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Abstract: For any elliptic curve E over a number field, there is, for each
n ≥ 1, a symmetric nth-power L-function, defined by an Euler product, and
conjecturally having a meromorphic continuation and satisfying a precise
functional equation. The sign in the functional equation is conjecturally a
product of local signs. Given an elliptic curve over a finite extension of some
Qp, we calculate the associated Euler factor and local sign, for any n ≥ 1.
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1. Introduction

Let E be an elliptic curve defined over a number field K. Let S be a fi-
nite set of places containing all the archimedean places and all places of bad
reduction. For any v /∈ S there exists a complex number αv of absolute value
q
1/2
v such that #E(Fv) = 1 + qv − αv − αv. For any integer n ≥ 1 one may

define the (incomplete) nth symmetric power L-function LS(SymnE, s) to be
∏

v/∈S

(∏n
j=0(1− αj

vα
n−j
v q−s

v )
)−1

, for <s > (n/2) + 1. For n = 1 this is the usual
L-function, the subject of the conjecture of Birch and Swinnerton-Dyer.

For curves with complex multiplication, the work of Hecke [He] establishes a
functional equation and meromorphic continuation for LS(SymnE, s), with a pole
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at s = n/2 + 1 precisely when 4|n. Furthermore, the distribution of arg αv for v

that split is given by the measure dθ/π for 0 ≤ θ ≤ π.

It has been known for 40 years that, if, for every n ≥ 1, LS(SymnE, s− (n/2))
has a holomorphic continuation to <s ≥ 1, with no zeros on the line <s = 1,
then the Sato-Tate conjecture [T2, §4], on the distribution of the arguments
of the αv, is true for E. See [Sh] for details, or [Se2, pp. I-26]. R. Taylor
and his collaborators have recently proved the hypothesis in the case that K

is totally real and E has at least one prime of multiplicative reduction [CHT,
HSBT, Tay], and so arg αv is equi-distributed with respect to (2/π)(sin2 θ) dθ

for such curves. More generally, if f is a cuspidal automorphic representation of
GL2(AK) then there is an associated sequence of L-functions LS(Symnf, s). The
Ramanujan-Petersson conjecture (that |αv| = q

1/2
v ) would follow if one knew that

LS(Symnf, s) converges absolutely for <s > (n/2) + 1. Again, see [Sh].

In this paper we are concerned with the L-functions L(SymnE, s), defined by
Euler products

∏
v Lv(SymnE, s) over all finite places v of K. There is a simple

formula for the Euler factor at any finite place, but at a place of bad reduction it is
usually not so easy to make it explicit. As special cases of the L-functions attached
to motives, there are precise conjectures about their orders of vanishing and
leading terms at integer points. If one puts Λ(s) = N

s/2
n γ(s)L(SymnE, s), where

Nn is a certain conductor and γ(s) is a certain product of “gamma factors”, to be
thought of as Euler factors at archimedean places, then, again as a special case
of a very general conjecture, there is supposed to be a meromorphic continuation
and functional equation

Λ(s) = ±Λ(n + 1− s).

The sign appearing in this conjecture is specified precisely as a product, over all
places v, of local signs. Again in the case that K is totally real and E has at
least one prime of multiplicative reduction, this meromorphic continuation and
precise functional equation have been proved by Taylor et. al. [Tay].

The Euler factors and local signs depend only on E/Kv. Those at the archimed-
ean places are summarised in the table in 5.3 of [D3]. Here we consider only those
at finite places. We start with K a finite extension of Qp, and an elliptic curve
E/K. Attached to E is a 2-dimensional complex representation σ′ of the Weil-
Deligne group W ′(K/K), which gives rise to all the `-adic representations of
Gal(K/K) coming from the `-adic Tate modules of E, for all primes ` 6= p. For
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each n ≥ 1 we have the (n + 1)-dimensional symmetric nth-power representation
σ′n of W ′(K/K), to which is attached an Euler factor L(σ′n, s) and a local sign
W (σ′n).

The elliptic curve E/K may have good reduction, (multiplicative or) poten-
tially multiplicative reduction, or (bad but) potentially good reduction. The
latter case is subdivided according to a finite set of possibilities for the image
under σ′ of the inertia subgroup of the Weil group W(K/K). In each case we
calculate L(σ′n, s). This calculation is trivial for primes of good reduction, and
fairly easy for primes of potentially multiplicative reduction. The case n = 2 was
already done by Coates and Schmidt [CS], but for n > 2 the cases of potentially
good reduction become more complicated. When n is odd and reduction is bad,
we find that L(σ′n, s) = 1 for all but a couple of cases.

We find that W (σ′n) = 1 always for even n. For odd n, W (σ′n) = ±1, by (iv)
in the Proposition of §12 of [R1]. In each case we determine the possibilities
for the sequence (W (σ′n)). By comparing the answer for general n with that
for n = 1, we find typically that all the W (σ′n) can be expressed in terms of
W (σ′). Sometimes conductor exponents also appear in the formulas. Explicit
determination of W (σ′) (starting from a Weierstrass equation for E) is easy in the
cases of good and potentially multiplicative reduction (W (σ′) = 1 for the former).
For potentially good reduction and p ≥ 5, it has been dealt with by Rohrlich [R3,
Theorem 2]. It has been dealt with by Halberstadt [Hal] for K = Q2 or Q3, and
for general K by Kobayashi [Ko] (p = 3) and Whitehouse [Wh] (p = 2).

The motivation for our calculations was extensive numerical experimentation
by the last named author (for elliptic curves over Q), testing the precise func-
tional equation of L(SymnE, s) [MW], and his computations of critical values of
these L-functions, which can be compared with the predictions of the Bloch-Kato
conjecture [DW]. For both purposes, it is important to have all the Euler factors,
including those attached to primes of bad reduction. When K = Qp, the W (σ′n)
were found experimentally long before we were able to calculate them.

We begin in §§2 and 3 with generalities on representations of the Weil-Deligne
group, and the associated L-factors, conductors and local root numbers. In §4 we
turn to the representations attached to elliptic curves, and dispatch the cases of
good reduction and potentially multiplicative reduction. The remaining sections
deal with the case of potentially good reduction, subdivided according to the
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image I of the inertia subgroup. In all cases we proceed by decomposing the
symmetric nth-power representation σn of the Weil group into smaller pieces,
then taking a product of L-factors or root numbers for the pieces. The simplest
case is where I is cyclic and commutes with Frobenius. Here σn is just a direct
sum of characters. The next simplest case, treated in §6, is when I is cyclic
but does not commute with Frobenius. Here we follow Rohrlich in applying a
theorem of Fröhlich and Queyrut. In §7 we prove that W (σn) = 1 in all cases
when n is even (in §§5-6 we give a direct proof for I cyclic). This uses Deligne’s
formula for the local signs for orthogonal representations in terms of their second
Stiefel-Whitney classes. §§8–12 deal with the “exotic” cases for p = 2 or 3, with
I non-cyclic (and n odd). The deepest case is when I ' SL2(F3) and K does not
contain the cube roots of unity, given in §10. In this case, σn does not decompose
as a sum from inducing characters of a quadratic extension of K, but we are able
to reduce to the case that I ' Q8 by passing to a non-Galois cubic extension
of K, similar to an argument of Kutzko [K].

2. Representations of the Weil-Deligne group

A convenient reference for representations of the Weil-Deligne group is [R1],
which is based on [D1] and [T1]. For simplicity, we take K to be a finite extension
of Qp, with finite residue field k of characteristic p and order q. Let K be a
separable closure of K, and let the inertia group I be the kernel of the natural
reduction map from Gal(K/K) to Gal(k/k). Let φ ∈ Gal(k/k) be the inverse
of the Frobenius automorphism x 7→ xq. This is a topological generator for
Gal(k/k). Let the Weil group W(K/K) be the inverse image in Gal(K/K) of
the subgroup of integer powers of φ. Let Φ be any element of W(K/K) mapping
to φ. See §§1 and 2 of [R1] for more on the Weil group, its natural topology and
its representations. Using the normalisation of the Artin map K× ' W(K/K)ab

which sends a uniformiser to the image of an inverse Frobenius element (mapping
to φ), we identify characters (not necessarily unitary) ofW(K/K) with characters
of K×. Let ω be the unramified (i.e. trivial on I) character of W(K/K) taking
the value q−1 on any inverse Frobenius element Φ.

