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After the p-adic numbers had been discovered by Hensel in 1893, there were sev-
eral attempts to develop a theory of analytic functions over p-adic fields. At first
one was just curious about knowing if there would exist a reasonable analogue of
classical complex function theory over such fields. However, later when algebraic
geometry had progressed so that applications to number theory were possible, a
good theory of analytic functions, say over Cp (the completed algebraic closure
of Qp), became sort of a necessity.

There is a fundamental example, due to J. Tate, which provided ample moti-
vation for the development of such a new theory. Let K be an algebraically closed
field with a complete non-Archimedean absolute value | · |, which is assumed to
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be non-trivial in the sense that there are elements a ∈ K with |a| 6= 0, 1; for
example, we may take K = Cp. Then, using ζ as a variable, look at the algebra

O(K∗) = {
∑

ν∈Z
cνζ

ν ; cν ∈ K, lim
|ν|→∞

|cν |rν = 0 for all r > 0}

of all Laurent series that are globally convergent on K∗. Viewing O(K∗) as the
ring of analytic functions on K∗, we can construct its field of fractions M(K∗) =
Q(O(K∗)) and think of it as of the field of meromorphic functions on K∗.

Now choose an element q ∈ K∗ with |q| < 1, and write Mq(K∗) for the set of
all meromorphic functions which are invariant under multiplication by q on K∗;
i. e.,

Mq(K∗) = {f ∈M(K∗) ; f(qζ) = f(ζ)}.

Tate made the observation that Mq(K∗) is an elliptic function field with a non-
integral j-invariant, i. e., with |j| > 1. Furthermore, he saw that the set of
K-valued points of the associated elliptic curve EK coincides canonically with the
quotient K∗/qZ. Elliptic curves which are obtained in this way have been called
Tate elliptic curves since then. As quotients of type K∗/qZ are not meaningful
in the setting of algebraic geometry, Tate was tempted to develop a theory of
analytic spaces, so-called rigid analytic spaces, where such quotients make sense;
see his notes on a seminar he gave at Harvard [T]. In fact, the existence of an
analytical isomorphism of type EK ' K∗/qZ is a charcterizing condition for Tate
elliptic curves.

One can prove that, just as in the classical complex case, isomorphism classes
of elliptic curves correspond one-to-one to isomorphism classes of Riemann sur-
faces of genus 1 in the sense of rigid analytic spaces. Among these precisely the
elliptic curves with non-integral j-invariant are Tate elliptic, whereas all others
extend to elliptic curves over the valuation ring of K and are said to have good
reduction (assuming K algebraically closed, as above). Tate elliptic curves may
be viewed as the correct analogues of complex tori. However, they can only be
viewed as multiplicative quotients of type K∗/qZ, since the additive point of view,
as applied in the complex case, will not work. An obvious reason for this is that
the exponential function, if defined at all, does not converge well enough.
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1. An overview

When they were distributed, Tate’s fundamental notes on Rigid Analytic Spaces
[T] immediately received strong attention for several reasons. First, there was
the fascinating design of a new analytic theory which, for the first time, was
able to manage, even in higher dimensions, the problem that fields with a non-
Archimedean absolute value are totally disconnected and, thus, sheaves of lo-
cally analytic functions (in the usual sense) are much too big. Tate achieved this
through his famous Acyclicity Theorem which, at the expense of replacing the
topology on his spaces by a certain Grothendieck topology, allowed to define ana-
lytic functions in local terms. The extra constraints provided by the Grothendieck
topology are reflected in the term rigid which Tate introduced in order to specify
his notion of analytic spaces. On the other hand, Tate’s notes contained sev-
eral comments marked as “Open Questions”, which served as convenient starting
points for further research. Picking up such questions, the school of Grauert and
Remmert, with their expertise in classical complex analysis, started introducing
new methods into the theory; see the monography [BGR]. In particular, relying on
techniques based on the Weierstraß Preparation Theorem, Gerritzen and Grauert
[GG] were able to clarify the structure of affinoid subdomains, and to character-
ize open immersions of affinoid spaces as inclusions of subdomains. Thereby two
major problems left open by Tate were settled. Subsequent work by Kiehl [K1],
[K2] established Theorems A and B for coherent modules on rigid spaces, as well
as the Proper Mapping Theorem. All this was ample evidence for the fact that
Tate’s original approach was sound and wisely chosen.

Another source of inspiration certainly has come from Grothendieck. Tate him-
self writes at the beginning of [T], Sect. 10, where he introduces global rigid
spaces, that he is to “follow fully and faithfully a plan furnished by Grothendieck”.
Just as schemes over a valuation ring R have a generic fibre, which is a scheme
over the field of fractions K = Q(R), Grothendieck had the idea that formal
schemes (of topologically finite type) over a complete valuation ring R (of dimen-
sion 1) should admit a generic fibre over the field of fractions K which, in some
sense, is obtained by tensoring with K over R. Of course, the resulting object
cannot be a formal scheme any more, although it can well be interpreted as a
rigid analytic space in the sense of Tate. Thus, there is a natural functor

Rig : (Formal R-Schemes) −→ (Rigid K-Spaces)
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which associates to a formal R-scheme of topologically finite type its generic fibre
as rigid K-space. It was Raynaud, who studied this functor extensively; cf. [R1].
He proved the following basic result, see also [FRG1]:

Theorem. The functor Rig induces an equivalence between the following cate-
gories:

(i) the localization by “admissible” formal blowing-up of the category of quasi-
compact “admissible” formal R-schemes, and

(ii) the category of quasi-compact and quasi-separated rigid K-spaces.

At the heart of the equivalence lies the observation that the rational sub-
domains of affinoid spaces, which play a key role in the work of Gerritzen and
Grauert mentioned above, correspond to the notion of admissible formal blowing-
up in the world of formal schemes, as considered by Raynaud. In fact, over an
affine formal scheme Spf A, such a blowing-up is just the formal completion of an
ordinary scheme theoretic blowing up on SpecA, with a center contained in the
special fibre. Also note that this equivalence opens up a totally new path to rigid
analytic spaces which, in addition, allows to generalize the concept to situations
where the base field K is replaced by a quite general object S, which, by itself,
may not admit any interpretation in terms of Tate’s rigid analytic spaces.

A really useful aspect of Raynaud’s approach to rigid analytic spaces is the fact
that it brings methods from algebraic geometry into play. To simplify things, let K

be a field with a complete non-Archimedean absolute value |·|, assumed to be non-
trivial. Let R be its valuation ring, and fix an element t ∈ R satisfying 0 < |t| < 1.
Then, given a morphism of rigid K-spaces ϕK : XK −→ YK , one can look for a
formal R-model ϕ of ϕK , i. e., for a morphism of formal R-schemes ϕ : X −→ Y

which, under the functor Rig, is a representative of ϕK . Then interpreting ϕ as
the inductive limit of the scheme morphisms ϕi : Xi −→ Yi obtained from ϕ by
tensoring with R/(ti) over R, one may apply methods from algebraic geometry
in order to investigate ϕ. At the end, information on ϕ can be carried over to
information on ϕK .

The crucial step in the just described procedure consists in constructing a suit-
able formal R-model of the morphism of rigid spaces ϕK , which is to be studied.



Half a Century of Rigid Analytic Spaces 1439

If ϕK : XK −→ YK enjoys a certain property (P), applicable to morphisms of
both, rigid K-spaces and formal R-schemes, one would like to construct a formal
R-model ϕ : X −→ Y enjoying (P). As is easy to imagine, the problem will not
admit a solution for any kind of property (P). For example, looking at a smooth
projective curve CK −→ Spec K and taking for ϕK : XK −→ YK the morphism
of rigid spaces derived from it via analytification, the theory of models for curves
shows that we can at best expect a semi-stable formal R-model ϕ : X −→ Y , but
not necessarily a smooth one. Thus, smoothness is too strong for these purposes.
Consequently, one has to look at weaker properties (P) such as flatness. Indeed
the case where (P) means “flatness” is basic and admits a positive solution; the
necessary techniques are described in [RG] and [FRG2]. Another important case
is the one where (P) means “reduced fibres”. It was dealt with in [FRG3] and
[FRG4], leading to a result which may be viewed as a first step towards a general
semi-stable reduction theorem.

