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1. Introduction

One of the most interesting applications of the Atiyah-Bott-Segal-Singer
fixed point formula is the vanishing theorem of Atiyah and Hirzebruch [AH].
This theorem was vastly generalized to vanishing and rigidity theorems for el-
liptic genera, see [BT], [Li1], [Li2] and [LiM]. The purpose of this paper is to
prove similar results for odd dimensional manifolds. We will first derive fixed
point formulas on odd dimensional manifolds, then we combine them with the
modularity arguments to prove vanishing and rigidity theorems for elliptic gen-
era associated to Toeplitz operators on odd dimensional manifolds. We believe
our results should have applications to the study of topology of odd dimensional
manifolds.

Received September 20, 2007.
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In Section 2.1, we state an equivariant odd index theorem for Toeplitz oper-
ators and prove an Atiyah-Hirzebruch type theorem for odd dimensional mani-
folds. Rigidity theorems for ellipitc genera on odd dimensional manifolds stated
for Toeplitz operators are given in Section 2.2. In Section 3, the rigidity theorems
are generalized to the nonzero anomaly case. In Section 4, we prove an equivariant
odd index theorem for Dirac operators with involution parity which is a general-
ization of Freed’s odd index theorem in [Fr] and another Atiyah-Hirzebruch type
theorem for odd dimensional manifolds is given.

2. Rigidity theorems for Toeplitz operators on odd dimensional

manifolds

2.1 An Atiyah-Hirzebruch vanishing theorem for odd dimensional man-
ifolds

In this section, we first state a generalization of the equivariant odd index the-
orem for Toeplitz operators proved by Fang in [Fa] (for more details, see [Fa]).
Let X be a closed oriented spin manifold of dimension 2r + 1, with a fixed spin
structure. Let 4(TX) be the canonical complex spinor bundle of X and E be
a complex Hermitian vector bundle with a Hermitian connection ∇E . Let DE

be the associated twisted Dirac operator which is a self adjoint first order ellip-
tic differential operator acting on Γ(4(TX) ⊗ E) (the smooth sections space of
4(TX) ⊗ E), so it induces a spectral decomposition of L2(4(TX) ⊗ E) which
is the L2 completion of Γ(4(TX) ⊗ E). Denote by L2

+(4(TX) ⊗ E) the direct
sum of eigenspaces of DE associated to nonnegative eigenvalues, and by P+ the
orthogonal projection operator from L2(4(TX)⊗E) to L2

+(4(TX)⊗E). Given
a trivial complex vector bundle CN over X, DE and P+ extend trivially as op-
erators on Γ(4(TX)⊗ E ⊗CN ). Let g : X → U(N) be a smooth map. Then g

extends to an action on Γ(4(TX)⊗E⊗CN ) as Id(4(TX)⊗E)⊗g, still denoted by g.

Definition 2.1. The Toeplitz operator associated to DE and g is

Tg⊗E = (P+⊗IdCN )g(P+⊗IdCN ) : L2
+(4(TX)⊗E⊗CN )→L2

+(4(TX)⊗E⊗CN).

It is a classical fact that Tg⊗E is a bounded Fredholm operator between the given
Hilbert spaces. Next, we will state the equivariant index theorem for Toeplitz
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operators.
Consider a compact group H̃ of isometries of X preserving the orientation

and spin structure. Let E be a H̃-vector bundle with H̃-invariant Hermitian
connection. There is a lift of h ∈ H̃ acting on Γ(4(TX) ⊗ E) which commutes
with DE , so it commutes with P+. We also assume that

g(hx) = g(x), for any h ∈ H̃ and any x ∈ X, (2.1)

Then,
(Tg ⊗ E)h = h(Tg ⊗ E).

Definition 2.2. The equivariant index associated to Tg ⊗ E and h is

Ind(h, Tg ⊗ E) = tr(h|ker(Tg ⊗ E))− tr(h|coker(Tg ⊗ E)). (2.2)

Let Fα be the fixed point submanifolds of X under the action of any h ∈ H̃ and
for simplicity, we assume only one fixed point component F (the same discus-
sions for many components), and N(F ) be the normal bundle of F in TX. Let
dimF = 2q0 +1 and dimN(F ) = 2s. In any local coordinate system, RN(F ) is the
curvature matrix of the bundle N(F ) and Θ is the rotation matix of h acting on
N(F ). Let Â(F ) and chh(E) be the Â characteristic form on TF and the equi-
variant Chern character of E respectively. Let ch(g) be the odd Chern character
of g. The following theorem is a generalization of Fang’ odd equivariant index
theorem, its proof follows the same argument as in [Fa].

Theorem 2.3. We have

Ind(h, Tg⊗E) =

(
(
−√−1

2π
)q0+1ch(g)Â(F )[Pf(2sin(

RN(F )

4π
√−1

+
1
2
Θ))]−1chh(E)

)
[F ]

(2.3)

Next we assume H̃ = S1 and let h = e2πit be a generator of the circle group.
Then the tangent bundle TX and E have decompositions into sum :

TX|F = E1 ⊕ · · · ⊕ Es ⊕ TF ;E|F = L1 ⊕ · · · ⊕ Ll0 , (2.4)

where E1 · · ·Es are S1-invariant 2-planes and L1 · · ·Ll0 are complex line bun-
dles. Assume that h acts on Ej and Ll by e2πitmj and e2πitcl respectively.
Let 2π

√−1yl,−2π
√−1yl, (1 ≤ l ≤ q0) be the Chern roots of TF ⊗ C and
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2π
√−1xj ,−2π

√−1xj , (1 ≤ l ≤ s) be the Chern roots of NF⊗C and 2π
√−1zν , (1 ≤

ν ≤ l0) be the Chern roots of E|F . Now we give the Chern root expression of odd
equivariant index theorem for H̃ = S1 case.