The Weil-Deligne groupW ′(K/K) is a certain semi-direct product ofW(K/K)
and C, with the product topology. Following §3 of [R1], by a representation of
W ′(K/K) on a finite-dimensional complex vector space V we mean a continuous
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homomorphism

σ′ : W ′(K/K) → GL(V )

whose restriction to the subgroup C is complex analytic. This is equivalent to a
pair (σ,N), where σ is a continuous representation of W(K/K) on V and N is a
nilpotent endomorphism of V such that

σ(g)Nσ(g)−1 = ω(g)N ∀g ∈ W(K/K).

The relation between σ′ and (σ,N) is such that

σ′(gz) = σ(g) exp(zN) ∀g ∈ W(K/K), z ∈ C.

Let ` be a prime different from p. Fix a non-trivial continuous homomorphism
t` : I → Q` (which necessarily factors through the `-part of the tame quotient).
Also fix a choice of inverse Frobenius element Φ ∈ W(K/K). Consider an `-adic
representation of Gal(K/K), i.e. a continuous homomorphism

σ′` : Gal(K/K) → GL(V`),

where V` is a finite-dimensional vector space overQ`. By a theorem of Grothendieck
(proved in the appendix to [ST]), there exists a nilpotent endomorphism N` of
V` such that

σ′`(i) = exp(t`(i)N`)

for all i in some open subgroup of I. We have N` = 0 if and only if σ′` is trivial
on some open subgroup of I. Defining σ` : W(K/K) → GL(V`) by

σ`(g) = σ′`(g) exp(−t`(i)N`),

where g = Φmi for some m ∈ Z and i ∈ I, it may be shown that σ` is a
homomorphism, trivial on some open subgroup of I. Furthermore,

σ`(g)N`σ`(g)−1 = ω(g)N` ∀g ∈ W(K/K).

Using a field embedding ι : Q` → C, one obtains a representation σ′`,ι = (σ`,ι, N`,ι)
of W ′(K/K). By Lemma 8.4.3 of [D1], its isomorphism class does not depend on
the choices of t` and Φ, only on σ′` (and possibly ι).
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3. Local Euler factors, conductors and root numbers

3.1. Euler factors. Let σ′ = (σ,N) be a representation of W ′(K/K) on V . Let
V I := {v ∈ V : σ(g)v = v ∀g ∈ I}, VN := kerN and V I

N := V I ∩ VN . Define

L(σ′, s) = det(1− q−sσ(Φ)|V I
N )−1.

This is independent of the choice of inverse Frobenius element Φ.

(L1) L(σ′ ⊕ τ ′, s) = L(σ′, s)L(τ ′, s).

(L2) L(indL
Kρ′, s) = L(ρ′, s).

Here σ′ and τ ′ are representations of W(K/K) while ρ′ is a representation of
W(K/L), with L a finite extension of K. The notation indL

K denotes the induc-
tion of a representation of W(K/L) to one of W(K/K). We also write ρ|L for
the restriction of a representation ρ to a subgroup W(K/L) of W(K/K). The
property (L1) is obvious, but (L2) is due to Artin. It is proved in Prop. 3.8 of
[D1], repeated in §8 of [R1].

If σ′ = σ`,ι coming from an `-adic representation σ′` of Gal(K/K) as in the
previous section, it is easy to show that L(σ′, s) is the “image under ι” of

det(1− q−sσ′`(Φ)|V I
` )−1.

See §9 of [R1].

3.2. Conductors. Let σ′ be as above. The conductor is the ideal N(σ′) =
π

a(σ′)
K OK , where πK is a uniformising element and the integer a(σ′) = a(σ)+b(σ′),

where below we define both a(σ), which depends only on the representation σ of
W(K/K), and b(σ′), which is zero if N = 0.

In fact, we have b(σ′) = dim(V I/V I
N ). In most cases we consider we have

N = 0, so we shall be concerned primarily with a(σ). This is defined by the finite
sum

a(σ) =
∞∑

j=0

|Gj |
|G| dim(V/V Gj ),

where G is a finite quotient of I through which the restriction of σ to I factors,
and the Gj are the higher ramification subgroups. The following hold (see §10
of[R1]).
(a1) a(σ) is additive in short exact sequences.



Symmetric Powers of Elliptic Curves 1317

(a2) Let L be a finite extension of K, with relative discriminant π
d(L/K)
K and

residue degree f(L/K). Let ρ be a representation of W(K/L). Then

a(indL
Kρ) = dim(ρ)d(L/K) + f(L/K)a(ρ).

(a3) Let χ be a one-dimensional representation ofW(K/K), viewed as a character
of K×. If χ is unramified then a(χ) = 0. If χ is ramified then a(χ) is the smallest
positive integer m such that χ is trivial on 1 + πm

KOK .

3.3. Root numbers. Let dx be a choice of Haar measure on K, and ψ : K → C×

a choice of continuous, unitary character. Then for σ′ = (σ,N) a representation
of W ′(K/K) on a finite dimensional complex vector space V , there is defined an
epsilon factor ε(σ′, ψ, dx). This factorises as

ε(σ′, ψ, dx) = ε(σ, ψ, dx)δ(σ′),

where δ(σ′) = det(−Φ|V I/V I
N ), which is 1 if N = 0. We shall be concerned

mainly with ε(σ, ψ, dx), which has the following properties.
(ε1) It is multiplicative for σ in short exact sequences.
(ε2) For a finite extension L/K, Haar measure dxL, and representation ρ of
W(K/L),

ε(indL
Kρ, ψ, dx) = ε(ρ, ψ ◦ trL

K , dxL)θ(L/K, ψ, dx, dxL)dim ρ,

where

θ(L/K, ψ, dx, dxL) =
ε(indL

K1L, ψ, dx)
ε(1L, ψ ◦ trL

K , dxL)
.

(ε3) Let χ be a one-dimensional representation ofW(K/K), viewed as a character
of K×. Let ψK be an additive unitary character of K, and n(ψK) the largest
integer with ψK trivial on π

−n(ψK)
K OK . Let c be any element of valuation n(ψK)+

a(χ).

ε(χ, ψK , dxL) =





∫
c−1O×K

χ−1(x)ψK(x) dxK if χ is ramified;

χω−1(c)
∫
OK

dxK if χ is unramified.

It is a difficult theorem of Langlands and Deligne (Theorem 4.1 of [D1]) that a
function ε with these properties exists. Further properties are
(ε4) ε(σ, ψα, dx) = (det σ)(α) ω(α)− dim σε(σ, ψ, dx), where, for any α ∈ K×, we
have ψα(x) := ψ(αx). (All additive unitary characters of K are of this form.)
(ε5) ε(σ, ψ, r dx) = rdim σε(σ, ψ, dx).
(ε6) ε(σ ⊗ ωs, ψ, dx) = ε(σ, ψ, dx)q−s(n(ψ) dim(σ)+a(σ)).
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See §11 of [R1]. More generally, for χ unramified,
(ε6’) ε(σ ⊗ χ, ψ, dx) = ε(σ, ψ, dx)χ(π)n(ψ) dim(σ)+a(σ).

This is from 3.4.6 of [T1]. Given ψ, there is a unique choice dxψ of Haar measure
which is “self-dual” relative to ψ. Let χ be a character of K×. We shall also use
the following fact, which can be viewed as a consequence of the appearance of
ε(χ, ψ, dxψ) in Tate’s local functional equation for L(χ, s).
(ε7) ε(χωs, ψ, dxψ)ε(χ−1ω1−s, ψ, dxψ) = χ(−1).

The root number associated to σ′ and ψ is

W (σ′, ψ) :=
ε(σ′, ψ, dx)
|ε(σ′, ψ, dx)| .

By (ε5) it does not depend on the choice of dx; note that any two Haar measures
on K are (positive) multiples of one another.

