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Prelude

The theory of canonical heights on abelian varieties originated with the work of
Néron [10] and Tate (first described in print by Manin [8]) in 1965. Tate’s simple
and elegant limit construction uses a Cauchy sequence telescoping sum argument.
Néron’s construction, which is via more delicate local tools, has proven to be
fundamental for understanding the deeper properties of the canonical height.

Canonical heights appear prominently in the conjecture of Birch and Swinner-
ton-Dyer, so early efforts to check the conjecture numerically required the com-
putation of ĥ(P ) to at least a few decimal places. In the mid-1970’s, John Coates
used Tate’s limit definition/construction to compute ĥ(P ) to three decimal places
and he mentioned the computation during a talk at the Harvard Number Theory
Seminar. That evening at a party in Coates’ honor, Tate pulled out a primitive
Texas Instruments programmable calculator, punched in a few values, and in a
fraction of a second recomputed Coates’ value of ĥ(P ) to 8 decimal places! The
method was via a rapidly converging infinite series for Néron’s local canonical
heights that Tate had described in an (unpublished) letter to Serre. Tate gener-
ously shared copies of his letter with other mathematicians, including the second
author of this paper (who was at the time a mere graduate student), and Tate’s
numerically efficient series for the computation of canonical heights appeared
in [13] and, in generalized form, in [11].

The importance of canonical heights in arithmetic geometry and related fields
has continued to grow, for example in arithmetic intersection theory, Arakelov
geometry, special values of L-functions, cryptography, and dynamical systems.
The present paper is devoted to an application of the theory of canonical heights
to study the arithmetic properties of dynamical systems.

Introduction

Let

h : PN (Q̄) −→ R

be the standard (absolute logarithmic) Weil height [4, §B.2] and let

ϕ : PN −→ PN
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be a morphism of degree d ≥ 2 defined over Q̄. Associated to ϕ is a canonical
height function

ĥϕ : PN (Q̄) −→ R

defined via the Tate limit

ĥϕ(P ) = lim
n→∞

1
dn

h
(
ϕn(P )

)

and having the agreeable properties

ĥϕ = h + O(1) and ĥϕ ◦ ϕ = dĥϕ.

(See [4, §B.4] for details.) In an earlier paper [6] the authors considered un-
der what circumstances two morphisms ϕ and ψ can have identical canonical
heights ĥϕ = ĥψ. In this note we take up the question of the extent to which the
difference ĥϕ − ĥψ is an intrinsic measure of the arithmetic distance between the
maps ϕ and ψ.

More precisely, we define the arithmetic distance between two morphisms ϕ,ψ :
PN → PN to be the quantity

δ̂(ϕ,ψ) = sup
P∈PN (Q̄)

∣∣∣ĥϕ(P )− ĥψ(P )
∣∣∣ .

Note that δ̂(ϕ,ψ) is finite, since ĥϕ = h + O(1) and ĥψ = h + O(1). Fur-
ther, δ̂(ϕ,ψ) = 0 if and only if ĥϕ = ĥψ, and an elementary application of the
triangle inequality (Lemma 5) yields

δ̂(ϕ,ψ) ≤ δ̂(ϕ, λ) + δ̂(λ, ψ).

The principal result in this note is a comparison theorem showing that the
arithmetic distance between ϕ and ψ is related to the naive height of ϕ and ψ as
defined by the coefficients of their defining polynomials.

More intrinsically, the set of morphisms PN → PN of degree d, which we denote
by MorN

d , is naturally identified with a Zariski open subset of a projective space
via

MorN
d ⊂ PL, ϕ = [ϕ0 : · · · : ϕN ] 7−→ [coefficients of ϕ0, . . . , ϕN ].

Defining h(ϕ), the Weil height of ϕ, to be the height of the corresponding point
in PL, we prove the following result.
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Theorem 1. Let ϕ,ψ : PN → PN be morphisms of degree at least 2 defined
over Q̄. Then

(1) δ̂(ϕ,ψ)− h(ψ) ¿ h(ϕ) ¿ δ̂(ϕ,ψ) + h(ψ),

where the implied constants depend only on N and the degrees of ϕ and ψ. (See
Theorem 15 for an explicit upper bound.)