Ind(h, Tg ⊗ E) =

(
(
−√−1

2π
)q0+1 1

(−2)s
ch(g)

q0∏

l=1

πyl

sinπyl

×
s∏

j=1

1
sin[π(xj + mjt)]

l0∑

ν=1

e2π
√−1(cνt+zν)


 [F ] (2.5)

Using (2.5), by the same method as in [AH] or [BT], we can prove an Atiyah-
Hirzebruch type theorem for odd dimensional spin manifolds:

Theorem 2.4. Let X be an odd dimensional connected spin manifold which ad-
mits an nontrivial S1 action and g : X → U(N) satisfying g(hx) = g(x), for any h ∈
S1 and any x ∈ X, then we have

∫

X
Â(TX)ch(g) = 0. (2.6)

Proof. Let h = e2πit be the topological generator of S1 where t is a irrational
number. Let Γ be the subgroup of S1 generated by h, then the closure of Γ
is S1 and fixed point sets F (h) = F (hm) = F (S1) for any m ∈ N. Since
indS1(Tg) := [kerTg] − [cokerTg] is a virtual representative space of S1, then its
character

indz0(Tg) =
N∑

k=−N

nkz
k
0 (2.7)

where z0 ∈ S1 and k, nk are integers. By (2.4) and (2.5) for untwisted case, for
any z = hm ∈ Γ, we have up to a constant

indz(Tg) =
∫

F
ch(g)Â(F (S1))

s∑

j=1

1
zmj/2eiπxj − z−mj/2e−iπxj

. (2.8)

Considering the Taylor expansion of 1

zmj/2ex−z−mj/2e−x
, the right hand of (2.8)

equals
s∑

j=1

1
zmj/2 − z−mj/2

× f(
zmj/2 + z−mj/2

zmj/2 − z−mj/2
), (2.9)
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where f( zmj/2+z−mj/2

zmj/2−z−mj/2 ) is a polynomial on zmj/2+z−mj/2

zmj/2−z−mj/2 . We extend the right
hand of (2.7) and (2.9) as meromorphic functions on the complex plane. Since
they are equal on Γ, they must be equal on the complex plane.

∑N
k=−N nkz

k has
poles at 0, ∞ and (2.9) has poles at |z| = 1, so they have no poles on C ∪ ∞
and are constant. When z goes to zero, then (2.9) is zero. So indz0(Tg) is zero,
especially,

ind(Tg) =
∫

X
Â(TX)ch(g) = 0. (2.10)

2.2 Rigidity theorems of elliptic genera for Toeplitz operators

First we recall the Witten elements. For a vector bundle E on X, let

St(E) = 1 + tE + t2S2E + · · · ,

∧t(E) = 1 + tE + t2 ∧2 E + · · · (2.11)

be the symmetric and exterior power operations in K(M)[t]. Let

Θ′
q(TX) = ⊗∞n=1 ∧qn (TX)⊗∞m=1 Sqm(TX),

Θq(TX) = ⊗∞n=1 ∧−qn− 1
2

(TX)⊗∞m=1 Sqm(TX),

Θ−q(TX) = ⊗∞n=1 ∧qn− 1
2

(TX)⊗∞m=1 Sqm(TX). (2.12)

Furthermore, let V be a real vector bundle on X with structure group Spin(2k)
and the action lift to V . So we have

V |F = V1 ⊕ · · · ⊕ Vk, (2.13)

where V1 · · ·Vk are S1-invariant 2-planes and h acts on Vν by e2πitnν . Denote the
Chern root of Vν by 2πiuν . Let

Θ′
q(TX|V ) = ⊗∞n=1 ∧qn (V )⊗∞m=1 Sqm(TX),

Θq(TX|V ) = ⊗∞n=1 ∧−qn− 1
2

(V )⊗∞m=1 Sqm(TX),

Θ−q(TX|V ) = ⊗∞n=1 ∧qn− 1
2

(V )⊗∞m=1 Sqm(TX)),

Θ?
q(TX|V ) = ⊗∞n=1 ∧−qn (V )⊗∞m=1 Sqm(TX). (2.14)

Let p1(.)S1 denote the first S1-equivariant Pontrjagin class and ∆(V ) = ∆−(V )⊕
∆+(V ) be the spinor bundle of V , then we have the following rigidity theorems.
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Theorem 2.5. a) For an odd dimensional connected spin manifold with non-
trivial S1 action, assume that it has only 1-dimensional fixed submanifolds, then
the Toeplitz operators Tg ⊗∆(TX)⊗Θ′

q(TX), Tg ⊗Θq(TX), Tg ⊗Θ−q(TX) are
rigid.
b) If the action lifts to V and p1(V )S1 = p1(X)S1, the operators Tg ⊗ ∆(V ) ⊗
Θ′

q(TX|V ), Tg⊗(∆+(V )−∆−(V ))⊗Θ?
q(TX|V ), Tg⊗Θq(TX|V ), Tg⊗Θ−q(TX|V )

are rigid.

Example 1. Let M be an even dimensional spin manifold with nontrivial S1 ac-
tion preserving orientation and spin structure and its fixed points set is isolated.
Let X = M × S1 with S1 acting on X by trivial action on S1. g is a smooth
function on S1.

