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INTRODUCTION

This paper is a sequel to [20]. In [20] we expressed the wallcrossing terms
of equivariant Donaldson invariants for a smooth toric surface in terms of the
Nekrasov partition function, and then using the solution of the Nekrasov con-
jecture [41],[48],[4] and its refinement [42] we gave the wallcrossing formula for
simply connected projective surfaces with p; = 0 in terms of modular forms, thus
recovering the formula in [19] originally proved assuming the Kotschick-Morgan
conjecture [29]. The Nekrasov partition function is defined as the generating
function of the integrals of the equivariant cohomology class 1 on the Uhlenbeck
partial compactifications My(r,n) of the moduli spaces of SU(r)-instantons on
R* with ¢ = n. (As My(r,n) is noncompact, we need a justification of the
integration. See [41] for details.)

There is a natural K-theoretic counterpart of the Nekrasov partition function,
namely we replace the integration in equivariant cohomology by the character
of the coordinate ring of My(r,n), where we view My(r,n) as an affine algebraic
variety via the ADHM description. The coordinate ring itself is infinite dimen-
sional, but the weight spaces are finite dimensional (see [41]), so the character
is well-defined. This K-theoretic counterpart is called the 5-dimensional super-
symmetric Yang-Mills theory compactified on a circle in the physics literature
[46],[31]. In [43] we proved the analogues of the results obtained in [41] in the K-
theoretic version. (The approach in [48] can be applied to the K-theoretic version,
while it seems difficult to generalize that of [4].) There is also a mathematical
reason why we should study the K-theoretic Nekrasov partition function. By
the geometric engineering of Katz, Klemm and Vafa [28], it is (after a parameter
is specialized) equal to the generating function of all genus, all degree Gromov-
Witten invariants for a certain noncompact toric Calabi-Yau 3-fold. (See [58] for
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a mathematically rigorous proof). Gromov-Witten invariants for toric Calabi-
Yau 3-folds have been studied intensively both in mathematics and physics (see
e.g. [39] and the references therein).

On the other hand, the K-theoretic Donaldson invariants have not been stud-
ied very much in the mathematical literature, as far as the authors know. One
of the reasons might be a lack of motivation, as it is unlikely that there is an
application to 4-dimensional topology. But another reason seems to lie in tech-
nical difficulties in defining the invariants. For example, the dimension counting
argument used in the definition of the Donaldson invariants cannot be applied
to the K-theoretic situation. Instead of attacking this problem, we restrict our
interest to the case when the base 4-manifold is a projective surface X. Then
we can use Gieseker-Maruyama moduli spaces of semistable sheaves and define
the K-theoretic Donaldson invariants as the holomorphic Euler characteristics
of the determinant line bundles. Then the algebro-geometric techniques used in
[20] to derive the wallcrossing formula for the ordinary Donaldson invariants can
be equally applied to the K-theoretic invariants. We will express the generating
function of wallcrossing terms of the K-theoretic Donaldson invariants in terms
of elliptic functions, which have a power series development in terms of modular
forms. Their lowest order terms are the modular forms which occur in the wall-
crossing formula in [20] for the usual Donaldson invariants. If the moduli spaces
are smooth of the expected dimension, it is easy to see that this is compatible
with the Hirzebruch-Riemann-Roch formula. Our approach is very similar to the
one in [20], though the final step identifying invariants with the g-developments
of modular forms and elliptic functions is more involved than in [20]. We want
to remark that our final answer for the wallcrossing formula strongly suggests
that there should exist a definition of K-theoretic Donaldson invariants for any
4-manifold with a Spin‘-structure (see §1.3).

The holomorphic Euler characteristics of determinant line bundles are interest-
ing algebro-geometric objects in their own right. They are refinements of the usual
Donaldson invariants, which contain a lot of geometrical information about the
moduli spaces of stable sheaves on X, their Uhlenbeck compactifications and the
linear systems on them. For instance by a result of [34] the morphism associated
to certain determinant line bundles defines a projective embedding of the Uhlen-
beck moduli spaces. The corresponding Donaldson invariants will determine the
degree of the Uhlenbeck compactification and under suitable assumptions one
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would expect that the K-theoretic Donaldson invariants determine its Hilbert
polynomial.

The K-theoretic Donaldson invariant is a natural 2-dimensional analogue of the
dimension of the space of conformal blocks (nonabelian theta functions). Another,
closely related, analogue is the genuine space of sections of a determinant line
bundle, rather than the alternating sum of cohomology groups. Its conjectural
formula appeared as four dimensional Verlinde formula in the physics literature
[35],[36]. (It is given as the space of sections, but it is not clear to the authors
whether the physical approach actually yields the space of sections, not Euler
characteristic.) A mathematical formulation was given in [45], where it was called
the space of conformal blocks in 4D WZW-Theory. In case the base manifold is
the projective plane the strange duality conjecture of Le Potier (see e.g. [6]) gives
a duality between the spaces of sections of determinant line bundles for moduli
spaces of sheaves of positive rank and their analogues on moduli spaces of pure
sheaves of rank 0. This conjecture has been checked in some cases in [5],[6]. An
analogue of this conjecture has been proved for some moduli spaces of sheaves
on K3-surfaces in [49]. In many examples, the determinant line bundle is ample,
or at least nef and big, so we have the vanishing of higher cohomology groups.
In those cases there are no difference between the spaces of sections and Euler
characteristics. However it is not clear whether we can control the spaces of
sections in general.