For most of our purposes, we only care about W . Below we will note that W

is independent of ψ for representations attached to elliptic curves; even without
this fact, we could simply fix a canonical additive character ψK for each local
field K (see p. 315 of [R3]) with ψK = ψp ◦ trK/Qp

where ψp(x) = exp
(
2πiη(x, p)

)

and η(x, p) is the image of x under Qp → Qp/Zp ↪→ Q/Z ↪→ R/Z.

4. The representations attached to elliptic curves

Let K/Qp be a finite extension as above, and E/K an elliptic curve. For
any prime ` 6= p there is a natural continuous representation of Gal(K/K) on the
2-dimensional `-adic vector space V`(E) = T`(E)⊗Z`

Q`, where T`(E) = lim←−E[`n]
is the `-adic Tate module. Let V ′

` := V`(E)(−1) ' H1
` (E/K,Q`). In fact, thanks

to the Weil pairing, V ′
` and V`(E) are dual as representations of Gal(K/K).

Choose an embedding ι : Q` → C. Let σ′`,ι be the associated representation of
W ′(K/K).

It turns out that σ′`,ι is independent of the choices of ` and ι, so we will
denote it σ′. For any integer n ≥ 1, let σ′n be the symmetric nth power of the
representation σ′. Again from the Weil pairing, we have detσ ' ω−1, and it
follows that detσn is always some power of ω. It then follows from (ε4) that
W (σ′n, ψ) is independent of the choice of ψ, so we just denote it W (σ′n).

4.1. Potential multiplicative reduction. In this case, it is well-known that
there is a character χ of Gal(K/K), with χ2 = 1, such that the twist Eχ/K
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has split multiplicative reduction, so is isomorphic to a Tate curve Et, for some
t ∈ K× of positive valuation. Then there is an isomorphism of abelian groups,
respecting the action of Gal(K/K):

E(K) ' (K×
/tZ)⊗ χ.

The character χ is trivial if E/K has split multiplicative reduction, unramified
quadratic if E/K has non-split multiplicative reduction, and ramified quadratic
if E/K has additive, but potentially multiplicative, reduction. This isomorphism
allows us to get an explicit description of T`(E) with its Gal(K/K)-action, hence
of σ′`,ι. One finds, as in §15 of [R1], that σ′`,ι ' χω−1 ⊗ sp(2), where in general
sp(k) has a basis {e0, e1, . . . , ek−1} with σ(g)ej = ω(g)jej for all g ∈ W(K/K)
and 0 ≤ j ≤ k − 1, and Nej = ej+1 for 0 ≤ j ≤ k − 2, Nek−1 = 0.

In particular, σ′`,ι = σ′ is independent of the choices of ` and ι. For σ′n we have

N(en−j
0 ej

1) = (n− j)en−j−1
0 N(e0)e

j
1 + en−j

0 jej−1
1 N(e1) = (n− j)en−j−1

0 ej+1
1 .

Clearly then σ′n ' χnω−n ⊗ sp(n + 1).

Proposition 4.1. (1) The L-function is given by

L(σ′n, s) =





(1− q−s)−1 if n is even or reduction is split multiplicative;

(1 + q−s)−1 if n is odd and reduction is non-split multiplicative;

1 if n is odd and reduction is additive, potentially multiplicative.

(2) The symmetric power conductor is given by

a(σ′n) =





n if reduction is multiplicative or n is even;

(n + 1)a(χ) if reduction is additive, potentially multiplicative, and n odd.

(3) Let w := W (σ′1).

W (σ′n) =





W (χ)n+1 = w(n+1)/2 if n is odd and reduction is additive,

potentially multiplicative;

(−χ(Φ))n = wn otherwise.

Proof. The proposition in §8 of [R1] tells us that L(σ′n, s) = L(χnω−n, s + n) =
L(χn, s), from which (1) follows. The proposition in §10 of [R1] gives us (2),
while (iii) of the corollary to the proposition in §12 of [R1] leads to (3). Note
that, in the multiplicative reduction case, a(σ′) = b(σ′) and a(σ) = 0. ¤
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4.2. Potential good reduction. By the criterion of Néron-Ogg-Shafarevich,
this is the case that (for any prime ` 6= p) the image in Aut(V`) of the inertia
subgroup I is finite. In particular, N` = 0. By Theorem 2(ii) of [ST], the
restriction to I of σ` has kernel J independent of `, and rational character, also
independent of `. Let I := I/J . Let G := W(K/K)/J , so that W(K/K) acts
on V through G. By Theorem 3 of [ST], the characteristic polynomial of σ′`(Φ)
has integer coefficients, independent of `. It follows from all this that σ′`,ι = σ′ is
independent of ` and ι.

Let M be a totally ramified finite extension over which E attains good reduc-
tion (this could be the “K ′” in the proof of Theorem 3 of [ST]). The characteristic
polynomial referred to above is the characteristic polynomial of the Frobenius en-
domorphism of the reduction E/kM . Its roots are complex numbers α, α with
αα = q. The proof of Theorem 2 of [ST] shows that I injects naturally into the
automorphism group of E/k. This leads to the following possibilities for I, as
noted in 5.6(a) of [Se1].

(1) I is trivial (case of good reduction).
(2) I is cyclic of order e = 2, 3, 4 or 6.
(3) p = 3 and I ' C4 n C3, the non-abelian semi-direct product.
(4) p = 2 and I ' Q8, the quaternion group of order 8.
(5) p = 2 and I ' SL2(F3).

When p ≥ 5 (so I is necessarily cyclic), e = 12
gcd(12,vp(∆)) , where ∆ is a minimal

discriminant for E/K. If also K = Qp, G is abelian precisely when p ≡ 1 (mod e),
by Proposition 2.2 of [R2].

When K = Qp and p = 2 or 3, see §§3.3, 3.4 of [MW] for the determination of I
and (in Case (2)) G. This involves various conductor exponents that can be found
using Tate’s algorithm, and congruence conditions on Weierstrass coefficients.

In Case (1), L(σ′n, s) =
∏n

j=0(1 − αjαn−jq−s)−1, a(σ′n) = 0 and W (σ′n) = 1.
In the following sections we examine the remaining cases.

Let βn(I) be the degree of the Euler factor (i.e. the dimension of (SymnV )I).
Its value will be evident each time we prove the formula for an Euler factor, and
may be read off from Table 1 of [MW]. When n is odd, the Euler factor is trivial
(βn(I) = 0), except in the case that I = C3.
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When p ≥ 5 the ramification is tame and a(σn) = n + 1− βn(I). When p = 2
or 3 and K = Qp, the a(σn) may be deduced from the Tables 2 and 3 of [MW].
In fact, this still works for general K when I is cyclic, but for non-cyclic I it
depends on the analysis of higher ramification groups in the appendix to [CS],
which is specific to K = Qp. However, a(σn) should be computable in any given
case. Since conductor exponents are dealt with already in [MW], we shall have
little more to say about them in this paper, and shall concentrate on Euler factors
and local root numbers.

5. Cyclic inertia group, G abelian

The group G is generated by an inverse Frobenius element Φ and a generator
i for I. Let ζ be a fixed primitive eth root of unity. Choose a basis {x, y} for V

such that i(x) = ζx and i(y) = ζ−1y. (Note that det(σ) ' ω−1 is trivial on I.)
Let ν be the character via which W(K/K) acts on x.

Proposition 5.1. (1) L(σ′n, s) =
n∏

j=0
e|(n−2j)

(1− αjαn−jq−s)−1.

(2)

W (σn) =





ν(−1) if n ≡ 1 (mod 4);

1 otherwise.

Note that if n is odd, L(σ′n, s) = 1 unless I ' C3. This follows from the
impossibility of e | (n− 2j) when n is odd but e is even.

Proof. (1) We have a basis {xjyn−j : 0 ≤ j ≤ n, e | (n−2j)} for (SymnV )I =
(SymnV )I

N . Since Φ commutes with i it preserves the eigenspaces for i

on V . We can take Φ(x) = αx and Φ(y) = αy without loss of generality.
The result follows.