For τ ∈ H = {τ ∈ C; Imτ > 0}, q = e2πiτ , let

θ3(v, τ) = c(q)
∞∏

n=1

(1 + qn− 1
2 e2πiv)

∞∏

n=1

(1 + qn− 1
2 e−2πiv),

θ2(v, τ) = c(q)
∞∏

n=1

(1− qn− 1
2 e2πiv)

∞∏

n=1

(1− qn− 1
2 e−2πiv),

θ1(v, τ) = c(q)q
1
8 2cos(πv)

∞∏

n=1

(1 + qne2πiv)
∞∏

n=1

(1 + qne−2πiv),

θ(v, τ) = c(q)q
1
8 2sin(πv)

∞∏

n=1

(1− qne2πiv)
∞∏

n=1

(1− qne−2πiv), (2.15)

be the classical theta functions (see [Ch]), where c(q) =
∏∞

n=1(1− qn).
Now we define some functions on C×H

Fds(t, τ) = ch(g)
q0∏

l=1

πylθ1(yl, τ)
θ(yl, τ)

s∏

j=1

θ1(mjt + xj , τ)
θ(mjt + xj , τ)

[F ],

FD(t, τ) = ch(g)
q0∏

l=1

πylθ2(yl, τ)
θ(yl, τ)

s∏

j=1

θ2(mjt + xj , τ)
θ(mjt + xj , τ)

[F ],

F−D(t, τ) = ch(g)
q0∏

l=1

πylθ3(yl, τ)
θ(yl, τ)

s∏

j=1

θ3(mjt + xj , τ)
θ(mjt + xj , τ)

[F ],
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F V
ds

(t, τ) = ch(g)
q0∏

l=1

πyl

θ(yl, τ)

∏k
ν=1 θ1(nνt + uν , τ)∏s
j=1 θ(mjt + xj , τ)

[F ],

F V
D (t, τ) = ch(g)

q0∏

l=1

πyl

θ(yl, τ)

∏k
ν=1 θ2(nνt + uν , τ)∏s
j=1 θ(mjt + xj , τ)

[F ],

F V
−D(t, τ) = ch(g)

q0∏

l=1

πyl

θ(yl, τ)

∏k
ν=1 θ2(nνt + uν , τ)∏s
j=1 θ(mjt + xj , τ)

[F ],

F V
D?(t, τ) = ch(g)

q0∏

l=1

πyl

θ(yl, τ)

∏k
ν=1 θ(nνt + uν , τ)∏s
j=1 θ(mjt + xj , τ)

[F ]. (2.16)

By (2.5) and [LaM,page 238], for any irrational number t ∈ [0, 1] and h = e2πit,

up to some constants, we get

Indh(Tg ⊗∆(TX)⊗Θ′
q(TX)) = Fds(t, τ),

Indh(Tg ⊗Θq(TX)) = q
r
8 FD(t, τ),

Indh(Tg ⊗Θ−q(TX)) = q
r
8 F−D(t, τ),

Indh(Tg ⊗∆(V )⊗Θ′
q(TX|V )) = (c(q)q

1
8 )r−kF V

ds
(t, τ),

Indh(Tg ⊗Θq(TX|V )) = q
r
8 (c(q))r−kF V

D (t, τ),

Indh(Tg ⊗Θ−q(TX|V )) = q
r
8 (c(q))r−kF V

−D(t, τ),

Indh(Tg ⊗ (∆+(V )−∆−(V ))⊗Θ?
q(TX|V )) = (c(q)q

1
8 )r−kF V

D?(t, τ) (2.17)

As in [Li1], [LiM], we extend these F and (F V ) to meromorphic functions on
C×H, then the rigidity theorems are equivariant to the statement that these F

and F V are holomorphic by the following lemma

Lemma 2.6. a) Fds(t, τ), FD(t, τ) and F−D(t, τ) are invariant under the action
U : t → t + aτ + b. for a, b ∈ 2Z
b) If p1(V )S1 = p1(X)S1, then F V

ds
(t, τ), F V

D (t, τ), F V
−D(t, τ) and F V

D?(t, τ) are
invariant under U .
Proof. Recall that we have the following transformation formulas of theta-
functions (see [Ch]):

θ(t + 1, τ) = −θ(t, τ); θ(t + τ, τ) = −q−
1
2 e−2πitθ(t, τ),

θ1(t + 1, τ) = −θ1(t, τ); θ1(t + τ, τ) = q−
1
2 e−2πitθ1(t, τ),

θ2(t + 1, τ) = θ2(t, τ); θ2(t + τ, τ) = −q−
1
2 e−2πitθ2(t, τ),
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θ3(t + 1, τ) = θ3(t, τ); θ3(t + τ, τ) = q−
1
2 e−2πitθ3(t, τ), (2.18)

From these formulas, for θν = θ, θ1, θ2, θ3 and (a, b) ∈ (2Z)2, l ∈ Z, we get

θν(x + l(t + aτ + b), τ) = e−πi(2lax+2l2at+l2a2τ)θν(x + lt, τ), (2.19)

which proves (a).
To prove (b), note that since p1(V )S1 = p1(TX)S1 , we have

k∑

ν=1

(uν + nνt)2 =
q0∑

l=1

y2
l +

s∑

j=1

(xj + mjt)2. (2.20)

This implies the equalities:

k∑

ν=1

nνuν =
s∑

j=1

mjxj ;
k∑

ν=1

n2
ν =

s∑

j=1

m2
j . (2.21)

By (2.16),(2.19) and (2.21), we can prove b). ¤
Let Φτ be scaling homomorphism from ∧(T ?F ) into itself: β[m] → τ

1−m
2 β[m].