An immediate corollary of Theorem 1 and Northcott’s theorem [4, B.2.3] is the
following finiteness theorem.

Corollary 2. Fix a morphism ψ : PN → PN of degree at least 2 defined over Q̄
and an integer d ≥ 2. Then for all B > 0 the set of morphisms ϕ ∈ MorN

d (Q̄)
satisfying

δ̂(ϕ,ψ) ≤ B

is a set of bounded height in MorN
d (Q̄) ⊂ PL(Q̄). In particular, there are only

finitely many such ϕ defined over number fields of bounded degree over Q.

The proof of Theorem 1 involves a number of steps. It turns out to be more
convenient to consider another sort of arithmetic distance function defined by

∆̂ψ(ϕ) = sup
P∈PN (Q̄)

∣∣∣∣
1

deg(ϕ)
ĥψ

(
ϕ(P )

)− ĥψ(P )
∣∣∣∣ .

An elementary argument relates ∆̂ψ(ϕ) to δ̂(ϕ,ψ). The triangle inequality for δ̂

allows us to reduce to the case that ψ is the powering map, so ĥψ is the Weil
height h, in which case we write simply ∆̂(ϕ). Finally, and this is the heart of
the argument, we prove a theorem comparing ∆̂(ϕ) to h(ϕ). For the lower bound
we consider the universal family of morphisms PN → PN over MorN

d and apply
general results of Call and Silverman [3]. For the upper bound we use a matrix
calculation to prove an explicit inequality

h(ϕ) ≤ d

(
N + d

N

)
∆̂(ϕ) + ON,d(1).

1. Arithmetic Complexity

The results proven in [6] show that morphisms with identical canonical heights
are very closely related to one another. This suggests using the difference be-
tween canonical heights as a way to measure the arithmetic distance between the
morphisms, which leads us to make the following definitions.
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Definition. Let ϕ,ψ : PN → PN be morphisms defined over Q̄ of degree at
least 2. We use the canonical height to define two arithmetic distance functions,

δ̂(ϕ,ψ) = sup
P∈PN (Q̄)

∣∣∣ĥϕ(P )− ĥψ(P )
∣∣∣ ,

∆̂ψ(ϕ) = sup
P∈PN (Q̄)

∣∣∣∣
1

deg(ϕ)
ĥψ

(
ϕ(P )

)− ĥψ(P )
∣∣∣∣ .

In particular, δ̂(ϕ,ψ) = 0 if and only if ĥϕ = ĥψ.

In the special case that ψ is the power map

(2) [x0, . . . , xN ] 7−→ [xd
0, . . . , x

d
N ],

so ĥψ is the usual Weil height h, we write simply δ̂(ϕ) and ∆̂(ϕ). We call δ̂(ϕ)
the arithmetic complexity of ϕ.

Remark 3. The canonical heights ĥϕ and ĥψ satisfy

ĥϕ = h + O(1) and ĥψ = h + O(1)

and the Weil height h satisfies h
(
ϕ(P )

)
= deg(ϕ)h(P ) + O(1), so the suprema

used to define δ̂(ϕ,ψ) and ∆̂ψ(ϕ) are finite.

Remark 4. The canonical height, and a fortiori the arithmetic distance δ̂(ϕ,ψ),
are only defined for maps of degree at least 2. However, we observe that ∆̂ψ(ϕ)
is well-defined also for deg(ϕ) = 1.

We begin with an elementary triangle inequality for δ̂.

Lemma 5. Let ϕ,ψ, ν : PN → PN be morphisms defined over Q̄ of degree at
least 2. Then

δ̂(ϕ,ψ) ≤ δ̂(ϕ, ν) + δ̂(ν, ψ).

Proof. This is immediate by taking suprema of
∣∣ĥϕ(P )− ĥψ(P )

∣∣ ≤
∣∣ĥϕ(P )− ĥν(P )

∣∣ +
∣∣ĥν(P )− ĥψ(P )

∣∣.