Rigid geometry in the sense of Tate and Raynaud works well for coherent
sheaves. The same cannot be said for general abelian sheaves, since there are
examples of such sheaves F on a rigid space XK such that all stalks Fx for
x ∈ XK are trivial, without F being trivial itself. This is a clear indication
for the fact that, in order to handle abelian sheaves and to compute their étale
cohomology, rigid spaces do not contain sufficiently many points. To remedy
such a fault, several concepts have been developed, which we want to mention
briefly. Continuing Raynaud’s point of view, it is natural to take into account all
formal R-models X ′ of a given rigid space XK and to pass to the projective limit
〈X〉 = lim←−X ′, which is called the Zariski-Riemann space associated to XK . The
latter was introduced by Fujiwara in [F]. By its definition, the Zariski-Riemann
space 〈X〉 is a locally ringed space with respect to the inverse limit topology,
although the latter may fail to be Hausdorff, even if XK is separated. There is a
canonical specialization map sp: XK −→ 〈X〉, which is injective and has dense
image. Furthermore, one can show that sp induces an equivalence between the
category of abelian sheaves on XK and the one on 〈X〉.

Another concept, which to a large extent is equivalent to the concept of Zariski-
Riemann space, was introduced by Huber in his monography on Adic Spaces [H].
Instead of dealing with formal models and admissible formal blowing-up, Huber
bases his definition on valuation spectra of certain topological rings, which can
be quite general. Closer to classical rigid geometry is the approach by Berkovich
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with his non-Archimedean analytic spaces, nowadays called Berkovich spaces; see
[B1], [B2]. Berkovich also works with valuation spectra, although he is restricting
himself to valuations of height 1. This means paying a little price, but the ap-
proach still works quite well for so-called overconvergent sheaves. On the other
hand, topologies are quite accessible and will be Hausdorff in general. In fact,
for a separated rigid space, the associated Berkovich space may be viewed as the
biggest Hausdorff quotient of the corresponding Zariski-Riemann or adic space.

2. Affinoid spaces, a first naive approach

We will start now to discuss rigid geometry in more detail. Due to lack of space,
only a few proofs can be included. For the convenience of the reader, we have
chosen [B] as a coherent reference source, whenever possible.

Let K be a field with a complete non-Archimedean absolute value | · | which
is supposed to be non-trivial, and let K be its completed algebraic closure. We
write

Bn(K) = {(x1, . . . , xn) ∈ Kn ; |xi| ≤ 1}
for the closed unit ball in the n-dimensional affine n-space over K (although
Bn(K) is open in Kn as well) and choose a set of n variables ζ1, . . . , ζn as coor-
dinate functions on Bn(K).

Definition 2.1. Let Tn = K〈ζ1, . . . , ζn〉 be the K-algebra of all power series

f =
∑

ν∈Nn

cνζ
ν =

∑

ν∈Nn

cν1...νnζν1
1 . . . ζνn

n

with coefficients in K, which are convergent on Bn(K) or, equivalently, satisfy
lim|ν|→∞ |cν | = 0. Then Tn is called the Tate algebra of restricted power series in
n variables over K.

One may ask why algebras of power series converging on closed balls are con-
sidered, and not on open balls such as {(x1, . . . , xn) ∈ Kn ; |xi| < 1}. The reason
is that algebras of the latter type are much more complicated to handle. Later
they will be viewed as projective limits of Tate algebras, corresponding to the
interpretation of open balls as an increasing union of smaller closed balls.
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A major advantage of power series on closed balls consists in the fact that their
Gauß norm can be defined. On Tn the latter is given by

|f | = max |cν | for f =
∑

ν

cνζ
ν .

The Gauß norm is a K-algebra norm providing Tn with the structure of a Banach
K-algebra; see [B], 1.2/3. Let R be the valuation ring of K and k its residue field.
Setting

T ◦n = {f ∈ Tn ; |f | ≤ 1},
we get the so-called reduction of Tn by tensoring T ◦n with k over R, namely

T ◦n ⊗R k = kdbζ1, . . . , ζnec,
which is a polynomial ring in n variables over k.

Via approximation arguments, Euclid’s division in kdbζ1, . . . , ζnec can be lifted
to Tn, thus leading to so-called Weierstraß division here; see [B], Sect. 1.2. The
latter is used as a basic tool for establishing Noether normalization for Tate
algebras. From this one can conclude that Tn is noetherian, that it is jacobson
(in the sense that all nilradicals coincide with corresponding Jacobson radicals),
and that for any maximal ideal m ⊂ Tn, the field Tn/m is finite over K.

For any ideal a ⊂ Tn, the quotient Tn/a is called an affinoid K-algebra. Just as
the series f ∈ Tn are viewed as analytic functions on Bn(K), we may view their
residue classes in Tn/a as analytic functions on the Zariski closed subset

V (a) = {x ∈ Bn(K) ; g(x) = 0 for all g ∈ a} ⊂ Bn(K).

Note that, due to the fact that Tn is jacobson, we have Hilbert’s Nullstellensatz:
an element f ∈ Tn/a induces the zero function on V (a) if and only if f is nilpotent.

Similarly as one can proceed in algebraic geometry with affine schemes (of
finite type over some field K), we may view the Zariski closed subsets of type
V (a) ⊂ Bn(K), together with their algebras of functions Tn/a, as basic local
objects in rigid geometry, referred to as affinoid K-spaces. One can even show
that the canonical map V (a) −→ Max(Tn/a) to the spectrum of maximal ideals
in Tn/a yields a bijection V (a)/Γ ∼−→ Max(Tn/a) if we divide out the action
of the automorphism group Γ = Aut(K/K) on the left-hand side; see [BGR],
7.1.1/1. In particular, from this point of view a rigid K-space is just a pair
SpA := (MaxA,A), where A is an affinoid K-algebra and MaxA denotes its
spectrum of maximal ideals.
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As far as morphisms are concerned, we may start with maps

Bn(K) ⊃ V (a) −→ Bm(K)

which are given by m residue classes in (Tn/a)◦, where the latter means the
R-subalgebra of all elements f ∈ Tn/a, whose sup-norm

|f |sup = sup{|f(x)| ; x ∈ V (a)}

is bounded by 1. Note that, for Tate algebras Tn, the sup-norm coincides with the
Gauß norm; see [B], 1.2/5. Furthermore, one can show that any K-homomorphism
σ : K〈ζ1, . . . , ζm〉 −→ Tn/a satisfies |σ(ζi)|sup ≤ 1 for all i and that, conversely,
for given elements h1, . . . , hm ∈ Tn/a with |hi|sup ≤ 1, there is a unique K-homo-
morphism σ : K〈ζ1, . . . , ζm〉 −→ Tn/a satisfying σ(ζi) = hi for all i; see [B],
1.4/18. Therefore the morphisms V (a) −→ Bm(K) of the type just described
correspond essentially to the K-homomorphisms Tm −→ Tn/a, and it is natural
to define a morphism of affinoid K-spaces ϕ : Sp A −→ SpB as a pair (ϕ, σ),
where σ : B −→ A is a K-homomorphism and ϕ : MaxA −→ MaxB is the map
m 7−→ σ−1(m). In particular, note that σ−1(m) is a maximal ideal in B, for any
maximal ideal m ⊂ A; see the explanations in [B], at the end of Sect. 1.5.