(2) The Weil groupW(K/K) acts on y via ω−1ν−1. Hence σn ' ⊕n
j=0ν

n−2jω−j

and W (σn) =
∏n

j=0 W (νn−2jω−j) =
∏n

j=0 W (νn−2j). Pairing the j and
(n− j) terms (except j = n/2 if n is even, but W (id) = 1) and using (ε7),
we find

W (σn) =
[(n−1)/2]∏

j=0

νn−2j(−1) =





ν(−1)((n+1)/2)2 if n is odd;

ν(−1)(n/2)((n/2)+1) if n is even.
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The proposition follows.

¤

Note that when n ≡ 1 (mod 4), W (σn) = W (σ1). If K = Qp and E comes
from an elliptic curve over Q, this is the same as the eigenvalue of the Atkin-
Lehner involution Wp acting on the associated newform.

When K = Qp and p ≥ 5 we can compute α up to an eth root of unity via first
writing E as y2 = x3+ax+b, then scaling (a, b) to (a/g2, b/g3) where g = pvp(∆)/6,
and finally counting points modulo p2/e on the resulting curve.1 For p = 2, 3
and the case of I ' C2, the curve E acquires good reduction over a quadratic
extension, and we can determine α by counting points on the twist. For K = Q2

and I ' C4 we find that [MW, §§3.4] claims α = ζ8

√
2 up to a fourth root of

unity — this can be checked simply by enumerating such curves up to sufficient
2-adic precision, or by noting that the norm of α is 2 and the traces of ζi

4α must
all be integral.2 Similarly, for K = Q3 and I ⊇ C3 we find that α = ζ12

√
3 up

to a sixth root of unity, with the above footnote being adaptable to the general
case.

6. Cyclic inertia group, G non-abelian

The inertia subgroup I of G is necessarily normal. The group G is generated by
an inverse Frobenius element Φ and a generator i for I, with Φ−1iΦ a generator
of I different from i. Hence e 6= 2 and (since e = 3, 4 or 6), Φ−1iΦ = i−1. Let
ζ be a fixed primitive eth root of unity. Choose a basis {x, y} for V such that
i(x) = ζx and i(y) = ζ−1y. Since Φ−1iΦ = i−1, Φ swaps the eigenspaces for i,
and by re-scaling if necessary, we may assume that Φ(x) = y. Since det(σ) = ω−1,
necessarily Φ(y) = −qx. For 0 ≤ j ≤ [(n − 1)/2], we have a G-stable subspace
Vj of SymnV , spanned by xjyn−j and xn−jyj . Let σ(j) be the representation by

1This can be generalised to other K by taking a uniformising element p in place of p — the main

point is to find a curve with good reduction that is isomorphic to E over some extension.
2This latter argument also implies that for K with f(K/Q2) odd, we must have α = ζ8

√
q, while

α = ζ4
√

q when f(K/Q2) is even.
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which W(K/K) acts on Vj . Then

σn '





[(n−1)/2]⊕

j=0

σ(j) if n is odd;

χ
n/2
−q ⊕




[(n−1)/2]⊕

j=0

σ(j)


 if n is even,

where χ−q is the unramified character mapping Φ to −q. In the case that n is
even, the one-dimensional summand is spanned by xn/2yn/2.

The subgroup H of index 2 in G generated by i and Φ2 is abelian. This is the
quotient through which W(K/L) acts on V , where L is the unramified quadratic
extension of K. Let ν be the character of W(K/L) that maps Φ2 to 1 and i

to ζ. Let φ−q be the unramified character of W(K/L) that maps Φ2 to −q. Then
the restriction of σ(j) to W(K/L) is a direct sum of characters ν2j−n ⊗ φn−q and
νn−2j ⊗ φn−q. Clearly σ(j) ' indL

K(νn−2j ⊗ φn−q).

Proposition 6.1. (1)

L(σn, s) =





(1− (−q)nq−2s)−βn(I)/2 if n is odd;

(1− (−q)n/2q−s)−1(1− (−q)nq−2s)−(βn(I)−1)/2 if n is even.

(2) If n is even then W (σn) = 1. If e = 4, or e = 3 and K = Q3, or e = 6
and p 6= 3, then

W (σn) =





W (σ) if n ≡ 1 (mod 4);

1 otherwise.

If e = 3 and p 6= 3, or e = 6 and K = Q3, then (letting w := W (σ))

n (mod 12) 1 3 5 7 9 11

W (σn) w −1 −w −1 w 1
.

In the remaining cases (e = 3 or 6 with p = 3 but K 6= Q3), W (σn)
(for n odd) is given by the tables in the proof below, and is determined by
w and a(σ).
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Note that if n is odd, βn(I) = 0 and L(σ′n, s) = 1 unless I ' C3. In the proof
below, this follows from the impossibility of e | (n − 2j) when n is odd but e is
even.

Proof. (1)

(SymnV )I '





[(n−1)/2]⊕
j=0

e|(n−2j)

σ(j) if n is odd;

χ
n/2
−q ⊕




[(n−1)/2]⊕
j=0,

e|(n−2j)

σ(j)


 if n is even.

We have selected the summands such that νn−2j is trivial. For all these
summands, σ(j) ' indL

Kφn−q. Using (L1) and (L2),

L(σn, s) =





[(n−1)/2]∏
j=0

e|(n−2j)

L(σ(j), s) if n is odd;

L(χn/2
−q , s)

[(n−1)/2]∏
j=0

e|(n−2j)

L(σ(j), s) if n is even

=





[(n−1)/2]∏
j=0

e|(n−2j)

L(φn
−q, s) if n is odd;

L(χn/2
−q , s)

[(n−1)/2]∏
j=0

e|(n−2j)

L(φn
−q, s) if n is even.

The result follows directly from these.
(2) We choose ψK as indicated at the end of Section 3.3, so that we have

n(ψK) = d(K/Qp)/f(K/Qp). This choice is important, as it enables us
to apply Theorem 3 of [FQ] below. By (ε3) or (ε6′), we have W (χn/2

−q ) =(
(−1)n(ψK)

)(n/2) for n even. We let Aψ
n = W (χn/2

−q ) for n even and Aψ
n = 1

for n odd.
Hence, whether n is odd or even,

W (σn) = Aψ
n

[(n−1)/2]∏

j=0

W (σ(j)) = Aψ
n

[(n−1)/2]∏

j=0

W (indL
K(νn−2j ⊗ φn

−q))
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= Aψ
n

[(n−1)/2]∏

j=0

(
W (νn−2j)

(
(−1)n

)n(ψL)+a(νn−2j) W (indL
K1L)

W (1L)

)
,

by (ε2) and (ε6’). Now indL
K1L ' 1K + η, where η is the quadratic

character attached to L/K. By (ε3), we get that W (1L) = W (1K) = 1,
and also W (η) = (−1)n(ψK). Since L/K is unramified we have n(ψK) =
n(ψL), so

W (σn) = (−1)fnn(ψK)

[(n−1)/2]∏

j=0

(
W (νn−2j)

(
(−1)n

)a(νn−2j)
)

,

where we have that fn = (n/2) + (n + 1) · (n/2) when n is even while
fn = (n + 1) · (n + 1)/2 when n is odd. In both cases we have that fn is
even, so that this leading term can be omitted.

What follows is inspired by the proof of Proposition 2(v) in [R2]. One
easily checks that the determinant of indL

Kνn−2j is η. According to the
formula given in the proof of Proposition 1.2 of [D1], det(indL

Kνn−2j) =
η · (νn−2j ◦ Ver), where Ver : Gab → Hab is the transfer map. Hence
νn−2j ◦ Ver is trivial. Using the local reciprocity maps to identify Gab

with K× and Hab with L×, Ver is compatible with inclusion of K× in L×

(5.9 in Chapter IV of [N]). Hence νn−2j |K× is trivial. By Theorem 3 of
[FQ], our choice of ψL gives us W (νn−2j) = νn−2j(u), where u ∈ L is any
element such that u2 ∈ K and L = K(u). Hence

W (σn) =
[(n−1)/2]∏

j=0

(
νn−2j(u)

(
(−1)n

)a(νn−2j)
)

.