¤

We next prove a comparison theorem for δ̂ and ∆̂.
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Proposition 6. Let ϕ,ψ : PN → PN be morphisms defined over Q̄ of degree at
least 2 and let dϕ = deg(ϕ). Then

dϕ

dϕ + 1
∆̂ψ(ϕ) ≤ δ̂(ϕ,ψ) ≤ dϕ

dϕ − 1
∆̂ψ(ϕ).

Proof. We compute directly using the definitions of δ̂ and ∆̂, the triangle inequal-
ity, and basic properties of the canonical height.

∆̂ψ(ϕ) = sup
P∈PN (Q̄)

∣∣∣∣
1
dϕ

ĥψ

(
ϕ(P )

)− ĥψ(P )
∣∣∣∣

≤ sup
P∈PN (Q̄)

1
dϕ

∣∣∣ĥψ

(
ϕ(P )

)− ĥϕ

(
ϕ(P )

)∣∣∣ + sup
P∈PN (Q̄)

∣∣∣ĥϕ(P )− ĥψ(P )
∣∣∣

=
1
dϕ

δ̂(ϕ,ψ) + δ̂(ϕ,ψ).

This gives one inequality. The other is proven similarly. Thus

∆̂ψ(ϕ) = sup
P∈PN (Q̄)

∣∣∣∣
1
dϕ

ĥψ

(
ϕ(P )

)− ĥψ(P )
∣∣∣∣

≥ sup
P∈PN (Q̄)

∣∣∣ĥψ(P )− ĥϕ(P )
∣∣∣− sup

P∈PN (Q̄)

1
dϕ

∣∣∣ĥϕ

(
ϕ(P )

)− ĥψ

(
ϕ(P )

)∣∣∣

= δ̂(ϕ,ψ)− 1
dϕ

δ̂(ϕ,ψ).

This completes the proof of the proposition. ¤

Remark 7. Let ϕ = (ϕ1, ϕ2, . . .) be a sequence of morphisms ϕi : PN → PN of
degree deg(ϕi) ≥ 2. The arithmetic complexity of the sequence ϕ is the quantity

δ̂(ϕ) = sup
i≥1

δ̂(ϕi),

and we say that the sequence ϕ is (arithmetically) bounded if δ̂(ϕ) is finite. It
is shown in [5] that there is a canonical height function ĥϕ naturally associ-
ated to every arithmetically bounded sequence. (For a canonical height function
associated to a sequence that is not necessarily arithmetically bounded, see [5,
Remark 3.8].) A consequence of Theorem 16 proven below is that if ϕ is arith-
metically bounded and contains infinitely many distinct maps, then either the
degrees deg(ϕi) of the maps or the degrees of the fields of definition Q(ϕi) must
go to infinity.
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2. A comparison theorem for h(ϕ) and ∆̂(ϕ)

The arithmetic complexity δ̂(ϕ) of a rational map is an intrinsic measure of
the extent to which ϕ differs arithmetically from the elementary power map (2).
A more naive way to measure the arithmetic complexity of ϕ is to take the height
of its coefficients. In this section we relate these two notions. This will be used
in the next section to show that, in a suitable sense, there are only finitely many
rational maps of bounded complexity.

We write RatN
d for the set of rational maps ϕ : PN → PN of degree d.

This set is naturally identified with a subset of a projective space PL by writ-
ing ϕ = [ϕ0 : · · · : ϕN ] and using the coefficients of the homogeneous polyno-
mials ϕ0, . . . , ϕN as homogeneous coordinates in PL. The subset MorN

d of RatN
d

consisting of morphisms is an affine subset of PL. (In fact, it is the complement
of the hypersurface defined by the Macaulay resultant of ϕ0, . . . , ϕN .)

Definition. Let ϕ : PN → PN be a rational map of degree d defined over Q̄.
We define the Weil height of ϕ to be the height of the corresponding point
in RatN

d (Q̄) ⊂ PL(Q̄). We denote this height by h(ϕ). Similarly, the height h(F )
of a nonzero homogeneous polynomial F ∈ Q̄[x0, . . . , xN ] is the height of the
point in projective space defined by its coordinates.

Theorem 8. Let N ≥ 1 and d ≥ 1 be given. There are constants c1, c2, c3 > 0,
depending only on N and d, so that for all morphisms ϕ : PN → PN of degree
d ≥ 1 defined over Q̄,

(3) c1∆̂(ϕ)− c2 ≤ h(ϕ) ≤ d

(
N + d

N

)
∆̂(ϕ) + c3.