Identifying the physical points of an affinoid K-space with the spectrum of
maximal ideals of its corresponding affinoid K-algebra is certainly permitted,
due to Hilbert’s Nullstellensatz. However, let us point out that the whole prime
spectrum should not be used. Namely, the definition of reasonable open subspaces
of affinoid K-spaces involves a combination of localization and subsequent com-
pletion on the level of affinoid K-algebras, as we will see below. Such a process
behaves well with respect to maximal ideals, but not with respect to more gen-
eral prime ideals, since for a completed localization τ : A −→ A′ there might exist
prime ideals p ⊂ A′ such that τ(τ−1(p))A′ ( p.

Now, in order to introduce open subspaces of affinoid K-spaces, we follow Tate
in applying a truely formalistic point of view:

Definition 2.2. Let X = SpA be an affinoid K-space. A subset U ⊂ X is called
an affinoid subdomain of X if there exists a morphism of affinoid K-spaces
ι : X ′ −→ X with ι(X ′) ⊂ U such that the following universal property holds:
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Any morphism of affinoid K-spaces ϕ : Y −→ X satisfying ϕ(Y ) ⊂ U admits
a unique factorization through ι : X ′ −→ X via a morphism of affinoid K-spaces
ϕ′ : Y −→ X ′.

Of course, if U ⊂ X is an affinoid subdomain of X, then the corresponding
morphism ι : X ′ −→ X, as required in the definition, is uniquely determined by U .
Furthermore, it is not too hard to show that, pointwise, ι induces a bijection from
X ′ onto U ; see [B], 1.6/10. Thus, any affinoid subdomain U ⊂ X is automatically
equipped with a unique structure of affinoid K-space. In order to exhibit explicit
examples of affinoid subdomains, let us specify some classes of subsets of affinoid
K-spaces.

Definition 2.3. Let X = SpA be an affinoid K-space.

(i) A subset in X of type

X(f1, . . . , fr) = {x ∈ X ; |fi(x)| ≤ 1}
for functions f1, . . . , fr ∈ A is called a Weierstraß domain in X.

(ii) A subset in X of type

X(f1, . . . , fr, g
−1
1 , . . . , g−1

s ) = {x ∈ X ; |fi(x)| ≤ 1, |gj(x)| ≥ 1}
for functions f1, . . . , fr, g1, . . . , gs ∈ A is called a Laurent domain in X.

(iii) A subset in X of type

X(
f1

f0
, . . . ,

fr

f0
) = {x ∈ X ; |fi(x)| ≤ |f0(x)|}

for functions f0, . . . , fr ∈ A without common zeros is called a rational domain in
X.

Proposition 2.4. Weierstraß, Laurent, and rational domains are examples of
affinoid subdomains.

For a proof, see [B], 1.6/11. Let us just mention that for a Weierstraß domain
X(f1, . . . , fr) ⊂ X the corresponding affinoid K-algebra is given by

A〈f1, . . . , fr〉 = A〈ζ1, . . . , ζr〉/(ζi − fi ; i = 1, . . . , r),
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for a Laurent domain X(f1, . . . , fr, g
−1
1 , . . . , g−1

s ) ⊂ X by

A〈f, g−1〉 = A〈f1, . . . , fr, g
−1
1 , . . . , g−1

s 〉
= A〈ζ1, . . . , ζr, ξ1, . . . , ξs〉/(ζi − fi, 1− gjξj ; i = 1, . . . , r; j = 1, . . . , s),

and for a rational domain X(f1

f0
, . . . , fr

f0
) ⊂ X by

A〈f1

f0
, . . . ,

fr

f0
〉 = A〈ζ1, . . . , ζr〉/(fi − f0ζi ; i = 1, . . . , r).

It is clear that any Weierstraß domain in X is also Laurent. Furthermore, one
can show that Laurent domains in X are rational. Namely they can be viewed
as finite intersections of rational domains, and any such intersection is rational
again; see [B], 1.6/14. Rational domains are not yet mentioned in Tate’s notes [T].
However, they appear quite naturally. If we consider a Laurent domain X ′ ⊂ X

and a Weierstraß domain X ′′ ⊂ X ′, then, in general, X ′′ will be neither Weierstraß
nor Laurent in X. However, we can see that X ′′ is rational in X. Furthermore,
one knows that any rational domain in X occurs in this way; see [B], 1.6/16 and
1.6/17.

It should be noted that any affinoid K-space X = SpA carries a natural
topology, which is induced from the absolute value of K or its (unique) extension
to K. Indeed, Bn(K) is a topological space this way, and so are its (Zariski) closed
subspaces V (a), for any ideal a ⊂ Tn. Identifying the spectrum of maximal ideals
MaxA, where A = Tn/a, with the quotient V (a)/Γ for Γ = Aut(K/K), we may
consider on the point set of SpA the quotient topology of the one on V (a). The
resulting topology is called the canonical topology on SpA, and one knows ([B],
1.6/2 and 1.6/19):

Proposition 2.5. Any affinoid subdomain of an affinoid K-space X is open with
respect to the canonical topology on X. The Weierstraß domains form a basis of
this topology.

More precise information on the structure of general affinoid subdomains is
provided by the following result ([B], 1.8/12):
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Theorem 2.6 (Gerritzen - Grauert [GG]). Let X be an affinoid K-space and
U ⊂ X an affinoid subdomain. Then U is a finite union of rational subdomains
of X.

The proof of the Theorem in [GG] provides quite precise information on the
functions needed to describe the affinoid subdomains covering a given affinoid
subdomain U ⊂ X. Surprisingly, a more rapid, but less specific proof was recently
given by Temkin [Te1] from the viewpoint of Berkovich theory.

Using the fact that affinoid subdomains carry a well-defined structure of affi-
noid K-space, we are able now to introduce the sheaf of locally analytic functions
on any affinoid K-space X = SpA. Indeed, associating to an affinoid subdomain
U ⊂ X its corresponding affinoid K-algebra constitutes a presheaf on a basis of
the canonical topology on X. The associated sheaf is called the sheaf of locally
analytic functions on X. However, since X is totally disconnected with respect to
the canonical topology, the algebra of global sections on X will be substantially
larger than the affinoid K-algebra A giving rise to the definition of X, except for
trivial situations.

3. Tate’s Acyclicity Theorem

Although it is possible to define the sheaf of locally analytic functions on an
affinoid K-space in a natural way, as we have just seen, we are facing the problem
that this sheaf has too many sections. For example, we expect a function, which
is analytic in any reasonable sense on a unit ball Bn = SpTn, to admit a globally
convergent power series expansion and, thus, to correspond to an element in Tn.
However, the class of locally analytic functions does not behave this way. For
example, characteristic functions of open subballs U ⊂ Bn are locally analytic on
Bn, but cannot be represented by series in Tn, unless U = Bn.

But how to set up a reasonable notion of local analyticity, without abandoning
the concept that, on nice spaces such as balls, locally analytic functions admit
globally convergent power series expansions? The fundamental idea pursued by
Tate is to restrict the class of open coverings which are allowed for testing local
analyticity. To be more precise, consider an affinoid K-space X = SpA and
denote by OX the presheaf of affinoid functions on X. Thereby we mean the
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functor on the category of affinoid subdomains U ⊂ X which associates to any
such U its corresponding affinoid K-algebra AU . Then we may ask if there exists
a reasonable class of coverings U = (Ui)i∈I of X by affinoid subdomains Ui ⊂ X

such that the associated diagram

OX(U) →
∏

i∈I

OX(Ui) ⇒
∏

i,j∈I

OX(Ui ∩ Uj),(∗)

f 7−→ (f |Ui)i∈I , (fi)i∈I 7−→




(fi|Ui∩Uj )i,j∈I

(fj |Ui∩Uj )i,j∈I

is always exact (note that the intersection of two affinoid subdomains in X is
an affinoid subdomain in X again by [B], 1.6/14). The answer is given by the
following result, which is part of Tate’s Acyclicity Theorem.

Theorem 3.1 (Tate). Let X be an affinoid K-space and U = (Ui)i∈I a finite
covering of X by affinoid subdomains Ui ⊂ X. Then the above diagram (∗) is
exact.

