This
was done by a method (quite different from Faltings in the classical case) inspired
by the previous important work of Anderson [And93|, where he proves an analog
of Tate conjectures for ‘formal t-modules’, by approximating solutions of ‘p-adic
linear Frobenius equations’. Taguchi [Tag93, Tag91] also proved the semisimplic-
ity of the Galois representation on the Tate module, for both finite and generic
characteristic Drinfeld modules. Taguchi [Tag99] proved that a given L-isogeny
class of Drinfeld A-module contains only finitely many L-isomorphism classes, for
L a finite extension of K. Oliver Watson has recently proved an analog of the Tate
conjecture in the equi-characteristic case, in his 2003 University of Pennsylvania
thesis.

Classically, there is a well-known theorem of Serre on the image of the Galois
representation (with the general conjecture for abelian varieties being that of
Mumford-Tate) obtained from the torsion of elliptic curves. Pink [Pin97] showed
that if p has no more endomorphisms than A, then for a finite set S of places
p # oo, the image of Gal(K*?/K) in [] cgGLn(Ap) for the corresponding
representation for rank n Drinfeld modules is open. (Note that this is weaker than
the Serre type adelic version, but much stronger (unlike the classical case) than
the case of one prime @, because we are dealing with all huge pro-p groups here,
even though the primes p change. So the simple classical argument combining
p-adic and [-adic information to go from the result for one place to the result for
finitely many places does not work). This has been generalized and improved in
recent works of Pink, Traulsen and Gardeyn.

Let us mention that while over number fields, the Tate isogeny conjecture and
the Shafarevich finiteness conjecture follow from each other for abelian varieties,
it is easy to exhibit [Tha04, Sec. 6.1] infinitely many non-isomorphic rank 2
Drinfeld modules, with good reduction everywhere (so not only the support of the
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discriminant is bounded, but the discriminant is one). So with many analogies,
there are a few important contrasts as well.

Finally, let us mention that the analog for Drinfeld modules of the conjecture
of Tate and Voloch [TV96] (predicting existence of a lower bound for the p-adic
distance of torsion of a semi-abelian variety over C), from a closed subvariety not
containing it) has been recently announced in a preprint by D. Ghioca.

5. DIOPHANTINE GEOMETRY: ELLIPTIC CURVES OVER FUNCTION FIELDS

Tate’s Haverford lecture notes and Inventiones survey on elliptic curves beau-
tifully and systematically laid out the subject area and became the necessary first
reading for anybody interested in learning the subject.

In a very influential Bourbaki seminar [Tat95] of 1966, Tate explained (joint
work with Michael Artin) the homological machinery behind the geometric case
of BSD conjectures and proved

Theorem 6. For an elliptic curve E over a function field K, (1) its analytic rank
(i.e., the order of vanishing of its L function at s = 1) is at least its arithmetic
rank (i.e. the rank of the Mordell-Weil group of its rational points); (2) These two
ranks are equal if and only if the Shafarevich-Tate group 111 is finite if and only
if the £-primary part of 111 is finite for one prime £. Further, if these equivalent
conditions hold, the full BSD conjecture, giving the conjectural formula for the
leading term of the L function at s = 1, holds.

As stated, this uses the later refinements due to Milne and others taking care of
the p-part, allowing ¢ = p and p = 2 etc. These were not handled in [Tat95], essen-
tially because Tate used etale cohomology and crystalline cohomology machinery
needed for taking care of p was developed soon thereafter. For a generalization
to abelian varieties, see [Sch82].

Iwasawa used analogies between function fields and number fields to develop
Iwasawa theory and carried over Hasse-Weil’s geometric understanding and coho-
mological machinery related to zeta functions to the p-adic case in number fields.
Transferring Tate’s ideas to this realm led to the development of results on the
p-adic BSD analog by Perrin-Riou [PR83], using the Iwasawa theoretic machin-
ery. More recently, Bertiloni and Darmon [BDO01] developed another analog, this



Function Field Arithmetic 13

time dealing with p-adic L function defined analytically and using rigid analysis
and p-adic uniformization ideas, initiated by Tate!

It suffices for our purposes below to say that in the function field case, Tate
proved (see [Tat94a]) the rank equality and thus the full BSD conjecture for E
which is iso-trivial or &/ whose corresponding elliptic surface over F, is dominated
by a product of curves, in particular Fermat surfaces.

Now we describe 1967 work of Shafarevich-Tate and a recent nice advance by
my colleague Douglas Ulmer:

It is not known whether the (arithmetic or analytic) ranks of F(Q) are bounded
as E runs through elliptic curves E over QQ, the usual bet seems to be that they
are not. The largest rank known today is around 28.