The paper is organized as follows. In Sect. 1 we collect background material on
the holomorphic Euler characteristic of the determinant line bundle and the K-
theoretic Nekrasov partition function. We also explain the partition function with
5D Chern-Simons terms (see [27, 51]), which naturally appears in our approach.
We also calculate the K-theoretic Donaldson invariants for K3 surfaces (see §1.5).
In Sect. 2 we express the wallcrossing terms in terms of the holomorphic Euler
characteristic of some virtual vector bundles on the Hilbert schemes XQ[n] of points
on two copies of X. In Sect. 3 we take X a smooth projective toric surface and
express the equivariant wallcrossing terms in terms of the K-theoretic Nekrasov
partition function. These two sections are parallel to [20, Sect’s. 2,3]. Then in
Sect. 4 we take the nonequivariant limit and give the formula of wallcrossing
terms in terms of modular forms and elliptic functions. We use the solution
of the Nekrasov conjecture and its refinement. In particular, we determine the
Hilbert series of the determinant line bundles on MEQ(O,d) and MEQ(H ,d) for
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small d in §4.5. In Appendix A we explain the Seiberg-Witten curve for the
5-dimensional supersymmetric Yang-Mills theory. We prove that the Seiberg-
Witten prepotential defined via the period of the curve satisfies the contact term
equation, which was also satisfied by the nonequivariant limit of the Nekrasov
partition function [43]. This completes our proof of Nekrasov’s conjecture started
in [43], as the solution of the contact term equation is unique.

This paper is dedicated to Friedrich Hirzebruch, one of the founders of K-
theory. Among the other subjects of this paper related his work are the Hirzebruch-
Riemann-Roch theorem, modular forms and elliptic functions. The first-named
author particularly wants to thank him, his teacher, for all the things he learned

from him.

Acknowledgment. The project started in 2004 Jan. when the first-named au-
thor visited Kyoto for a workshop organized by the second and third-named
authors. They are grateful to the Kyoto University for its hospitality. The
second-named author thanks Yuji Tachikawa and Hiroaki Kanno for their expla-
nations of the partition function with 5D Chern-Simons terms. Part of this paper
was written while the second and third-named authors were visiting the Interna-
tional Centre for Theoretical Physics, and also while the first-named author was
visiting the Institut-Mittag-Lefer. We thank both institutes for the hospitality.

1. BACKGROUND MATERIAL

We will work over C. We usually consider homology and cohomology with
rational coefficients and for a variety Y we will write H;(Y), and H*(Y) for
H;(Y,Q) and H(Y,Q) respectively. If Y is projective and o € H*(Y'), we denote
fy « its evaluation on the fundamental cycle of Y. If Y carries an action of a
torus T, « is a T-equivariant class, and p : X — pt is the projection to a point,
we denote [, o := p, () € Hy(pt).

In this whole paper X will be a nonsingular projective surface over C. Later
we will specialize X to a smooth projective toric surface. For a class a € H*(X),
we denote (o) := [ a. If X is a toric surface we use the same notation for the

equivariant pushforward to a point.

Let X be simply connected smooth projective surface with p,(X) = 0. Let H
be an ample divisor on X. We denote by M I){( (r,c1,c2) the moduli space of rank r
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torsion-free H-semistable sheaves (in the sense of Gieseker and Maruyama) with
c1(E) = c1, ca(E) = ¢y. Let MI){((T, c1,¢2)s be the open subset of stable sheaves.

1.1. Determinant line bundles. We briefly review the determinant line bundle

on the moduli space [11],[32], for more details we refer to [26, Chap. 8].

For a Noetherian scheme Y we denote by K(Y) and K°(Y) the Grothendieck
groups of coherent sheaves and locally free sheaves on Y respectively. Then
KO(Y) is a commutative ring with 1 = [Oy], with the multiplication given by the
tensor product of locally free sheaves. If Y is nonsingular and quasiprojective,
then K(Y) = K°(Y). In particular we have K(X) = KY(X) for the smooth
projective surface X. We will identify K°(X) with K(X) hereafter. If we want
to distinguish a sheaf F and its class in K(Y'), we denote the latter by [F]. But
we may also write F for the class in K(Y'). For a proper morphism f: Y] — Y, we
have the pushforward homomorphism fi: K(Y;) — K(Y2) defined by fi([F]) =
>, (1) [R'f.F]. When Y> = pt, this is the Euler characteristic of F under the
identification of K(pt) = Z: fi([F]) = x(Y1,F) = Y ,(—1)"dim H* (Y1, F). We
also have a pushforward homomorphism K°(Y;) — K°(Y2) when f is a locally
complete intersection morphism. (See [1, §4.4].) For any morphism f: Y} — Y>
we have the pullback homomorphism f*: K°(Y2) — K°(Y7) defined by f*[F] =
[f*F] for a locally free sheaf F on Y;.