Remark 9. We give an example with N = 1 that illustrates the upper bound in
the theorem. Let ϕA(x) = xd + Axd−1 with A ∈ Z, A 6= 0. Then one easily
checks that for all α ∈ Q̄,

∣∣∣∣
1
d
h
(
ϕA(α))− h(α)

∣∣∣∣ ≤
1
d

log(1 + |A|) =
1
d
h(ϕA) + O(1/|A|).

Taking the supremum over α yields d∆̂(ϕA) ≤ h(ϕA) + O(1/|A|), and hence

lim sup
|A|→∞

h(ϕA)
∆̂(ϕA)

≥ d.

This may be compared with the upper bound of d2 + d provided by the theorem.
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Remark 10. In general, we consider the limit

α(N, d) = lim sup
ϕ∈MorN

d (Q̄)
h(ϕ)→∞

h(ϕ)
∆̂(ϕ)

≤ d

(
N + d

N

)
,

where the upper bound is provided by Theorem 8. It would be interesting to
improve this upper bound and/or to obtain nontrivial lower bounds for α(N, d).

Proof of the Lower Bound in Theorem 8. We prove the lower bound in (3) by
showing that it is a special case of [3, Theorem 3.1]. In the notation of [3], we
take T 0 to be the set of morphisms PN → PN of degree d. Thus T 0 is naturally
an open subset of PL and we set T = PL. Then we let V = PN ×T , we let V → T

be projection onto the second factor, and we let ϕ : V → V be the rational map
whose restriction to the generic fiber is the generic degree d morphism from PN

to itself. We further let η be a divisor class in Pic(V) whose restriction to the
generic fiber is a hyperplane section. Then [3, Theorem 3.1] says that there are
(positive) constants c1, c2 depending only on the family, i.e., depending only on N

and d, so that

(4)
∣∣ĥVt,ηt,ϕt(x)− hV,η(x)

∣∣ ≤ c1hT (t) + c2

for all t ∈ T 0(Q̄) and all x ∈ Vt(Q̄).

Note that for each choice of t ∈ T 0(Q̄), we get a degree d morphism ϕt : PN →
PN , and that ĥVt,ηt,ϕt is then our height function ĥϕt . Further, hV,η restricted to
any particular fiber Vt = PN is a Weil height function on PN , and hT (t) is simply
the height h(ϕt) of the morphism ϕt. Thus (4) becomes

∣∣ĥϕt(x)− h(x)
∣∣ ≤ c1h(ϕt) + c2 for all x ∈ PN (Q̄).

Taking the supremum over x ∈ PN (Q̄) yields

δ̂(ϕt) ≤ c1h(ϕt) + c2

and then Proposition 6 gives

∆̂(ϕt) ≤ c′1h(ϕt) + c′2

with c′i = (1 + d−1)ci. This inequality holds for all t ∈ T 0(Q̄) with constants c′1
and c′2 that are independent of t. By construction, as t varies over T 0(Q̄), the
map ϕt varies over all degree d morphisms PN → PN . This concludes the proof
of the lower bound in (3). ¤
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The idea underlying the proof of the upper bound in Theorem 8 is that a
rational map ϕ : PN → PN is uniquely determined by its values at a suffi-
cient number of generic points P1, . . . , PK . More precisely, the coefficients of the
polynomials defining ϕ are themselves polynomial functions of the coordinates
of ϕ(P1), . . . , ϕ(PK). In order to obtain an explicit upper bound in Theorem 8,
we determine exactly the degrees of these polynomial functions, which will enable
us to prove the following key estimate.

Proposition 11. Fix integers N ≥ 1 and d ≥ 1, and let K =
(
N+d

d

)
. There a

constant CN,d and a Zariski closed set ZN,d ⊂ (PN )K so that for all morphisms ϕ :
PN → PN of degree d defined over Q̄,

h(ϕ) ≤ d(K − 1)
K∑

j=1

h(Pj) +
K∑

j=1

h
(
ϕ(Pj)

)
+ CN,d

for all (P1, . . . , PK) ∈ (PN (Q̄))K r ZN,d.