We can proceed one step further and consider the augmented Čech complex

0 −→ F(X) ε−→ C0(U,F) d0−→ C1(U,F) d1−→ . . .

for any covering U = (Ui)i∈I of X by affinoid subdomains Ui ⊂ X and any
presheaf F on the category of affinoid subdomains of X. If the sequence is exact,
U is called F-acyclic. Using this terminology, the full version of Tate’s Acyclicity
Theorem reads as follows:

Theorem 3.2 (Tate). Let X be an affinoid K-space and U a finite covering of
X by affinoid subdomains. Then U is acyclic for the presheaf OX of affinoid
functions on X.

For a complete proof we refer to [B], Sect. 1.9. The strategy consists in simpli-
fying the affinoid covering U as much as possible, with the help of some general
facts about Čech cohomology. Moreover, it is enough to consider the Čech com-
plex of alternating cochains. Then, for X = SpA, it remains to actually do the
proof in the case where U is a Laurent covering generated by a single function
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f ∈ A; i. e., where
U = (X(f), X(f−1)).

Thus, we have to show that the sequence

0 −→ A
ε−→ A〈f〉 ×A〈f−1〉 δ−→ A〈f, f−1〉 −→ 0,

f
ε7−→ (f |X(f), f |X(f−1)), (f, g) δ7−→ f |X(f,f−1) − g|X(f,f−1),

is exact. The sequence is part of the following commutative diagram:

0 0y
y

(ζ − f)A〈ζ〉 × (1− fη)A〈η〉 δ′′−−−−→ (ζ − f)A〈ζ, ζ−1〉y
y

0 −−−−→ A
ε′−−−−→ A〈ζ〉 ×A〈η〉 δ′−−−−→ A〈ζ, ζ−1〉 −−−−→ 0∥∥∥

y
y

0 −−−−→ A
ε−−−−→ A〈f〉 ×A〈f−1〉 δ−−−−→ A〈f, f−1〉 −−−−→ 0y

y
0 0

The symbols ζ, η denote indeterminates, ε′ is the canonical injection, δ′ is given
by (h1(ζ), h2(η)) 7−→ h1(ζ)− h2(ζ−1), and δ′′ is induced by δ′. Furthermore, the
vertical maps are characterized by ζ 7−→ f and η 7−→ f−1, respectively. The first
column of the diagram is exact due to the definition of A〈f〉 and A〈f−1〉. Also
the second column is exact since

A〈f, f−1〉 = A〈ζ, η〉/(ζ − f, 1− fη)

= A〈ζ, η〉/(ζ − f, 1− ζη) = A〈ζ, ζ−1〉/(ζ − f).

Clearly, δ′ is surjective. Since

(ζ − f)A〈ζ, ζ−1〉 = (ζ − f)A〈ζ〉 ⊕ (ζ − f)ζ−1A〈ζ−1〉
= (ζ − f)A〈ζ〉 ⊕ (1− fζ−1)A〈ζ−1〉,

we see that δ′′ is bijective. Furthermore, the second row is exact, since

0 = δ′(
∞∑

i=0

aiζ
i,
∞∑

i=0

biη
i) =

∞∑

i=0

aiζ
i −

∞∑

i=0

biη
i
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implies ai = bi = 0 for i > 0 and a0 − b0 = 0. Finally, looking at the third row,
the exactness follows with the aide of the snake lemma, applied to the diagram
of the two vertical exact sequences. ¤

For an affinoid K-space X = SpA and an A-module M , we can consider the
presheaf M ⊗A OX on the category of affinoid subdomains of X which is given
by

U 7−→ M ⊗A OX(U).

A simple argument, see [B], 1.9/10, shows that the assertion of Tate’s Acyclicity
Theorem can be generalized to such a presheaf in place of OX :

Corollary 3.3. Let X = SpA be an affinoid K-space, M an A-module, and U

a finite covering of X by affinoid subdomains. Then U is acyclic for the presheaf
M ⊗A OX .

4. Rigid analytic spaces

Let X be an affinoid K-space and U ⊂ X a subset which is open with respect to
the canonical topology. We might call U admissible open in X if it is an affinoid
subdomain of X (note that affinoid subdomains are always open in X, due to 2.5).
Furthermore, a covering U =

⋃
i∈I Ui of an admissible open subset U ⊂ X might

be called admissible if it is a finite covering by admissible open subsets Ui ⊂ X.
Thus, the presheaf OX of affinoid functions on X is defined on the category of
all admissible open subsets of X, and Tate’s Acyclicity Theorem in the version
of 3.1 states that OX is, in fact, a sheaf on X with respect to admissible open
coverings. In a certain sense, we will view OX as the structure sheaf of the affinoid
K-space X. To be more precise, we need the notion of a Grothendieck topology
[A], adapted to our situation. It generalizes the notion of a topology.

Definition 4.1. A Grothendieck topology T on a set X consists of a category
Cat T of subsets in X, with inclusions as morphisms, and a set Cov T of families
(Ui −→ U)i∈I of morphisms in Cat T satisfying U =

⋃
i∈I Ui, called coverings,

such that the following hold :

(1) If Φ: U −→ V is an isomorphism in Cat T, then (Φ) ∈ Cov T.
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(2) If (Ui −→ U)i∈I and (Vij −→ Ui)j∈Ji for i ∈ I belong to Cov T, then the
same is true for the composition (Vij −→ Ui −→ U)i∈I,j∈Ji .

(3) If (Ui −→ U)i∈I is in Cov T and if V −→ U is a morphism in Cat T, then
the fibred products Ui ×U V = Ui ∩ V exist in Cat T, and (Ui ×U V −→ V )i∈I

belongs to Cov T.

The objects of Cat T are referred to as the admissible open sets of X, assuming
tacidly that we provide X with the topology generated by all these sets. Likewise,
the elements of Cov T are the admissible open coverings of X. As indicated above,
we are particularly interested in the so-called weak Grothendieck topology TX on
affinoid K-spaces X, where Cat TX is the category of affinoid subdomains in X,
and Cov TX the set of all finite coverings of affinoid subdomains in X by sets of
the same type. One knows that any morphism of affinoid K-spaces ϕ : Z −→ X

is continuous with respect to the weak Grothendieck topology on X and Z, in the
sense that ϕ-inverses of admissible open sets and coverings of TX are admissble
open with respect to TZ . This follows from the fact that ϕ−1(U) is an affinoid
subdomain in Z, for any affinoid subdomain U ⊂ X; see [B], 1.6/13.

A presheaf with respect to a Grothendieck topology T is a contravariant functor
F on Cat T with values in some category C. Such a functor is called a sheaf if
the diagram

F(U) →
∏

i∈I

F(Ui) ⇒
∏

i,j∈I

F(Ui ×U Uj)

is exact for every covering (Ui −→ U)i∈I in Cov T (assuming that C admits
cartesian products). Thus 3.1 just says that, for an affinoid K-space X, the functor
OX , which associates to an affinoid subdomain U ⊂ X its corresponding affinoid
K-algebra, is a sheaf with respect to the weak Grothendieck topology on X.

There is a canonical way to enlarge the weak Grothendieck topology on affi-
noid K-spaces by adding more admissible open sets and more admissible cov-
erings in such a way that morphisms of affinoid K-spaces remain continuous
and sheaves extend uniquely to sheaves with respect to this new topology. The
resulting Grothendieck topology is the strong Grothendieck topology on affionid
K-spaces which we define now.
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Definition 4.2. Let X be an affinoid K-space. The strong Grothendieck topology
on X is given as follows.

(i) A subset U ⊂ X is called admissible open if there is a (not necessarily
finite) covering U =

⋃
i∈I Ui of U by affinoid subdomains Ui ⊂ X such that for

all morphisms of affinoid K-spaces ϕ : Z −→ X satisfying ϕ(Z) ⊂ U the covering
(ϕ−1(Ui))i∈I of Z admits a refinement, which is a finite covering of Z by affinoid
subdomains.

