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Abstract: The set of integral regular semisimple elements in g((ε)) can be
partitioned into strata, called root valuation strata, and the same is true of
the adjoint quotient of g((ε)). The main result of this paper is a formula for
the codimensions of these root valuation strata in the adjoint quotient.
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1. Introduction

The topic of this paper arises naturally in the context of affine Springer fibers,
which we now take a moment to discuss. Let G be a semisimple complex algebraic
group, and let g denote its Lie algebra. We then have the affine Grassmannian
X = G(F )/G(O), where O is the ring C[[ε]] of formal power series, and F is its
fraction field C((ε)). For any u ∈ g(F ) = g⊗C F the closed subset

Xu = {g ∈ G(F )/G(O) : Ad(g)−1u ∈ g(O) = g⊗C O}

of the affine Grassmannian, first studied by Kazhdan-Lusztig in [KL88], is called
the affine Springer fiber associated to u.
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We now assume that u is regular semisimple and write Tu for its centralizer
in G, a maximal torus of G over F . We will also need Au, the maximal F -split
subtorus of Tu. If u is integral, in the sense that α(u) is integral over O for every
root α of Tu, then Xu is non-empty and may be viewed (see [KL88]) as the set
of C-points of a scheme locally of finite type over C. The dimension formula of
Bezrukavnikov-Kazhdan-Lusztig (see [KL88] and [Bez96]) states that

dimXu = (δu − cu)/2,

where

δu := val det
(
ad(u); g(F )/tu(F )

)
,

cu := dim Tu − dimAu.

Here val is the usual valuation on F , normalized so that val(ε) = 1, and of course
tu(F ) denotes the Lie algebra of the F -torus Tu.

In particular dimXu depends only on the discrete invariant (δu, cu) of u. It is
useful however to introduce a finer invariant, still discrete in nature. For this we
need to choose an algebraic closure F̄ of F . We denote by τ the unique element
of Gal(F̄ /F ) that multiplies each m-th root of ε by exp(2πi/m). Recall that τ is
a topological generator of Gal(F̄ /F ) and allows us to identify that Galois group
with the profinite completion of Z.

Fix a maximal torus T of G over C. We write R for the set of roots of T

in G, and W for the Weyl group of T . Choose an element u′ ∈ t(F̄ ) that is
G(F̄ )-conjugate to u. We attach to u′ a pair (w, r) in the following way: w is
the unique element of W such that wτ(u′) = u′, and r : R → Q is the function
defined by r(α) := valα(u′). Here we have extended our valuation on F to one
on F̄ ; the valuation of any m-th root of ε is then 1/m. Since u is integral, the
function r takes values in the set of non-negative rational numbers. The element
u′ is not quite well-defined, since it may be replaced by xu′ for any x ∈ W . This
replaces (w, r) by (xwx−1, xr), where (xr)(α) := r(x−1α).

All in all, we have associated to u a well-defined orbit s of W in the set of
pairs (w, r), and s is the desired discrete invariant of u. Clearly s depends only
on the G(F )-conjugacy class of u. Turning this around, for a given orbit s, we
let g(F )s denote the subset of g(F ) consisting of all integral regular semisimple
u for which the associated invariant is equal to s.



Codimensions of Root Valuation Strata 1255

Observe that the invariant (δu, cu) can be expressed very simply in terms of
the W -orbit of (w, r). Indeed, we have

δu = δr :=
∑

α∈R

r(α),

cu = cw := dim t− dim tw,

t being the Lie algebra of T , and tw denoting the fixed points of w on t. Therefore
the dimension of Xu is constant along each subset g(F )s.

We expect that something much stronger is true, namely that the cohomology
of Xu is locally constant, in a suitable sense, along each subset g(F )s. In any
case, this is true when the function r is constant (the equivalued case), as can be
seen using the Hessenberg pavings of [GKM06].

Thus it is natural to study the subsets g(F )s. This is best done using the
adjoint quotient A := t/W and the natural morphism

(1.0.1) g(F ) → A(F ).

The set g(F )s is the preimage of a subset of A(O) that we will denote by A(O)s.
Given (w, r) in the orbit s, we often write A(O)(w,r) rather than A(O)s.

It is instructive to look at the case when G = SL2. Then A(F ) = F , and the
map (1.0.1) is

det : sl2(F ) → F.

Each non-empty subset A(O)s is of the form

Ym = {c ∈ A(O) = O : val c = m}

for some non-negative integer m. The pair (w, r) corresponding to m is deter-
mined as follows: w is trivial (respectively, non-trivial) if m is even (respectively,
odd), and r is the constant function with value m/2.

The subset Ym is admissible, in the sense that it is the preimage of a subset in
O/εNO once N is sufficiently large. This allows us to work with Ym just as if it
were finite dimensional. In an obvious sense each Ym is (Zariski) locally closed,
irreducible, non-singular of codimension m in A(O).

One goal of this paper is to prove an analogous statement for any connected
reductive G over an algebraically closed field k in which the order of the Weyl
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group is invertible. Theorem 8.2.2 says that A(O)s, when non-empty, is admissi-
ble, locally closed, irreducible, and non-singular of codimension

d(w, r) + (δr + cw)/2

in A(O). Here δr, cw are the same integers as before, and d(w, r) is the codi-
mension of tw(O)r in tw(O), where tw(O) is the twist of t by w, and tw(O)r is a
certain subset of tw(O) that maps onto A(O)s under

tw(O) → A(O).

The integer d(w, r) is calculated in Proposition 6.0.1(4).

The second goal of the paper is to relate the geometry of tw(O)r to that of
A(O)s using the map

tw(O)r ³ A(O)s.

In Theorem 8.2.2 it is shown that tw(O)r is smooth (in a suitable sense) over
A(O)s. Theorem 9.1.1 gives a precise description of the structure of this mor-
phism. Combined with Proposition 6.0.1, which concerns tw(O)r, it yields a clear
picture of the structure of each individual stratum A(O)s.

However the methods of this paper shed little light on how the strata fit to-
gether. We do not know, for example, whether the closure of A(O)s is a union of
strata.

The paper contains some other results as well. We determine when A(O)(w,r)

is non-empty. Since tw(O)r maps onto A(O)(w,r), this is the same as determining
when tw(O)r is non-empty, and this is done in Proposition 4.8.2.

Now assume that A(O)(w,r) is non-empty. We show (Corollary 4.8.4) that if
r takes values in 1

mZ, then wm = 1. In particular, if r takes values in Z, then
w = 1. We also show (see subsection 4.9) that if the function r is constant, then
the conjugacy class of w is determined by r. (This is a simple consequence of
Springer’s results [Spr74] on regular elements in Weyl groups.) We do not know
whether to expect that w is always redundant (more precisely, whether the non-
emptiness of both A(O)(w,r) and A(O)(w′,r) implies that w and w′ are conjugate
under some element of the Weyl group that fixes r.)

A substantial part of this work was done in June, 2000 at the Centre Émile
Borel, which we would like to thank both for its financial support and the excellent
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working conditions it provided. It is a pleasure to thank M. Sabitova and the
referee for numerous helpful comments on this paper.

2. Basic notation and definition of A(O)′

2.1. Notation concerning G. Let G be a connected reductive group over an
algebraically closed field k. We choose a maximal torus T in G, and write t for
its Lie algebra. Throughout this article we will assume that the order |W | of the
Weyl group W (of T in G) is invertible in k.

We let R ⊂ X∗(T ) denote the set of roots of T in G. Occasionally we will
need to fix a subset R+ ⊂ R of positive roots. The differential of a root α is an
element in the dual space t∗ to t, and we will abuse notation a bit by also writing
α for this element of t∗.

2.2. Quotient variety A = t/W . We will need the quotient variety A := t/W ,
as well as the canonical finite morphism

f : t → A.

The notation A serves as a reminder that t/W is non-canonically isomorphic
to affine n-space An with n = dim(T ). Indeed (see [Bou02]) the k-algebra of
W -invariant polynomial functions on t is a polynomial algebra on n homoge-
neous generators f1, . . . , fn, called basic invariants. Choosing basic invariants
f1, . . . , fn, we obtain a morphism

(f1, . . . , fn) : t → An,

which induces an isomorphism t/W ∼= An and allows us to view f as (f1, . . . , fn).
We will denote by di the degree of the polynomial fi.

2.3. Open subsets of regular elements in t and A. Inside t we have the
W -invariant affine open subset treg consisting of those elements u ∈ t such that
α(u) 6= 0 for all α ∈ R. Since |W | is invertible in k, no root vanishes identically
on t, and therefore treg is non-empty. The quotient treg/W is a non-empty affine
open subset of A that we will denote by Areg.

Picking a basis in the vector space t, we get coordinates u1, . . . , un on t, and
the Jacobian

Ju := det
( ∂fi

∂uj

)
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is a polynomial J in u = (u1, . . . , un) which is known (see [Bou02, Ch. V, no. 5.5,
Prop. 6]) to have the form

(2.3.1) Ju = c
∏

α∈R+

α(u)

for some non-zero scalar c ∈ k. In particular treg is the set where the Jacobian
does not vanish, and therefore the restriction freg : treg → Areg of f is an étale
covering with Galois group W .

Later we will need the well-known identity [Bou02]

(2.3.2) |R+| =
n∑

i=1

(di − 1),

which can be proved by calculating the degree of the polynomial J in two different
ways.

2.4. Definition of O and F . In fact we will mainly be interested in A(O), where
O denotes the ring k[[ε]] of formal power series. We also need the fraction field
F = k((ε)) of O.

2.5. Subset A(O)′ of A(O). We put A(O)′ = A(O) ∩ Areg(F ), the intersection
being taken in A(F ). We stress that this subset is considerably bigger than
Areg(O). For example, when G is SL2, we have A(F ) = F , A(O) = O, Areg(F ) =
F×, Areg(O) = O×, A(O)′ = O \ {0}. Our first task in this paper is to partition
the set A(O)′. Roughly speaking, this involves two ingredients: valuations of
roots and Weyl group elements. We begin by discussing valuations of roots.

3. Valuations of roots: split case

3.1. Normalization of the valuation on F . We normalize the valuation on
F so that val(ε) = 1.

3.2. Definition of t(O)′. Put t(O)′ := t(O) ∩ treg(F ).
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3.3. Definition of ru. For any u ∈ t(O)′ we define a function ru on R by

ru(α) = valα(u)

for each root α. It is clear that ru takes values in the set of non-negative integers.

Since W acts on R, it acts on functions r on R by the rule (wr)(α) = r(w−1α).
It is clear that

(3.3.1) rwu = wru

for all w ∈ W and u ∈ t(O)′.

3.4. Properties of the function ru. Let u ∈ t(O)′. It is obvious that

(3.4.1) ru(−α) = ru(α).

However the non-archimedean property of valuations gives much more than this,
as we will now see.

Fix some function r on R with values in the set of non-negative integers. We
define a subset t(O)r of t(O)′ by

t(O)r := {u ∈ t(O)′ : ru = r}.

We also use r to define a chain

R = R0 ⊃ R1 ⊃ R2 ⊃ R3 ⊃ . . .

of subsets

Rm := {α ∈ R : r(α) ≥ m}.
We will need the linear subspaces

am := {u ∈ t : α(u) = 0 ∀α ∈ Rm}.

These form an increasing chain

a0 ⊂ a1 ⊂ a2 ⊂ . . .

with am = t for large enough m. Finally, for each m ≥ 1 we will need the subset

a]
m := {u ∈ am : α(u) 6= 0 ∀α ∈ Rm−1 \Rm}

of am.
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Proposition 3.4.1. The set t(O)r is non-empty if and only if each subset Rm is
Q-closed, in the sense that if α ∈ R is a Q-linear combination of elements in Rm,
then α itself lies in Rm. Moreover t(O)r has the following description: u ∈ t(O)
lies in t(O)r if and only if the coefficients uj in the power series expansion of u

satisfy uj ∈ a
]
j+1 for all j ≥ 0.

Proof. (=⇒) Choose u ∈ t(O)r and expand it as a formal power series

u =
∞∑

j=0

ujε
j

with coefficients uj ∈ t. Clearly Rm = {α ∈ R : α(ui) = 0 ∀ i = 0, . . . , m − 1}.
It now follows from Proposition 14.1.1 that Rm is Q-closed.

(⇐=) Assuming that each Rm is Q-closed, we must show that t(O)r is non-
empty. It is clear from the definitions that an element u ∈ t(O) lies in t(O)r

if and only if the coefficients uj in its power series expansion satisfy uj ∈ a
]
j+1.

Thus we just need to show that each a
]
j+1 is non-empty. Since Rj+1 is Q-closed,

it is the root system RM of some Levi subgroup M ⊃ T (see the proof of Propo-
sition 14.1.1(3)). Lemma 14.2.1 then tells us that no root in Rj \ Rj+1 vanishes
identically on aj+1, from which it follows immediately that a

]
j+1 is non-empty. ¤

4. Twisted forms tw(O) and strata tw(O)r

The subsets t(O)r will help us to understand A(O)′, but they are not enough,
since the canonical map t(O)′ → A(O)′ is by no means surjective. In order to get
a handle on all elements of A(O)′ we need some twisted forms tw(O) of t over O.

For example, when G is SL2 (so that 2 is required to be invertible in k), the
map in question is—up to multiplication by a scalar in k×—the squaring map
from O\{0} to O\{0}, whose image consists precisely of those elements in O with
even valuation. To obtain the missing elements we need to replace t(O) = O by
the O-module of elements in k[[ε1/2]] having trace 0 in k[[ε]], or, in other words,
the O-module (free of rank 1) Oε1/2. The squares of the non-zero elements in
Oε1/2 then yield all elements in O having odd valuation. The O-module Oε1/2

will turn out to be the twisted form tw(O) obtained from the non-trivial element
w ∈ W .
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We begin by reviewing tamely ramified extensions of F . Next we define tw(O).
Then we use valuations of roots to define subsets tw(O)r of tw(O). Finally we
determine when the strata tw(O)r are non-empty.

4.1. Review of Ftame. We now need to choose an algebraic closure F̄ of F . We
denote by Fsep the separable closure of F in F̄ , and by Ftame the maximal tamely
ramified extension of F in Fsep.