Proof of Proposition 11. We start by setting some notation.

IN,d The set of (N + 1)-tuples of nonnegative integers (i0, . . . , iN ) satis-
fying i0 + · · ·+ iN = d.

XI = MI(X) = Xi0
0 Xi1

1 · · ·XiN
N , the monomial corresponding to the

(N + 1)-tuple I = (i0, . . . , iN ).
K =

(
N+d

N

)
= #IN,d, the number of monomials of degree d in N +

1 variables.

Lemma 12. Let X(1),X(2), . . . ,X(K) be (N + 1)-tuples whose (N + 1)K coordi-
nates are algebraically independent variables. Then the matrix

(5)
(
MI(X(j))

)
I∈IN,d

1≤j≤K

whose rows are the degree d monomials in the coordinates of the X(j) has nonzero
determinant. It is multihomogeneous of degree d in each of X(1), . . . ,X(K).

Proof. The determinant is a sum of terms of the form

±MI1(X
(1)) ·MI2(X

(2)) · · ·MIK
(X(K)) with I1, . . . , IK ∈ IN,d.

Each of these terms is a distinct monomial in the polynomial ring

Z
[
X

(1)
0 , X

(1)
1 , . . . , X

(1)
N , X

(2)
0 , X

(2)
1 , . . . , X

(2)
N , . . . , X

(K)
0 , X

(K)
1 , . . . , X

(K)
N

]
.
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Hence there can be no cancellation, so the determinant is nonzero (and in fact
is a sum/difference of K distinct monomials). Finally, the multihomogeneity
is obvious, since each MI(X(j)) is homogeneous of degree d in the coefficients
of X(j). ¤

Resuming the proof of Proposition 11, we let

ϕ = [ϕ0 : · · · : ϕN ] : PN −→ PN

be a morphism of degree d, so each ϕi(X) is a homogeneous polynomial of de-
gree d. We write

ϕi(X) =
∑

I∈IN,d

aiIMI(X),

so the map ϕ corresponds to the point

[aiI ]I∈IN,d

0≤i≤N

∈ MorN
d ⊂ P(N+1)K−1.

Let X(1), . . . ,X(K) be independent (N +1)-tuples as in Lemma 12 and consider
the system of equations

∑

I∈IN,d

aiIMI(X(j)) = ϕi(X(j)), 1 ≤ j ≤ K.

We treat the X(j) as fixed quantities and solve for the aiI coefficients. To make
this precise, let A =

(
MI(X(j))

)
be the matrix (5) defined in Lemma 12, let B =

Aadj be the adjoint matrix, and let D = det(A). Then we obtain

DaiI =
∑

1≤j≤K

BjIϕi(X(j)), I ∈ IN,d.

The coordinates of the jth row of the matrix A are the degree d monomials
in the coordinates of X(j). The coordinates of the adjoint matrix B = Aadj are
sums/differences of terms, each of which is a product of K − 1 entries from A.
More precisely, the entry BjI is a sum/difference of monomials, each of which is
multihomogenous of degree d in the K − 1 variables

X(1),X(2), . . . ,X(j−1),X(j+1), . . . ,X(K).

For convenience we write BjI(X(1), . . . ,X(K)), although in fact BjI does not
depend on X(j).
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We now define a rational map

U : (PN × PN )K −→ P(N+1)K−1

U(P1, Q1, . . . , PK , QK) =
[ ∑

1≤j≤K

BjI(P1, . . . , PK)Xi(Qj)
]

I∈IN,d

0≤i≤N

where Xi(Q) denotes the ith coordinate of Q. Notice that U is multihomogeneous
of degree d(K − 1) in the variables P1, . . . , PK and it is multihomogeneous of
degree 1 in the variables Q1, . . . , QK .

From the way that we have set up these equations, we have for all P1, . . . , PK ∈
PN

U
(
P1, ϕ(P1), P2, ϕ(P2), . . . , PK , ϕ(PK)

)
=

[
D(P1, . . . , PK)aiI

]
I∈IN,d

0≤i≤N

.