Write

Fds(t, τ)[m0] = ch(g)[m0]
q0∏

l=1

πylθ1(yl, τ)
θ(yl, τ)

s∏

j=1

θ1(mjt + xj , τ)
θ(mjt + xj , τ)

[F ], (2.22)

Φ?
τFds(t, τ) = Φτ [ch(g)]

q0∏

l=1

πylθ1(yl, τ)
θ(yl, τ)

s∏

j=1

θ1(mjt + xj , τ)
θ(mjt + xj , τ)

[F ], (2.23)

where ch(g)[m0] denotes the [m0]-degree component of ch(g). Similarly we can
define FD(t, τ)[m0], F−D(t, τ)[m0] and Φ?

τFD(t, τ), Φ?
τF−D(t, τ),

For g0 =

(
a b

c d

)
∈ SL2(Z), we define its modular transformation on C ×H

by

g0(t, τ) =
(

t

cτ + d
,
aτ + b

cτ + d

)
. (2.24)

The two generators of SL2(Z) are

S =

(
0−1
1 0

)
, T =

(
1 1
0 1

)
, (2.25)

which act on C×H in the following way:

S(t, τ) = (
t

τ
,−1

τ
), T (t, τ) = (t, τ + 1). (2.26)
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Lemma 2.7. a) We have following identities:

Fds(
t

τ
,−1

τ
) = irΦ?

τFD(t, τ); Fds(t, τ + 1) = Fds(t, τ),

F−D(
t

τ
,−1

τ
) = irΦ?

τF−D(t, τ); FD(t, τ + 1) = F−D(t, τ)e−(πi
4

)r. (2.27)

b) If p1(V )S1 = p1(X)S1, then

F V
ds

(
t

τ
,−1

τ
) = (

τ

i
)(k−r)/2irΦ?

τF
V
ds

(t, τ); F V
ds

(t, τ + 1) = e−(πi
4

)(r−k)F V
ds

(t, τ),

F V
−D(

t

τ
,−1

τ
) = (

τ

i
)(k−r)/2irΦ?

τF
V
−D(t, τ); F V

D (t, τ + 1) = e−(πi
4

)rF V
−D(t, τ),

F V
D?(

t

τ
,−1

τ
) = (

τ

i
)(k−r)/2ir−kΦ?

τF
V
D?(t, τ); F V

D?(t, τ + 1) = e−(πi
4

)(r−k)F V
D?(t, τ).

(2.28)

Proof: By [Ch], we have the following transformation formula for the Jacobi
theta-functions:

θ(
t

τ
,−1

τ
) =

1
i

√
τ

i
eπit2/τθ(t, τ); θ(t, τ + 1) = eπi/4θ(t, τ),

θ1(
t

τ
,−1

τ
) =

√
τ

i
eπit2/τθ2(t, τ); θ1(t, τ + 1) = eπi/4θ1(t, τ),

θ2(
t

τ
,−1

τ
) =

√
τ

i
eπit2/τθ1(t, τ); θ2(t, τ + 1) = θ3(t, τ),

θ3(
t

τ
,−1

τ
) =

√
τ

i
eπit2/τθ3(t, τ); θ3(t, τ + 1) = θ2(t, τ). (2.29)
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The action of T on the functions on F and F V is easy, we omit it. By (2.17), we
have

Fds(
t

τ
,−1

τ
)

= ch(g)
q0∏

l=1

πylθ1(yl,− 1
τ )

θ(yl,− 1
τ )

s∏

j=1

θ1(mjt/τ + xj ,− 1
τ )

θ(mjt/τ + xj ,− 1
τ )

[F ]

= irch(g)
q0∏

l=1

πylθ2(τyl, τ)
θ(τyl, τ)

s∏

j=1

θ2(mjt + τxj , τ)
θ(mjt + τxj , τ)

[F ]

= ir
2q0+1∑

m0=1

ch(g)[m0]




q0∏

l=1

πylθ2(τyl, τ)
θ(τyl, τ)

s∏

j=1

θ2(mjt + τxj , τ)
θ(mjt + τxj , τ)




[2q0+1−m0]

[F ]

= ir
2q0+1∑

m0=1

ch(g)[m0] 1
τ q0




q0∏

l=1

πτylθ2(τyl, τ)
θ(τyl, τ)

s∏

j=1

θ2(mjt + τxj , τ)
θ(mjt + τxj , τ)




[2q0+1−m0]

[F ]

= ir
2q0+1∑

m0=1

ch(g)[m0] 1
τ q0

τ
2q0+1−m0

2




q0∏

l=1

πylθ2(yl, τ)
θ(yl, τ)

s∏

j=1

θ2(mjt + xj , τ)
θ(mjt + xj , τ)




[2q0+1−m0]

[F ]

= ir
2q0+1∑

m0=1

ch(g)[m0]τ
1−m0

2

q0∏

l=1

πylθ2(yl, τ)
θ(yl, τ)

s∏

j=1

θ2(mjt + xj , τ)
θ(mjt + xj , τ)

[F ]

= irΦ∗τFD(t, τ). (2.30)

Using the same trick, we can get other identities. ¤

Remark. When dimF = 1, then m0 = 1 and there is no Φ∗τ in Lemma 2.7.

Lemma 2.8 If TX and V are spin, then all of F and F V above are holomorphic
in (t, τ) ∈ R×H.

Proof. The proof is the same as the proof of Lemma 2.3 in [LiM] except that
we use Theorem 2.3 instead of their equivariant family index theorem. ¤

Proof of Theorem 2.5. We prove that these F and F V are holomorphic on C×H
which implies the rigidity of Theorem 2.5. We denote by F one of the functions:
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{F, F V }. Since ch(g) does not add poles, we know the possible polar divisors of
F in C×H are of the form t = (n/l)(cτ + d) with n, c, d, l integers and (c, d) = 1
or c = 1 and d = 0.