It is well-known that Ftame has the following concrete description. For any
positive integer l that is invertible in k, we choose an l-th root ε1/l of ε in F̄ , and
we do this in such a way that (ε1/lm)m = ε1/l for any two positive integers l, m

that are both invertible in k. The field Fl := F (ε1/l) = k((ε1/l)) is cyclic of degree
l over F , and is independent of the choice of l-th root of ε. Moreover Ftame is the
union of all the subfields Fl.

For any positive integer l that is invertible in k, we also choose a primitive l-th
root ζl of 1 in k, and we do this in such a way that (ζlm)m = ζl for any two positive
integers l, m that are both invertible in k. We use ζl to obtain a generator τl of
Gal(Fl/F ), namely the unique automorphism of Fl/F taking ε1/l to ζlε

1/l. These
generators are consistent with each other as l varies, and therefore fit together to
give an automorphism τ∞ of Ftame/F whose restriction to each Fl is τl. Clearly
τ∞ is a topological generator of the topologically cyclic group Gal(Ftame/F ).

4.2. Definition of tw(O). Now we can construct the twisted forms of t alluded
to before. To get such a twist we need to start with an element w ∈ W . We then
take l to be the order o(w) of w, a positive integer that is invertible in k. We
write E instead of Fl and τE instead of τl. Moreover we write εE for ε1/l, so that
E = k((εE)) and the valuation ring OE in E is k[[εE ]].

Then we put

(4.2.1) tw(O) := {u ∈ t(OE) : wτE(u) = u}.
More generally, for any O-algebra A, we put

tw(A) := tw(O)⊗O A.

Since it will become clear in subsection 4.3 that tw(O) is a free O-module of rank
n, where n = dimk t, we see that tw is a scheme over O isomorphic to affine
n-space over O.
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Note that only the conjugacy class of w in W really matters: given x ∈ W we
obtain an isomorphism u 7→ xu from tw(O) to txwx−1(O). This shows too that
the centralizer Ww (of w in W ) acts on tw(O) (and hence on tw over O).

4.3. Description of tw(O). It is easy to describe tw(O) in terms of the eigenspaces
for the action of w on t. Since w has order l, the only possible eigenvalues are
l-th roots of unity. Because l is invertible in k, we then have

t =
l−1⊕

j=0

t(w, j),

where t(w, j) denotes the eigenspace t(w, j) := {v ∈ t : wv = ζ−j
l v}.

An element u ∈ t(OE) can be expanded as a formal power series
∞∑

j=0

ujε
j
E

with uj ∈ t, and we see from (4.2.1) that u ∈ tw(O) if and only if uj ∈ t(w, j) for
all j ≥ 0. Thus there is a canonical O-module isomorphism

(4.3.1) tw(O) ∼=
l−1⊕

j=0

Oεj
E ⊗k t(w, j).

4.4. Description of tw as a fixed point scheme. We write ROE/Ot for the
scheme over O obtained by starting with t, then extending scalars from k to OE ,
then (Weil) restricting scalars from OE to O. For any O-algebra A we then have

(ROE/Ot)(A) = t(A⊗O OE).

Of course ROE/Ot is non-canonically isomorphic to affine space of dimension nl

over O.

The automorphism τE of OE/O induces an automorphism

τE : ROE/Ot → ROE/Ot

(given on A-valued points by the map induced by the O-algebra automorphism
idA⊗τE of A⊗OOE). Moreover our W -action on t induces a W -action on ROE/Ot.
The actions of W and τE commute, and therefore the cyclic group Z/lZ acts on
ROE/Ot with the standard generator of that cyclic group acting by w ◦ τE .
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Using (4.3.1), one sees easily that for any O-algebra A we have

(4.4.1) tw(A) = {u ∈ t(A⊗O OE) : wτE(u) = u},
and hence that tw is the fixed point scheme (see appendix 15) of the action of
Z/lZ on ROE/Ot. As a special case of (4.4.1) we have

tw(F ) = {u ∈ t(E) : wτE(u) = u}.

4.5. Definition of tw(O)′. We put

tw(O)′ := t(OE)′ ∩ tw(O).

Thus u ∈ tw(O) lies in tw(O)′ if and only if α(u) 6= 0 for all α ∈ R.

4.6. Definition of strata tw(O)r in tw(O)′. We extend the valuation on the
field F to a valuation, still denoted val, on F̄ . In particular we have val(ε1/l) =
1/l.

Let R denote the set of functions on R with values in the set of non-negative
rational numbers. For r ∈ R we put

tw(O)r := {u ∈ tw(O) : valα(u) = r(α) ∀α ∈ R}.
It is clear that tw(O)′ is the disjoint union of the strata tw(O)r, many of which
are empty.

The Weyl group acts on itself by conjugation, and it also acts on R (see
subsection 3.3); thus we have an action of W on the set of pairs (w, r) ∈ W ×R.
Note that only the W -orbit of (w, r) really matters: given x ∈ W we obtain an
isomorphism u 7→ xu from tw(O)r to txwx−1(O)xr.

4.7. Freeness of the Ww-action on tw(O/εNO)r<N . The centralizer Ww acts
freely on tw(O)′ by Proposition 14.1.1. Now let N be a positive integer. We are
going to define an open subset tw(O/εNO)r<N of the k-variety tw(O/εNO) (see
16.1) on which Ww acts freely. Here is the definition:

tw(O/εNO)r<N := {u ∈ tw(O/εNO) : α(u) 6= 0 ∀α ∈ R}.
(Note that α(u) is an element of the ring OE/εNOE .) The set tw(O/εNO)r<N

can also be described as the image in tw(O/εNO) of all strata tw(O)r for which
r satisfies the condition r(α) < N for all α ∈ R.
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Now we verify that Ww acts freely on tw(O/εNO)r<N . Let u ∈ tw(O/εNO)r<N

and expand it as

u =
Nl−1∑

j=0

ujε
j
E .

Suppose that some element x ∈ Ww fixes u. Then x fixes each coefficient uj .
It follows from Proposition 14.1.1 (1) that x lies in the Weyl group of the root
system consisting of all roots α ∈ R such that α(uj) = 0 for all j. Since α(u) 6= 0
for all α ∈ R, there are no such roots, and therefore x = 1.

4.8. Which strata are non-empty? We are now going to determine which
strata tw(O)r are non-empty. (Only the W -orbit of (w, r) matters.) We begin by
listing some useful necessary conditions.

Let u ∈ tw(O)′. Then α(u) ∈ OE and thus valα(u) ∈ 1
lZ. Therefore a

necessary condition for non-emptiness of tw(O)r is that r take values in 1
lZ. Of

course this statement can be sharpened a little, since a particular root α may be
defined over k((ε1/l′)) for some divisor l′ of l, in which case it is necessary that
r(α) lie in 1

l′Z.

Now assume that r does take values in 1
lZ, and define an integer valued function

rE on R by rE(α) = lr(α). It is clear from the definitions that

tw(O)r = t(OE)rE ∩ tw(O).

(Here we are applying definitions we have already made for F to the field E, so
that when interpreting the right side of this equality one should be thinking of
the normalized valuation on E, rather than the one that extends the valuation on
F . That is why we need rE instead of r.) Now Proposition 3.4.1 tells us exactly
when t(OE)rE is non-empty. We conclude that another necessary condition for
the non-emptiness of tw(O)r is that the subset

Rm := {α ∈ R : r(α) ≥ m/l}
of R be Q-closed for every non-negative integer m. We now assume that this
condition on r also holds.

Our stratum tw(O)r might still be empty. To settle the question we need once
again to consider the vector spaces

am := {u ∈ t : α(u) = 0 ∀α ∈ Rm}
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and their open subsets

a]
m := {u ∈ am : α(u) 6= 0 ∀α ∈ Rm−1 \Rm}.

Lemma 4.8.1. Let u ∈ t(OE), and expand u as a power series
∞∑

j=0

ujε
j
E

with uj ∈ t. Then u ∈ tw(O)r if and only if uj ∈ t(w, j) ∩ a
]
j+1 for all j ≥ 0.

Consequently tw(O)r is non-empty if and only if t(w, j) ∩ a
]
j+1 is non-empty for

all j ≥ 0.

Proof. We observed in 4.3 that u ∈ tw(O) if and only if uj ∈ t(w, j) for all
j ≥ 0. Moreover it follows from Proposition 3.4.1 that u ∈ t(OE)rE if and only if
uj ∈ a

]
j+1 for all j ≥ 0. ¤

We can reformulate the non-emptiness result in the last lemma in a slightly
better way, but for this we first need to note that there is another obvious neces-
sary condition for non-emptiness. Indeed, for any u ∈ t(OE)′ we have rτE(u) = ru

(obvious) and hence rwτE(u) = wru (use (3.3.1)). It follows that if u ∈ tw(O)′,
then ru = wru.

Thus we see that if tw(O)r is non-empty, then w stabilizes r, from which it
follows that w stabilizes the subsets Rm and the subspaces aj of t, so that we
obtain an action of w on each quotient space aj+1/aj . In this situation we may
consider the eigenspace

(aj+1/aj)(w, j) := {v ∈ aj+1/aj : wv = ζ−j
l v}.

Let us also note that since each root in Rj vanishes identically on aj , our subset
a

]
j+1 is the preimage under aj+1 → aj+1/aj of the set

(aj+1/aj)] := {u ∈ aj+1/aj : α(u) 6= 0 ∀α ∈ Rj \Rj+1}.

Proposition 4.8.2. The stratum tw(O)r is non-empty if and only if the following
four conditions hold.

(1) r takes values in 1
lZ.

(2) Rm is Q-closed for all m ≥ 0.
(3) wr = r.
(4) (aj+1/aj)(w, j) ∩ (aj+1/aj)] is non-empty for all j ≥ 0.
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Note that the fourth condition makes sense only when the third condition holds.

Proof. This follows from the previous lemma, since t(w, j) ∩ aj+1 projects onto
(aj+1/aj)(w, j). Indeed, when wr = r, the canonical surjection aj+1 ³ aj+1/aj

is equivariant for the action of w, and therefore the ζ−j
l -eigenspace of w on aj+1

maps onto the ζ−j
l -eigenspace of w on aj+1/aj . Here we used that the order l of

w is invertible in k. ¤

Proposition 4.8.3. Suppose that tw(O)r is non-empty, and suppose that r(α) ∈
Z for all α ∈ R. Then w = 1.

Proof. Let u ∈ tw(O)r and expand u as a power series
∞∑

j=0

ujε
j
E .

We are going to apply Proposition 14.1.1 to the subset S := {uml : m =
0, 1, 2, . . . }. Since uml ∈ t(w, ml), we see that w fixes each element of S and
therefore lies in the subgroup WS = W (RS) of Proposition 14.1.1. However RS

is empty, since for any α ∈ R we have α(ur(α)l) 6= 0. Therefore w = 1. ¤

Corollary 4.8.4. Let m be a positive integer. Suppose that tw(O)r is non-empty,
and suppose that r(α) ∈ 1

mZ for all α ∈ R. Then wm = 1.

Proof. The idea is to extend scalars from F to Fm. We denote the valuation ring
in Fm by Om. Then we have

tw(O)r ⊂ twm(Om)mr,

which shows that twm(Om)mr is non-empty. Since mr takes integral values, the
previous result, applied to Fm rather than F , tells us that wm = 1. ¤

4.9. Equivalued strata. We say that a stratum tw(O)r is equivalued if the
function r is constant. We will now use Proposition 4.8.2 to reduce the problem of
classifying non-empty equivalued strata to a problem that has already been solved
by Springer [Spr74]. Because Springer works over a base-field of characteristic 0,
we temporarily do so too, just in this subsection. (It seems quite likely that our
usual hypothesis that |W | be invertible in k suffices, but we have not checked this
carefully.)
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We need to recall the following definition (due to Springer): an element w ∈ W

is said to be regular if there exists a non-zero eigenvector u of w in t that is regular
(in the sense that no root α vanishes on u). When w is regular of order l, Springer
[Spr74] shows that the eigenspace t(w, j) contains a regular element of t if and
only if j is relatively prime to l.

Proposition 4.9.1. Let a/b be a non-negative rational number written in least
common terms, so that b is positive and (a, b) = 1. Let r be the constant function
on R with value a/b, and let w ∈ W . Then tw(O)r is non-empty if and only if w

is regular of order b.

Proof. We use our usual notation. In particular l denotes the order of w. From
Proposition 4.8.2 we see that tw(O)r is non-empty if and only if b divides l and
the eigenspace t(w, al/b) contains a regular element of t. The proposition follows
from this and the result of Springer mentioned just before the statement of the
proposition. ¤

Let us now recall a beautiful result from Springer’s paper (see [Spr74, Theorem
4.2], as well as the remarks following the proof of that theorem): all regular
elements in W of a given order are conjugate. Combining this with the previous
proposition, we see that for a given a/b in least common terms (letting r denote,
as before, the constant function with value a/b), there are two possibilities. The
first is that there is no regular element of W having order b. In this case there
are no non-empty strata tw(O)r. The second is that there are regular elements
in W having order b, in which case there is a single conjugacy class of such
elements, and tw(O)r is non-empty if and only if w lies in this conjugacy class.
The somewhat surprising conclusion is that w is essentially redundant: given a/b,
there is at most one W -orbit of pairs (w, r) for which r is the constant function
with value a/b and tw(O)r is non-empty.

This raises an obvious question. Let r be a non-negative rational valued func-
tion on R, and let Wr denote the stabilizer of r in W . Suppose that tw(O)r and
tw′(O)r are both non-empty. Is it then true that w, w′ are conjugate under Wr?
This is a question, not a conjecture. We do not know whether to expect a positive
or negative answer.

We should also remark that Springer [Spr74] gives a list of the regular elements
in the Weyl group of each irreducible root system. Together with the proposition
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we just proved, this gives a classification of all non-empty equivalued strata. Take
G to be SL(n), for example. Then we get non-empty equivalued strata from pairs
(w, a/b) (with a/b in least common terms and b = o(w)) for which w is a power
of either an n-cycle or an (n− 1)-cycle.