On K(X) we have a quadratic form (u,v) — x(X,u ®v) = x(u ®v). (We
denote x(X,u ® v) by x(u ® v) for brevity hereafter.) We say that u,v € K(X)
are numerically equivalent if u — v is in the radical of this quadratic form, and
denote K(X)pum the set of numerical equivalence classes. Let ¢ € K(X)num-
Let £ be a flat family of coherent sheaves of class ¢ on X parametrized by a
scheme S, and let p: X xS — S5, ¢ : X xS — X be the projections. Define
Ae : K(X) — Pic(S) as the composition
(1.1) KX) % KX x 5) 28 KO(x x 5) 2 KO(S) 2% Pic(s),

(see also [26, (2.1.10), (2.1.11)]). The following elementary facts are important
for working with these line bundles:

(1) Ag is a homomorphism, i.e. Ag(v1 + v2) = Ag(v1) @ Ag(va2).

(2) If p € Pic(S) is a line bundle, then \gg,(v) = Ae(v) ®@ pX(®).

(3) Ag is compatible with base change: if ¢ : S’ — S is a morphism, then
Agre(v) = ¢* Ag(v).
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Let H be a very ample divisor on X. For a class ¢ € K(X)uum we denote
by K. == ¢ = {v € K(X) | x(v ®¢) = 0}. We denote by K.p = ¢t N
{1, h, h?}++, where h = [Og]. Now let ¢ € K(X)uum be the class of an element
in M (r,c1,c2). There are homomorphisms A\: K, — Pic(M5 (r,c1,¢2)s), and
N Keg — Pic(MI){((r, c1,¢2)), such that A commute with the inclusions K. g C
K, and Pic(Mj (r,c1,c0)) C Pic(Mj (r,c1,¢2)s). Note that Ag(v) is independent
of the choice of the universal family € for v € K, by the property (2) above, and
in fact, we do not need the existence of the universal sheaf to define the map .
We call H general with respect to (r,c1,ce) if all the strictly semistable sheaves
in M Ii,( (r,c1,co) are strictly semistable with respect to all ample divisors on X
in a neighbourhood of H (the ample cone has the topology induced from the
Euclidean topology on H?(X,R)). In this case any strictly semistable sheaf in
M (r,c1,¢9) is of type 1 in the sense of [10, 0.3]. Then the stabilizer subgroup
Aut F' (which appears in the proof of [26, Theorem 8.1.5]) acts trivially on the
fiber of the determinant line bundle (on the open subscheme of the quot-scheme).
Therefore A: K. g — Pic(M3# (r,c1,c2)) can be extended to K.

If £ is a flat family of semistable sheaves of rank r and with Chern classes
c1,c2 on X parametrized by S, then we have ¢5(A(v)) = Aeg(v) for all v € K. g
for ¢ : Pic(M3 (r,c1,¢2)) — Pic(S) the pullback by the classifying morphism.
If H is general with respect to (r,c1,cz), the same statement holds with K. g
replaced by K. If £ is a flat family of stable sheaves, the same statement holds
with K. g, M3 (r,c1,c2) replaced by K., M (r,c1,¢2)s.

1.2. K-theoretic Donaldson invariants. We write M (c1,d) for M3 (2,c1,¢2)
with d = 4¢y — c% — 3. Let v € K., where c is the class of a coherent rank 2 sheaf
with Chern classes c1,co. Assume that H is general with respect to (2, ¢, c2).
The K -theoretic Donaldson invariant of X with respect to v, ¢1, co, H is the holo-
morphic Euler characteristic x (M3 (c1,d), A(v)) of the line bundle A(v).

Notation 1.2. We introduce the following notation that we will often use in

the paper. For i > 0, we put v := [ch(v)e®/2 Todd(X)];. Thus v = rk(v),

v = ¢ (v) + rkév) (c1 — Kx) and v could be interpreted as x(v ® O(c1/2)).

By the Riemann-Roch Theorem it follows that

(1.3) x(v @) =20? —rk(v)(cy — CZ%),
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in particular we see that the condition v € K, is independent of d if rk(v) = 0.

An important special case is the following: Let L be a line bundle on X.
Assume that (c;(L),c1) is even (otherwise replace L by L®?). Then for ¢ the
class of a rank 2 coherent sheaf with Chern classes ¢y, c2, we put

C1 (L)
2

(1.4) v(L) == —(1—-L7Y) —¢( ce (D) + Kx +¢1)[0,] € K.