(ii) A covering V =
⋃

j∈J Vj of some admissible open subset V ⊂ X by means
of admissible open sets Vj is called admissible if for each morphism of affinoid
K-spaces ϕ : Z −→ X satisfying ϕ(Z) ⊂ V the covering (ϕ−1(Vj))j∈J of Z

admits a refinement, which is a finite covering of Z by affinoid subdomains.

Note that any covering (Ui)i∈I as in (i) is admissible by (ii). It is easily checked
that the strong Grothendieck topology on X really is a Grothendieck topology,
and that any finite union of affinoid subdomains of X is admissible open. Fur-
thermore, one knows that Zariski open subsets of X are admissible open, and
that each Zariski open covering of such a subset is admissible; see [B], 1.10/9.
Thus, we can say that the strong Grothendieck topology on X is finer than the
Zariski topology.

If F is a presheaf with respect to the strong Grothendieck topology on an
affinoid K-space X, we write as usual

Fx = lim−→F(U),

for the stalk of F at a point x ∈ X, where the limit extends over all admissible
open subsets U ⊂ X containing x. One knows that the stalks OX,x of the sheaf
of affinoid functions on X are local K-algebras ([B], 1.7/1).

For any set X with a Grothendieck topology T on it and a sheaf OX of
K-algebras with respect to T, we call the pair (X,OX) a ringed K-space. Fur-
thermore, we talk about a locally ringed K-space if all stalks of OX are local. In
particular, for any affinoid K-space, we can consider its associated locally ringed
K-space (X,OX), assuming tacidly that affinoid K-spaces are always equipped
with their strong Grothendieck topology. Using the appropriate notion of mor-
phisms between such spaces (see [B], 1.12/1), it is clear that any morphism of
affinoid K-spaces ϕ : X −→ Y induces in a natural way a morphism of locally
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ringed K-spaces (ϕ,ϕ∗) : (X,OX) −→ (Y,OY ). One can show by the usual argu-
ment ([B], 1.12/2):

Proposition 4.3. The functor X 7−→ (X,OX) from the category of affinoid
K-spaces to the category of locally ringed K-spaces is fully faithful. Thus, the
former category can be viewed as a full subcategory of the latter.

Now it is more or less straightforward how to define the category of global
rigid K-spaces. We could just say that such a rigid analytic space is a locally
ringed K-space (X,OX) with a Grothendieck topology on X such that X admits
an admissible open covering (Xi)i∈I where (Xi,OX |Xi) is affinoid for all i ∈ I.
However, if we proceed like this, a similar effect will occur, as we have encountered
when passing from the weak to the strong Grothendieck topology on affinoid
K-spaces: in general, it will be possible to introduce additional open sets and open
coverings of global type, without changing sheaves on X and without changing the
structure of the defining affinoid pieces Xi. To remedy this, we observe that the
strong Grothendieck topology on affinoid K-spaces satisfies certain completeness
conditions, namely:

Proposition 4.4. Let X be an affinoid K-space. Then:

(G0) ∅ and X are admissible open.

(G1) Let (Ui)i∈I be an admissible covering of an admissible open subset U ⊂ X.
Furthermore, let V ⊂ U be a subset such that V ∩ Ui is admissible open for all
i ∈ I. Then V is admissible open in X.

(G2) Let (Ui)i∈I be a covering of an admissible open set U ⊂ X by admissible
open subsets Ui ⊂ X which admits an admissible covering of U as refinement.
Then (Ui)i∈I itself is admissible.

If X is a set with a Grothendieck topology T on it satisfying the above condi-
tions (G0), (G1), and (G2), and if (Xi)i∈I is an admissible open covering of X,
then the Grothendieck topology on X can be recovered from the ones induced
on the spaces Xi ([B], 1.10/10). Even better, if X is a set admitting a covering
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X =
⋃

i∈I Xi and if each Xi is equipped with a Grothendieck topology satisfy-
ing (G0), (G1), and (G2), compatible in the sense that all intersections Xi ∩Xj

are admissible open in Xi and Xj and that their topologies restrict to the same
Grothendieck topology on Xi∩Xj , then there is a unique Grothendieck topology
on X satisfying (G0), (G1), and (G2), and containing all Xi as admissible open
subspaces ([B], 1.10/11). Therefore it makes sense to put the definition of global
rigid spaces as follows:

Definition 4.5. A rigid analytic K-space is a locally ringed K-space (X,OX)
with respect to a Grothendieck topology on X such that

(i) the Grothendieck topology of X satisfies conditions (G0), (G1), and (G2)
of Proposition 4.4, and

(ii) X admits an admissible open covering (Xi)i∈I where (Xi,OX |Xi) is an
affinoid K-space for all i ∈ I.

A morphism of rigid K-spaces (X,OX) −→ (Y,OY ) is a morphism in the sense
of locally ringed K-spaces.

Due to the fact that we require the completeness conditions (G0), (G1), and
(G2), we can conclude from the properties mentioned above that global rigid
K-spaces can be constructed in the usual way by glueing local affinoid parts.
In particular, we thereby see that the category of rigid K-spaces admits fiber
products. Namely, the completed tensor product of affinoid K-algebras, as dealt
with in [BGR], 3.1.1 and 6.1.1/10, provides a fiber product

SpA×Sp B SpC = Sp(A⊗̂BC)

in the category of affinoid K-spaces, and one can construct fibre products of more
general type via the usual glueing process, see [BGR], 9.3.5/2.

A similar application of the glueing techniques for rigid spaces shows that we
can define the analogue of Serre’s GAGA-functor [S], which associates to any
K-scheme Z of locally finite type a rigid K-space Zrig, called the rigid analyti-
fication of Z; see [B], 1.13. Indeed, for the affine n-space An

K one defines its
rigid analytification by glueing an increasing sequence of n-dimensional balls. In
principle, the same procedure applies to Zariski closed subschemes of An

K , thus
leading to the rigid analytification of affine K-schemes of finite type. This makes
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it possible to deal with the general case of a K-scheme of locally finite type Z by
glueing the analytifications of open affine parts of Z.

Of course, there is the question of whether or not the results of Serre’s paper
[S] remain true in the rigid analytic setting. Generally speaking, the answer is
yes, due to work of Kiehl [K1], [K2], and Köpf [Kö]. It was Kiehl who developed
the theory of coherent modules on rigid K-spaces (see also [B], 1.14) and proved
the analogues of Theorems A and B [K1], well-known from complex analysis.
Furthermore, he introduced the notion of proper morphisms in rigid geometry
and established the Proper Mapping Theorem; [K2], see also [B], 1.16 and 1.17.
Based on this work, Köpf [Kö] was able to carry over the results from [S], in
particular the algebraization of coherent analytic scheaves on the analytification
of a proper K-scheme.

There is further work concentrating on carrying over several fundamental re-
sults from complex analysis to the context of rigid geometry. As an example, let us
just mention the theme of analytic continuation such as the work of Bartenwerfer
[Ba] involving Hartogs figures and of Lütkebohmert [L1].

Besides that, special questions from algebraic geometry have influenced the
development of rigid geometry substantially. Tate’s elliptic curves have been gen-
eralized by Mumford to curves of higher genus [M1] and to abelian varieties of
higher dimension [M2], ideas which play an important role in the book of Faltings
and Chai [FC] for the compactification of moduli spaces of abelian varieties. Ray-
naud [R2] has worked on the uniformization of abelian varieties and their duals,
later completed by Lütkebohmert and the author [BL3]. There are even proofs
in terms of rigid geometry of the semi-stable reduction theorems for curves and
abelian varieties [BL1], [BL2]. Finally, let us also mention that Bertapelle [Bp]
has established the technique of Weil restriction in rigid geometry.

5. Rigid spaces as generic fibres of formal schemes

To approach rigid geometry via formal schemes, the base field K, which has been
used so far, is replaced by its valuation ring, which will be denoted by R. Thus,
one starts out from the R-algebra R〈ζ1, . . . , ζn〉 of restricted power series in a set
of variables ζi with coefficients in R, viewing it as an R-model of the full algebra
Tn = K〈ζ1, . . . , ζn〉 of restricted power series with coefficients in K, in the sense
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that
K〈ζ1, . . . , ζn〉 = R〈ζ1, . . . , ζn〉 ⊗R K.