5. Admissible subsets of X(O)

Before we describe the structure of the sets tw(O)r we need a few preliminary
remarks and definitions. Consider a scheme X of finite type over O. Then
for any positive integer N Greenberg’s functor [Gre61] (see appendix 16 for a
review) provides us with a scheme of finite type over k whose set of k-points is
X(O/εNO). In general the natural k-morphism X(O/εN+1O) → X(O/εNO) can
be complicated, but when X is smooth over O, as we will always assume in this
section, Greenberg [Gre63] shows that X(O/εN+1O) is an affine space bundle
over X(O/εNO) (more precisely, a torsor under the pullback to X(O/εNO) of
the tangent bundle on X(k)). In particular each X(O/εNO) is then smooth over
k, and the mapping X(O/εN+1O) → X(O/εNO) is open and surjective.

In case X is affine n-space An over O (for example, tw(O) or A(O), the two
main cases of interest in this paper), the situation is particularly simple, since
then X(O/εNO) is AnN

k , and X(O/εN+1O) → X(O/εNO) is a projection map
An(N+1)

k → AnN
k .

5.1. Admissible subsets. For any positive integer N we write pN : X(O) →
X(O/εNO) for the canonical surjection (induced of course by O ³ O/εNO). We
say that a subset Y of X(O) is N -admissible if Y = p−1

N pNY , in which case we
introduce YN as a convenient notation for pNY . If Y is N -admissible, it is clear
that Y is N ′-admissible for all N ′ ≥ N . We say that Y is admissible if there
exists N such that Y is N -admissible.

5.2. Topological notions for admissible subsets. Let Y be an admissible
subset of X(O). We say that Y is open (respectively, closed, locally closed,
irreducible) in X(O) if YN is open (respectively, closed, locally closed, irreducible)
in X(O/εNO) for some (equivalently, every) positive integer N such that Y is
N -admissible. (To see the equivalence of “some” and “every” use Lemma 13.1.2.)
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We define the closure Ȳ of Y in X(O) as follows: choose N such that Y is N -
admissible and put Ȳ = p−1

N ȲN , where ȲN of course denotes the closure of YN in
X(O/εNO); by Lemma 13.1.1(3) Ȳ is independent of the choice of N .

5.3. Non-singularity for admissible subsets. Now assume that Y is a locally
closed admissible subset of X(O). For N such that Y is N -admissible we regard
YN as a reduced scheme of finite type over k by putting the induced reduced
subscheme structure on the locally closed subset YN ⊂ X(O/εNO). We say that
Y is non-singular if YN is non-singular for some (equivalently, every) positive
integer N such that Y is N -admissible. (To see the equivalence of “some” and
“every” use Lemma 13.2.1.)

Now assume that Y is indeed non-singular, and let y ∈ Y . We want to define
the tangent space TY,y to Y at y. This will be an admissible k-linear subspace of
the tangent space TX(O),y (see 16.2) to X(O) at y.

To define TY,y we choose N so large that Y is N -admissible, and we denote by
ȳ the image of y in YN . Then the tangent space TYN ,ȳ is a linear subspace of the
tangent space TX(O/εNO),ȳ. Recall from 16.2 that there is a canonical surjection

(5.3.1) TX(O),y ³ TX(O/εNO),ȳ,

which identifies TX(O/εNO),ȳ with TX(O),y⊗O (O/εNO). We now define TY,y to be
the inverse image under (5.3.1) of TYN ,ȳ. It is easy to see that TY,y is independent
of the choice of N .

5.4. Smoothness for maps between admissible subsets. Now let f : X →
X ′ be an O-morphism between smooth schemes X, X ′ over O. For each positive
integer N Greenberg’s functor yields a k-morphism

fN : X(O/εNO) → X ′(O/εNO).

Suppose that Y, Y ′ are admissible locally closed subsets of X(O), X ′(O) re-
spectively, with the property that f(Y ) ⊂ Y ′, and let g : Y → Y ′ denote the
map obtained by restriction from f : X(O) → X ′(O). For each N such that both
Y, Y ′ are N -admissible, we obtain (by restriction from fN ) a k-morphism

gN : YN → Y ′
N .

As usual we put the induced reduced subscheme structures on YN , Y ′
N .
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For M ≥ N there is a commutative square

YM
gM−−−−→ Y ′

My
y

YN
gN−−−−→ Y ′

N

in which the vertical arrows (the obvious surjections) are smooth (by Lemma
13.2.1). It then follows from EGA IV (17.11.1) that if gM is smooth, then gN is
also smooth. However, if gN is smooth, it is not necessarily the case that gM is
smooth.

We say that Y is smooth over Y ′ (or that g : Y → Y ′ is smooth) if gM is
smooth for all M ≥ N . The remarks we just made show that this condition is
independent of the choice of N for which Y, Y ′ are both N -admissible.

It is evident from the definitions that if g : Y → Y ′ is smooth, and Y ′ is
non-singular, then Y is non-singular. Using Lemma 13.2.1 one checks easily that
if Y is smooth over Y ′, then g−1Z ′ is smooth over Z ′ for any admissible locally
closed subset Z ′ of X ′(O) such that Z ′ ⊂ Y ′.

Lemma 5.4.1. Now assume that both Y, Y ′ are non-singular. Define the differ-
ential dgy of g : Y → Y ′ at y ∈ Y to be the k-linear map dgy : TY,y → TY ′,f(y)

obtained by restricting the differential dfy : TX(O),y → TX′(O),f(y) to the tangent
space TY,y. Then Y is smooth over Y ′ if and only if the differential

(5.4.1) dgy : TY,y → TY ′,f(y)

is surjective for all y ∈ Y .

Proof. Let y ∈ Y and put y′ := f(y). For any integer M with M ≥ N we denote
by yM the image of y under the canonical surjection Y ³ YM . We do the same
for y′, so that y′M = gM (yM ). We then have a commutative square

(5.4.2)

TY,y −−−−→ TY ′,y′y
y

TYM ,yM
−−−−→ TY ′M ,y′M

in which the horizontal maps are differentials and the vertical maps are the canon-
ical surjections.
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The implication (⇐=) of the lemma is now clear, since (5.4.2) together with
the surjectivity of (5.4.1) shows that each gM is a submersion.

It remains to prove the reverse implication (=⇒). To simplify notation we put
L := TX(O),y (a free O-module of finite rank) and V := TY,y (an N -admissible k-
linear subspace of L), and we use parallel notation for Y ′. Then (5.4.2) becomes
the square

V
ψ−−−−→ V ′

y
y

V/εML
ψM−−−−→ V ′/εML′,

where ψ is the k-linear map obtained by restriction from the O-linear map ϕ :
L → L′ defined by ϕ := dfy.

Our assumption that Y is smooth over Y ′ tells us that ψM is surjective for all
M ≥ N , which just means that

(5.4.3) ϕV + εML′ = V ′

for all M ≥ N . Since V ′ ⊃ εNL′, we conclude that

εNL′ ⊂
⋂

M≥N

(ϕL + εML′) = ϕL.

(Here we used that ϕL is an O-submodule of L′.) Since V ⊃ εNL, we see that

ϕV ⊃ εNϕL ⊃ ε2NL′.

Taking M = 2N in (5.4.3), we conclude that ϕV = V ′, showing that (5.4.1) is
surjective, as desired. ¤

Corollary 5.4.2. Suppose that Y is smooth over Y ′. Then for each y ∈ Y the
F -linear map obtained by extension of scalars from the differential

(5.4.4) dfy : TX(O),y → TX′(O),f(y)

is surjective. In other words, Y is necessarily contained in the subset of X(F )
consisting of all points at which the F -morphism obtained by extension of scalars
from f : X → X ′ is smooth.

Proof. Put y′ := f(y). Choose N for which both Y, Y ′ are N -admissible. Write
y′N for the image of y′ under the canonical surjection Y ′ ³ Y ′

N , and let Z ′ denote
the preimage of y′N in Y ′. We have noted before that g−1Z ′ is smooth over Z ′.
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Since Z ′ is obviously non-singular, so too is g−1Z ′. The previous lemma, applied
to g−1Z ′ → Z ′, then tells us that the map

Tg−1Z′,y → TZ′,y′

is surjective, and hence that the image of the map (5.4.4) contains εNTX′(O),y′ .
Therefore the F -linear map obtained from (5.4.4) is surjective. ¤

5.5. Codimensions of admissible subsets. Now suppose that X(k) is irre-
ducible (which implies that X(O/εNO) is irreducible for every positive integer N).
When Y is an admissible, locally closed, irreducible subset of X(O), we define
its codimension in X(O) to be the codimension of YN in X(O/εNO) for any N

such that Y is N -admissible; it is easy to see that this notion of codimension is
independent of the choice of N .

6. Structure of the strata tw(O)r

We now continue the discussion of tw(O)r, retaining the notation used before.
In particular l denotes the order of w, and am denotes the linear subspace defined
in subsection 4.8. We now have the right vocabulary to discuss the structure of
tw(O)r.

In the next result we will need the stabilizer Ww,r of the pair (w, r); thus Ww,r

consists of elements x ∈ W such that xw = wx and xr = r. When w stabilizes
r (and hence the subspaces a0 ⊂ a1 ⊂ a2 ⊂ · · · of t), we may then consider the
eigenspaces

(t/aj+1)(w, j) := {v ∈ (t/aj+1) : wv = ζ−j
l v}.

Proposition 6.0.1. Assume that Y := tw(O)r is non-empty, which guarantees
in particular that r takes values in 1

lZ and that w stabilizes r. Let N be a positive
integer large enough that r(α) < N for all α ∈ R. Then the following conclusions
hold.

(1) The subset Y of tw(O) is N -admissible. Thus Y is the preimage of its
image YN in tw(O/εNO).

(2) The closure Ȳ of Y in tw(O) is the admissible k-linear subspace

{u ∈ tw(O) : valα(u) ≥ r(α) ∀α ∈ R}
of tw(O).
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(3) The subset Y ⊂ Ȳ is the complement of finitely many admissible k-linear
hyperplanes H1, . . . , Hm in Ȳ . Consequently Y is locally closed, irre-
ducible, and non-singular. The group Ww,r preserves Y , Ȳ and permutes
the hyperplanes H1, . . . , Hm in Ȳ ; moreover, Ww,r acts freely on YN .

(4) The codimension of Y in tw(O) is the same as that of the linear subspace
Ȳ , namely

dimk(tw(O)/Ȳ ) =
∞∑

j=0

dimk(t/aj+1)(w, j).

When w = 1, this expression for the codimension simplifies to

∞∑

j=0

j · dimk(aj+1/aj).

Proof. (1) Suppose that u ∈ tw(O)r and that u′ ∈ εN tw(O). For each root α we
must show that α(u + u′) has the same valuation as α(u). This is clear from our
hypothesis that r(α) < N .

(2) By Lemma 4.8.1 the non-emptiness of tw(O)r implies the non-emptiness
of t(w, j) ∩ a

]
j+1 for all j ≥ 0. Since t(w, j) ∩ a

]
j+1 is the complement of finitely

many hyperplanes in t(w, j) ∩ aj+1, we see that the closure of t(w, j) ∩ a
]
j+1 is

t(w, j) ∩ aj+1. Lemma 4.8.1 then implies that the closure of tw(O)r is the set of
all u =

∑∞
j=0 ujε

j
E ∈ tw(O) such that uj ∈ aj+1 for all j ≥ 0. On the other hand

u lies in

{u ∈ tw(O) : valα(u) ≥ r(α) ∀α ∈ R}

if and only if α(uj) = 0 whenever j/l < r(α), and this happens if and only if
uj ∈ aj+1 (by the very definition of aj+1).

(3) The proof of (2) shows that Y is the complement of finitely many admissible
hyperplanes in Ȳ . The freeness of the action of Ww,r on YN follows from the
freeness (see 4.7) of the action of Ww on the larger set tw(O/εNO)r<N . The
remaining statements are clear.

(4) The description of Ȳ given in (2) shows that

dimk(tw(O)/Ȳ ) =
∞∑

j=0

dimk t(w, j)/(t(w, j) ∩ aj+1).
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Since the order of w is invertible in k, we see that t(w, j)/(t(w, j) ∩ aj+1) can be
identified with (t/aj+1)(w, j). (In other words, the image under t ³ t/aj+1 of
the ζ−j

l -eigenspace of w on t is the ζ−j
l -eigenspace of w on t/aj+1.)

Finally, when w = 1, we have (t/aj+1)(w, j) = t/aj+1, whose dimension is∑∞
j′=j+1 dimk(aj′+1/aj′). This proves the last statement in (4). ¤

7. Strata in A(O)′

We now stratify A(O)′. We obtain the desired strata in A(O)′ as images of the
strata tw(O)r that we have already studied.

7.1. Definition of the map fw : tw(O) → A(O). Let w ∈ W . The map
t(OE) → A(OE) on OE-points induced by our morphism f restricts to a map

fw : tw(O) → A(O).

Recall that the centralizer Ww (of w in W ) acts on tw(O). This action preserves
the fibers of the map fw.

In fact fw comes from a morphism of schemes over O that will also be denoted
simply by fw : tw → AO, with AO denoting the O-scheme obtained from A by
extending scalars from k to O. This is best understood using the point of view
(see 4.4) that tw is the fixed point scheme of a Z/lZ-action on ROE/Ot. (We again
remind the reader that fixed point schemes are discussed in appendix 15.)

By ROE/OA we will of course mean the scheme obtained from A by extending
scalars from k to OE , and then (Weil) restricting scalars from OE to O. Thus

(ROE/OA)(A) = A(A⊗O OE)

for any O-algebra A.

As in subsection 4.4 the automorphism τE of OE/O induces an automorphism
τE of ROE/OA of order l, so that we obtain an action of Z/lZ on ROE/OA. The
fixed point scheme of Z/lZ on ROE/OA is AO, as one sees from the (easy) fact
that A is the set of fixed points of idA⊗τE on A ⊗O OE for any O-algebra (or
even O-module) A.
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Starting from f : t → A, then extending scalars to OE , then restricting scalars
to O, we get an O-morphism

R(f) : ROE/Ot → ROE/OA

which intertwines the automorphism wτE of ROE/Ot with the automorphism τE

of ROE/OA, and hence induces the desired O-morphism fw upon taking fixed
points under Z/lZ.