Note that v(L) is independent of ¢5. The condition that (c1(L), ¢1) is even implies
that v(L) € K(X). Assume that H is general with respect to (2, c1,c2). Then we
denote u(L) := A(v(L)) € Pic(Mj (c1,d)). The K-theoretic Donaldson invari-
ant of X, with respect to L,c1,d, H is x(M3 (c1,d),O(u(L))). The generating
function is
w5) () = Y2 A (e, ), O(u(L)).

d>0
If £ is a flat family of coherent sheaves parametrized by S, we have ¢1(u(L)) =
(c2(€) = Le1(€)?)/PD(c1 (L)) € H*(S) by the Riemann-Roch for a smooth mor-
phism ([1, §4.3]). It extends to a class in H2(Mj (c1,d)) by the same argument
for p(L). This coincides with the definition of u(ci(L)) appearing in the usual
Donaldson invariant. This is the reason why we denote the line bundle by p(L).
Thus it follows from the definitions and the singular Riemann-Roch theorem [1]
that x(M;s (c1,d), O(u(nL))) is a polynomial of degree d in n, whose leading term
is the algebraic geometric version of the Donaldson invariants n?®X (c;(L)¢/d!)
(in the notations of [20]) when M3 (c1,d) is of the expected dimension.

The above argument also implies that the invariant x (M3 (c1,d), A(v)) depends
only on ch(v) € H*(X). Therefore the invariant is well-defined on K (X )pom =
K(X)/~ where v ~ v if and only if ch(v) = ch(v).

1.3. A digression on the definition of the invariants. The definition of the
K-theoretic Donaldson invariants above is only ad hoc and will in general need to
be modified, so that the invariants have good properties and so that they might
be related to gauge-theoretical invariants.

We expect that for general X, when the moduli space M P)f (c1,d) does not
have the expected dimension, one needs to use a virtual structure sheaf (see
[33]) in the definition. If M7 (c1,d) consists only of stable sheaves, the perfect
obstruction theory was constructed in [52, Th. 3.30]. Then we just need to replace
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(M3 (c1,d), \(v)) by x(M# (c1,d), O @ A\(v)). If M (c1,d) has the expected
dimension, then by [33, Prop. 2], the virtual structure sheaf is just the usual
structure sheaf, and this definition reduces to our previous definition. When
M ﬁ (c1,d) may contain a strictly semistable sheaf, we need to construct a perfect
obstruction theory on another moduli space with additional structures and prove
that it is independent of the additional structure as in [40], or use the blowup
formula as in the definition of the usual Donaldson invariants (see [20, §1.1]). See
§1.4 below for the first step in this approach.

Let us examine the possibility to extend our definition of invariants to a C'*
4-manifold X. To avoid a technical difficulty, we first assume the moduli space
M ﬁ (c1,d) is smooth. Our definition depends on the complex structure of X, and
if we have a gauge theoretic definition, it should be independent of the complex
structure, and the definition must be modified. Our guess is to consider the index
of a Dirac operator instead of the holomorphic Fuler characteristic. If X is spin,
then we have a square root K;(/ ? of Kx, and then p(Kyx) is a line bundle. It is
known that this is isomorphic to half of the canonical bundle of M;s (c1, d) when
it is smooth (see e.g. [26, §8.3]). Therefore x(M# (c1,d), O(u(Kx)) is equal to the
index of the Dirac operator. In this special case, our main result Corollary 4.19 is
simplified as v(!) = — K. In particular, the answer is independent of the complex
structure except the term \/—_1<£’KX )
moduli space.

which corresponds to the orientation of the

More generally the complex structure on X and a line bundle L on X induces
the Spin‘-structure W+ = (A @ A®*) @ L, W= = A" @ L on X with the
characteristic line bundle det W+ = det W~ = —Kx +2L. We conjecture that it
induces a Spin®-structure on the moduli space. The recipe should be somewhat
similar to the definition of the orientation of the moduli space induced from the
homological orientation on H(X)®H!(X)*®H2(X), but we do not know how to
define it in general (even on the nonsingular part of the moduli space). However
in our situation, an obvious candidate for the index is x(Mj; (c1,d), O(u(2L)).
This means that the Spin©-structure is the one given by the complex structure
twisted by the line bundle p(2L). The answer given in Corollary 4.19 is written
in terms of v + Kx = Kx — 2L. As this is the negative of the characteristic
line bundle of the Spin® structure, the candidate seems reasonable.
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Now we come to discuss more technical points. For a C'°°° 4-manifold X, we
do not have the Gieseker-Maruyama compactification M;s (c1,d) and we need to
use the Uhlenbeck compactification N (c1,d) of the moduli space of instantons
instead. We also need to use its topological K-homology group K*P(N P)f (c1,d)).
When X is a projective surface, we have a homomorphism . : K*P(M3¥ (c1,d)) —
K'"P(N# (c1,d)) given by w: M3 (c1,d) — N (c1,d) and we can pushforward the
virtual structure sheaf on Mjy (c1,d) to N3 (c1,d). And it can be shown that the
line bundle x(L) is a pull-back of a line bundle from N3 (c1,d) under some con-
ditions. (See §1.4. And this assertion, at least for a topological line bundle, is
well-known in the gauge theory context.) Therefore the invariants in (1.5) can
be defined in terms of IV fl( (c1,d) and the framework of the topological K-group.
However it is not clear, at least to the authors, how to define the K-theoretic
fundamental class [O NX (cr)) € K P (NX(cy,d)) for an arbitrary C* 4-manifold

X even under the assumption that N I){( (c1,d) is of expected dimension.