Now u2 ∈ K× and ν|K× is trivial, so ν2(u) = 1. Hence

W (σn) =





1 if n is even;

ν(u)(−1)
∑

a(νn−2j) if n ≡ 1 (mod 4);

(−1)
∑

a(νn−2j) if n ≡ 3 (mod 4).

Henceforth suppose that n is odd.
Case e = 4. All odd powers of ν have the same conductor, so∑(n−1)/2
j=0 a(νn−2j) = a(ν)(n + 1)/2. Hence

W (σn) =





ν(u)(−1)a(ν) if n ≡ 1 (mod 4);

1 if n ≡ 3 (mod 4).
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If p 6= 2 then a(ν) = 1. By (a2), a(σ) = 2a(ν). This allows us to determine
a(ν) even if p = 2, as long as we know the conductor of E (which may
be calculated using Tate’s algorithm given a Weierstrass equation, and
for a modular elliptic curve E/Q, is the level N). But this is not really
necessary if we know W (σ), since what we have found overall is that

W (σn) =





W (σ) if n ≡ 1 (mod 4);

1 otherwise.

Case e = 3. This time

a(νr) =





a(ν) if r ≡ 1 or 5 (mod 6);

0 if r ≡ 3 (mod 6).

Letting a = a(ν) and w = W (σ), we find the following.

n (mod 12) 1 3 5 7 9 11

W (σn) w (−1)a (−1)aw (−1)a w 1

Again, a may be determined by a(σ) = 2a, if one knows the conductor
of E. If p 6= 3 then a = 1. If p = 3 and K = Q3 then necessarily a = 2
(so that a(σ) = 2a = 4), see §3.3 of [MW].

Case e = 6. If we let w = W (σ), a = a(ν) and b = a(ν3) (a quadratic
character) then we find the following.

n (mod 12) 1 3 5 7 9 11

W (σn) w (−1)a+b (−1)a+bw (−1)a+b w 1

If p 6= 2 then b = 1. If p ≥ 5 then also a = 1. If p = 2 then surjectivity
of the cubing map on the 1-units of K implies that a = b. If p = 3 and
K = Q3 then necessarily a = 2 (so that a(σ) = 2a = 4), see §3.3 of [MW].

¤



Symmetric Powers of Elliptic Curves 1327

When I is cyclic, whether or not G is abelian, if K = Qp and p ≥ 5 then
w = W (σ) is determined by Proposition 2 of [R2]:

w =





(
−1
p

)
if e = 2 or 6;(

−3
p

)
if e = 3;(

−2
p

)
if e = 4.

To complement the results of this section and the last, we now calculate w when
I is cyclic and K = Q3.

Case G abelian. We have w = ν(−1). If e = 2 then w =
(−1

3

)
= −1. Since

(−1)2 = 1, ν2(−1) = 1, so w = ν3(−1). Hence if e = 3 then w = 1. If e = 6 then
w =

(−1
3

)
= −1. The case e = 4 cannot occur, as Z×3 has no order 4 characters.

Case G non-abelian. The case e = 2 does not occur. Recall that w =
ν(u)(−1)a. Since u2 ∈ Q3 and ν|Q×3 is trivial, w = ν3(u)(−1)a. If e = 3 then
ν3(u) = 1 and a = 2 so w = 1. Since L/Q3 is unramified, we may take u to be a
unit, in O×

L . Whether e = 6 or 4, the character ν3, restricted to O×
L , must factor

through F×9 , which is a cyclic group of order 8. Let g be a generator. Then so is
any odd power of g. Without loss of generality, the residue class of u is g2. (It
must be something whose square is in F×3 = 〈g4〉, but that is not itself in F×3 .) If
e = 6 then the quadratic character ν3 sends g to −1, so ν3(u) = 1. Since a = 2,
we find w = 1. If e = 4 then ν(g) has order 4, so ν(u) = −1. But now a = 1, so
again w = 1.

Summary for I cyclic, K = Q3. If e = 2 then W (σn) = (−1)(n+1)/2 (for all
odd n). If e = 3 or 4 then W (σn) = 1 for all n. If e = 6 then

n (mod 12) 1 3 5 7 9 11

W (σn), G abelian −1 +1 −1 +1 −1 +1
W (σn), G non-abelian +1 −1 −1 −1 +1 +1

This agrees perfectly with experiment; see Table 5 of [MW].
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7. Signs for even symmetric powers

Before turning to the cases of non-cyclic inertia group, we first note that we
can show W (σn) = +1 for all even symmetric powers via a simple adaption of an
argument that traces back to Deligne’s re-interpretation of orthogonal root num-
bers in terms of Stiefel-Whitney classes, and its subsequent use first by Rohrlich
[R3] and then by Prasad and Ramakrishnan [PR] for various tensor product rep-
resentations.

Proposition 7.1. W (σn) = +1 for all even n.

Proof. Let σξ = σ ⊗ ω1/2, so that det(σξ) = 1. By (ε6) we have W (σξ) = W (σ).
For all n ≥ 1 let σξ

n = Symn(σξ). The Weil pairing gives a symplectic form on V ,
the space of the representation σ, invariant under the action of W(K/K) via σξ.
For even n, this induces a natural W(K/K)-invariant symmetric bilinear form on
SymnV . Hence we may regard σξ

n : W(K/K) → SO(n + 1,C). But this factors
through σξ : W(K/K) → SL(2,C) via the symmetric nth-power representation.
Since SL(2,C) is simply-connected, this forces σξ

n to lift to the simply-connected
double cover Spin(n+1,C) of SO(n+1,C), hence its second Stiefel-Whitney class
is trivial, so by Proposition 5.2 of [D2], W (σξ

n) = 1. (One may subtract a multiple
of the trivial representation to get something virtual of dimension 0.) ¤

8. p = 2 the Q8 case, f(K/Q2) odd

8.1. Setup. The quaternion group Q8 has generators τ, λ of order 4, with τ2 = λ2

and λ−1τλ = τ−1. Choose a basis {x, y} for V such that τ(x) = ix and τ(y) =
−iy Since λ−1τλ = τ−1, it follows that λ swaps the eigenspaces of τ . We can
choose the basis in such a way that λ(x) = y and λ(y) = −x. By Corollary 2(a)
to Theorem 2 of [ST], I acts faithfully on E[3]. The Galois group of K(E[3])/K

is a subgroup of GL2(F3) and contains the unramified extension K(µ3) (since
det σ = ω−1). Since f(K/Q2) is odd, this is a quadratic extension of K. On
the other hand, GL2(F3) has no cyclic quotient of order 6, so K(µ3) must be
the maximal unramified subextension of K(E[3])/K. Hence the image of G in
Aut(E[3]) must be a Sylow 2-subgroup, isomorphic to the semi-dihedral group
SD16. (The argument above is adapted from the top of p. 153 of [CS], where a
dihedral group is used by mistake.) Any inverse Frobenius element Φ normalises
I, so relations holding in Aut(E[3]) lift to G. We may choose Φ in such a way
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that Φ commutes with τ but λ−1Φλ = Φτ−1 (equivalently Φ−1λΦ = λτ). Let
α be such that Φ(x) = αx (then Φ(y) = αy). Let β be the complex number of
absolute value 1 such that α = βq1/2. Since λ−1Φλ = Φτ−1, we have α = α/i, so
β = eπi/4 or e5πi/4. In particular, β2 = i. Replacing Φ by Φλ2 if necessary, we
may assume that β = eπi/4 =: ζ8.

8.2. Character calculations. In the remainder of this paper, the following for-
mula for the trace of a symmetric power of a 2× 2 matrix (applied to A = σξ(g)
with g ∈ W(K/K)) will sometimes be useful (with the convention that 00 = 1):

(1) tr(SymnA) =
bn/2c∑

k=0

(
n− k

k

)
tr(A)n−2k(−det A)k.