7.2. Fibers of tw(O)′ → A(O)′. Recall that the centralizer Ww acts on tw(O),
preserving the fibers of fw. We claim that Ww acts simply transitively on every
non-empty fiber of the restriction of fw to tw(O)′. Indeed, let u, u′ ∈ tw(O)′ and
suppose that fw(u) = fw(u′). Then there exists unique x ∈ W such that xu = u′.
Using that u, u′ are fixed by wτE , we see that

wxτE(u) = u′ = xwτE(u)

and hence that wx = xw, as claimed.

7.3. Definition of the strata A(O)s in A(O)′. Consider a pair (w, r) ∈ W×R.
We denote by A(O)w,r the image of tw(O)r under the map fw. It is clear that
A(O)w,r depends only on the W -orbit of (w, r) (with, as usual, W acting on itself
by conjugation). Thus it is often better to index the strata by the set S of orbits
of W on W × R. In other words, given s ∈ S, represented by a pair (w, r), we
will often write A(O)s instead of A(O)w,r.

Since A(O)s is by definition obtained as the image of tw(O)r, Proposition 4.8.2
tells us when A(O)s is non-empty.

Lemma 7.3.1. The set A(O)′ is the disjoint union of the strata A(O)s.

Proof. Let c ∈ A(O)′. Consider the fiber over c of the map t(F̄ ) → A(F̄ ) induced
by our morphism f : t → A. (Recall that for any k-algebra A we have t(A) =
t ⊗k A.) The Weyl group W acts simply transitively on this fiber. Moreover,
since freg is étale, the fiber is actually contained in the subset t(Fsep) of t(F̄ ).
The action of Gal(Fsep/F ) on t(Fsep) preserves the fiber because c is defined over
F (and even over O).

Now choose an element u in the fiber. For any element τ ∈ Gal(Fsep/F ) there
exists a unique wτ ∈ W such that wττ(u) = u, and τ 7→ wτ is a homomorphism
from Gal(Fsep/F ) to W . Since |W | is invertible in k, this homomorphism factors
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through the quotient Gal(Ftame/F ) of Gal(Fsep/F ), and in fact we will now simply
regard τ 7→ wτ as a homomorphism from Gal(Ftame/F ) to W . Recall from
before the topological generator τ∞ of Gal(Ftame/F ). Putting w := wτ∞ , we
have associated an element w ∈ W to the element u in the fiber. As usual we
write l for o(w) and E for Fl.

It is clear from the definitions that u ∈ tw(F ) and that u 7→ c under our mor-
phism f . The valuative criterion of properness, applied to the proper morphism
f and the valuation ring OE , implies that u ∈ t(OE) and hence that u ∈ tw(O).
Define r ∈ R by r(α) := valα(u). Then u lies in the stratum tw(O)r, and there-
fore c lies in the stratum A(O)s. Thus we have shown that our strata exhaust
A(O).

It remains to establish disjointness of our strata. Suppose that u1 ∈ tw1(O)r1

and that u2 ∈ tw2(O)r2 . Suppose further that u1 and u2 have the same image
c in A(O). We must show that (w1, r1) and (w2, r2) are in the same W -orbit.
This is easy: there exists a unique element x ∈ W such that xu1 = u2, and this
element x transforms (w1, r1) into (w2, r2). ¤

Lemma 7.3.2. We have

f−1
w (A(O)s) =

∐

x∈Ww/Ww,r

tw(O)xr,

where, as usual, Ww,r denotes the stabilizer in W of the pair (w, r), and s denotes
the W -orbit of (w, r). Moreover, Ww,r acts simply transitively on each fiber of
tw(O)r ³ A(O)s.

Proof. This follows from the discussion in subsection 7.2 and the obvious equality
(valid for any x ∈ Ww)

tw(O)xr = xtw(O)r.

¤

8. Structure of the strata A(O)s in A(O)′

In this section, after introducing a couple of definitions, we are going to formu-
late Theorem 8.2.2, which describes the structure of the strata A(O)s in A(O)′.
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8.1. Definitions of δr and cw. Let s ∈ S be the W -orbit of the pair (w, r).
Let us assume that the stratum A(O)s is non-empty (equivalently: tw(O)r is
non-empty). As usual we put l := o(w) and E := Fl.

So far we have not used the F -torus Tw that goes along with tw(F ). This torus
splits over E and is obtained by using w to twist the (split) torus over F obtained
by extension of scalars from T . In particular we have

Tw(F ) = {t ∈ T (E) : wτE(t) = t},
and the Lie algebra of Tw is canonically isomorphic to tw(F ).

There is a canonical G(F )-conjugacy class of F -embeddings Tw → G (with
image a maximal F -torus in G). This is well-known (perhaps see [GKM06] for
a rather concrete presentation of this material). Fixing such an embedding, we
may identify tw(F ) with a Cartan subalgebra in g(F ). For any regular element
u ∈ tw(F ) the centralizer in g(F ) of u is equal to tw(F ), and we have the usual
non-zero scalar ∆(u) in F defined by

∆(u) := det(ad(u); g(F )/tw(F )).

Clearly this determinant is simply the product of the values on u of all the roots
of our Cartan subalgebra. Therefore, if u ∈ tw(O)r, we have

val∆(u) = δr,

where
δr :=

∑

α∈R

r(α).

Note that δr is a non-negative integer. (It is clearly non-negative, and our ex-
pression for it as the valuation of ∆(u) ∈ F× shows that it is an integer. We
could have defined δr without this digression concerning Tw, but then it would
not have been clear that δr is an integer.)

Since r(−α) = r(α) for all α ∈ R (because of our assumption that tw(O)r be
non-empty), we also have

δr = 2
∑

α∈R+

r(α).

We need some more notation before we state the next result. We denote by tw

the set of fixed points of w on t, and we denote by cw the integer

cw := dimk t− dimk tw.
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Equivalently (because of our hypothesis on the characteristic of our base field),
cw is the dimension of T minus the dimension of the maximal F -split torus in T .

8.2. Valuation of the Jacobian of fw. Recall the map fw : tw(O) → A(O),
which, as we saw in 7.1, comes from a morphism of schemes over O. Our chosen
basic invariants allow us to identify A with An, and by choosing an O-basis of
the free O-module tw(O), we may also identify the O-scheme tw with An

O.

These identifications allow us to think of the differential (dfw)u of fw at u ∈
tw(O) concretely as a square matrix Du ∈ MnO, as in 10.1. In the next lemma
we will compute the valuation of detDu for u ∈ tw(O)r, as this will be needed
in the proof of Theorem 8.2.2. Observe that making a different choice of O-basis
for tw(O) does not affect the valuation of detDu, so that it makes sense to write
val det(dfw)u.

Lemma 8.2.1. For any u ∈ tw(O)r the non-negative integer val det(dfw)u is
equal to (δr + cw)/2.

Proof. We can calculate this determinant after extending scalars from O to OE .
Then we are dealing with the OE-linear map

idE ⊗(dfw)u : OE ⊗O tw(O) → On
E ,

which is none other than the restriction of

(df)u : t(OE) → On
E

to the subspace OE ⊗O tw(O) of t(OE). We conclude that

val det(dfw)u = val det(df)u +
1
l

dimk
t(OE)

OE ⊗O tw(O)
.

In order to prove the lemma it is enough to check that

(8.2.1) val det(df)u = δr/2

and that

(8.2.2) dimk
t(OE)

OE ⊗O tw(O)
= lcw/2.

Now (8.2.1) follows from (2.3.1), and (8.2.2) is [Bez96, Lemma 3]. (Bezrukavnikov
treats simply connected groups over C, but his proof goes through in our situation.
For this we just need to show that the representation of W on t is isomorphic to
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its own contragredient. Since |W | is invertible in k, it is enough to check that the
W -modules t and t∗ have the same character, and this is clear, since t is obtained
by tensoring X∗(T ) with k, so that all character values lie in the prime field.) ¤

Let us introduce one more bit of notation before stating the next theorem. We
put e(w, r) := (δr + cw)/2. It follows from Lemma 8.2.1 that e(w, r) is an integer
(non-negative, of course).

Theorem 8.2.2. Let s ∈ S be the W -orbit of the pair (w, r). Let us assume that
the stratum A(O)s is non-empty. Then we have the following conclusions.

(1) The subset A(O)s of A(O) is admissible; more precisely, it is N -admissible
whenever N > 2e(w, r). Moreover it is locally closed, irreducible and non-
singular.

(2) The codimension of A(O)s in A(O) is given by

(8.2.3) d(w, r) + e(w, r),

where d(w, r) is the codimension of tw(O)r in tw(O).
(3) tw(O)r is smooth over A(O)s. Here we are using the notion of smoothness

discussed in 5.4.

Proof. This will be proved in section 11. ¤

9. Relation between the strata tw(O)r and A(O)s

9.1. Set-up for this section. Consider a non-empty stratum tw(O)r, and let s

again denote the W -orbit of the pair (w, r). We abbreviate e(w, r) to e. We now
have a good understanding of the strata tw(O)r and A(O)s, but we would like to
supplement this by analyzing the smooth morphism

tw(O)r → A(O)s

obtained by restriction from fw.

To do so we choose N large enough that N > 2e, and use the fact that both
tw(O)r and A(O)s are N -admissible (see Proposition 6.0.1 and Theorem 8.2.2).
(For additional details see the first few lines of the proof of Theorem 8.2.2, where
it is shown that tw(O)r is even (N − e)-admissible.) In Theorem 9.1.1 we will
gain an understanding of

tw(O)r → A(O)s
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by analyzing the smooth morphism

tw(O/εNO)r → A(O/εNO)s.

Here we have written tw(O/εNO)r for the image of tw(O)r in tw(O/εNO). Simi-
larly we have written A(O/εNO)s for the image of A(O)s in A(O/εNO).

Theorem 9.1.1 makes use of a rank e vector bundle Ṽ over A(O/εNO)s that
will be constructed in the course of proving the theorem. This vector bundle acts
on tw(O/εNO)r over A(O/εNO)s. The group Ww,r also acts on tw(O/εNO)r over
A(O/εNO)s. The two actions commute, so the group scheme H := Ww,r × Ṽ

(product over k) over A(O/εNO)s also acts on tw(O/εNO)r over A(O/εNO)s.

Theorem 9.1.1. The space tw(O/εNO)r over A(O/εNO)s is a torsor under
H. In particular we can factorize the morphism tw(O/εNO)r → A(O/εNO)s as
the composition of two morphisms, one of which is a bundle of affine spaces of
dimension e, and the other of which is an étale covering that is Galois with group
Ww,r. The factorization can be done in either order.

Proof. This will be proved in section 12. ¤

10. Behavior of admissibility under polynomial maps f : On → On

In this section we will establish some technical results needed for the proofs of
the theorems we have stated. It is the morphism fw : tw(O) → A(O) that we need
to understand, but it is conceptually simpler to work in the more general context
of polynomial maps f : On → On. The key Lemma 10.3.1, a generalization
of Hensel’s lemma, is a variant of a special case of one of the main results of
Greenberg’s paper [Gre66].

10.1. Set-up for this section. Consider the polynomial ring A = O[X1, . . . , Xn].
Thus Spec A is affine n-space An over O. In this section we study a morphism
f : An → An of schemes over O. Thus f is given by an n-tuple f = (f1, . . . , fn) of
elements in A.

We write L for On, the set of O-valued points of An. We are mainly interested
in the map

f : L → L

on O-valued points induced by our morphism f : An → An.
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We regard the differential df of f concretely as an element of MnA, the ring
of square matrices of size n with entries in A. Of course the matrix entries are
the partial derivatives ∂fj/∂Xi. We denote by Dx the value of df at x ∈ L; thus
Dx ∈ MnO and Dx can also be viewed as an O-linear map Dx : L → L. It is
evident that the reduction modulo εN of Dx depends only on x modulo εN . (Here
N is any non-negative integer.)

We put g = det(df) ∈ A; clearly g(x) = det Dx for x ∈ L. The reduction
modulo εN of g(x) depends only on x modulo εN . For x ∈ L we write d(x) for
the valuation of g(x). Thus d(x) is a non-negative integer when g(x) 6= 0, and
d(x) = +∞ when g(x) = 0.

10.2. The linear case. The situation is of course especially simple when our
morphism f is linear. In this subsection we suppose that f : L → L is given
by multiplication by a matrix A ∈ MnO whose determinant is non-zero, and we
put d := val det A. Thus the O-module L/AL has length d, hence is killed by εd,
which is to say that

(10.2.1) εdL ⊂ AL.

Lemma 10.2.1. Let Y be a subset of L that is admissible, locally closed, ir-
reducible, non-singular of codimension a in L. Then AY is admissible, locally
closed, irreducible, non-singular of codimension a + d in L.

Proof. Easy. ¤

For any non-negative integer N we denote by AN the reduction of A modulo
εN . We view AN as an O/εNO-linear map AN : L/εNL → L/εNL. In the next
lemma we will see that for N ≥ d the kernel of AN is always d-dimensional and
is even independent of N , up to canonical isomorphism. The kind of canonical
isomorphism that will come up is of the following type: for any integers M, N

with M ≤ N , there is a canonical isomorphism L/εN−ML ∼= εML/εNL, given of
course by multiplication by εM .

Lemma 10.2.2. Suppose that N ≥ d. Then ker(AN ) is d-dimensional and is
contained in the subspace εN−dL/εNL of L/εNL. Moreover, under the canon-
ical isomorphism εN−dL/εNL ∼= L/εdL, the subspace ker(AN ) goes over to the
subspace ker(Ad).
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Proof. First we note that

dimker(AN ) = dim cok(AN ) = dim L/AL = d.

Here we used (10.2.1) and N ≥ d to see that AL ⊃ εNL.

Since det(A) 6= 0, we may consider the inverse A−1 ∈ MnF of A. From (10.2.1)
we obtain

A−1εNL ⊂ εN−dL ⊂ L.