We have considered the determinant line bundle p(L) above. This is the case
rk(v) = 0. When v € K, is suitably chosen (see [26, §8.1]) with rk(v) = 2, the
determinant line bundle A(v) is ample on M3 (c1,d) and does not come from
N#(c1,d). This observation seems to suggest that the invariant can be defined
only for a restricted class v on a C*° 4-manifold X. We have discussed rk(v) = 0
is sufficient for the existence of the line bundle A(v) on N7 (c1,d) above, but we
do not know whether this is necessary.

Also we do not give the definition of the analog of u(p) € H*(Mj; (c1,d)) where
p is the point class of Hy(X). It may be defined as

X(MFf (1, d), pi(q*v ® E)),

but it is not independent of the choice of the universal bundle £ in general, and
may not be defined when we do not have a universal bundle. A possible candidate,
which can be defined for any v € K (X)), is given by replacing £ by £ ® £V, where
V' is the involution on K°(X x Mjy (c1,d)) defined by taking the dual of a vector
bundle. Or more generally, if we have a representation p: PGL(2,C) — GL(V),
we may consider x (M (c1,d), pi(g*v@p([€]))), or applying p (with an appropriate
change of PGL(2,C)) after the pushforward p;. But we do not study these ‘higher’
invariants, and stick to our x(Mp (c1,d), A(v)), which we believe most basic.
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1.4. Blowup formula and the invariants for moduli spaces with strictly
semistable sheaves. As mentioned in the previous subsection, we give a pro-
posal of the definition of invariants when moduli spaces may contain strictly
semistable sheaves by using a blowup formula. We assume a kind of smoothness
of moduli spaces on the blowup. This allows us to avoid the virtual structure
sheaf. However the smoothness assumption is used much more essentially as we
use Kawamata-Viehweg vanishing theorem. If we could prove the same vanishing
theorem under the assumption that the moduli space is of expected dimension,
we could use the blowup formula as the definition of the invariant, as is done in
the context of usual Donaldson invariants (see e.g., [20]). Then the invariant is
integral, in contrast with the ordinary Donaldson invariants in which we must
divide by powers of 2. Moreover we also prove that the pushforward of the struc-
ture sheaf of the Gieseker-Maruyama compactification is equal to the structure
sheaf of the Uhlenbeck compactification. This seems an evidence of our belief
that the K-theoretic Donaldson invariant has a gauge theoretic definition. The
material in this subsection is technical, so a reader in hurry can just read the
statement of Corollary 1.8 and skip the rest.

Let (X, H) be a polarized rational surface. Let X be the blowup of X in a
point and C' the exceptional divisor. In the following we always denote a class
in H*(X,Z) and its pullback by the same letter. Write ¢ := (2,¢1,¢2), and
My (c) := M3 (c). Let Q be an open subset of a suitable quot-scheme such that
M (e) = Q/GL(N).

Let Ng(c) be the Uhlenbeck compactification of the moduli space of slope
stable vector bundles on X. The line bundle x(2D) is a pull-back of a line bundle
from Np(c) if D € Ne.qpe)—0 ¢4, In fact, the stability is the same for H and
H +eD with D € ﬂ&(H’Q:O{‘l for a sufficiently small . Then p(H + €D) is nef
and big and gives a map to the Uhlenbeck compactification. In particular, u(2D)
is the pull-back of a line bundle on the Uhlenbeck compactification, which we
denote by the same symbol. We further assume H is general with respect to c,
then we have {{ | (H,¢&) = 0} = {0}. Therefore u(2D) is the pull-back of a line
bundle on Ny (c) for any D.

We shall study the singularities of My (c) and Ng(c).

Lemma 1.6 ([3]). Assume that Q is smooth (e.g. (—Kx,H) > 0). Then Mg(c) =
Q/GL(N) is normal and has only rational singularities.
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We next consider the singularities of Ny (c). Replacing Ng(c) by its normal-
ization, we may assume that Ny (c) is normal.

Lemma 1.7. Assume that Q is smooth (e.g. (—Kx,H) > 0).

(1) Then Ng(c) has only rational singularities.

(2) ROy () = Onp(e)-

Proof. (1) We first assume that ¢ is primitive. Then there is a resolution of
m: Mg (c) — Nu(c), where M (c) is the moduli space of a-twisted semi-stable
sheaves for suitable . Then by the Grauert-Riemenschneider vanishing theorem,
R (K () = m(Kpre (). Since Kpra () = p(2Kx) comes from Np(c) and
Nu(c) is normal, Rm(One () = T(Onmz () = Ony(e)- Thus Ny(c) has only
rational singularities.

We next treat Mg (c) with ¢ = (2,0,2n). We set ¢ := (2,C,2n) and ]\/ZH(’C\) =
M 5—50(8)’ Then there is a surjective morphism 7: M, m(¢) — Npg(c) which is
generically a P'-bundle. Since —pu(C) is 7-nef and big, the Kawamata-Viehweg
vanishing theorem implies that Riﬁ*(KﬁH(a)(—Qu(C))) = 0,7 > 0. By our as-
sumption, u(Kx) comes from Ny (c). This implies that

(K, ) = 2u(c1(Kg)) = 2u(c1(Kx))+2p(C) = 2u(C)  mod 7 H*(Np(c), Q).