Hence if P1, . . . , PK ∈ PN satisfy D(P1, . . . , PN ) 6= 0, then

U
(
P1, ϕ(P1), P2, ϕ(P2), . . . ,PK , ϕ(PK)

)

= [aiI ] = [ϕ] ∈ MorN
d ⊂ P(N+1)K−1.

Taking heights and using the multihomogeneity of U , we obtain

h(ϕ) = h
(
U

(
P1, ϕ(P1) . . . , PK , ϕ(PK)

))

≤ d(K − 1)
K∑

j=1

h(Pj) +
K∑

j=1

h
(
ϕ(Pj)

)
+ ON,d(1).

Note that the inequality in this direction is a simple consequence of the triangle
inequality, we do not need U to be a morphism. (Indeed, U is not a morphism.)
And it would not be hard to obtain an explicit value for the ON,d(1) constant,
although we shall not do so. ¤

In order to complete the proof of the upper bound in Theorem 8 we exploit the
fact that the points of height zero are Zariski dense, as described in the following
lemma.

Lemma 13. Let V1, . . . , VN be projective varieties, and for each i, let Ti ⊂ Vi

be a Zariski dense set of points. Then the product T = T1 × · · · × TN is Zariski
dense in V = V1 × · · · × VN .

In particular, {
P ∈ PN (Q̄) : h(P ) = 0

}
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is Zariski dense in PN .

Proof. The proof is by induction on N . For N = 1 the assertion is clear. Assume
it is true for N − 1. Let f be a rational function on V that vanishes on T and
let t1 ∈ T1. (We may assume that the support of the polar divisor of f does not
contain the set {t1}× V2× · · · × VN .) Then by assumption, the rational function

gt1(x2, . . . , xN ) = f(t1, x2, . . . , xN ) on V2 × · · · × VN

vanishes on T2 × · · · × TN . By induction, the set T2 × · · · × TN is Zariski dense
in V2× · · · × VN , so we conclude that gt1 is identically 0 on V2× · · · × VN . Hence
for any choice of points (y2, . . . , yN ) ∈ V2 × · · · × VN , the rational function

f(x1, y2, . . . , yN ) on V1

vanishes on T1. Since T1 is Zariski dense in V1, it follows that if vanishes for
all x1 ∈ V1. This proves that f is identically 0 on V . Hence T is Zariski dense
in V .

For the second statement, we observe that h(P ) = 0 for those points all of
whose coordinates are either 0 or roots of unity. Let µ∞ ⊂ Q̄∗ ⊂ P1(Q̄) denote
the set of all roots of unity. Then µ∞ is infinite, so it is dense in P1, and hence µN∞
is Zariski dense in (P1)N . But (P1)N is birational to PN , so

{
[1 : ζ1 : · · · : ζN ] : ζ1, . . . , ζN ∈ µ∞

}

is Zariski dense in PN . ¤

Proof of the Upper Bound in Theorem 8. Let CN,d, ZN,d, and K be as in the
statement of Proposition 11. From the second part of Lemma 13, we know
that the points of Weil height 0 are dense in PN (Q̄), and then the first part of
Lemma 13 tells us that

(6)
{
(P1, . . . , PK) ∈ PN (Q̄)K : h(P1) = · · · = h(PK) = 0

}

is Zariski dense in(PN)K . In particular, we can find a K-tuple of points (P1, . . . ,PK)
in the set (6) that is not in the Zariski closed set ZN,d. Then Proposition 11 gives
the estimate

h(ϕ) ≤
K∑

j=1

h
(
ϕ(Pj)

)
+ CN,d.
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Using the fact that every h(Pj) = 0, we rewrite this as

h(ϕ) ≤ dK max
1≤j≤K

(
1
d
h
(
ϕ(Pj)

)− h(Pj)
)

+ CN,d

≤ dK sup
P∈PN (Q̄)

∣∣∣∣
1
d
h
(
ϕ(P )

)− h(P )
∣∣∣∣ + CN,d

= dK∆̂(ϕ) + CN,d.