Therefore

ker(AN ) = A−1εNL/εNL ∼= A−1εdL/εdL = ker(Ad)

and

ker(AN ) = A−1εNL/εNL ⊂ εN−dL/εNL,

as desired. ¤

10.3. Solving the equation f(x′) = y by successive approximations. As
mentioned before, the next lemma is a variant of results of Greenberg. Since the
precise statement we need is not stated explicitly in [Gre66], we thought it best
to write out in full our adaptation of Greenberg’s arguments.

Lemma 10.3.1. Let x ∈ L and assume that g(x) 6= 0. Let M be an integer such
that M > d(x). Then

f(x + εML) ⊃ f(x) + εM+d(x)L.

More precisely

f(x + εML) = f(x) + Dx(εML).

Proof. In this proof we abbreviate d(x) to d. We begin with two observations.
The first is that

(10.3.1) εdL ⊂ DxL,

an instance of (10.2.1). The second is that

(10.3.2) f(x + h) ≡ f(x) + Dxh mod ε2ML

for all h ∈ εML, as one sees from the Taylor expansion of f about the point x.
(In fact (10.3.2) is valid for all x ∈ L and all non-negative M ; the hypothesis
M > d is not needed at this point.)
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It follows from (10.3.1) that εM+dL ⊂ Dx(εML); therefore the first assertion
of the lemma follows from the second. As for the second, the inclusion

f(x + εML) ⊂ f(x) + Dx(εML)

follows from (10.3.2) and the fact that ε2ML ⊂ Dx(εML), a consequence of
(10.3.1) and our hypothesis that M > d.

It remains only to prove the reverse inclusion, so let y ∈ f(x) + Dx(εML). We
need to find an element x′ ∈ x + εML such that f(x′) = y. We will obtain x′ as
the limit of a sequence x = x0, x1, x2, . . . in L constructed inductively so as to
satisfy the two conditions

(10.3.3) xi − xi−1 ∈ εM+i−1L,

(10.3.4) y − f(xi) ∈ εM+d+iL

for all i ≥ 1. Some care is needed, because the first step is slightly different from
all the remaining ones.

We begin by constructing x1. Write y as f(x) + Dxh with h ∈ εML, and then
put x1 := x + h. Clearly (10.3.3) holds, and (10.3.4) follows from (10.3.2) and
the hypothesis that M > d.

Now suppose that i > 1 and that we have already constructed x1, x2, . . . , xi−1

satisfying (10.3.3) and (10.3.4). From (10.3.3) it follows that

(10.3.5) xi−1 − x ∈ εML.

In particular g(xi−1) ≡ g(x) mod εMO, and since M > d, we conclude that
d(xi−1) = d. Now applying (10.3.1) to xi−1 rather than x, we see that

εM+d+i−1L ⊂ Dxi−1(ε
M+i−1L).

Using this together with (10.3.4) for i− 1, we see that there exists hi ∈ εM+i−1L

such that

(10.3.6) Dxi−1hi = y − f(xi−1).

Put xi := xi−1 + hi. It is clear that (10.3.3) holds. It follows from (10.3.2) (with
M replaced by M + i− 1 and x replaced by xi−1) and (10.3.6) that

f(xi) ≡ y mod ε2(M+i−1)L.

This yields (10.3.4) since 2(M + i− 1) ≥ M + d + i (use that M > d and i > 1).
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It is clear from (10.3.3) that the sequence xi has a limit x′. It follows from
(10.3.5) that x′ ∈ x + εML. Finally, we see from (10.3.4) that f(x′) = y. ¤

10.4. Images under f of admissible subsets of L. Admissibility was dis-
cussed earlier in the context of a smooth scheme X over O. We are now inter-
ested in the case X = An. Thus X(O) = L, and we have the notion of admissible
subset in L. Moreover we continue with f : L → L as in the previous subsection.

Proposition 10.4.1. Let M and e be non-negative integers, and let Z be an
M -admissible subset of L such that d(z) ≤ e for all z ∈ Z. Then the subset f(Z)
is N -admissible, where N is any positive integer large enough that N > 2e and
N ≥ M + e.

Proof. This follows immediately from Lemma 10.3.1, applied not to the integer
M , but to the integer N − e. ¤

10.5. Fibers of fN : L/εNL → L/εNL. Let N be a positive integer. Our given
morphism f : An → An induces a map

fN : L/εNL → L/εNL

on O/εNO-valued points. There is a commutative square

L
f−−−−→ L

πN

y
yπN

L/εNL
fN−−−−→ L/εNL

in which πN is the canonical surjection L → L/εNL.

We are interested in the fibers of fN . In the linear case of subsection 10.2,
as long as N ≥ d, all fibers of AN are translates of ker(AN ), a vector space of
dimension d that is essentially independent of N (see Lemma 10.2.2). Something
similar happens in the non-linear case, with the role of d being played by d(x),
but since d(x) is no longer constant, the situation is necessarily more complicated.
In order to analyze the fiber f−1

N (ȳ) over a point ȳ ∈ L/εNL we will need to make
an assumption (in part (2) of the next lemma) ensuring that d(x) < N/2 for all
points x in π−1

N (f−1
N (ȳ)).

We will make use of the following definitions. For any non-negative integer e

we denote by L≤e the subset of L consisting of all points x for which d(x) ≤ e.
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The subset L≤e of L is obviously (e+1)-admissible. For x ∈ L≤e and any integer
N such that N ≥ e we may apply Lemma 10.2.2 to the differential Dx to conclude
that ker(Dx,N ) has dimension d(x), is contained in εN−eL/εNL ∼= L/εeL, and is
independent of N when viewed as a subspace of L/εeL. For x ∈ L≤e we define

Vx := ker(Dx,e)

and we then have canonical isomorphisms

Vx
∼= ker(Dx,N )

for N ≥ e.

Now suppose that M > e. Since L≤e is M -admissible, it is the preimage of its
image (L/εML)≤e in L/εML. Since Dx,e depends only on πe(x) ∈ L/εeL, so too
does the linear subspace Vx of L/εeL, so that for any z ∈ (L/εML)≤e we get a
well-defined linear subspace Vz of L/εeL by putting Vz := Vx for any x ∈ L such
that πM (x) = z.

Lemma 10.5.1. Let e,N be non-negative integers satisfying N > 2e. Put M :=
N − e, noting that N ≥ M > e. Let y ∈ L and put ȳ := πN (y) ∈ L/εNL.

(1) For any x ∈ f−1(y) ∩ L≤e the d(x)-dimensional affine linear subspace

Ax := πN (x) + εMVπM (x)

of L/εNL is contained in f−1
N (ȳ). Here εMVπM (x) is the d(x)-dimensional

linear subspace of εML/εNL corresponding to VπM (x) under the canonical
isomorphism εML/εNL ∼= L/εeL. Since the image of εMVπM (x) in L/εML

is 0, the image of Ax in L/εML is the single point πM (x).
(2) If f−1

N (ȳ) is contained in (L/εNL)≤e, then f−1(y) is finite and

f−1
N (ȳ) =

⋃

x∈f−1(y)

Ax.

(3) If the composed map

(10.5.1) f−1(y) ↪→ L
πM−−→ L/εML

is injective, then Ax, Ax′ are disjoint whenever x, x′ are distinct points
in f−1(y).
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Proof. (1) Let x ∈ f−1(y). Since N > 2e implies 2M ≥ N , equation (10.3.2) tells
us that

(10.5.2) f(x + h) ≡ f(x) + Dxh mod εNL

for all h ∈ εML. Using the canonical isomorphism εML/εNL ∼= L/εeL, the
restriction of Dx,N to εML/εNL becomes identified with Dx,e, whose kernel is by
definition Vx = VπM (x). Therefore Ax is contained in f−1

N (ȳ).

(2) The morphism f is étale off the closed subscheme defined by the vanishing
of the Jacobian g. It follows that for any y′ ∈ L there are only finitely many
points x in the fiber f−1(y′) for which g(x) 6= 0. Thus, the hypothesis made in
(2) ensures the fiber f−1(y) is indeed finite.

Any element x̄′ ∈ f−1
N (ȳ) is represented by an element x′ ∈ L such that

(10.5.3) f(x′) ≡ y mod εNL.

Our assumption that f−1
N (ȳ) is contained in (L/εNL)≤e tells us that d(x′) ≤ e.

Since N > 2e, Lemma 10.3.1 says that there exists h ∈ εML such that f(x′−h) =
y.

Put x := x′ − h. Then x ∈ f−1(y) and we claim that x̄′ ∈ Ax. Indeed, from
(10.5.2) we see that

(10.5.4) f(x′) = f(x + h) ≡ f(x) + Dxh mod εNL.

Since f(x) = y and f(x′) ≡ y mod εNL, (10.5.4) implies that Dxh ∈ εNL,
showing that h represents an element in ker(Dx,N ) = εMVπM (x). Therefore x̄′ ∈
Ax.

(3) We have already noted that all points in Ax have the same image as x in
L/εML. The injectivity of (10.5.1) then assures the disjointness of Ax, Ax′ when
x, x′ are distinct points in f−1(y). ¤

10.6. The vector bundle V d. We retain all the notation of the previous sub-
section. In particular (for M > e) at each point z ∈ (L/εML)≤e we have the
vector space Vz, whose dimension depends on z. Now fix a non-negative integer
d such that d ≤ e and consider the (e + 1)-admissible subset Ld of L consisting
of all elements x such that d(x) = d. Clearly Ld is contained in L≤e. Since Ld is
also M -admissible, it is the preimage of its image (L/εML)d in L/εML. For each
point z ∈ (L/εML)d the vector space Vz is d-dimensional.
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We claim that we can assemble the vector spaces Vz into a rank d vector bundle
V d over (L/εML)d. Indeed, we just need to recall the general principle that, given
a homomorphism of vector bundles over a scheme Y , and given a locally closed
subset Z of Y over which the homomorphism has constant rank, the pointwise
kernels of the homomorphism assemble into a vector bundle over Z. Here we
are applying this general principle to the differential of fM : L/εML → L/εML,
viewed as a homomorphism from the tangent bundle of L/εML to itself.

Note that the particular choice of M is unimportant, which is why we have
omitted it from the notation. The smallest possible choice is e + 1, so we get a
vector bundle V d over (L/εe+1L)d, and its pullback by (L/εML)d ³ (L/εe+1L)d

gives us the vector bundle V d for M .

11. Proof of Theorem 8.2.2

Among other things, we must show that A(O)s is N -admissible when N > 2e

(abbreviating e(w, r) to e). This follows from Proposition 10.4.1, once we note
that the valuation of the Jacobian equals e on tw(O)r (see Lemma 8.2.1), and also
that tw(O)r is (N − e)-admissible (use Proposition 6.0.1). Here we used the non-
emptiness of our stratum to conclude that for any root α we have r(−α) = r(α)
and hence

r(α) ≤ δr/2 ≤ e.

The rest of the proof is organized as follows. First we will prove the theorem
in the case when w = 1. Then we will deduce the general case from this special
case.

11.1. Proof of Theorem 8.2.2 when w = 1. We begin with some remarks
comparing the strata AG(O)s for our reductive group G with those for its derived
group Gder. (We write AG rather than A to emphasize the role of G.) We may
then assume that G is semisimple whenever it is convenient to do so.

Put z := {u ∈ t : α(u) = 0 ∀α ∈ R} and write tder for the Lie algebra of
the maximal torus Tder := T ∩ Gder of Gder. Since the index of connection of
R divides |W | (see [Bou02, Ch. VI, no. 2.4, Prop. 7]) and is therefore invertible
in k, we have t = z ⊕ tder. In fact, the simple coroots (for any choice of such)
yield a k-basis for tder, and the simple roots yield a k-basis for the k-dual of tder.
Dividing by W to form adjoint quotients, we find that AG(O) = z(O)×AGder

(O).
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The index set S for the strata is the same for Gder as it is for G, and for s ∈ S we
have AG(O)s = z(O)× AGder

(O)s. Therefore, when studying the strata AG(O)s,
it is harmless to assume that G is semisimple. (For example, the codimension of
AGder

(O)s in AGder
(O) is the same as that of AG(O)s in AG(O).)

In rest of this subsection we will always be taking w = 1. Since we are only
interested in non-empty strata, we only consider functions r on R taking values
in the non-negative integers, and satisfying the property that

Rm := {α ∈ R : r(α) ≥ m}
be Q-closed for all m ≥ 0. In this subsection we write simply A(O)r for the
stratum in A(O) obtained as the image of t(O)r. Of course A(O)xr = A(O)r for
all x ∈ W .

The theorem will be a simple consequence of the next two lemmas, the first
involving scaling by εm, the second involving reduction to a Levi subgroup.

In the first of the two lemmas we will need the following additional notation.
For a non-negative integer m we write r+m for the function on R whose value on
a root α is r(α) + m. Also we denote by di the degree of the i-th basic invariant
fi.

Lemma 11.1.1. Suppose that G is semisimple. Suppose further that A(O)r is
locally closed, irreducible, non-singular of codimension a in A(O). Then A(O)r+m

is locally closed, irreducible, non-singular of codimension a + m(d1 + · · ·+ dn) in
A(O).

Proof. Since G is semisimple, we have t(O)r+m = εmt(O)r. Therefore A(O)r+m =
hA(O)r, where h is the O-linear map from L to L defined by (x1, . . . , xn) 7→
(εmd1x1, . . . , ε

mdnxn). Now use Lemma 10.2.1. ¤

The second lemma involves the Levi subgroup M of G containing T whose root
system RM is equal to the Q-closed subset R1 = {α ∈ R : r(α) ≥ 1} of the root
system R. We need to consider A(O) for both G and M , so to avoid confusion
we now write AG(O) and AM (O). We write rM for the function on RM obtained
by restriction from r.

Lemma 11.1.2. Suppose that AM (O)rM is locally closed, irreducible, non-singular
of codimension a in AM (O). Then AG(O)r is locally closed, irreducible, non-
singular of codimension a in AG(O).
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Proof. We write WM for the Weyl group of M . We will also need the subgroup
W ′

M of W defined by

W ′
M := {w ∈ W : w(RM ) = RM}.