To justify this equation, interpret the tensor product with K over R as localization
by S = R− {0}. Then there are inclusions

R〈ζ1, . . . , ζn〉 ⊂ S−1(R〈ζ1, . . . , ζn〉) ⊂ K〈ζ1, . . . , ζn〉
and, since any series in K〈ζ1, . . . , ζn〉 has bounded coefficients, the inclusion on
the right is an equality.

Next consider an affinoid K-algebra AK = Tn/a, for some ideal a ⊂ Tn. Then
A = R〈ζ1, . . . , ζn〉/a′ with a′ = a ∩ R〈ζ1, . . . , ζn〉 certainly is an R-model of AK .
However, although Tn is noetherian and, thus, a is finitely generated, we do not
know right away if the same is true for the ideal a′ ⊂ R〈ζ1, . . . , ζn〉. Namely,
R〈ζ1, . . . , ζn〉 is noetherian only if the absolute value of K is discrete and, thus, R

is a discrete valuation ring. Let us fix an ideal I ⊂ R, generated by some element
t ∈ R, where 0 < |t| < 1, so that the topology of R coincides with the I-adic one.

Definition 5.1. A topological R-algebra A is called

(i) of topologically finite type if it is isomorphic to an R-algebra of type
R〈ζ1, . . . , ζn〉/a, endowed with the I-adic topology.

(ii) of topologically finite presentation if, in addition to (i), a is finitely gener-
ated, and

(iii) admissible if, in addition to (i) and (ii), A does not have I-torsion.

From work of Raynaud and Gruson [RG], one can derive the following funda-
mental fact (see also [B], 2.3/4 and 2.3/5 for an elementary proof):

Proposition 5.2. Let A be an R-algebra of topologically finite type. If A has no
I-torsion, A is of topologically finite presentation and, thus, admissible.

In particular, this implies that the ideal a′ = a ∩ R〈ζ1, . . . , ζn〉 considered
above is, indeed, finitely generated. In particular, looking for R-models A (of
topologically finite type) of an affinoid K-algebra AK , we may always assume
that A does not admit I-torsion. Then A is automatically of topologically finite
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presentation and, hence, admissible. Thus, the category of admissible R-algebras
is a good one to look for R-models of affinoid K-algebras.

Next, let us consider an R-algebra as above, or more generally, an R-algebra A

which is complete and separated with respect to the I-adic topology. The latter
is equivalent to the fact that the canonical morphism A −→ lim←−n

A/(In) is an
isomorphism. The formal R-scheme Spf A associated to A is the locally ringed
space (X,OX), where X is a (true) topological space, namely the prime spectrum
Spec A/(I) endowed with the Zariski topology, and where OX is the sheaf on X

extending the functor of topological R-algebras

D(f) 7−→ A〈f−1〉 := lim←−
n

A/(In)dbf−1ec, f ∈ A,

given on the basic open subsets D(f) ⊂ X; see [B], 2.2. As usual, D(f) denotes
the Zariski open locus in X where f does not vanish. Note that there is a canonical
isomorphism A〈ζ〉/(1− fζ) ∼−→ A〈f−1〉, [B], 2.1/9.

In the following, let us use the term formal R-scheme for a locally ringed
space (X,OX) which locally looks like a formal R-scheme of type Spf A, as just
discussed.

Definition 5.3. Let X be a formal R-scheme. X is called locally of topologically
finite type (resp. locally of topologically finite presentation, resp. admissible) if
there is an open affine covering (Uj)j∈J of X with Uj = Spf Aj where Aj is
an R-algebra of topologically finite type (resp. of topologically finite presentation,
resp. an admissible R-algebra).

Let us mention that the property of a formal R-scheme to be locally of topo-
logically finite type or presentation, or to be admissible, is independent of the
covering occurring in the definition; see [B], 2.4/2. In particular, an affine formal
R-scheme Spf A is of this type if and only if A is of topologically finite type or
presentation, or is admissible.

To simplify our terminology, we will assume in the following that all formal
R-schemes are at least locally of topologically finite type, unless stated otherwise.
We want to define a functor “rig” from the category of formal R-schemes to the
category of rigid K-spaces, which associates to a formal R-scheme X its so-called
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generic fibre Xrig. On affine formal R-schemes Spf A this functor is defined by

rig : X = Spf A 7−→ Xrig = Sp(A⊗R K),

where we have seen at the beginning of this section that A ⊗R K is, indeed, an
affinoid K-algebra and, hence, Sp(A ⊗R K) an affinoid K-space. For any f ∈ A

we have

A〈f−1〉 ⊗R K = dbA〈ζ〉/(1− fζ)ec ⊗R K

= (A⊗R K)〈ζ〉/(1− fζ) = (A⊗R K)〈f−1〉,
showing that the functor rig produces from a basic open subspace of type

X(f−1) = Spf A〈f−1〉 ⊂ X = Spf A

the Laurent domain

Xrig(f−1) = Sp(A⊗R K)〈f−1〉 ⊂ Xrig = Sp(A⊗R K)

of the generic fibre associated to X. More generally, it follows that rig maps
any open immersion of affine formal R-schemes Spf A′ −→ Spf A to an open
immersion Sp(A′⊗RK) −→ Sp(A⊗RK) between the associated affinoid K-spaces.

To extend the functor rig to global formal R-schemes, let us look at such a
scheme X and assume first that X is separated and, hence, that the intersection
of two open affine formal subschemes of X is affine again. Thus, fixing an open
affine covering (Uj)j∈J of X, all intersections Uj∩Uj′ are affine. Hence, we can glue
the generic fibres Uj,rig via the “intersections” (Uj ∩ Uj′)rig to produce a global
rigid K-space Xrig. It is easily checked that the latter is independent of the chosen
affine open covering (Uj)j∈J of X and that any morphism of separated formal
R-schemes X −→ Y leads to a canonical morphism Xrig −→ Yrig so that we really
get a functor. In particular, as affine formal R-schemes are separated, the functor
rig is defined on all open formal subschemes U of an affine formal R-scheme X.
Furthermore, since such a U is necessarily quasi-compact, the generic fibre Urig

is admissible open and, thus, an open subspace of Xrig. Therefore, to extend the
functor rig to the category of all formal R-schemes, we can repeat the above
construction, now interpreting an arbitrary global formal R-scheme X by glueing
open affine parts Uj via arbitrary open subspaces of these. Thus, we have shown:

Proposition 5.4. The functor A 7−→ A ⊗R K on R-algebras A of topologically
finite type gives rise to a functor rig : X 7−→ Xrig from the category of formal
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R-schemes, which are locally of topologically finite type, to the category of rigid
K-spaces. We call Xrig the generic fibre of X.

6. Raynaud’s approach to rigid geometry

In view of 5.4, one would like to characterize all formal R-schemes X whose generic
fibre Xrig coincides with a given rigid K-space XK . To solve this problem, observe
first that the functor X 7−→ Xrig factors through the category of admissible
formal R-schemes, since the tensor product with K over R kills any R-torsion.
Hence, the generic fiber of a given formal R-scheme X coincides with the one
of the induced admissible formal R-scheme obtained by killing R-torsion. Thus,
we are reduced to the problem of describing all admissible formal R-schemes X

admitting a given rigid K-space Xrig as generic fibre. To access this problem, we
introduce the notion of admissible formal blowing-up.