This completes the proof of the upper bound in Theorem 8. ¤

Remark 14. Our elementary proof of Proposition 11 is via a direct matrix calcu-
lation. Zhang [14, Theorem 5.2] has proven that if V ⊂ PN is a variety defined
over Q̄, then

h(V ) ≤ sup
Z(V

inf
P∈(VrZ)(Q̄)

h(P ),

where the supremum is over Zariski closed subsets of V and where the height h(V )
of the variety V is defined using arithmetic intersection theory and the Fubini-
Study metric on PN . (See [1, 2, 14] for further details.) Applying Zhang’s in-
equality to various projections, we can prove a version of Theorem 8 of the form

h(ϕi) ≤ Nd∆̂(ϕ) + ON,d(1) for i = 0, 1, . . . , N .

This is somewhat weaker than the upper bound (3) in Theorem 8, since it involves
the individual coordinate functions of ϕ, but the constant is better. It would be
interesting to try to use Zhang’s inequality directly to prove Proposition 11 and
Theorem 8. One possibility might be to apply Zhang’s result to the graph

V =
{
(P, ϕ(P )) : P ∈ PN

} ⊂ PN × PN ,

thereby obtaining an estimate that simultaneously involves all of the coordinate
functions of ϕ, but we will not pursue this idea further in this paper.

3. Finiteness properties

We combine the various comparison results to prove Theorem 1, which we
restate here for the convenience of the reader.

Theorem 15. Let ϕ,ψ : PN → PN be morphisms of degree at least 2 defined
over Q̄. Then

δ̂(ϕ,ψ)− h(ψ) ¿ h(ϕ) ¿ δ̂(ϕ,ψ) + h(ψ),
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where the implied constants depend only on N and the degrees of ϕ and ψ. For
the upper bound, letting d = deg(ϕ), we obtain an explicit estimate of the form

h(ϕ) ≤ (d + 1)
(

N + d

N

)
δ̂(ϕ,ψ) + ON,d

(
h(ψ)

)
.

Proof. For convenience, let λ be the squaring map, so ĥλ is the usual Weil
height h. Also let K =

(
N+d

N

)
as usual. We estimate

h(ϕ) ≤ Kd∆̂λ(ϕ) + O(1) from Theorem 8,

≤ K(d + 1)δ̂(ϕ, λ) + O(1) from Prop. 6,

≤ K(d + 1)
(
δ̂(ϕ,ψ) + δ̂(ψ, λ)

)
+ O(1) from Lemma 5,

≤ K(d + 1)δ̂(ϕ,ψ) + 2K(d + 1)∆̂λ(ψ) + O(1) from Prop. 6,

≤ K(d + 1)δ̂(ϕ,ψ) + O
(
h(ψ)

)
from Theorem 8.

This gives the upper bound. The lower bound is proven similarly, we leave the
details to the reader. ¤

Definition. Let ϕ : PN → PN be a morphism defined over Q̄. The field of
definition of ϕ, denoted Q(ϕ), is the fixed field of

{σ ∈ Gal(Q̄/Q) : ϕσ = ϕ}.
Equivalently, Q(ϕ) is the field generated by the coordinates of the point in
MorN

d (Q̄) ⊂ PL(Q̄) associated to ϕ.

Corollary 16. Fix a morphism ψ : PN → PN of degree at least 2 defined over Q̄
and an integer d ≥ 2. Then for all B > 0 the set of morphisms ϕ ∈ MorN

d (Q̄)
satisfying

δ̂(ϕ,ψ) ≤ B

is a set of bounded height in MorN
d (Q̄) ⊂ PL(Q̄).

In particular, with ψ fixed as above and for any constants B,C, D, there are
only finitely many morphisms ϕ : PN → PN defined over Q̄ and satisfying

2 ≤ deg(ϕ) ≤ D,
[
Q(ϕ) : Q

] ≤ C, and δ̂(ϕ,ψ) ≤ B.

Proof. Using Theorem 15, the assumption that δ̂(ϕ,ψ) ≤ B implies that h(ϕ) ¿
B+h(ψ) is bounded, which proves the first assertion. Then the second statement
follows immediately from Northcott’s theorem, which says that there are only
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finitely many points of bounded height and degree in projective space (see [4,
B.2.3] or [7, Chapter 3, Theorem 2.6]). ¤

4. Dynamics and a PGL-invariant arithmetic distance

The dynamical properties of a morphism ϕ : PN → PN are essentially un-
changed if ϕ is replaced by a PGL-conjugate

ϕf (P ) = (f−1 ◦ ϕ ◦ f)(P ) for some f ∈ Aut(PN ) = PGLN+1.