Hence Riﬁ*(OﬁH (E))
rational singularities by [30, Thm. 1].

= 0,7 > 0. Thus R%*(OZ\?H(E)) = Ony(c)- Then Ng(c) has

(2) It is sufficient to prove the following: For a proper birational map f: Y — Z
of normal varieties Y, Z with only rational singularities, Rf,(Oy) = O.

Proof of the claim: Let g: Y/ — Y be a resolution of the singularities. Since
Y has only rational singularities, R'g.(Oy/) = 0, i > 0. Then R'f.(Oy) =
R(f 0 9)«(Oys) =0,i > 0. Hence we get our claim.

By the proof, we also get the following.

Corollary 1.8. Let ]\/ZH(’C\) be the moduli space of stable sheaves on X such that
c=(2,c1 + kC,cy) with k =0,1. Then

R%*(OJ\/J\H(/C\)) = ONH(C) = RW*(OMH(C))
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In particular,

X(Mp (@), (D)) = X(Nu(c), (D)) = X (M (c), (D))

for any line bundle D on X such that (D,c1) is even and (D,&) = 0 for & any
class of type (c1,4c1 — 2 — 3) on X with (H,&) =0.

Remark 1.9. Since Mpy(c) is normal, the dualizing sheaf wyy,, () is reflexive. If
H is a general polarization, then Oy, () (2u(Kx)) is a line bundle on M which
coincides with the dualizing sheaf on the locus of stable sheaves Mg (c)®. If
dim (Mg (c) \ Mu(c)®) < dim My (c) — 2, then wyy,, () = Orrye)(20(Kx))-

1.5. K-theoretic invariant for K3 surfaces and strange duality. Let X be
a projective K3 surface. In this subsection we calculate the K-theoretic invariants
for X as examples. We also give a formula for the K-theoretic invariants of rank
1 sheaves on abelian surfaces.

For any projective algebraic surface Y and ¢ € K (Y )pom we denote by MY (c)
the moduli space of H-stable sheaves E on Y with ch(E) = ch(c). This is just a
change of notation, but is convenient to see the strange duality. We also define the
discriminant by A(c) = 2rk(c)ca(c) — (rk(e) — 1)ei(c)?, A(E) = 21k(E)ca(E) —
(tk(E) — 1)c1 (E)2.

Proposition 1.10. Let ¢ € K(X)nom with either rk(c) > 0 or rk(c) = 0 and
c1(c) nef and big. Assume that M3y (c) consists only of stable sheaves. Then for
v e K,

(# —1k(c)? + # —1k(v)? + 2>

X —
X(M (€), A(w) = 2O (o2 41

Corollary 1.11. Let ¢,v € K(X)pom with x(v ® ¢) = 0. Assume that both c
and v fulfill the assumptions for ¢ in Proposition 1.10. Then x(M3 (c), \(=v)) =

X(M; (v), M(—=c)).

Recall that our invariant is well-defined on K (X)pom (see §1.2). We have
v e K. ={v| x(v®c) =0} if and only if ¢ € K, therefore the line bundles
A(=v), A(—c) exist on M (c), M5 (v) respectively.

Remark 1.12. (1) Corollary 1.11 can be viewed as a weak version of an analogue
of the strange duality conjecture, which was formulated by Le Potier for P?, and

which is in turn an analogue of the strange duality (level-rank duality) for moduli
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spaces of vector bundles on curves (see [2],[7],[44]). Let ¢ € K(P?) with rk(c) > 0
and v € K, with rk(v) = 0 and ¢;(v) > 0 and assume MP*(c) # 0 # MP*(v).
Then the strange duality conjecture of Le Potier (see [5], [6]) predicts an explicit
duality between HO(MP*(c), \(—v)) and HO(MP®*(v),A(—c)). It is shown in [6]
that the higher cohomology groups H*(M®*(c), \(—v)) vanish and in the known
cases also the higher cohomology groups H*(M P2 (v), A(—c)) are zero, thus one has
in particular that y(MF(c), A(=v)) = x(MF¥*(v), A(—c)). Thus Corollary 1.11
says that on K3 surfaces this is true more generally for ¢, v of any nonnegative
rank, at least when M (c) and M;s (v) consist only of stable sheaves. It seems
natural to conjecture that the condition that the moduli spaces only consist of
stable sheaves can be dropped.

In the context of Brill-Noether theory of K3 surfaces Markman proposed to
put M3 (v) == M (—vV), in case rk(v) is negative (see [37]). It is easy to see
that if x(v ® ¢) = 0, then also x(—vY ® ¢) = 0, and A(—v") = A(v). Thus with
this definition Proposition 1.10 also holds if rk(v) or rk(c) are negative.

In [56] the proof of an equivalent formulation of Proposition 1.10 in terms of
the Mukai vector is sketched. In [49] there is a short sketch of the proof of Proposi-
tion 1.10. Furthermore the duality map HO(M3 (¢), A\(—v))¥ — HO(MF (v), A\(—c))
is constructed and it is checked in some cases that it is an isomorphism.