As in the previous section, we re-normalise σ by letting ξ = ω1/2 be the un-
ramified character that is 1/

√
q on an inverse Frobenius element Φ, and consider

σξ = σ ⊗ ξ. The above analysis and computation of β shows that the action
of the Weil group on σξ factors through the quaternionic 2-extension Q16 of Q8

given by adjoining µ = diag(ζ8, ζ
−1
8 ) so that µ2 = τ . We give the character table

for Q16.

Table 1. Character table of Q16

reps id λ2 µ2 λ µλ µ µ3

size 1 1 2 4 4 2 2
order 1 2 4 4 4 8 8

id 1 1 1 1 1 1 1
ρc 1 1 1 −1 −1 1 1
ρu 1 1 1 1 −1 −1 −1
ρq 1 1 1 −1 1 −1 −1
κ 2 2 −2 0 0 0 0
σξ 2 −2 0 0 0

√
2 −√2

σ̄ξ 2 −2 0 0 0 −√2
√

2

We note that Q16 becomes the Klein 4-group under abelianisation. The char-
acter ρu is unramified, as it takes the value 1 on the generators λ and µ2 of the
subgroup I ' Q8 inside Q16. The character ρc corresponds to the C8 subgroup
of Q16, while ρq corresponds to the other (ramified) Q8 subgroup.
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In Table 2 we list the decomposition of σξ
n := σn⊗ξn for the various symmetric

powers. These follow immediately from the trace formula (1) for symmetric pow-
ers and the 1-1 correspondence between characters and representations. Note
that ρu and ρq always appear together, as σn does not distinguish the conju-
gacy classes represented by λ and µλ, while ρu and ρq agree outside those two
conjugacy classes, and each has character values summing to zero over the two
classes. Note also that in the odd symmetric powers only the symplectic ir-
reducible representations occur, while in the even symmetric powers only the
orthogonal irreducible representations occur.

Table 2. Decomposition of σξ
n

n ≡ 1 (mod 8): σξ ⊕ [(n− 1)/4] (σξ ⊕ σ̄ξ)
n ≡ 5 (mod 8): σ̄ξ ⊕ [(n− 1)/4] (σξ ⊕ σ̄ξ)
n ≡ 3 (mod 4): [(n + 1)/4] (σξ ⊕ σ̄ξ)
n ≡ 0 (mod 8): id ⊕ [n/8] (id⊕ρc ⊕ ρq ⊕ ρu ⊕ 2κ)
n ≡ 2 (mod 8): ρc ⊕ κ ⊕ [(n− 2)/8] (id⊕ρc ⊕ ρq ⊕ ρu ⊕ 2κ)
n ≡ 4 (mod 8): id⊕ρu ⊕ ρq ⊕ κ ⊕ [(n− 4)/8] (id⊕ρc ⊕ ρq ⊕ ρu ⊕ 2κ)
n ≡ 6 (mod 8): ρu ⊕ 2κ⊕ ρc ⊕ ρq ⊕ [(n− 6)/8] (id⊕ρc ⊕ ρq ⊕ ρu ⊕ 2κ)

These decompositions may also be obtained by a careful examination of the
Vj := 〈xjyn−j , xn−jyj〉, some of which are irreducible while others break up into
one-dimensional pieces.

8.3. L-function.

Proposition 8.1.

L(σn, s) =





1 if n is odd;
(
1− (−q)n/2/qs

)−an
(
1 + (−q)n/2/qs

)−bn if n is even,

where an, bn = dβn(I)/2e, bβn(I)/2c respectively.

Proof. The only irreducible representations of Q16 having a trivial component
when restricted to I are id and ρu. Remembering the twist, and recalling that
the image of Φ in Q16 is µ, id corresponds to factors of the L-function with qn/2

as an eigenvalue, while ρu corresponds to those with −qn/2 as an eigenvalue. The
multiplicities may be read off from the table. ¤
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The −q is natural, since −q ≡ 1 (mod 3), so that an is the dimension of the
fixed space for SD16 acting on Symn(E[3]).

8.4. Signs for odd powers.

Proposition 8.2. For n odd, W (σn) = W (σ)(n+1)/2 except when n ≡ 3 (mod 8)
and a(σ) is odd.

Proof. We have σ̄ξ = σξ ⊗ ρu and so, since ρu is unramified, from (ε6′) we get
W (σ̄ξ) = W (σ⊗ ρu) = W (σ)(−1)a(σ) (note that dimσ = 2, so the parity of n(ψ)
does not matter). Since σξ

n has (n + 1)/2 irreducible factors, each isomorphic to
σξ or σ̄ξ, we have

W (σn) = W (σ)(n+1)/2(−1)ena(σ) for odd n,

where en is the multiplicity of σ̄ξ in the irreducible decomposition of σn; this en

is odd exactly when n ≡ 3 (mod 8). ¤

This agrees with experiment for K = Q2, see §4.3 of [MW].

9. p = 2, the Q8 case, f(K/Q2) even

Since det(σ(Φ)) = q = 2f(K/Q2) ≡ 1 (mod 3), the image of W(K/K) in
Aut(E[3]) is contained in SL2(F3), so is either Q8 or SL2(F3). The image is
Q8 precisely when the resolvent cubic x3 − ∆/33 of the (irreducible) 3-torsion
polynomial F3 splits — this corresponds to the case where the Galois group of F3

is V4, and this group is A4 when the image is SL2(F3) (note that the discriminant
of F3 is square and the cube roots of unity are contained in K, as f(K/Q2) is
even). An example of the latter is the curve Y 2 = X3 + X + 2ζ3 over Q2(ζ3);
the discriminant ∆ = 26(26 + 27ζ3) becomes a cube upon making the unramified
extension to Q2(ζ9).

9.1. L-function.

Proposition 9.1. (1) If the image of W(K/K) in Aut(E[3]) is Q8 then

L(σn, s) =





1 if n is odd;
(
1− qn/2/qs

)−βn(I) if n is even.
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(2) If the image of W(K/K) in Aut(E[3]) is SL2(F3) then

L(σn, s) =





1 if n is odd;
(
1− (q3)(n/2)−s

)−bβn(I)/3c(1− q(n/2)−s)−1 if n ≡ 0 (mod 6);
(
1− (q3)(n/2)−s

)−βn(I)/3 if n ≡ 2 (mod 6);
(
1− (q3)(n/2)−s

)−dβn(I)/3e(1− q(n/2)−s) if n ≡ 4 (mod 6);

Proof. (1) The statement for n odd is clear, as the I-fixed subspace of SymnV

is trivial in that case. (Looking at Table 1, the character values for an
odd power of σξ, summed over the subgroup Q8, produce 0.) To deal
with even n, we may choose Φ to act trivially on E[3] (adjusting by an
element of I if necessary). In particular, the image of Φ in Aut(E[3])
commutes with the image of each element of I. These relations lift to G,
as before. Looking at the matrices representing τ and λ on V (via σ), the
Φ-representing matrix is a scalar, necessarily ±q1/2 since its determinant
is q. Hence, for even n, Φ acts as qn/2 on SymnV , in particular on its
I-fixed part.

(2) We may choose Φ so that Φ3 acts as the identity on E[3], since the non-
trivial cosets of Q8 in SL2(F3) are represented by elements of order 3.
As above, this forces Φ3 to act as a scalar on V . Replacing Φ by λ2Φ if
necessary, we may assume that σξ(Φ3) is the identity, where σξ = σ⊗ω1/2.
Hence σξ factors through the quotient Q8oC3

∼= SL2(F3). There are three
linear characters of SL2(F3) that are trivial on the Q8 subgroup, and
thus correspond to I-fixed subspaces. Referring to the character table of
SL2(F3) below, we have σξ

n = an · id ⊕ bn · (χ⊕ χ̄)⊕cn ·κ, where χ and its
conjugate are trivial on Q8 and take the value of a primitive cube root of
unity (ζ3 or ζ2

3 ) on a Frobenius element. We have that cn = dn/4e, while

an =





1 + bn/12c n ≡ 0, 6, 8 (mod 12)

bn/12c n ≡ 2, 4, 10 (mod 12),

bn =





1 + bn/12c n ≡ 4, 8, 10 (mod 12)

bn/12c n ≡ 0, 2, 6 (mod 12).