We can always find integers a, b such that ad − bc = 1. Then the matrix

g0 =

(
d −b

−c a

)
∈ SL2(Z) induces an action

F (g0(t, τ)) = F (
t

−cτ + a
,

dτ − b

−cτ + a
). (2.31)

Now, if t = (n/l)(cτ + d) is a polar divisor of F (t, τ), then one polar divisor of
F (g0(t, τ)) is given by

t

−cτ + a
=

n

l

(
c

dτ − b

−cτ + a
+ d

)

which gives t = n/l.

By Lemma 2.7, since dimF = 1, we know that up to some constant, F (g0(t, τ))
is still one of F , F V . This contradicts Lemma 2.8, therefore, this completes the
proof of Theorem 2.5. ¤

Remark: We may consider Theorem 2.5 as an odd analogue of rigidity theorems
for even dimensional manifolds with isolated fixed points. When dimF > 1, by
Lemma 2.7, in order to prove rigidity theorems, we need prove Lemma 2.8 for Φ∗τF
and Φ∗τF V . That is equivalent to prove Lemma 2.8 for Φ∗τF [m0] and (Φ∗τF V )[m0].
But it is not an equivariant index of some elliptic operator, so Lemma 2.8 does
not apply.

3. Jacobi forms and vanishing theorems

In this section, we generalize the rigidity theorems in the previous section
to the nonzero anomaly case, from which we derive some holomorphic Jacobi
forms. As corollaries, we get many vanishing theorems for odd dimensional spin
manifolds, especially an odd Û -vanishing theorem for loop space. In this section,
we will give odd analogues of some results of Section 3 in [Li2].

Recall that the equivariant cohomology group H∗
S1(X,Z) of X is defined by

H∗
S1(X,Z) = H∗(X ×S1 ES1,Z), (3.1)
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where ES1 is the usual universal S1-principle bundle over the classifying space
BS1 of S1. So H∗

S1(X,Z) is a module over H∗(BS1, Z) induced by projection
π : X ×S1 ES1 → BS1. Similarly an S1-bundle V over X extends to bundle
V ×S1 ES over X ×S1 ES1, then the equivariant characteristic classes of V are
defined by the characteristic classes of V ×S1 ES in H∗

S1(X,Z). Let u be the
generator of H∗(BS1, Z). We still use the notation of Section 2. We suppose
that there exists some integer n ∈ Z such that

p1(V )S1 − p1(TX)S1 = n.π∗u2. (3.2)

where we call n the anomaly to rigidity as in [Li 2, §3].
Similar to [Li1], we introduce the following elements in K(X)[[q

1
2 ]]:

Θ′
q(TX|V )ν = ⊗∞n=1 ∧qn (V − dimV )⊗∞m=1 Sqm(TX − dimX + 1),

Θq(TX|V )ν = ⊗∞n=1 ∧−qn− 1
2

(V − dimV )⊗∞m=1 Sqm(TX − dimX + 1),

Θ−q(TX|V )ν = ⊗∞n=1 ∧qn− 1
2

(V − dimV )⊗∞m=1 Sqm(TX − dimX + 1),

Θ?
q(TX|V )ν = ⊗∞n=1 ∧−qn (V − dimV )⊗∞m=1 Sqm(TX − dimX + 1). (3.3)

For h = e2πit, q = e2πiτ , with (t, τ) ∈ R × H, we denote the equivari-
ant index of Tg ⊗ ∆(V ) ⊗ Θ′

q(TX|V )ν , Tg ⊗ Θq(TX|V )ν , Tg ⊗ Θ−q(TX|V )ν

Tg ⊗ (∆+(V ) − ∆−(V )) ⊗ Θ?
q(TX|V )ν , Tg ⊗ ⊗∞m=1Sqm(TX − dimX + 1) by

2kF V
ds,ν(t, τ), F V

D,ν(t, τ), F V
−D,ν(t, τ), (−1)kF V

D∗,ν(t, τ),H(t, τ) respectively. We
can extend these functions to meromorphic functions on the complex plane. For
α = 1, 2, 3, let

θ′(0, τ) =
∂

∂t
θ(t, τ)|t=0, θα(0, τ) = θα(t, τ)|t=0. (3.4)

Similar to (2.13), we can get

F V
ds,ν(t, τ) = (2π)−r θ′(0, τ)r

θ1(0, τ)k
F V

ds
(t, τ);

F V
D,ν(t, τ) = (2π)−r θ′(0, τ)r

θ2(0, τ)k
F V

D (t, τ);

F V
−D,ν(t, τ) = (2π)−r θ′(0, τ)r

θ3(0, τ)k
F V
−D(t, τ);

F V
D∗,ν(t, τ) = (2π)k−rθ′(0, τ)r−kF V

D∗(t, τ);

H(t, τ) = c1ch(g)
q0∏

l=1

πyl

θ(yl, τ)
θ′(0, τ)r

∏s
j=1 θ(mjt + xj , τ)

[F ], (3.5)
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where c1 is a constant.
Recall that a (meromorphic) Jacobi form of index m and weight l over Lo Γ,

where L is an integral lattice in the complex plane C preserved by the modular
subgroup Γ ⊂ SL2(Z), is a (meromorphic) function F (t, τ) on C×H such that

F

(
t

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)le2πim(ct2/(cτ+d))F (t, τ),

F (t + λτ + µ, τ) = e−2πim(λ2τ+2λt)F (t, τ), (3.6)

where (λ, µ) ∈ L and

(
a b

c d

)
∈ Γ. If F is holomorphic on C×H, we say that F

is a holomorphic Jacobi form.
Recall the three modular subgroups

Γ0(2) =

{(
a b

c d

)
∈ SL2(Z)| c ≡ 0 (mod2)

}
,

Γ0(2) =

{(
a b

c d

)
∈ SL2(Z)| b ≡ 0 (mod2)

}
,

Γθ =

{(
a b

c d

)
∈ SL2(Z)|

(
a b

c d

)
≡

(
1 0
0 1

)
or

(
0 1
1 0

)
(mod2)

}
. (3.7)

Now we state the following theorem which is a generalization of Theorem 2.5
to the nonzero anomaly case.