Let A be an R-algebra of topologically finite type and M a finite A-module.
Similarly as we have defined the structure sheaf OX on the formal R-scheme
Spf A, we may introduce the OX -module M∆ associated to M . It is the sheaf
extending the functor, which on basic open sets D(f) ⊂ X for f ∈ A is given by

D(f) 7−→ lim←−
n∈N

M ⊗A A/(In)dbf−1ec = M ⊗A A〈f−1〉;

see [B], 2.5/1. As before, I is a proper non-zero ideal in R. For any formal
R-scheme X, an OX -module F is called coherent if there is an open affine
covering (Xj)j∈J of X such that the restriction F|Xj is associated to a finite
OXj (Xj)-module for all j ∈ J . One can show that this definition of coherence is
independent of the chosen affine covering (Xj)j∈J of X and that it is in accor-
dance with the general concept which is customary for defining coherent sheaves;
see [B], 2.5. To make this plausible, let us point out that any R-algebra of topo-
logically finite presentation A is a coherent ring in the sense that any finitely
generated ideal of A is of finite presentation; see [B], 2.3/6.

Definition 6.1. Let X be a formal R-scheme which is locally of topologically finite
presentation, and let A ⊂ OX be a coherent ideal which is open in the sense that,



1458 Siegfried Bosch

locally on X, it contains powers of tye InOX . Then the formal R-scheme

XA = lim−→
n∈N

Proj(
∞⊕

d=0

Ad ⊗OX
(OX/InOX))

together with the canonical projection XA −→ X is called the formal blowing-up
of A on X. Any such blowing-up is referred to as an admissble formal blowing-up
of X.

To look at admissible formal blowing-ups in more detail, let us consider an
affine formal R-scheme X = Spf A, where A is an R-algebra of topologically
finite presentation. Then it is more or less obvious that for any finitely generated
open ideal a ⊂ A and its associated coherent open ideal A = a∆ the formal
blowing-up XA of A on X equals the I-adic completion of the scheme theoretic
blowing-up (SpecA)a of a on Spec A; see [B], 2.6/6. Relying on this fact, one can
derive quite precise information about the formal blowing-up XA, at least when
X is admissible; see [B], 2.6/7.

Proposition 6.2. Let X = Spf A be an admissible formal R-scheme which is
affine, and let A = a∆ be a coherent open ideal in OX , which is associated to the
coherent open ideal a = (f0, . . . , fr) ⊂ A. Then the following assertions hold for
the formal blowing-up XA of A on X:

(i) The ideal AOXA ⊂ OXA is invertible; i. e., in terms of OXA-modules, it is
locally isomorphic to OXA .

(ii) Let Ui be the locus in XA, where AOXA is generated by fi, i = 0, . . . , r.
Then the Ui define an open affine covering of XA.

(iii) Write

Ci = A〈fj

fi
; j 6= i〉 = A〈ζj ; j 6= i〉/(fiζj − fj ; j 6= i).

Then the I-torsion of Ci coincides with its fi-torsion, and we have Ui = Spf Ai

with Ai = Ci/(I-torsion).

As a consequence we see that blowing up a coherent open ideal A on an admis-
sible formal R-scheme yields an admissible formal R-scheme again. Furthermore,
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we can conclude that such blowing-ups are characterized by the universal prop-
erty which is customary for blowing-up ([B], 2.6/9).

The explicit description of formal blowing-up in Proposition 6.2 is a key in-
gredient for understanding the relationship between formal R-schemes and their
associated rigid K-spaces as generic fibres. To discuss this in more detail, we start
with a basic observation.

Proposition 6.3. Let X be an admissible formal R-scheme and A ⊂ OX a
coherent open ideal. Then the functor

rig : (Formal R-schemes) −→ (Rigid K-spaces), rig : X 7−→ Xrig,

as introduced in Section 5, transforms the formal blowing-up XA −→ X of A on
X into an isomorphism (XA)rig ∼−→ Xrig between associated generic fibres.

In particular, the functor rig induces a functor

rig′ : (Formal R-schemes)formal blowing-up −→ (Rigid K-spaces)

from the category of admissible formal R-schemes, localized by admissible formal
blowing-up, to the category of rigid K-spaces.

As it is quite instructive, we include the argument of proof. Certainly, the
problem is local on X. Thus, we may assume that X is affine, say X = Spf A. Let
the coherent open ideal A ⊂ OX be associated to the ideal a = (f0, . . . , fr) of A.
Then it follows from Proposition 6.2 that XA is covered by the affinoid K-spaces
associated to the following admissible R-algebras:

Ai = A〈f0

fi
, . . . ,

fr

fi
〉/(I-torsion), i = 0, . . . , r

Thus, applying the functor rig to the projection Spf Ai −→ Spf A and writing
AK = A⊗R K, we obtain the canonical map

SpAK〈f0

fi
, . . . ,

fr

fi
〉 −→ SpAK

which defines Xrig(f0

fi
, . . . , fr

fi
) as a rational subdomain of Xrig = Sp AK . More

specifically, one checks that rig transforms the covering (Spf Ai)i=0...r of XA into
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the rational covering
n⋃

i=0

Xrig(
f0

fi
, . . . ,

fr

fi
) = Xrig,

respecting intersections. Of course, one has to realize that, a being open in A,
it contains a power of I so that the functions f0, . . . , fr will generate the unit
ideal in AK . This implies that rig transforms the morphism XA −→ X into an
isomorphism. ¤

Under certain mild conditions we can strengthen Proposition 6.3 and show
that the functor rig′ is, in fact, an equivalence of categories. To give a precise
statement, recall that a formal R-scheme X is called quasi-paracompact if it
admits an open covering by quasi-compact open subschemes Uj ⊂ X, j ∈ J ,
that is of finite type; i. e., such that each Uj is disjoint from almost all other
Uj′ , j′ ∈ J . Similarly, dealing with admissible coverings of finite type, the notion
of quasi-paracompactness is defined for rigid K-spaces. Also note that a formal
R-scheme X is called separated if the diagonal embedding ∆: X −→ X × X

is a closed immersion, and quasi-separated if ∆ is quasi-compact (which in our
case, for R a complete valuation ring, is automatic). Separatedness und quasi-
separatedness are defined in the same way for rigid K-spaces.

Now we can state Raynaud’s fundamental result [R1], [B], 2.8/3, which ex-
presses the essence of his point of view on rigid geometry.

Theorem 6.4 (Raynaud). The functor

rig : (Formal R-schemes) −→ (Rigid K-spaces), rig : X 7−→ Xrig,

induces via the functor rig′ of Proposition 6.3 an equivalence between

(i) (FSch/R)S , which is the category of all quasi-paracompact admissible formal
R-schemes, localized by the class S of admissible formal blowing-ups, and

(ii) (Rig/K), which is the category of all quasi-separated quasi-paracompact
rigid K-spaces.

For simplicity we have presented the theory of admissible R-algebras over com-
plete valuation rings R of hight 1. But the theory works the same way over more
general (complete and separated) adic rings with a finitely generated ideal of
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definition I ⊂ R such that R does not have I-torsion. Of particular interest are
the following types of rings:

(V) R is an adic valuation ring with a finitely generated ideal of definition I

(which automatically is principal then).

(N) R is a noetherian adic ring with an ideal of definition I where R does not
have I-torsion.

Instead of S = Spf R we can just as well work over more global bases. The
following types of formal base schemes S will be of interest:

(V′) S is an admissible formal R-scheme, where R is an adic valuation ring of
type (V) as above. Thus, the topology of OS is generated by the ideal IOS .

(N′) S is a noetherian formal scheme (of quite general type) such that the
topology of its structure sheaf OS is generated by a coherent ideal I ⊂ OS and
such that OS does not admit I-torsion.

For base schemes S of this type, it is possible to consider admissible formal
S-schemes, or just formal S-schemes, which are locally of topologically finite
presentation. Then Raynaud’s Theorem 6.4 enables us to extend the notion of
rigid spaces to such more general situations:

Definition 6.5. Let S be a formal scheme of type (V′) or (N′), as defined above,
and let (FSch/S) be the category of admissible formal S-schemes. Then the cat-
egory (Rig/S) of rigid S-spaces is defined as the localization of (FSch/S) by
admissible formal blowing-ups.