In a famous paper, Shafarevich and Tate [TS67] showed that over a fixed
F,(t), there do exist elliptic curves of arbitrarily large arithmetic rank: They
considered certain hyperelliptic quotient C' over I, of the Fermat curve of degree
p™ 4+ 1. Its zeta function can be calculated in terms of Gauss sums following
Weil, and the Gauss sums were made more explicit by them for this degree.
This allowed them to show that the Jacobian of C' has a supersingular elliptic
curve Ey as an isogeny factor to a high multiplicity m over F,. (Note that this
multiplicity can be calculated by Honda-Tate theory). If E is the constant curve
over F,(t) based on Ey, over quadratic extension F' = F,,(C) it has rank m, as
E(F)/torsion = Homp,(J(C), Ep). Thus the quadratic twist of £ by F has a
large arithmetic rank over F(¢).

But the curves they exhibited are isotrivial (j-invariant is in Fy). Thus the
situation is not readily comparable to the number field case. Shioda exhibited
non-isotrivial elliptic curves with arbitrarily large rank over F,(t). Ulmer [Ulm02]
showed that, in fact, they have arbitrarily large arithmetic rank over F,(¢) and
proved (for a variant of equations working for all p) the following

Theorem 7. For non-isotrivial E over K = F,(t) given by y*> +ay = 2° —t?" 1,
BSD holds and its rank is at least (p"—1)/2n. Further, the degree of the conductor
of E is p" 4+ 2 or p" + 4 depending on whether p™ + 1 is divisible by 6 or not.

Here is a sketch showing influence of Tate’s ideas and results: Following Shioda,
Ulmer gets a dominant rational map from Fermat surface of degree p™ + 1 to
the surface over IF,, corresponding to E, which gives the BSD conjecture for F
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by results of Tate mentioned above. By detailed analysis of the Fermat quotient
isomorphic to this surface, he expresses its zeta function (related to the L-function
of E) in terms of the zeta function of the Fermat surface. Using the Shafarevich-
Tate calculation mentioned above, he calculates the analytic rank, which is now
also the arithmetic rank. Finally, the conductor calculation is done by Tate’s

algorithm for minimal models!

Ulmer further showed that these curves (as well as Shafarevich-Tate isotrivial
curves) asymptotically attain the upper bound for the rank in terms of the size of
the conductor of the elliptic curve. This gives stronger support to the correspond-
ing number fields conjecture predicting the existence of a family of elliptic curves
E with conductors N tending to infinity, with rank at least clog(V)/log(log(NV))
for some ¢ > 0, coming from the random matrix theory analogies compared to
a competing conjecture coming from probabilistic models. (In the number field
case, it was shown earlier [KMO0] using Heegner points that the conjecture ob-
tained from the first conjecture by replacing elliptic curves by abelian varieties
is true). Darmon produced more examples of high rank curves, by an alternate
method of analysis of zeta functions, but as pointed out in [Ulm04], the calculation
of root numbers he needs requires knowing the local representation of decompo-
sition groups on the Tate module at places of bad reduction and ultimately boils

down to analyzing super-singular Gauss sums using Shafarevich-Tate!

Trying to answer a question of Ellenberg about behavior of ranks as you go
up a certain tower of extensions, Ulmer realized that the examples above are not
really special and proved

Theorem 8. Given any non-isotrivial elliptic curve E over Fy(t), there exists a
finite extension F,(u) of Fy(t) such that E has unbounded analytic ranks in the
tower T, (u'/).

(See [Ulm] for this, many more related interesting results and generalizations
to abelian varieties.)

As F,.(u"/?) is isomorphic to F,.(z), E thus gives a family of curves with arbi-
trarily large rank over this base. Note that like isotriviality, this property of a
rational function field that it contains a copy of itself in several different ways,
by replacing t by a rational function of ¢, is again not readily comparable to the
number field case!
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6. DIOPHANTINE GEOMETRY: DIOPHANTINE APPROXIMATION

We just mention that in the related field of Diophantine approximation of al-
gebraic elements over function fields, the naive analog of Roth’s theorem that
‘diophantine approximation exponent of algebraic real numbers is two’ fails. For
connections with deformation theory and many interesting recent results and open
questions about distribution of Diophantine approximation exponents of alge-
braic elements and about their continued fraction expansions, we refer to [Tha04]
and [Tha].