Theorem 3.1. a)For an odd dimensional spin manifold with nontrivial S1 ac-
tion, assume that it has only 1-dimensional fixed points submanifolds and p1(V )S1−
p1(TX)S1 = n.π∗u2 with n ∈ Z, then F V

ds,ν(t, τ), F V
D,ν(t, τ), F V

−D,ν(t, τ) are holo-
morphic Jacobi forms of index n

2 and weight r over (2Z)2 o Γ with Γ equal to
Γ0(2), Γ0(2), Γθ respectively, and F V

D∗,ν(t, τ) is a holomorphic Jacobi form of
index n

2 and weight r − k over (2Z)2 o SL2(Z).
b) If p1(X)S1 = −nu2, then H(t, τ) is a holomorphic Jacobi form of index n

2

and weight r over (2Z)2 o SL2(Z).

In this Section, we always assume dimF = 1. Similar to Lemma 3.2 in [Li2]
and using the same trick in Lemma 2.7, we have:
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Lemma 3.2. a) The following identities hold

F V
ds,ν(t, τ + 1) = F V

ds,ν(t, τ); F V
D,ν(t, τ + 1) = F V

−D,ν(t, τ);

F V
D∗,ν(t, τ + 1) = F V

D∗,ν(t, τ); H(t, τ + 1) = H(t, τ). (3.8)

b) If p1(V )S1 − p1(TX)S1 = n.π∗u2, then

F V
ds,ν(

t

τ
,−1

τ
) = τ reπint2/τF V

D,ν(t, τ);

F V
−D,ν(

t

τ
,−1

τ
) = τ reπint2/τF V

−D,ν(t, τ);

F V
D∗,ν(

t

τ
,−1

τ
) = τ reπint2/τF V

D∗,ν(t, τ). (3.9)

c) If p1(X)S1 = −nu2, then

H(
t

τ
,−1

τ
) = τ reπint2/τH(t, τ). (3.10)

Proof. By (3.5) and (2.29) and the equality θ′(0, τ + 1) = e
πi
4 θ′(0, τ) , we can

prove (3.8). Consider the condition on the first equivariant Pontrjagin classes
implies the equality

k∑

ν=1

(uν + nνt)2 −
q0∑

l=1

y2
l −

s∑

j=1

(xj + mjt)2 = nt2, (3.11)

which gives the equalities

k∑

ν=1

nνuν =
s∑

j=1

mjxj ;

k∑

ν=1

u2
ν =

q0∑

l=1

y2
l +

s∑

j=1

x2
j ;

k∑

ν=1

n2
ν −

s∑

j=1

m2
j = n. (3.12)
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By (3.5),(2.16),(3.12) and dimF = 1, we have

F V
ds,ν(

t

τ
,−1

τ
)

= (2π)−r θ′(0,− 1
τ )r

θ1(0,− 1
τ )k

ch(g)
q0∏

l=1

πyl

θ(yl,− 1
τ )

∏k
ν=1 θ1(nνt/τ + uν ,−1/τ)∏s
j=1 θ(mjt/τ + xj ,−1/τ)

[F ]

= (2π)−r (τ/i)3r/2θ′(0, τ)r

(τ/i)k/2θ2(0, τ)k
ch(g)

q0∏

l=1

πyl

1
i

√
τ
i e

πiτ2y2
l /τθ(τyl, τ)

×
∏k

ν=1

√
τ
i e

πi(nνt+τuν)2/τθ2(nνt + τuν , τ)∏s
j=1

1
i

√
τ
i e

πi(mjt+τxj)2/τθ(mjt + τxj , τ)
[F ]

= (2π)−rτ reπint2/τ θ′(0, τ)r

θ2(0, τ)k
ch(g)[1]

[
q0∏

l=1

πyl

θ(τyl, τ)

∏k
ν=1 θ2(nνt + τuν , τ)∏s
j=1 θ(mjt + τxj , τ)

][2q0]

[F ]

= (2π)−rτ reπint2/τ θ′(0, τ)r

θ2(0, τ)k
ch(g)[1]

[
q0∏

l=1

πyl

θ(yl, τ)

∏k
ν=1 θ2(nνt + uν , τ)∏s
j=1 θ(mjt + xj , τ)

][2q0]

[F ]

= τ reπint2/τF V
D,ν(t, τ); (3.13)

Using the same trick, we can prove the other identities.¤

Lemma 3.3 a)For an odd dimensional spin manifold with nontrivial S1 action,
assume that it has only 1-dimensional fixed points submanifolds and p1(V )S1 −
p1(TX)S1 = n.π∗u2 with n ∈ Z, then F V

ds,ν(t, τ), F V
D,ν(t, τ), F V

−D,ν(t, τ) are Ja-
cobi forms of index n

2 and weight r over (2Z)2oΓ with Γ equal to Γ0(2), Γ0(2), Γθ

respectively, and F V
D∗,ν(t, τ) is a holomorphic Jacobi form of index n

2 and weight
r − k over (2Z)2 o SL2(Z).

b) If p1(X)S1 = −nu2, then H(t, τ) is a Jacobi form of index n
2 and weight r

over (2Z)2 o SL2(Z).
Proof: Using (2.19),(3.5) and (3.12), similar to Lemma 2.6 b), we can prove these
F V and H satisfy the second equation of the definition of Jacobi form (3.6).