Note that WM is a normal subgroup of W ′
M . Since AM is obtained by dividing t

by the action of the subgroup WM of W , there is an obvious surjective morphism

g : AM → AG,

and this yields a map

g : AM (O) → AG(O).

Note that W ′
M acts on AM , and that the induced action on AM (O) preserves the

fibers of g.

Now define a polynomial function Q on t by

Q =
∏

α∈R\RM

α.

Since Q is WM -invariant (even W ′
M -invariant), we may also regard it as an element

of the ring of regular functions on the affine variety AM . We denote by A[
M the

open k-subscheme of AM obtained by removing the locus where Q vanishes.
Clearly A[

M is stable under W ′
M . It follows from the discussion in subsection 2.3

that Q is the square of the Jacobian of g (up to some non-zero scalar in our base
field k), and hence that the restriction g[ of g to A[

M is étale.

Note that A[
M (O) is the open, admissible (in fact 1-admissible) subset of

AM (O) consisting of all points u ∈ AM (O) such that Q(u) is a unit in O. It
follows easily from the definitions that

(11.1.1) (g[)−1(AG(O)r) =
∐

x∈WM\W ′
M

(
AM (O)xrM ∩ A[

M (O)
)

and

(11.1.2) g[
(
AM (O)rM ∩ A[

M (O)
)

= AG(O)r.

We claim that for each x ∈ W ′
M the subset AM (O)xrM ∩ A[

M (O) is locally
closed, irreducible, non-singular of codimension a in A[

M (O). Indeed, using the
action of W ′

M on AM (O), we may assume x = 1, and then AM (O)rM ∩ A[
M (O),

being open in AM (O)rM , inherits all the stated properties from AM (O)rM . (For
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irreducibility we need to remark that AM (O)rM ∩ A[
M (O) is non-empty, because

by (11.1.2) it maps onto the non-empty set AG(O)r.)

Next we claim that (g[)−1(AG(O)r) is locally closed and non-singular of codi-
mension a in A[

M (O). Using (11.1.1) and the fact that each set AM (O)xrM ∩
A[

M (O) is locally closed and non-singular of codimension a, we see that it is
enough to show that when x1, x2 are distinct in WM\W ′

M , the closure of AM (O)x1rM

in AM (O) does not meet AM (O)x2rM , and this follows from Lemma 11.1.3, ap-
plied to M rather than G.

Now choose a positive integer N so large that AG(O)r is N -admissible, and
consider the commutative square

A[
M (O)

g[

−−−−→ AG(O)y
y

A[
M (O/εNO) h−−−−→ AG(O/εNO),

in which h is obtained from g[ by applying Greenberg’s functor and is therefore
étale (see 16.1). Since AG(O)r is N -admissible, it is the preimage of its image,
call it AG(O/εNO)r, in AG(O/εNO). Since h−1(AG(O/εNO)r) has preimage
(g[)−1(AG(O)r) in A[

M (O), we conclude that h−1(AG(O/εNO)r) is locally closed
and non-singular of codimension a in A[

M (O/εNO). Since h is étale, it is an
open map, and moreover we know from (11.1.2) that AG(O/εNO)r lies in the
image of h. It then follows from Lemmas 13.1.2(1) and 13.2.1 that AG(O/εNO)r

is locally closed and non-singular. Since, again by (11.1.2), AG(O/εNO)r is the
image of an irreducible subset of A[

M (O/εNO), we conclude that AG(O/εNO)r is
irreducible. Since h is étale, the k-schemes AG(O/εNO)r and h−1(AG(O/εNO)r)
have the same dimension. Moreover AG(O/εNO) and A[

M (O/εNO) have the same
dimension, so the codimension of AG(O/εNO)r in AG(O/εNO) is the same as that
of h−1(AG(O/εNO)r) in A[

M (O/εNO), namely a. The lemma is proved. ¤

Here is the lemma we needed in the previous proof. It involves two functions
r, r′ on R taking values in the non-negative integers. As usual we assume that all
the sets

Rm = {α ∈ R : r(α) ≥ m}
R′

m = {α ∈ R : r′(α) ≥ m}
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are Q-closed.

Lemma 11.1.3. Assume that |Rm| = |R′
m| for all m ≥ 0. If AG(O)r meets the

closure of AG(O)r′ in AG(O), then r′ ∈ Wr.

Proof. Recall from before the integer

δr =
∑

α∈R

r(α).

Our assumption that |Rm| = |R′
m| for all m ≥ 0 means that r,r′ have the same

set (with multiplicities) of |R| values. In particular δr = δr′ .

In this proof we will be using the scalar product

(r1, r2) :=
∑

α∈R

r1(α)r2(α),

which is none other than the usual Euclidean inner product on RR. Since, when
viewed as vectors in RR, r and r′ are permutations of each other, we have

(r, r) = (r′, r′).

Pick N ≥ 0 such that r(α) ≤ N for all α ∈ R. Define polynomials Qr, Pr on t

by

Qr :=
∏

α∈R

αN−r(α)

Pr :=
∑

x∈W/Wr

Qxr.

Since Pr has been defined so as to be W -invariant, it can also be thought of as a
regular function on AG.

Suppose that u ∈ t(O)r. Then

valQxr(u) = Nδr − (xr, r).

Since (xr, xr) = (r, r), the Cauchy-Schwarz inequality implies that (xr, r) < (r, r)
when xr 6= r. Therefore

valPr(u) = Nδr − (r, r).

Now suppose that u′ ∈ t(O)r′ . Then

valQxr(u′) = Nδr′ − (xr, r′).
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Recall that δr = δr′ and (r, r) = (r′, r′). The Cauchy-Schwarz inequality implies
that

valQxr(u′) ≥ Nδr − (r, r),

with equality only if xr = r′; therefore

valPr(u′) ≥ Nδr − (r, r),

with equality only if r′ ∈ Wr. Thus, if r′ /∈ Wr, the admissible open subset

{v ∈ AG(O) : valPr(v) ≤ Nδr − (r, r)}
of AG(O) contains AG(O)r and is disjoint from AG(O)r′ . ¤

Now we can prove Theorem 8.2.2 when w = 1. One of the assertions of the
theorem is that AG(O)r has codimension

DG(r) := dG(r) +
1
2
(δr + cw)

in AG(O), where dG(r) denotes the codimension of t(O)r in t(O). Since cw = 0
when w = 1, we can write DG(r) more simply as

DG(r) = dG(r) +
∑

α∈R+

r(α).

We begin by proving parts (1) and (2) of the theorem. We do this by induction
on |R|, the case when |R| = 0 being trivial. Now we do the induction step. First
suppose that 0 actually occurs as a value of r, so that R1 is strictly smaller
than R. Thus the theorem holds for the group M in Lemma 11.1.2 by our
inductive hypothesis. Therefore Lemma 11.1.2 implies that AG(O)r is locally
closed, irreducible, non-singular of codimension DM (rM ) in AG(O). It remains
to check that DM (rM ) = DG(r), but this is clear, since r vanishes on roots
of G that are not roots of M . (Note that t(O)r is open in t(O)rM , so that
dG(r) = dM (rM ).)

Now suppose that 0 does not occur as a value of r, and let m be the smallest
integer which actually does occur as a value of r. Then r can be written as r′+m,
and 0 occurs as a value of r′, so that the theorem holds for r′ by what we have
already proved. After replacing G by its derived group, we may assume that G

is semisimple and apply Lemma 11.1.1 to conclude that AG(O)r is locally closed,
irreducible, non-singular of codimension DG(r′) + m(d1 + · · ·+ dn) in AG(O). It
follows easily from (2.3.2) that DG(r′)+m(d1 + · · ·+dn) = DG(r), and the proof
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of parts (1) and (2) of the theorem is now complete. (Note that we obtain a set
of basic invariants for G by taking those for Gder together with any k-basis for
the k-dual of z, these additional ones obviously having degree 1. However when
we wrote d1 + · · ·+ dn in the preceding lines, we meant the sum of the degrees of
the basic invariants for Gder.)

It remains to prove part (3) of the theorem, which asserts that t(O)r is smooth
over A(O)r. Since t(O)r and A(O)r are non-singular, it suffices (see Lemma
5.4.1) to check that for each u ∈ t(O)r the differential dfu of f maps Tt(O)r,u onto
TA(O)r,f(u). For this we just need to show that TA(O)r,f(u) and the image under
dfu of Tt(O)r,u have the same codimension in TA(O),f(u). From part (2) of the
theorem we know that the codimension of TA(O)r,f(u) in TA(O),f(u) is

(11.1.3) dG(r) +
∑

α∈R+

r(α).

Since the valuation of the determinant of dfu is
∑

α∈R+ r(α) (see (2.3.1)), and
the codimension of the tangent space Tt(O)r,u in Tt(O),u is equal to dG(r), we
conclude that the codimension of the image under dfu of Tt(O)r,u is also equal to
the expression (11.1.3), and we are done.

11.2. Proof of Theorem 8.2.2 in general. Now we prove the theorem in the
general case. So consider a pair (w, r) such that A(O)w,r is non-empty, and let s

denote the W -orbit of (w, r).

Here is the idea of the proof. As usual we denote by E the field Fl, with
l = o(w). We once again denote by rE the integer valued function on R obtained
by multiplying r by l. From the special case of the theorem that we have already
proved (applied to E rather than F ), we understand t(OE)rE and A(OE)rE , and
we are going to deduce the theorem in general by taking fixed points of suitable
automorphisms of order l.

In the case of t(OE)rE , we consider the automorphism u 7→ wτE(u). The fixed
point set of this action is of course tw(O)r. In the case of A(OE)rE , we consider
the action of τE . The fixed point set of this action contains A(O)w,r. These two
automorphisms give us actions of the cyclic group Z/lZ, and the map

(11.2.1) f : t(OE)rE → A(OE)rE
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is Z/lZ-equivariant. Taking fixed points under Z/lZ, we get

tw(O)r
fw−→ A(O)s ↪→ A(OE)Z/lZ

rE
.

Since l is invertible in k, taking fixed points under Z/lZ preserves non-singularity
and smoothness, as is discussed in appendix 15. This will end up giving us a good
handle on A(O)s. Unfortunately we cannot apply appendix 15 directly to (11.2.1),
since we need to be dealing with schemes of finite type over k. To achieve this we
use that all the sets under consideration are N -admissible for sufficiently large
N .

More precisely there are four admissible sets under consideration. We begin
by choosing M large enough that r(α) < M for all α ∈ R. This guarantees (see
Proposition 6.0.1) that tw(O)r and t(OE)rE are M -admissible. Increasing M as
need be, we may also assume that A(O)s and A(OE)rE are M -admissible. Now
let N be any integer such that N ≥ M .

Thus, now letting tw(O/εNO)r denote the image of tw(O)r under tw(O) ³
tw(O/εNO), the set tw(O)r is the preimage of tw(O/εNO)r. Similarly, letting
t(OE/εNOE)rE denote the image of t(OE)rE under t(OE) ³ t(OE/εNOE), the
set t(OE)rE is the preimage of t(OE/εNOE)rE .

In addition A(O)s is the preimage of its image A(O/εNO)s in A(O/εNO), and
similarly A(OE)rE is the preimage of its image A(OE/εNOE)rE in A(OE/εNOE).
With all this notation in place, we can now finish the proof.

As noted in subsection 16.3, there are two different ways to use Greenberg’s
functor to regard t(OE/εNOE) as the set of k-points of a k-scheme. One is to
apply Greenberg’s functor directly to t, but working with OE rather than O.
The other is to apply restriction of scalars ROE/O to t and then use Greenberg’s
functor for O. Fortunately, 16.3 assures us that the two methods give the same
result, so we will be free to use whichever interpretation is most convenient at a
given moment. The same remarks apply to A(OE/εNOE).

Consider the commutative square

t(OE/εNOE)rE −−−−→ A(OE/εNOE)rEy
y

t(OE/εNOE) −−−−→ A(OE/εNOE).
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From Proposition 6.0.1 and the special case of the theorem that has already been
proved, we know that the vertical arrows are locally closed immersions, that
the top horizontal arrow is smooth, and that all four corners of the square are
non-singular.

Recall from 4.4 the Z/lZ-action on ROE/Ot whose fixed point scheme is tw.
From it we get an action of Z/lZ on the k-scheme

(ROE/Ot)(O/εNO) = t(OE/εNOE).

It follows from Proposition 4.8.2(3) that our action preserves t(OE/εNOE)rE set-
theoretically, hence scheme-theoretically as well, since we are using the induced
reduced subscheme structure. Similarly, Z/lZ acts on A(OE/εNOE), preserving
the locally closed subscheme A(OE/εNOE)rE .

Now we take fixed points under Z/lZ everywhere in the commutative square
we are considering. Bearing in mind that taking fixed points commutes with
Greenberg’s functor (see subsection 16.4), we obtain the commutative square

(t(OE/εNOE)rE )Z/lZ −−−−→ (A(OE/εNOE)rE )Z/lZ
y

y
tw(O/εNO) −−−−→ A(O/εNO).

Since taking Z/lZ-fixed points preserves immersions, non-singularity, and smooth-
ness (see Lemma 15.4.2), we conclude that all four corners of our square are
non-singular, that the top horizontal arrow is smooth, and that the two vertical
arrows are locally closed immersions.

Using that N > r(α) for all α ∈ R, one sees easily that (t(OE/εNOE)rE )Z/lZ co-
incides with tw(O/εNO)r set-theoretically. Since both are non-singular schemes,
hence reduced, they actually coincide as subschemes.

The image of (t(OE/εNOE)rE )Z/lZ = tw(O/εNO)r in (A(OE/εNOE)rE )Z/lZ

is open (since the top horizontal arrow is smooth) and its further image in
A(O/εNO), namely A(O/εNO)s, is therefore locally closed in A(O/εNO). At
the same time we see that A(O/εNO)s is non-singular and that

(11.2.2) tw(O/εNO)r ³ A(O/εNO)s
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is smooth. Since we have proved that (11.2.2) is smooth for all N ≥ M , we
conclude that

(11.2.3) tw(O)r ³ A(O)s

is smooth. Since tw(O/εNO)r is irreducible, so too is A(O/εNO)s.