Thus we get (1− qn/2/qs)−an(1− ζ3q
n/2/qs)−bn(1− ζ2

3qn/2/qs)−bn for the
L-function, which can be rewritten as above.

¤
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9.2. Signs for odd powers.

Proposition 9.2. W (σn) = W (σ)(n+1)/2 for all odd n ≥ 1.

Proof. (1) First suppose that the image of W(K/K) in Aut(E[3]) is Q8. As
σξ is the only symplectic irreducible representation of Q8, we get that
σξ

n =
(

n+1
2

)
σξ for odd n, so that W (σn) = W (σ)(n+1)/2.

(2) If the image of W(K/K) in Aut(E[3]) is SL2(F3), let K ′/K be the un-
ramified cubic extension. This is a Galois extension, with associated char-
acters id, χ and χ−1, say, and indK′

K (σn|K′) ' σn⊕ (σn⊗χ)⊕ (σn⊗χ−1).
Using (ε2) and (ε6′), we confirm readily that W (σn) = W (σn|K′). This
puts us in the other case.

¤

Table 3. Character table of SL2(F3)

id λ2 υ υ−1 λ (υτ)−1 υτ

size 1 1 4 4 6 4 4
order 1 2 3 3 4 6 6

id 1 1 1 1 1 1 1
χ 1 1 ζ3 ζ2

3 1 ζ2
3 ζ3

χ̄ 1 1 ζ2
3 ζ3 1 ζ3 ζ2

3

σξ|Ku 2 −2 −1 −1 0 1 1
σξ|Ku ⊗ χ 2 −2 −ζ3 −ζ2

3 0 ζ2
3 ζ3

σξ|Ku ⊗ χ̄ 2 −2 −ζ2
3 −ζ3 0 ζ3 ζ2

3

κ 3 3 0 0 −1 0 0

10. p = 2, the SL2(F3) case

Note that we have Q8 as a normal subgroup of SL2(F3), with an additional
action (in the previously given basis) of

υ =
1√
2

(
ζ3
8 ζ3

8

ζ8 ζ5
8

)
,

which has order 3. Since det(σ(Φ)) = q = 2f(K/Q2) ≡ (−1)f(K/Q2) (mod 3), the
image of W(K/K) in Aut(E[3]) is isomorphic to SL2(F3) if f(K/Q2) is even, and
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GL2(F3) if f(K/Q2) is odd. The result for the L-function is exactly the same as in
Propositions 8.1 and 9.1(1) (with βn(I) for SL2(F3), as in Table 1 of [MW], being
used), depending on the parity of f(K/Q2). For f(K/Q2) even, the argument is
identical to that in the proof of Proposition 9.1(1). For f(K/Q2) odd, we imitate
the proof of Proposition 8.1. We consider the 2-extension G48 of SL2(F3) given by
adjoining µ = diag(ζ8, ζ

−1
8 ), and since I is normal of index 2 in G48, we see that

there are two irreducible representations of G48 that are trivial upon restricting
to I, with the eigenvalues being qn/2 and −qn/2. A character calculation then
gives the multiplicity of these representations in the decomposition of σξ

n.

10.1. Signs for odd powers, f(K/Q2) odd. Presumably we could work with
some 2-extension of SL2(F3) in this case, but we argue differently. Let Ku be
the unramified quadratic extension of K. Let K ′

u/Ku be the cubic extension3

corresponding to the Q8 subgroup of SL2(F3), and let K ′/K be any (necessarily
non-Galois) cubic extension whose compositum with Ku is K ′

u. We let χ
K′

u
Ku

be a
cubic character associated to the extension K ′

u/Ku. Again we let σξ = σ ⊗ ω1/2,
and relate W (σξ

n) to W (σξ
n|K′) via work of Kutzko; since the inertia group upon

restriction to K ′ is Q8, this will reduce us to the previous case. However, to apply
the proposition of Kutzko directly, we must ensure that K contains the cube roots
of unity, and this leads us naturally to restrict σξ

n to the Weil group for Ku. Since
this restriction squares the Frobenius element, we get (by a similar argument to
the proof of Proposition 9.1(1)) that σξ

n|Ku is a representation of SL2(F3). Here
is our generalization of Kutzko’s result:

Lemma 10.1. For odd n we have W (σn|Ku) = ζW (σn|Ku ⊗ χ
K′

u
Ku

) for some ζ

(possibly depending on n) with ζ3 = 1. By symmetry, the same is true when
twisting by the conjugate character.

Proof. For odd n, the character table for SL2(F3) implies that σξ
n|Ku decomposes

as a sum of irreducible 2-dimensional representations given by σξ|Ku and its twists
by both χ

K′
u

Ku
and its conjugate. In more detail, looking at Table 3, it is clear that

the inner product of κ with any odd power of σξ|Ku is 0, while tr(σξ
n(λ)) = 0

implies that id, χ and χ̄ cannot appear either. Since Ku contains the cube roots
of unity we can apply Proposition 5.1.2 of Kutzko [K] and get that W (σξ|Ku) is

3Since this is necessarily totally tamely ramified, the standard classification of such extensions

[Has, Chapter 16] gives us that K′
u = Ku( 3

√
p) where p is a uniformising element of Ku.
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multiplied by a third root of unity when twisting the representation by χ
K′

u
Ku

. So
all three representations have W -values that differ by a cube root of unity, and
from this we deduce the result. ¤

Proposition 10.2. For odd n we have that

W (σn|K′) = W (σn)(−1)a(σn).

Proof. Using (ε2) we have that

W (σn|K′) = W
(
indK′

K

(
σn|K′

))
/θ(K ′/K)n+1.

We first turn to the θ-factor, noting that

θ(K ′/K) = W (indK′
K 1K′)/W (1K′)

where we have W (1K′) = 1. Expanding the top as with 5.1.8 of Kutzko, we get

indK′
K

(
1K′

)
= 1K ⊕ indKu

K

(
χ

K′
u

Ku

)

where χ
K′

u
Ku

is a nontrivial cubic character for K ′
u/Ku. So we get

θ(K ′/K) = W
(
1K ⊕ indKu

K

(
χ

K′
u

Ku

))
= W (χK′

u
Ku

)θ(Ku/K)

again using (ε2) and W (1K) = 1. Since Ku/K is unramified and quadratic we
have θ(Ku/K) = W (χKu

K ) = (−1)n(ψK) by (ε6′), while Kutzko in 5.1.9 shows
directly that W (χK′

u
Ku

)2 = 1. Since n + 1 is even, we get θ(K ′/K)n+1 = 1.

Similar to 5.1.8 of Kutzko (or by comparing characters), we have

indK′
K

(
σn|K′

)
= σn ⊕ indKu

K

(
σn|Ku ⊗ χ

K′
u

Ku

)
.

So the multiplicativity of ε-factors gives us that

W (σn|K′) = W (σn)W
(
indKu

K

(
σn|Ku ⊗ χ

K′
u

Ku

))
= W (σn)W

(
σn|Ku ⊗ χ

K′
u

Ku

)
,

the second step by using (ε2) again, with θ(Ku/K)n+1 = 1. Now we use the
above lemma that W

(
σn|Ku ⊗ χ

K′
u

Ku

)
= ζW

(
σn|Ku

)
for ζ with ζ3 = 1 to get

W (σn|K′) = ζW (σn)W
(
σn|Ku

)
,

and use (ε2) and θ(Ku/K)n+1 = 1 again to get

W (σn|K′) = ζW (σn)W
(
indKu

K

(
σn|Ku

))
.

Also, we have that
indKu

K

(
σn|Ku

)
= σn ⊕ (σn ⊗ χKu

K )
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and thus we get

W (σn|K′) = ζW (σn)2W (σn ⊗ χKu
K ),

and now (ε6′) can be used to relate W (σn ⊗ χKu
K ) to W (σn) to get

W (σn|K′) = ζW (σn)3 (−1)n(ψ)(n+1)+a(σn) = ζW (σn)3 (−1)a(σn),

the last step since n+1 is even. Since the two W -signs are real, we can eliminate ζ

and the cubing to get

W (σn|K′) = W (σn)(−1)a(σn).