We first recall some properties of the moduli spaces M I){( (r,c1,c2). The Mukai
lattice of X is H*(X,Z) with the symmetric bilinear form

(1.13) (w,w'y = /X(cl Ay —rAdo—1"Nag),

for any w = (r,c1,a) € H*(X,Z) and v’ = (r',c},d") € H*(X,Z). Here the
notation w = (r,cy,a) means w = r @ ¢; B ap with r € H*(X,Z), ¢1 € H*(X,7),
a € Z and g9 € H*(X,7Z) is the fundamental cohomology class of X so that f x 0=
1. We define a weight 2 Hodge structure on H*(X,Z) by HP9(H*(X,C)) =
@ HPT (X)), We set H*(X,Z)ag = H*(X,Z) N HY'(H*(X,C)). Let ¢ :
K(X) — H*(X,Z) be a homomorphism such that

O(E) == (ch(E) Todd(X))v
=(tk(E), —c1(E), (¢1(E)?)/2 — ca(E) + rk(E)).

Then we see that ¢ is injective and the image is H*(X,Z).,. We set w :=
(r,e1,(c3)/2 — ca + 1) € H*(X,Z). By the definition of the lattice structure, ¢
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induces an isomorphism ¢ : K, — w+ N H *(X,Z)a1g- There is a homomorphism

0., which makes the following diagram commutative:

K, A Pic(MI){((r, c1,¢2))

gl |
wt LTEN H2(M§(r, c1,02),2)

If there is a universal family £, then 6,, is given by

0w(x)::[pkﬁ§vﬁhw)*(daE\/ded(X)xv)]l.
For M (c), the following is known (cf. [54], [55]).

Theorem 1.14. Let ¢ € K(X )phom with tk(c) > 0 or rk(c) =0 and ¢1(c) nef and
big. Assume that MI){((C) consists only of stable sheaves.

(1) M (c) is an irreducible symplectic manifold which is deformation equiva-
lent to X, where n = A(c)/2 — (rk(c)? — 1).

(2) If A(c)/2 — (tk(c)? — 1) > 1, then 0, is an isomorphism such that 0,
preserves the Hodge structure and the Beauville quadratic form AnrX (o) coincides
with the quadratic form associated to the Mukai lattice: (x%) = inlc(C)(Hw(:E)). If
A(c)/2 — (tk(c)? — 1) = 1, then 0., is surjective with the kernel Zw and similar
properties hold.

For the Euler characteristic of an irreducible symplectic manifold, we can use
the following result due to Fujiki (cf. [22, Corollary 23.18]).

Theorem 1.15. For an irreducible symplectic manifold M, there is a polynomial
f(x) € Q[z] such that for all D € H*(M,Z),

/ e Todd(M) = f(qu(D)),
M

where qu; is the Beauville quadratic form on H*(M,Z). Obviously f(x) is defor-

mation invariant.

Thus it is sufficient to compute the Euler characteristic of A(v) for the Hilbert
scheme X™ of n points on a K3 surface X. In this case, the Euler characteristic
is determined by [14] (cf. [22, Example 23.19]).

45 [n) (A(v))

(1.16) wahmm):< 2 +2+”_1>

n
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Now let ¢ € K(X) be general. Then for ¢(v) = (tkv, —c1(v),e1(v)3/2 — e2(v) +
rk(v)) we have

Ui (o (AW)) = (6(v)?) = —21k(v) (1 (v)? /2= c2(v)+1k(v)+e1 (v)* = A(v)—21k(v)?.
Therefore Proposition 1.10 follows from (1.16).

If ¢ is a class in K(Y) for a surface Y we want to momentarily introduce the
following notation. We write M};I(c) for the moduli space of H-semistable sheaves
E on Y with rk(E) = rk(c), det(E) = det(c) and co(E) = ca(c), i.e. the moduli
space with fixed determinant. Now let A be an abelian surface, we have a formula
very similar to Proposition 1.10.

Remark 1.17. Let ¢ € K(A) be a class rk(c) = 1. Let v € K. Then
A(v) A(c)

- _ A+ k(A (55 + 5
KT (0 Aw) = 2RO ( 60 )

Proof. Put n := Aéc). Then Mﬁ,(c) = A and if Z ¢ A x A" is the universal
subscheme, then the universal sheaf is 7y ® p* (det(c)). Thus for any v € K.
we get A(v) = X (v @ det(c)), where N (w) is the determinant bundle on A" =
Mﬁ(e@det(e)_l) defined via the universal sheaf Zz. Thus replacing v by v®det(c)
we can assume that det(c) = 0. We write r = rk(v). Then we get

A(v) = det(p 4 (P (v) ® Iz)) = det(p g, (Ph(v) ® Oz)) 7"
= det(p4m, (02))®17") @ det(p 1, (P (det(v)) ® Oz)) "