At this point we have proved all parts of the theorem except for the statement
concerning the codimension of A(O)s. For this we use tangent spaces (which we
are free to use since we now know that the admissible subsets tw(O)r and A(O)s

are locally closed and non-singular). Choose some point u ∈ tw(O)r and let c

denote its image in A(O)s. The codimension of A(O)s in A(O) is the same as
that of the tangent space to A(O)s at c in the tangent space to A(O) at c. Now,
since (11.2.3) is smooth, Lemma 5.4.1 tells us that the tangent space to tw(O)r

at u maps onto the tangent space to A(O)s at c.

We conclude that the codimension of A(O)s in A(O) is the sum of the codimen-
sion of tw(O)r in tw(O) (a number we have denoted by d(w, r)) and the valuation
of the Jacobian of fw at the point u (which by Lemma 8.2.1 we know to be equal
to e(w, r) = (δr + cw)/2). This finally finishes the proof of the theorem.

12. Proof of Theorem 9.1.1

The idea of the proof is simple enough. We will check that Lemma 10.5.1 ap-
plies to our situation, concluding that each fiber of the morphism tw(O/εNO)r →
A(O/εNO)s is a disjoint union of affine spaces of dimension e. These affine spaces
are permuted simply transitively by Ww,r, and we have already proved that the
morphism is smooth. This makes it plausible that the theorem is true, but we
must construct the rank e vector bundle Ṽ and check that the morphism really
is a torsor for H = Ww,r × Ṽ .

Let c ∈ A(O)s and let c̄ denote the image of c in A(O/εNO)s. Lemma 10.5.1
will give us information about the fiber Z of the morphism

fw,N : tw(O/εNO) → A(O/εNO)

over the point c̄.

We need to check that the hypotheses of the lemma are verified. As in that
lemma we will use L to denote On = A(O). We are assuming that N > 2e, so
we just need to verify the assumptions made in (2) and (3) of the lemma.
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By Lemma 7.3.2 we have

(12.0.4) f−1
w (A(O)s) =

∐

x∈Ww/Ww,r

tw(O)xr.

It then follows from Lemma 8.2.1 that val det dfw takes the constant value e

on f−1
w (A(O)s). Since A(O)s is N -admissible, the preimage of Z in tw(O) is

contained in f−1
w (A(O)s), and therefore val det dfw takes the constant value e on

that preimage, showing that the assumption about f−1
w,N (c̄) made in (2) of Lemma

10.5.1 does hold. Note that part (1) of that lemma is applicable as well.

As for the assumption on the fiber f−1
w (c) made in (3) of Lemma 10.5.1, we first

recall (see 7.2) that the group Ww acts simply transitively on this fiber. Next,
recall from the first paragraph of section 11 that

(12.0.5) r(α) ≤ e < N − e ∀α ∈ R

and hence that tw(O)r is (N − e)-admissible. Since (see 4.7 and use (12.0.5)) Ww

acts freely on the image of this fiber in tw(O/εN−eO), we conclude that the fiber
injects into tw(O/εN−eO), as desired.

The lemma then describes the fiber Z = f−1
w,N (c̄) as a disjoint union of affine

spaces Au, one for each u ∈ f−1
w (c). However, we are really interested in the fiber

g−1(c̄) of the morphism

g : tw(O/εNO)r → A(O/εNO)s

obtained by restriction from fw,N . For each u ∈ f−1
w (c) there exists (by (12.0.4))

x ∈ Ww such that u ∈ tw(O)xr. We noted in part (1) of Lemma 10.5.1 that all
the points in Au have the same image as u in tw(O/εN−eO). Since tw(O)xr is
(N − e)-admissible, it follows that Au ⊂ tw(O/εNO)xr. Therefore

(12.0.6) g−1(c̄) = Z ∩ tw(O/εNO)r =
∐
u

Au,

where the index set for the disjoint union is f−1
w (c)∩ tw(O)r. From Lemma 7.3.2

we know that Ww,r acts simply transitively on f−1
w (c)∩ tw(O)r. Thus the natural

action of Ww,r on g−1(c̄) permutes simply transitively the e-dimensional affine
spaces Au appearing in the disjoint union (12.0.6).

These affine spaces arise as orbits of translation actions of certain vector spaces
described in Lemma 10.5.1. We are going to use the discussion in 10.6 to assemble
these vector spaces into a vector bundle. Eventually we will arrive at the vector
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bundle Ṽ , but we must begin with the one (over a different base space) that is
provided by 10.6.

Put M := N − e. We have already noted that tw(O)r is M -admissible. There-
fore the obvious surjection

π : tw(O/εNO)r → tw(O/εMO)r

is an affine space bundle, more precisely, a torsor (actually trivial, not that it
matters) under the vector group

(12.0.7) ker[tw(O/εNO) → tw(O/εMO)] = tw(O/εeO)

(the identification being made using multiplication by εM ).

Since val det dfw takes the constant value e on tw(O)r, subsection 10.6 provides
us with a rank e vector bundle V over tw(O/εMO)r, obtained by restriction from
the vector bundle V e of 10.6. In fact V is a subbundle of the constant vector
bundle over tw(O/εMO)r with fiber (12.0.7). It is clear from its definition that V

is Ww,r-equivariant with respect to the natural action of Ww,r on tw(O/εMO)r.

The vector bundle V acts by translations on the affine space bundle tw(O/εNO)r

over tw(O/εMO)r, and we may divide out by its action, obtaining a factorization

tw(O/εNO)r
ρ−→ tw(O/εNO)r/V

η−→ tw(O/εMO)r

of π, in which ρ, η are both affine space bundles. More precisely ρ is a torsor for
η∗V , and η is a torsor for the vector bundle obtained by taking the quotient of
the constant vector bundle tw(O/εeO) by its subbundle V .

By Lemma 10.5.1 the morphism g is constant on the fibers of the bundle ρ.
By faithfully flat descent we see that g factors uniquely as

tw(O/εNO)r
ρ−→ tw(O/εNO)r/V

h−→ A(O/εNO)s.

(To apply descent theory we just need to check the equality of two morphisms
B → A(O/εNO)s, where B denotes the fiber product of tw(O/εNO)r with itself
over tw(O/εNO)r/V . Now B, being itself an affine space bundle over the reduced
scheme tw(O/εMO)r, is also reduced, so that the equality of our two morphisms
B → A(O/εNO)s follows from the obvious fact that they coincide on k-points.)

Now g is smooth (by Theorem 8.2.2) and so is ρ; therefore h is smooth as well.
The Ww,r-equivariance of V ensures that the action of Ww,r on tw(O/εNO)r

descends to an action on tw(O/εNO)r/V over A(O/εNO)s, and Lemma 10.5.1
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tells us that Ww,r acts simply transitively on the fibers of h. This means that h

is in fact étale, and hence that tw(O/εNO)r/V is a Ww,r-torsor over A(O/εNO)s.

The pullback η∗V is a Ww,r-equivariant vector bundle over tw(O/εNO)r/V .
Since h is a Ww,r-torsor, η∗V descends to a vector bundle Ṽ on A(O/εNO)s, and
we see from the factorization g = hρ that g is a (Ww,r × Ṽ )-torsor. The proof is
now complete.

13. Appendix. Technical lemmas related to admissibility

In this appendix we verify some lemmas needed to back up the statements we
made in section 5 concerning admissible subsets of X(O).

13.1. Elementary facts about open mappings.

Lemma 13.1.1. Let f : Y → X be a continuous map of topological spaces. Then
the following three conditions are equivalent:

(1) f is an open mapping.
(2) For every closed subset Z ⊂ Y the set {x ∈ X : f−1(x) ⊂ Z} is closed in

X.
(3) For every subset S ⊂ X we have f−1(S) = f−1(S). Here the overlines

indicate closures.

Proof. (1) holds iff f(U) is open for every open U ⊂ Y . Phrasing this in comple-
mentary terms, (1) holds iff f(Zc)c is closed for every closed subset Z ⊂ Y , where
the superscript c indicates complement. Since f(Zc)c = {x ∈ X : f−1(x) ⊂ Z},
we see that (1) is equivalent to (2).

Now consider (3). Since f is continuous, f−1S is a closed subset containing
f−1S. (In order to lighten the notation we often write, for example, f−1S rather
than f−1(S).) Therefore (3) holds iff for every S ⊂ X and every closed Z ⊂ Y

we have the implication Z ⊃ f−1S =⇒ Z ⊃ f−1S. This last implication can be
rewritten as S ⊂ {x ∈ X : f−1(x) ⊂ Z} =⇒ S ⊂ {x ∈ X : f−1(x) ⊂ Z}, which
makes it clear that the implication holds for all S iff {x ∈ X : f−1(x) ⊂ Z} is
closed. Therefore (3) is equivalent to (2). ¤

Lemma 13.1.2. Let f : Y → X be a continuous, open, surjective map of topo-
logical spaces, and let S be a subset of X. Then
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(1) The set S is open (respectively, closed, locally closed) in X iff f−1S is
open (respectively, closed, locally closed) in Y .

(2) Assume further that each fiber of f is an irreducible topological space.
Then S is irreducible iff f−1S is irreducible.

Proof. (1) Everything here is well-known (and obvious) except possibly the fact
that if f−1S is locally closed, then S is locally closed. So suppose that f−1S is
locally closed, which means that f−1S is open in its closure. Using (3) in the
previous lemma, we see that f−1S is open in f−1S. Since the map f−1S → S

(obtained by restriction from f) is obviously open, we conclude that ff−1S = S

is open in S, which means that S is locally closed.

(2) (⇐=) Clear. (=⇒) Now assume all fibers of f are irreducible, and assume
further that S is irreducible. We must show that f−1S is irreducible, so suppose
that Y1, Y2 are closed subsets of Y such that f−1S ⊂ Y1 ∪ Y2. Put Xi := {x ∈
X : f−1(x) ⊂ Yi} for i = 1, 2. We know from the previous lemma that X1 and
X2 are closed in X, and using the irreducibility of the fibers of f , we see that
S ⊂ X1∪X2. Since S is irreducible, it follows that S ⊂ X1 or S ⊂ X2. Therefore
f−1S ⊂ f−1X1 ⊂ Y1 or f−1S ⊂ f−1X2 ⊂ Y2, as desired. ¤

13.2. Lemma on smooth morphisms.

Lemma 13.2.1. Let X, Y be schemes locally of finite type over a noetherian base
scheme S. Let f : Y → X be a smooth S-morphism. Let X ′ be a locally closed
subset of X, let Y ′ denote the locally closed subset f−1X ′ of Y , and equip both
X ′ and Y ′ with their induced reduced subscheme structures. Then the natural
morphism Y ′ → Y ×X X ′ is an isomorphism, and Y ′ is smooth over X ′. If in
addition X ′ ⊂ fY , then X ′ is smooth over S if and only if Y ′ is smooth over S.

Proof. First note that Y ×X X ′ is a subscheme of Y with the same underlying
topological space as Y ′. Moreover Y ×X X ′ is smooth over the reduced scheme
X ′, and therefore (EGA IV (17.5.7)) Y ×X X ′ is reduced, which implies that
Y ′ = Y ×X X ′ as closed subschemes. In particular the morphism Y ′ → X ′ is
smooth. If in addition X ′ ⊂ fY , then Y ′ → X ′ is also surjective, and it then
follows from EGA IV (17.11.1) that Y ′ is smooth over S if and only if X ′ is
smooth over S. ¤
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14. Appendix: Some results of Steinberg

In [Ste75] Steinberg proves a number of delicate results on the behavior of
conjugacy classes in the Lie algebra of G when the characteristic of the base field
k is not a torsion prime for G. In this paper we are operating under the very
strong hypothesis that |W | be invertible in k, and this makes life rather simple.
Nevertheless it is convenient to obtain what we need as an easy consequence of
[Ste75].

14.1. Set-up. Let S be any subset of t. Define a subset RS of our root system
R by

RS := {α ∈ R : α(u) = 0 ∀u ∈ S}.
Even with no assumption on the characteristic of k, it is clear that RS is Z-closed,
in the sense that if α ∈ R lies in the Z-linear span of RS in X∗(T ), then α ∈ RS .
In particular RS is a root system in its own right, whose Weyl group we denote
by W (RS), a subgroup of W which clearly lies inside the subgroup

WS := {w ∈ W : w(u) = u ∀u ∈ S}.

Proposition 14.1.1. Assume, as usual, that |W | be invertible in k. Then

(1) The subgroups WS and W (RS) coincide.
(2) The subset RS is Q-closed, in the sense that if α ∈ R lies in the Q-linear

span of RS in X∗(T ), then α ∈ RS.
(3) There is a Levi subgroup M ⊃ T in G whose root system RM coincides

with RS.

Proof. (1) This follows immediately from Corollary 2.8, Lemma 3.7, Corollary
3.11 and Theorem 3.14 in Steinberg’s article [Ste75].

(2) Let L(R) (respectively, L(RS)) denote the Z-linear span of R (respectively,
RS) in X∗(T ). Similarly, let L(R∨) (respectively, L(R∨

S)) denote the Z-linear span
of R∨ (respectively, R∨

S) in X∗(T ). Using a suitably normalized W -invariant Z-
valued symmetric bilinear form on L(R∨), we obtain a W -equivariant embedding

ϕ : L(R∨) → L(R)

such that for every α ∈ R there exists a positive integer dα dividing |W | (hence
invertible in k) such that ϕ(α∨) = dαα. (In fact we can arrange that dα is always
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1, 2, or 3, with 3 occurring only when one of the irreducible components of R is
of type G2.)

Now suppose that α ∈ R lies in the Q-linear span of RS in X∗(T ). We must
show that α ∈ RS . Since ϕ becomes an isomorphism after tensoring with Q, it is
also true that α∨ lies in the Q-linear span of R∨

S in X∗(T ). Therefore the class
of α∨ in L(R∨)/L(R∨

S) is a torsion element, say of order d. Any prime p dividing
d is a torsion prime for the root system R. By Corollary 2.8 of [Ste75] p divides
|W |, and therefore p is invertible in k. We conclude that d is invertible in k.