7. TRANSCENDENCE OF SPECIAL VALUES AND PERIODS
Let us begin with a transcendence result on the period of the Tate elliptic
curve:

Let p be a prime number, and k£ be an algebraic closure of F,. Let go be a
variable and consider a4, ag € k[[qo]] defined by

—5n3q? —(Tn® + 5n3) gy
a=Y I =Y <12(1_ n)“.
n>1 ) n>1 %

Theorem 9. The period qy of the Tate elliptic curve y*> + xy = 2% 4+ a4z + ag

over K := k(ay4,ag) is transcendental over K.

This function field analog of Mahler-Manin conjecture was proved by Voloch
[Vol96], by approximating go by algebraic quantities and getting a contradiction
by analyzing the Galois action using Igusa’s theorem.

Soon afterwards, the original conjecture was proved. See [Wal97] for the his-
tory and an account of the proof. Nice application is that ‘log,qo’ appearing
in the p-adic Birch and Swinnerton-Dyer conjectures of Mazur, Tate and Teitel-
baum (Theorem of Stevens/Greenberg) does not then vanish, so that the order
of vanishing of the L-functions is exactly as predicted in the conjectures.

Voloch explained his theorem and proof in a seminar at the University of
Arizona and I could give another proof [Tha96] (and yet another [AT99] with
Allouche) using the automata criterion for algebraicity of Christol, which says
that ) fpa™ is algebraic over [, (z), if and only if f,, € F, is produced by a g-
automaton, if and only if there are only finitely many subsequences of the form

ot With 0 <7 < ¢¥. (See [Tha04, Cha. 11] for definitions and details).
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This result on the transcendence of the Tate period was the start of my work on
applications of automata theory to naturally occurring quantities in the setting
of function field arithmetic, by giving refined transcendence theorems for them
using results in computer science, formal language theory and logic. In my thesis,
special values of arithmetic gamma for F[t] defined by Carlitz and Goss were
calculated and related to the periods of Drinfeld modules and an analog of the
Chowla-Selberg formula was proved. Thus applying the results of Jing Yu on
the transcendence of periods, knowledge of transcendence of gamma values at
fractions was parallel in Z and [ [t] case. The automata techniques (and help from
automata experts Allouche, Mendes-France, Yao) allowed me to get a complete
result showing ( [Tha04, Cha. 11] for details) that all the monomials in gamma
values at fractions that I had not shown to be algebraic in my thesis are, in fact,

transcendental!

For the g-adic interpolation due to Goss of the gamma, Yao and myself only
managed partial results [Tha04, Cha. 11], and the general case is still open.

There is another gamma function (geometric case)

for which there is an even more satisfying result. I had proved the functional
equations for this gamma function giving algebraicity of some explicit monomials,
and proved transcendence of a few (all, if ¢ = 2) values at proper fractions in K
by connecting them to the periods of Drinfeld modules.

By I''monomial we will mean an element of the subgroup of C}_ generated by
7 and the values of I' at proper fractions in K.

Theorem 10. [ABP04] A set of T-monomials is K -linearly dependent exactly
when some pair of I'-monomials is. Pairwise K -linear dependence is decided by
an explicit combinatorial criterion and exactly those monomials mentioned above
are the only algebraic ones.

In particular, the transcendence degree of the field extension of K generated by
7 and gamma values at proper fractions with denominators dividing a € A over
Kis1+ (1—1/(q—1))[(A/a)*].
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(We remark here that there is [Tha04, Sec. 4.12] a unified Galois-theoretic
description of the ‘explicit algebraic monomials’ mentioned above, in both clas-
sical and function field cases, and that in the classical as well as in the geometric
gamma case (but not in the arithmetic case) they follow from reflection and

multiplication formulas.)

This was done by expressing the gamma monomials as periods of appro-
priate t-motives (these motives are defined using the same two variable func-
tions mentioned in the Stark conjecture section) and by the powerful transcen-
dence criterion of [ABP04] that all period relations come from motivic relations.
This was further developed by Papanikolas [Pap] who proved the analog of the
Grothendieck conjecture that the transcendence degree of the field generated by
the periods of a motive is the dimension of its motivic Galois group (or Mumford-
Tate group if considering the analogy in the abelian varieties situation), i.e., the
tannakian group of the tannakian category generated by its powers. Jing Yu and
Chang [YC] have applied this to get all algebraic dependence relations between
Carlitz zeta values and we should soon have a result about multizeta values.
See [Tha] for a sketch.

There are still many open questions about the nature of values of p-adic inter-
polations, algebraic dependence relations for the Carlitz-Goss arithmetic gamma
function mentioned above as well as their generalizations to arbitrary function
fields, and for another gamma function developed in [Tha04, Sec.8.3, 8.7].

Acknowledgement: 1 am very grateful to Jean-Pierre Serre and Greg An-
derson for their detailed suggestions for improvement.
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