Recall that T and ST 2ST generate Γ0(2), and also Γ0(2) and Γθ are conjugate
to Γ0(2) by S and ST , respectively. Then by Lemma 3.2, we can get that these
F V

ν and H satisfy the first equation of the definition of Jacobi form (3.6). ¤
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For g0 =

(
a b

c d

)
∈ SL2(Z), we write

F (g0(t, τ))|m,l = (cτ + d)−le−2πimct2/(cτ+d)F

(
t

cτ + d
,
aτ + b

cτ + d

)
, (3.14)

which denotes the action of g0 on a Jacobi form F of index m and weight l.
By Lemma 3.2, for F ∈ {F V

ν ,H}, its modular transformation F (g0(t, τ))|n
2

,r

(or F (g0(t, τ))|n
2

,r−k) is still one of the F ∈ {F V
ν ,H}. Similar to Lemma 2.8, we

have the following Lemma

Lemma 3.4 For any g0 ∈ SL2(Z), let F be one of the {F V
ν } or H, then

F (g0(t, τ))|n
2

,r (or F (g0(t, τ))|n
2

,r−k) is holomorphic on R×H.

The proof of Theorem 3.1: By (3.14), F (g0(t, τ))|m,l and F
(

t
cτ+d , aτ+b

cτ+d

)
have

the same poles. As in [Li2] or [LiM], by Lemma 3,4, similar to the proof of The-
orem 2.5, we may prove Theorem 3.1.

Next we will prove a vanishing theorem for loop space. The following lemma
is established in [EZ, Theorem 1.2].

Lemma 3.5 Let F be a holomorphic Jacobi form of index m and weight l. Then
for fixed τ , F (t, τ), if not identically zero, has exactly 2m zeros in any funda-
mental domain for the action of the lattice on C. when m = 1 and l is odd, then
F is identically zero

By this lemma, if m < 0, then F must be identically zero. If m = 0, then F

must be independent of t.

Corollary 3.6 Let X, V, n and the assumption condition be as in theorem 3.1.
If n = 0, the equivariant index of the Toeplitz operators in Theorem 3.1 are in-
dependent of h ∈ S1. If n < 0 or n = 2 and r = dimX−1

2 is odd, then these
equivariant index are identically zero; in particular, the index of these Toeplitz
operators is zero.
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The following theorem is an odd analogue of Û -vanishing theorem for loop
space.

Theorem 3.7 Let M be a compact odd dimensional spin manifold with a nontriv-
ial S1 action and 1-dimensional fixed points submanifolds. If p1(X)S1 = −nπ∗u2,
then the Lefschetz number, especially the index of Tg⊗⊗∞m=1Sqm(TX−dimX +1)
is zero.
Proof: By p1(X)S1 = −nπ∗u2, then

∑
m2

j = −n, thus n ≤ 0. When n = 0,
then mj = 0 and S1-action has no fixed point. By (3.5), H(t, τ) is zero. When
n < 0, by Theorem 3.1 b) and Lemma 3.5, H(t, τ) is also zero. ¤

4. An equivariant odd index theorem for Dirac operators with

involution parity

In this section, we will prove an equivariant odd index theorem which is the
generalization of Freed’s odd index theorem in [Fr] by a direct geometric method
in [LYZ] ( also see [Wa]). As in Section 2, Let X be a closed (connected for
simplicity) oriented spin manifold of dimension 2r+1, with a fixed spin structure
and 4(TX) be the canonical complex spinor bundle of X. A compact group
H̃ of isometries of X preserves the orientation and spin structure. Let E be a
H̃-vector bundle with H̃-invariant Hermitian connection ∇E . There is a lift of
h ∈ H̃ acting on Γ(4(TX)⊗ E) which commutes with DE .

Suppose that τ̂ : X → X is an orientation-reversing isometric involution which
preserves the Pin structure induced by the Spin structure and commutes with any
h ∈ H̃. We also assume that there is a lift of τ̂ on E which commutes with any
h ∈ H̃. We may take ∇E is also τ̂ -invariant. As in [Fr] and [Wa], we have there
exists a self-adjoint lift τ̂ : Γ(X;∆(TX)⊗ E) → Γ(X;∆(TX)⊗ E) satisfying

τ̂2 = 1; DE τ̂ = −τ̂DE , τ̂h = hτ̂ (4.1)

Then the +1 and −1 eigenspaces of τ̂ give a splitting of the twisted spinor fields

Γ(X;∆(TX)⊗ E) ∼= Γ+(X;∆(TX)⊗ E)
⊕

Γ−(X;∆(TX)⊗ E) (4.2)

and the Dirac operator interchanges Γ+(X;∆(TX) ⊗ E) and Γ−(X;∆(TX) ⊗
E). By (4.1), h preserves Γ+

−(X;∆(TX) ⊗ E). The purpose of this section is to
compute the equivariant index

indexh[DE,+ : Γ+(X;∆(TX)⊗ E) → Γ−(X;∆(TX)⊗ E)] (4.3)
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The simplest example is X = M × S1 with τ the reflection x → −x on S1 and
H̃ = S1 acting on the spin manifold M . By the equivariant index theorem in the
following (cf. Theorem 4.1), we have IndhD+ = IndhDM .