¤

Of course, we may rewrite the formula as W (σn) = W (σn |K′)(−1)a(σn), show-
ing that, in principle, we have reduced to the Q8 case. Using Proposition 8.2, we
can make this more explicit:

W (σn) =





W (σ |K′)(−1)a(σn) n ≡ 1 (mod 8);

(−1)a(σ|K′ )+a(σn) n ≡ 3 (mod 8);

W (σ |K′)(−1)a(σn) n ≡ 5 (mod 8);

(−1)a(σn) n ≡ 7 (mod 8).

We note that for K = Q2 the formulae in Tables 1 and 2 of [MW] imply
that a(σn) has the same parity as a(σ) for n ≡ 1 (mod 4), and is even for other n.
Hence for K = Q2,

W (σn) =





W (σ) n ≡ 1 (mod 8);

(−1)a(σ|K′ ) n ≡ 3 (mod 8);

W (σ) n ≡ 5 (mod 8);

1 n ≡ 7 (mod 8).

10.2. Signs for odd powers, f(K/Q2) even. This time let K ′/K be the cubic
extension corresponding to the Q8 subgroup of SL2(F3). This is a Galois extension
of odd degree, so using an extension of Proposition 3.4 of [KT], we get W (σn) =
W (σn|K′) for n odd. (Their proof uses the evenness of the dimension.) Hence
W (σn) = W (σ)(n+1)/2, by Proposition 9.2.



Symmetric Powers of Elliptic Curves 1337

11. p = 3 nonabelian inertia, f(K/Q3) odd

11.1. Setup. Let τ be a generator of the normal subgroup C3 of I, and λ a
generator of C4. Choose a basis {x, y} for V such that τ(x) = ζx and τ(y) = ζ−1y,
where ζ = e2πi/3. Then λ−1τλ = τ−1, so λ swaps the eigenspaces of τ . We can
choose the basis in such a way that λ(x) = y and λ(y) = −x. (Recall that since
λ ∈ I, the determinant of the matrix representing λ must be 1. In fact, the
same observation for τ justifies the existence of x and y.) Then λ2 acts on V as
−1, so commutes with everything in G. If Φ is (the image in G of) any inverse
Frobenius element then, since I is a normal subgroup of G and τ, τ−1 are the
only elements of I of exact order 3, we must have Φ−1τΦ = τ or τ−1. But if Φ
does not commute with τ then λΦ is another choice of inverse Frobenius element
which does commute with τ . Hence, without loss of generality we may assume
that Φ commutes with τ , so it preserves the eigenspaces. Let α be such that
Φ(x) = αx (then Φ(y) = αy). Let β be the complex number of absolute value 1
such that α = βq1/2.

If 3 | (n − 2j) then τ fixes both xjyn−j and yjxn−j . If n is even then, for
3 | (n − 2j) (in which case 6 | (n − 2j)), the element xjyn−j + (−1)jyjxn−j is
also fixed by λ (because j and n− j have the same parity), hence is I-fixed. The
I-fixed elements above must be eigenvectors for Φ (note that Φ maps Vj to itself
and normalises I). Hence αjαn−j = αjαn−j is real, so βn−2j = ±1. Varying n

and j, we see that β6 = ±1. Since α + α ∈ Z, β6 6= 1 (here we use the fact that
q is an odd power of 3), so β6 = −1. Adjusting Φ by an element of 〈τ, λ2〉, we
may choose β = ζ12 = eπi/6.

So, in the basis {x, y}, by adjoining µ = diag(ζ12, ζ
−1
12 ) to I we get µ2 = λτλ,

and this gives us the 2-extension G24 through which W(K/K) acts on V via
σξ = σ ⊗ ω1/2.

11.2. L-function. Similar to the previous cases, we can map Φ to Aut(E[4]), and
since f(K/Q3) is odd, the image is not contained in I and has determinant −1.
The only subgroups of GL2(Z/4) which contain C3 o C4 as a normal subgroup
with cyclic quotient are C3oC4 and its 2-extension, say H24. Since the image of
Φ has determinant −1, we must be in the latter case. Just as before, a character
argument with H24 gives that the L-function (for even n) is
(
1− (−q)n/2/qs

)−an
(
1+(−q)n/2/qs

)−bn where an, bn = dβn(I)/2e, bβn(I)/2c.
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Table 4. Decomposition of σξ
n for G24 for odd n

n ≡ 1 (mod 12): σξ ⊕ n−1
6 (σξ ⊕ σ̄ξ ⊕ κ)

n ≡ 3 (mod 12): σξ ⊕ κ ⊕ n−3
6 (σξ ⊕ σ̄ξ ⊕ κ)

n ≡ 7 (mod 12): σ̄ξ ⊕ n−1
6 (σξ ⊕ σ̄ξ ⊕ κ)

n ≡ 9 (mod 12): σ̄ξ ⊕ κ ⊕ n−3
6 (σξ ⊕ σ̄ξ ⊕ κ)

n ≡ 5 (mod 6): n+1
6 (σξ ⊕ σ̄ξ ⊕ κ)

11.3. Signs for odd powers. The three irreducible symplectic representations
of G24 are σξ and its conjugate, and another 2-dimensional representation κ

which, restricted to I, factors through the C4 quotient. Viewing κ as a rep-
resentation of W(K/K) by composition, it does not factor through an abelian
quotient. Noting also that I has a unique quotient of order 4 (tamely rami-
fied), we see that κ is precisely the same representation of W(K/K) that would
arise in the previously considered case I = C4,G non-abelian. The argument of
the penultimate paragraph of §6 is easily adapted from K = Q3 to any K with
f(K/Q3) odd. (In general, the residue class of u may be taken to be g(q+1)/2.
Since (q +1)/2 ≡ 2 (mod 4), we still have ν(u) = −1.) It follows that W (κ) = 1.
Alternatively, apply Theorem 1.1(ii) (see also Theorem 3.1(iii)) of [Ko]. This
immediately gives us that W (κ) = +1 as −2 is square modulo 3.

As with the Q8 case, we find that σξ = σ̄ξ⊗ρu for an unramified character ρu,
and thus we get W (σξ) = (−1)a(σ)W (σ̄ξ). We get W (σξ

n) in terms of W (σξ) and
the parity of a(σ):

W (σn) =





W (σ) n ≡ 1, 3 (mod 6)

(−1)a(σ)(n+1)/6 n ≡ 5 (mod 6).

12. p = 3 nonabelian inertia, f(K/Q3) even

12.1. L-function. As noted above, the only subgroups of GL2(Z/4) which con-
tain C3 o C4 as a normal subgroup with cyclic quotient are C3 o C4 and its
2-extension, say H24. Since we have det(σ(Φ)) = q = 3f(K/Q3) ≡ 1 (mod 4) and
H24 has no 2-dimensional representation of determinant 1, we get that the image
of the Weil group in Aut(E[4]) is just C3oC4, the same as the image of I. From
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this it follows, as in the proof of Proposition 9.1, that

L(σn, s) =
(
1− qn/2/qs

)−βn(I)
.

12.2. Signs for odd powers. Here we get non-real constituents ρ and its con-
jugate (these factor through the C4 quotient and are of order 4) in the decom-
position for odd powers, but they appear in pairs and by the functional equation
(ε7) we have that W (ρ)W (ρ̄) = ρ(−1) = −1.

Table 5. Decomposition of σξ
n for C3 o C4 for odd n

n ≡ 1 (mod 6): σξ ⊕ n−1
6 (ρ⊕ ρ̄⊕ 2σξ)

n ≡ 3 (mod 6): ρ⊕ ρ̄⊕ σξ ⊕ n−3
6 (ρ⊕ ρ̄⊕ 2σξ)

n ≡ 5 (mod 6): n+1
6 (ρ⊕ ρ̄⊕ 2σξ)

We get the sign for odd n to be

W (σn) =





(−1)(n−1)/6W (σ) n ≡ 1 (mod 6)

(−1)(n+3)/6W (σ) n ≡ 3 (mod 6)

(−1)(n+1)/6 n ≡ 5 (mod 6).
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