Now dα∨ ∈ L(R∨
S), and therefore

ddαα = ϕ(dα∨) ∈ L(RS),

which implies that ddαα(u) = 0 for all u ∈ S. Since ddα is invertible in k, we
conclude that α(u) = 0 for all u ∈ S, so that α ∈ RS , as desired.

(3) It follows easily from [Bou02, Ch. VI, no. 1.7, Prop. 24] that the Q-closed
subsets of R are precisely those of the form RM for some Levi subgroup M ⊃
T . ¤

14.2. A property of aM . Let M be a Levi subgroup of G containing T . Let
RM be the set of roots of T in M . Define a linear subspace aM of t by

aM := {u ∈ t : α(u) = 0 ∀α ∈ RM}.

Lemma 14.2.1. Assume, as usual, that |W | be invertible in k. Then

RM = {α ∈ R : α(u) = 0 ∀u ∈ aM}.

Proof. Choose a base B for the root system R in such a way that B ∩ RM is
a base for RM . Since the index of connection of R divides |W | (see [Bou02,
Ch. VI, no. 2.4, Prop. 7]) and is therefore invertible in k, the elements in B yield
linearly independent elements of t∗. Note that aM is the intersection of the root
hyperplanes in t determined by the elements in B ∩RM .

We must show that if α ∈ R \ RM , then α does not vanish identically on
aM . We may assume that α is positive. Inside X∗(T ) we write α as a Z-linear
combination of elements in B. Then some element β ∈ B, β /∈ RM occurs in
this linear combination with positive coefficient n. It is enough to show that n is
non-zero in k. This is clear unless k has characteristic p for some prime p.
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Let n′ be the coefficient of β in the highest root α̃. Then n ≤ n′, so it is enough
to show that n′ < p. This follows from our hypothesis that |W | be invertible in
k (check case-by-case). ¤

15. Appendix: Fixed points of the action of a finite group on a

scheme

Throughout this section G denotes a finite group of order |G|. For any set Z

on which G acts we write ZG for the set of fixed points of the action of G on Z.
Finally, S denotes some scheme, which will often serve as a base scheme.

15.1. Review of coinvariants of G-actions on quasicoherent sheaves. Let
X be a scheme and F a quasicoherent OX -module. We consider an action of G

on F , in other words, a homomorphism ρ : G → AutOX
(F).

We write FG for the coinvariants of G on F . By definition FG is the quasico-
herent OX -module obtained as the cokernel of the homomorphism

⊕

g∈G

F → F

whose restriction to the summand indexed by g ∈ G is ρ(g)− idF .

For any OX -module H there is an obvious action of G on HomOX
(F ,H), and it

is evident from the definition of coinvariants that there is a canonical isomorphism

(15.1.1) HomOX
(FG,H) =

(
HomOX

(F ,H)
)G

.

15.2. Fixed points of G-actions on schemes. Let X be a scheme over S.
Suppose that the finite group G acts on X over S, by which we mean that for
each g ∈ G the morphism x 7→ gx from X to itself is a morphism over S.

We define a contravariant set-valued functor XG on the category of schemes
T over S by the rule

XG(T ) := X(T )G.

Lemma 15.2.1.

(1) The subfunctor XG of X is represented by a locally closed subscheme of
X.

(2) If X is separated over S, then i : XG ↪→ X is a closed immersion.
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(3) If X is locally of finite presentation over S, then XG is locally of finite
presentation over S.

(4) Taking fixed points commutes with arbitrary base change S′ → S, which
is to say that

(X ×S S′)G = XG ×S S′.

Proof. Enumerate the elements of G as g1, . . . , gn. Write Xn for the n-fold fiber
product X ×S X ×S · · · ×S X. We consider two morphisms X → Xn, one being
the diagonal morphism ∆ defined by ∆(x) = (x, . . . , x), the other, denoted α,
being defined by α(x) = (g1x, . . . , gnx). Taking the fiber product of these two
morphisms, we get a scheme over S which clearly represents XG.

Thus we have a cartesian square

XG i−−−−→ Xy
yα

X
∆−−−−→ Xn

showing that any property of ∆ which is stable under base change will be inher-
ited by i. This proves (1), (2) and reduces (3) to checking that ∆ is locally of
finite presentation when X is locally of finite presentation over S. This follows
immediately from EGA IV (1.4.3)(v), applied to the composition pr1 ◦ ∆, with
pr1 : Xn → X denoting projection on the first factor.

Finally, (4) is obvious from the definition of XG. ¤

15.3. 1-forms over fixed point subschemes. For any scheme X over S one
has the quasicoherent OX -module Ω1

X/S of 1-forms on X/S, as well as the tangent
“bundle” TX/S , which is the scheme, affine over X, obtained as the spectrum of
the symmetric algebra on the OX -module Ω1

X/S .

Consider a morphism f : Y → X of schemes over S, and a quasicoherent
OY -module H. We regard OY ⊕H as an OY -algebra in the usual way:

(a1, h1) · (a2, h2) = (a1a2, a1h2 + a2h1).

Put Y (H) := Spec(OY ⊕H), a scheme affine over Y . The augmentationOY ⊕H →
OY (sending (a, h) to a) yields a section of Y (H) → Y , which we use to identify
Y with a closed subscheme of Y (H) having the same underlying topological space
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as Y (H). We then have (see EGA IV, 16.5) the following property of Ω1
X/S :

(15.3.1) HomOY
(f∗Ω1

X/S ,H) = {f̃ ∈ HomS(Y (H), X) : f̃ |Y = f}.

Lemma 15.3.1. Let X be a scheme over S, and suppose that the finite group
G acts on X over S. Let i : XG ↪→ X be the obvious inclusion. Then there are
canonical isomorphisms

(15.3.2) Ω1
XG/S = (i∗Ω1

X/S)G

and

(15.3.3) TXG/S = (TX/S)G.

The subscript G on the right side of (15.3.2) indicates that we take coinvariants
for the action of G.

Proof. To prove (15.3.2) it is enough to construct, for any quasicoherent OXG-
module H, a functorial isomorphism

HomO
XG

(Ω1
XG/S ,H) = HomO

XG
((i∗Ω1

X/S)G,H).

By (15.3.1) we have

HomO
XG

(i∗Ω1
X/S ,H) = {̃i ∈ HomS(XG(H), X) : ĩ|XG = i}.

Taking invariants under G and using (15.1.1), we see that

HomO
XG

((i∗Ω1
X/S)G,H) = {̃i ∈ HomS(XG(H), XG) : ĩ|XG = idXG},

and by (15.3.1) the right side of this equality is equal to

HomO
XG

(Ω1
XG/S ,H),

as desired.

From the definition of TX/S we have, for any scheme S′ over S, the equality

TX/S(S′) = {(f, β) : f ∈ HomS(S′, X), β ∈ HomOX
(Ω1

X/S , f∗OS′)}.
Taking fixed points under G, we find that

(TX/S)G(S′) = {(f, β) : f ∈ HomS(S′, XG), β ∈ HomOX
(Ω1

X/S , i∗f∗OS′)G}.
Using (15.3.2), (15.1.1) and the adjointness of i∗, i∗, we see that

HomO
XG

(Ω1
XG/S , f∗OS′) = HomOX

(Ω1
X/S , i∗f∗OS′)G,
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from which it follows that

(TX/S)G(S′) = {(f, β) : f ∈ HomS(S′, XG), β ∈ HomO
XG

(Ω1
XG/S , f∗OS′)}

= TXG/S(S′),

which proves (15.3.3). ¤

15.4. Smoothness of fixed point subschemes. Again consider an action of
the finite group G on a scheme X over S.

Lemma 15.4.1. Suppose that X is smooth over S and that |G| is invertible on
S. Then XG is smooth over S.

Proof. It follows from Lemma 15.2.1 (3) that XG is locally of finite presentation
over S. It remains to verify that XG is formally smooth over S, so consider an
affine scheme Spec(A) over S and an ideal I ⊂ A such that I2 = 0. Writing
XG(A) for HomS(Spec A,XG), we must show that

α : XG(A) → XG(A/I)

is surjective.

Since X is smooth over S, we do know that

β : X(A) → X(A/I)

is surjective. Given x ∈ X(A/I), in other words an S-morphism x : Spec A/I →
X, the fiber β−1(x) is a principal homogeneous space under (again see EGA IV,
16.5)

M := HomA/I(x
∗Ω1

X/S , I).

Now suppose that x ∈ XG(A/I). Then G acts compatibly on M and β−1(x),
and the obstruction to the existence of a G-invariant element in β−1(x) lies in
H1(G,M). Since M is a G-module on which multiplication by |G| is invertible,
all higher group cohomology of M vanishes, so our obstruction is automatically
trivial. Therefore α−1(x) is non-empty, showing that α is surjective, as desired.

¤

In the next result we no longer need a base scheme S. Note that any action of
a finite group on a scheme X is automatically an action on X over Spec(Z), so
XG still makes sense and is a scheme (over Spec(Z)).
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Lemma 15.4.2. Suppose that the finite group G acts on schemes X, Y . Suppose
further that we are given a G-equivariant morphism f : Y → X, and consider
the morphism Y G → XG induced by f .

(1) If Y is locally of finite presentation over X, then Y G is locally of finite
presentation over XG.

(2) There is a canonical isomorphism Ω1
Y G/XG = (i∗Ω1

Y/X)G, where i denotes
the inclusion Y G ↪→ Y and the subscript G indicates coinvariants.

(3) If Y is smooth over X, and |G| is invertible on X, then Y G is smooth
over XG.

(4) If Y → X is a locally closed immersion, then so is Y G → XG.

Proof. We already know the first three parts of the lemma when G acts trivially
on X, so that XG = X. To treat the general case, we form the cartesian square

Y ′ −−−−→ Yyf ′
yf

XG −−−−→ X.

The group G still acts on the locally closed subscheme Y ′ of Y , and it is clear
that (Y ′)G = Y G. If f is locally of finite presentation (respectively, smooth), then
f ′ is locally of finite presentation (respectively, smooth). Moreover i∗Ω1

Y/X =
(i′)∗Ω1

Y ′/XG , where i′ is the inclusion Y G ↪→ Y ′. Therefore it is enough to prove
the first three parts of the lemma with f replaced by f ′, and then we are done
by the remark made at the beginning of the proof.

We now prove the last part of the lemma. Using that f is a monomorphism,
we see that the square

Y G −−−−→ Yy
yf

XG −−−−→ X.

is cartesian, allowing us to deduce that Y G → XG is an immersion from the fact
that f is an immersion. ¤

16. Appendix. Greenberg’s functor

16.1. Definition of Greenberg’s functor. Let X be a scheme of finite type
over O, and let N be a positive integer. Then Greenberg’s functor associates to
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X the scheme XN of finite type over k whose points in any k-algebra A are given
by

(16.1.1) XN (A) := X(A⊗k (O/εNO)).

In particular the set of k-points of XN is X(O/εNO).

An O-morphism f : Y → X between schemes of finite type over O induces a
k-morphism

fN : YN → XN .

If f is smooth (respectively, étale), then fN : YN → XN is smooth (respectively,
étale). Indeed, due to (16.1.1), the formal smoothness (respectively, étaleness) of
fN is inherited from the formal smoothness (respectively, étaleness) of f .

16.2. The smooth case. Suppose that X is smooth over O. Then XN is smooth
over k. It follows from (16.1.1) and (15.3.1) that the tangent space to XN at
x ∈ XN (k) = X(O/εNO) is given by

TXN ,x = x∗TX/O,

where x is being regarded as an O-morphism Spec(O/εNO) → X, and TX/O is
the relative tangent sheaf of X/O. Note that the tangent space TXN ,x is in a
natural way an O/εNO-module, free of finite rank.

Suppose that x is obtained by reduction modulo εN from x̃ ∈ X(O). Then
x̃∗TX/O is a free O-module of finite rank that we will refer to informally as the
tangent space to X(O) at x̃ and denote by TX(O),x̃. Clearly we have

(16.2.1) TXN ,x = TX(O),x̃ ⊗O (O/εNO).

Now suppose that f : Y → X is an O-morphism between two smooth schemes
over O; applying Greenberg’s functor to f we get a k-morphism

fN : YN → XN .

Let ỹ ∈ Y (O) and put x̃ := f(ỹ) ∈ X(O); then let y ∈ Y (O/εNO), x ∈
X(O/εNO) be the points obtained from ỹ, x̃ by reduction modulo εN . The
differential of f gives us an O-linear map

dfỹ : TY (O),ỹ → TX(O),x̃.
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Reducing this map modulo εN and using the isomorphism (16.2.1), we obtain a
k-linear map

TYN ,y → TXN ,x

which is easily seen to coincide with the differential of fN at y. In other words,
the differential of fN is the reduction modulo εN of the differential of f .

16.3. Restriction of scalars OE/O and Greenberg’s functor. Let E be a
finite extension field of F , and let OE be the integral closure of O in E.

Let X be a scheme of finite type over OE . We denote by ROE/OX the scheme
of finite type over O obtained by (Weil) restriction of scalars from OE to O.
Recall that the points of ROE/OX in any O-algebra A are given by

(ROE/OX)(A) = X(A⊗O OE).

Let N be a positive integer. Applying Greenberg’s functor to ROE/OX provides
us with a k-scheme whose set of k-points is (ROE/OX)(O/εNO) = X(OE/εNOE).
But there is another equally natural way to produce a k-scheme with the same
set of k-points, namely to apply Greenberg’s functor (for the field E rather than
the field F ) to X (and the quotient ring OE/εNOE of OE). In fact these two
k-schemes are canonically isomorphic, since for both schemes the set of A-valued
points (A now being a k-algebra) works out to be

X(A⊗k (OE/εNOE)).

16.4. Greenberg’s functor and fixed point sets. Let X be a scheme of finite
type over O, and N a positive integer. From Greenberg’s functor we get the k-
scheme XN . Now suppose further that we are given an action of a finite group
G on X over O. Then, by functoriality, G acts on XN over k.

It follows immediately from the definitions that (XN )G is canonically isomor-
phic to (XG)N . Indeed, for both schemes the set of A-valued points (A being a
k-algebra) works out to be

X(A⊗k (O/εNO))G.
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