By the Mckean-Singer formula, we have

Indh(DE,+) = Tr(τ̂he−t(DE)2) = Tr(e−t(DE)2hτ̂) (4.4)

Let T = hτ̂ be an orientation-reversing isometric, then T has a lift T̂ on Γ+(X;∆(TX)⊗
E). Next, for T and the twisted coefficient E, using the method in [LYZ] (also see
[Wa]), we can get the following index formula. For simplicity, we also assume that
T has only one fixed point component F0 with dimension 2q0 and codimension
2s0 + 1

Theorem 4.1. We have

Indh(Dτ̂ ⊗ E) =

[
c0Â(F0)[Pf(2sin(

RN(F0)

4π
√−1

+
1
2
Θ))]−1chT (E)

]
[F0], (4.5)

where c0 is a constant and Θ is the rotation matrix of T . Here the Pfaffian is
taken on the first 2s0 coordinates of N(F0).

When h = id, we get the Freed odd index theorem. By the Lichnerowicz for-
mula for Dirac operators, we get

Corollary 4.2. Let X be an odd dimensional compact oriented Spin manifold
and τ̂ : X → X be an orientation-reversing isometric involution which preserves
Pin structure. Suppose that F1, · · · , Fr̂ are components of the fixed point set with
codimension 2m0

j + 1 and ch∆(Nj) is the Chern character of the spinor bundle
on N(Fj). If the scalar curvature of X is nonnegative and positive at one point
then

r̂∑

j=1

∫

Fj

(
√−1)m0

1−m0
j Â(TFj)[ch4(Nj)]−1 = 0. (4.6)

Now we let H̃ = S1 and h = e2πit is a generator of S1, then we have

Lemma 4.3. The following statements hold:
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a) Let F (·) denote a fix point set, then

F (hmτ̂) = F (hτ̂) = F (S1) ∩ F (τ̂), for any m ∈ Z,

b) The normal bundle N(τ̂h) has a τ̂S1-invariant decomposition N(τ̂h) = N0⊕1≤j

Nj where N0 is a real vector bundle and Nj is an oriented 2-plane bundle and τ̂h

acts on N0 by −1 and Nj by e2πi(mjt+aj), where mj 6= 0 ∈ Z and aj = 0 or 1
2 .

Proof. a) If hτ̂x = x, then (hτ̂)2x = x. Since τ̂2 = id; τ̂h = hτ̂ , we know
h2x = x. Since F (hm) = F (h) = F (S1), we have hx = x and τ̂x = x. Thus
F (hτ̂) ⊂ F (S1) ∩ F (τ̂) and the inverse inclusion is trivial. Similarly we can get
F (hmτ̂) = F (S1) ∩ F (τ̂).
b) By a), we have N(hτ̂) is a S1-representative bundle, so N(hτ̂) has a S1-
invariant decomposition N0 ⊕1≤j Nj and N0 is a real vector bundle and Nj is
an oriented 2-plane bundle and h acts on N0 by 1 and Nj by e2πimjt, where
mj 6= 0 ∈ Z. Since τ̂ is an involution isometry and commutes with h, so τ̂ pre-
serves the above decomposition acting by +1 or −1. ¤

Now we give a Chern root expression of (4.5) for H̃ = S1 case. We assume
E has also hτ̂ -invariant decomposition ⊕Eν and hτ̂ acts on Eν by e2πi(cνt+bµ),

where cν ∈ Z and bµ = 0 or 1
2 . Let 2πzν is the Chern root of Eν , then we have:

Indh(Dτ̂⊗E) =


c0

q0∏

l=1

πyl

sinπyl

s∏

j=1

1
sin[π(xj + mjt + aj)]

l0∑

ν=1

e2π
√−1(cνt+bµ+zν)


 [F ].

(4.7)
By Lemma 4.3, similar to the proof of Theorem 2.4, we can get another Atiyah-
Hirzebruch type theorem.

Theorem 4.4. Let X be odd dimensional connected spin manifold which admits
an nontrivial S1 action and τ̂ : X → X be an orientation-reversing isometric
involution which preserves the Pin structure and commutes with S1 action, then

r̂∑

j=1

∫

Fj

(
√−1)m0

1−m0
j Â(TFj)[ch4(Nj)]−1 = 0. (4.8)
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Proof. Let h be the topological generator of S1. By Lemma 4.3, F (hmτ̂) =
F (hτ̂) = F (S1) ∩ F (τ̂). By (4.1),(4.2) and (4.3), then indS1(Dτ̂ ) := [kerDτ̂ ] −
[cokerDτ̂ ] is a virtual representative space of S1, then its character

indz0(D
τ̂ ) =

N∑

k=−N

nkz
k
0 (4.9)

where z0 ∈ S1 and k, nk are integers. By (4.7) for untwisted case, for any
z = hm ∈ Γ, we have up to a constant

indz(Dτ̂ ) =
∫

F (S1)∩F (τ̂)
Â(F (S1)∩F (τ̂))

s∑

j=1

1
zmj/2eiπxjeiπaj − z−mj/2e−iπxje−iπaj

.

(4.10)
Considering the Taylor expansion of 1

zmj/2eaex−z−mj/2e−ae−x
, we see that the right

hand of (4.9) equals
s∑

j=1

1
zmj/2eπiaj − z−mj/2e−πiaj

× f(
zmj/2eπiaj + z−mj/2e−πiaj

zmj/2eπiaj − z−mj/2e−πiaj
), (4.11)

where f( zmj/2eπiaj +z−mj/2e−πiaj

zmj/2eπiaj−z−mj/2e−πiaj
) is a polynomial on zmj/2eπiaj +z−mj/2e−πiaj

zmj/2eπiaj−z−mj/2e−πiaj
. Note

that (4.11) also has poles at |z| = 1, so similar to Theorem 2.4, we can prove
Theorem 4.4 ¤
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