Thus, as object, a rigid S-space is the same as an admissible formal S-scheme,
whereas on the level of morphisms, admissible formal blowing-ups are viewed as
isomorphisms. Any admissible formal S-scheme representing a rigid S-space Xrig

will be called a formal model of Xrig.
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7. Some results on formal models

Let S be a formal base scheme of type (V′) or (N′), as considered above, and
let Xrig be a rigid S-space in the sense of 6.5. Without explicitly saying so, we
will always assume such rigid spaces, as well as their formal S-models, to be
quasi-separated and quasi-paracompact.

If (P ) is a property applicable to schemes or formal schemes, we can basically
proceed in two ways in order to extend the notion of (P ) to rigid S-spaces like
Xrig. The first possibility is to say that Xrig satisfies (P ) if there is a formal
S-model X of Xrig satisfying (P ). For example, on the level of morphisms, one
can proceed like this with open (resp. closed) immersions. Thus, call a morphism
of rigid S-spaces τrig : Urig −→ Xrig an open immersion (resp. a closed immersion)
if τrig admits an open (resp. closed) immersion of admissible formal S-schemes
τ : U −→ X as a formal S-model. That such a definition coincides with the usual
one in the classical rigid case, follows from [B], 2.8/4.

Another interesting property (P ) to look at is the notion of properness. The
latter has been introduced by Kiehl [K2] for morphisms of classical rigid spaces
ϕK : XK −→ YK over some field K. If ϕ : X −→ Y is a formal model of ϕK , it is
not hard to see that ϕ will be proper in the sense that the associated morphism
between special fibers

ϕ⊗R R/I : X ⊗R R/I −→ Y ⊗R R/I

is a proper morphism of schemes. That the converse is also true, has been an open
question for quite a long time. It was finally proved by Lütkebohmert [L2] over
discrete valuation rings R and by Temkin [Te2] in the general case. Switching from
proper morphisms of rigid spaces to proper formal models opens up a convenient
way to reprove basic theorems of classical rigid geometry, like the Proper Mapping
Theorem [K2] and related results on Serre’s GAGA-functor [S]; see [L2], [U].

Returning to the general case, a more direct possibility of defining a property
(P ) on rigid spaces is to look at the validity of (P ) on the “complement” of the
special fibre of formal S-models X associated to Xrig. To be more precise, let
I ⊂ OS be an ideal of definition. Then, for any formal S-model X, the scheme
X0 = X ⊗S OS/I is called the special fibre of X. If (Ui)i∈J is an affine open
covering of X, say Ui = Spf Ai, and if, on Ui, the coherent open ideal IOX ⊂ OX

is associated to the ideal ai ⊂ Ai, we view the ordinary scheme Spec Ai − V (ai),
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locally on Ui, as the complement of the special fibre, although such a complement
is not well-defined globally. Now, if (P ) is a scheme property, we can say that
Xrig satisfies (P ) if all schemes Spec Ai − V (ai) satisfy (P ). Of course, in order
that (P ) defines a reasonable property on the associated rigid S-space Xrig, one
has to check that the validity of (P ) is independent of the chosen covering (Ui)i∈J

of X and invariant under admissible formal blowing-up. Then, in general, it is a
truely demanding venture, to find out, whether or not a rigid S-space satisfying
(P ) will always admit a formal S-model satisfying (P ).

As a first example which can successfully be handled along these lines, let
us mention the property (P ) of being flat, for morphisms of rigid S-spaces or
coherent modules on rigid S-spaces. This notion of flatness is compatible with
the usual one, known for classical rigid spaces. The main result on flatness is the
existence of flat formal models, due to Raynaud and Gruson; see [RG] or [FRG2].

Theorem 7.1. Let ϕ : X −→ Y be a quasi-compact morphism of admissible
formal S-schemes, and assume that the associated morphism of rigid S-spaces
ϕrig : Xrig −→ Yrig is flat. Then there exists a commutative diagram of admissible
formal S-schemes

X ′ ϕ′−−−−→ Y ′
y

y
X

ϕ−−−−→ Y ,

where ϕ′ is flat, Y ′ −→ Y is the formal blowing-up of some coherent open ideal
A ⊂ OY , and where X ′ −→ X is the formal blowing-up of the ideal AOX ⊂ OX

on X.

Let us mention that X ′ can also be viewed as the strict transform of X with
respect to the admissible formal blowing-up Y ′ −→ Y . The latter is constructed
from the fibered product X ′′ = X ×Y Y ′ (a formal S-scheme of locally topologi-
cally finite presentation, but not necessarily admissible) by dividing the structure
sheaf by all torsion with respect to the ideal generated by the pull-back of A. The
existence of flat models has an interesting consequence for classical rigid spaces.

Corollary 7.2. In the classical rigid case, let R be an adic valuation ring of
height 1 with field of fractions K. Furthermore, let ϕK : XK −→ YK be a flat
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morphism of quasi-compact and quasi-separated rigid K-spaces. Then its image
ϕK(XK) is admissible open in YK .

Proof. Due to Theorem 7.1, there exists a flat formal R-model ϕ : X −→ Y of
ϕK . Tensoring ϕ with the residue field k of R yields a morphism of k-schemes
ϕk : Xk −→ Yk, which is flat and of finite presentation. It is known that the
image of ϕk is a quasi-compact open subscheme Vk ⊂ Yk; see [EGA], 2.4.6. Now,
if V ⊂ Y is the corresponding open formal subscheme of Y , then, clearly, ϕ factors
through V , and the induced morphism X −→ V is faithfully flat. Finally, a local
consideration involving rig-points, as considered in [B], 2.7, shows that ϕK must
map XK onto the admissible open subspace Vrig ⊂ XK , which is associated to
V . ¤

Another property (P ), which can be defined on general rigid S-spaces Xrig

by requiring (P ) to be satisfied on the “complement” of the special fibre, is the
notion of smoothness. Also in this case, one may ask if any smooth (or even étale)
morphism of rigid S-spaces will admit a smooth (resp. étale) formal S-model.
However, the answer will be negative in general. Thus, expecting the existence of
smooth formal S-models of smooth rigid S-spaces would be too much. Stepping
back a bit, one may replace smoothness by the weaker property (P ) that the
structural morphism Xrig −→ Srig has geometrically reduced fibres. Here is an
advanced result on the existence of formal S-models with such a property (P ):

Reduced Fiber Theorem 7.3. Let X be a quasi-compact admissible formal
S-scheme such that X/S is flat and Xrig/Srig has reduced geometric fibres, equidi-
mensional of dimension d. Then there is a commutative diagram of admissible
formal S-schemes

Y ′
y

X ←−−−− X ′
y

y
S ←−−−− S′ ,

The theorem has been proved in [FRG4] in the classical rigid case and in the noetherian

case (N′).
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where

(i) X ′ = X ×S S′,

(ii) S′ −→ S is surjective and S′rig −→ Srig is étale,

(iii) Y ′ −→ X ′ is finite and Y ′
rig −→ X ′

rig is an isomorphism,

(iv) Y ′ −→ S′ is flat and has reduced geometric fibres.

Note that, due to Theorem 7.1, the assumption of X/S to be flat may be
replaced by requiring Xrig/Srig to be flat. Furthermore, at least in the noetherian
case (N′), the assumption on the euqidimensionality of the fibres of Xrig/Srig can
be avoided. Let us also mention that the Reduced Fiber Theorem may be viewed
as a relative version of a Finiteness Theorem of Grauert and Remmert [GR].
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IHES 24 (1964)

[F] K. Fujiwara: Theory of tubular neighborhood in étale topology. Duke Math. J. 80, 15-57

(1995)

[FC] G. Faltings, C.-L. Chai: Degeneration of abelian varieties. Ergebnisse der Mathematik

und ihrer Grenzgebiete, 3. Folge, Bd. 22. Springer (1990)

[GG] L. Gerritzen, H. Grauert: Die Azyklizität der affinoiden Überdeckungen. Global Anal-
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(1971)
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