This naturally leads one to study the quotient space

MN
d = MorN

d / PGLN+1 .

In particular, Milnor constructed M1
d (C) as a complex orbifold [9] and the second

author used geometric invariant theory to construct M1
d as a variety over Q (and

as a scheme over Z), see [12]. We expect more generally that MN
d has the structure

of a variety over Q (and a scheme over Z), although this result does not seem to
have yet appeared in the literature.

In any case, it is natural to define arithmetic distances and arithmetic complex-
ity for PGL-equivalence classes of morphisms. For convenience we write [ϕ] ∈ MN

d

for the PGL-equivalence class containing the morphism ϕ.

Definition. Let ϕ,ψ : PN → PN be morphisms of degree at least 2 defined
over Q̄. The (dynamical) arithmetic distance from [ϕ] to [ψ] is

δ̂
(
[ϕ], [ψ]

)
= inf

f,g∈PGLN+1(Q̄)
δ̂(ϕf , ψg).

We note some elementary properties of canonical heights and arithmetic dis-
tances under PGL-conjugation.

Proposition 17. Let ϕ,ψ : PN → PN be morphisms of degree at least 2 defined
over Q̄ and let f, g ∈ PGLN+1(Q̄).

(a) ĥϕf (P ) = ĥϕ(f(P )).
(b) δ̂(ϕf , ψg) = δ̂(ϕfg−1

, ψ).
(c) δ̂

(
[ϕ], [ψ]

)
= inf

f∈PGLN+1(Q̄)

sup
P∈PN (Q̄)

∣∣ĥϕ(f(P ))− ĥψ(P )
∣∣.
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Proof. (a) Let d = deg(ϕ). Then

ĥϕf (P ) = lim
n→∞

1
dn

h
(
(ϕf )n(P )

)

= lim
n→∞

1
dn

h
(
(f−1 ◦ ϕn ◦ f)(P )

)

= lim
n→∞

1
dn

(
h
(
(ϕn ◦ f)(P )

)
+ Of (1)

)

= ĥϕ

(
f(P )

)
.

(b) We compute

δ̂(ϕf , ψg) = sup
P∈PN (Q̄)

∣∣∣ĥϕf (P )− ĥψg(P )
∣∣∣ definition of δ̂,

= sup
P∈PN (Q̄)

∣∣∣ĥϕf (g−1(P ))− ĥψg(g−1(P ))
∣∣∣

= sup
P∈PN (Q̄)

∣∣∣ĥϕfg−1 (P )− ĥψ(P ))
∣∣∣ from (a),

= δ̂(ϕfg−1
, ψ).

(c) We compute

δ̂
(
[ϕ], [ψ]

)
= inf

f,g∈PGLN+1(Q̄)
δ̂(ϕf , ψg) definition of δ̂,

= inf
f,g∈PGLN+1(Q̄)

δ̂(ϕfg−1
, ψ) from (b),

= inf
f∈PGLN+1(Q̄)

δ̂(ϕf , ψ)

= inf
f∈PGLN+1(Q̄)

sup
P∈PN (Q̄)

∣∣ĥϕf (P )− ĥψ(P )
∣∣ definition of δ̂,

= inf
f∈PGLN+1(Q̄)

sup
P∈PN (Q̄)

∣∣ĥϕ(f(P ))− ĥψ(P )
∣∣ from (a).¤

We conclude by asking if there is a single f ∈ PGLN+1(Q̄) that achieves the
infimum in the definition of arithmetic distance on MN

d .

Question 18. Let ϕ,ψ : PN → PN be morphisms of degree at least 2 defined
over Q̄. Does there always exist an f ∈ PGLN+1(Q̄) such that

δ̂
(
[ϕ], [ψ]

)
= δ̂(ϕf , ψ)?
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[13] Heinz M. Tschöpe and Horst G. Zimmer. Computation of the Néron-Tate height on elliptic
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