In the last line we use that det(p 41, (p%(v) ® Oz)) depends only on rk(v) and
det(v), so we can replace v by (’)i}(r_l) @ det(v). Thus by [14, Theorem 5.3] we

get
c1(v)? a@? _ .2 _ 1y,
KA M) = gt —— (2 T,
== —(r2—=1)n n
Finally the condition x(c ® v) gives ¢1(v)%/2 — ¢2(v) = rn, which is equivalent to

c1(v)?/2 = r’n + @. The result follows. O

(1.18)

It seems natural to expect that a similar formula also holds for rk(c) > 0
arbitrary. The simplest formula possible seems to be

IK(C 2 v IK(v 2 & M M
(T30, A) = TR0 (8 )
2
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Remark 1.19. Let Y be projective surface and let ¢,v € K(Y) with rk(v) =

Ale) L Av)

rk(c) = 1 and x(c® v) = 0. Then X(ME(C),/\(—U)) =(? AJ(FC) 2", in particular
3

XT3 (6), A(—0)) = x(M 1 (v), A(—0)).

Proof. Write ¢i(c) = L, c1(v) = M, ca(c) =1 = A(e)/2, ca(v) = m = A(c)/2.
Let Z C Y x YW be the universal subscheme. Then the universal sheaf on
Y x MY (c) =Y x YW is T @ pt-(L). Thus

A(=v) = —det(pym(Zz © py (L @ M))) = det(pyu.(Oz @ py (L @ M))).

Thus [14, Lemma 5.1], we get X(ME( ), A(—v)) = ( ®M)). By the Riemann-

l
Roch theorem x(c ® v) = 0 is equivalent to Aéc) + Aév) = x(L ® M). The result

follows. g

1.6. Nekrasov partition function. We briefly review the K-theoretic Nekrasov
partition function in the case of rank 2. For more details see [43, section 1]. Let
s be the line at infinity in P2. Let M(n) be the moduli space of pairs (E, ®),
where E is a rank 2 torsion-free sheaf on P2 with ca(E) = n, which is locally free
in a neighbourhood of ¢, and ® : E|, — O??j is an isomorphism. M (n) is a
nonsingular quasiprojective variety of dimension 4n. The tangent space to M (n)
at (E,®) is Ext'(F, B(—ly)).

Let I' := C* x C* and T := I' x C*. T acts on M(n) as follows: For
(t1,t2) € T, let Fy, 4, be the automorphism of P? defined by Fy, 4, ([20, 21, 22]) —
[20,t121,t222], and for e € C* let G., be the automorphism of (920 given by
(s1,82) — (e5's1,e252). Then for (E,®) € M(n) we put (t1,t2,e9) - (E,®) :=
((Et1 1) E,®'), where @' is the composition

1 \x (F, 1t )r Ge
(El,:;g) (E)‘Zoo — ( tl,tz) 0692 O?oz _2> O?oz

where the middle arrow is the homomorphism given by the action.

Notation 1.20. We denote e; the one-dimensional 7T-module given by (t1,t2,€2)
— eg. and similar we write ¢; (i = 1,2) for the 1-dimensional 7' modules given

by (t1,t2,e2) — t;. We also write ej := 62_1.

Let €1,e9,a be the coordinates on the Lie algebra of T corresponding to
t1,t2,e2. Then e1,e9,a are generators of the equivariant cohomology H%(pt)
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of a point. We relate the two sets of variables by t; = €1, ty = P2 ey = B¢,
where 8 € C is a parameter. We write a1 := —a, az := a.

The instanton part of the K-theoretic partition function is defined as

(1.21) ZBYey,e9,a;A,B) := Z((BA) Plerte)yn N " (—1)i ch H'(M(n), O).

n=0 i
Here the character ch is a formal sum of weight spaces, which are all finite-
dimensional by [42, section 4].

Let 2,y be the coordinates on A? = P? \ /... The fixpoint set M(n)f is the
set of (Zz,,®1) ® (Zz,, P2), where the Tz, are ideal sheaves of zero dimensional
schemes Z, with support in the origin of A% with len(Z1) + len(Z;) = n, and
®, (o = 1,2) are isomorphisms of Zz |, with the a-th factor of O?j. Write
I, for the ideal of Z, in C[z,y]. Then the above is a fixpoint if and only if
I; and I5 are generated by monomials in z,y. The fixed point set M (n)f is
parametrized by the pairs of Young diagrams Y = (Y7,Y3) so that the ideal I, is
generated by the z'y® with (i — 1,j — 1) outside Y;. The total number of boxes is
7] = V1] + [¥a] = .

We use the following notations: For a Young diagram Y let A; be the length of
the i*" column. Let Y’ be the transpose of Y and let /\;- be the length of the ;"
column of Y’ (equal to the length of the j*® row of Y). For s = (i,5) € Z>0 x Z>g
let

ay(s):=Xi—j, ly(s)=X;—i, d(s)=j—-1, U'(s)=i—-1

Following [43] let, for o, 8 € {1,2},

n?ﬁ(ﬁl £2,a; B) := H (1 — e_ﬂ(_lyﬁ(s)aﬁ(w&(S)+1)Ez+aﬁ_a“))

SGYa
1.22
(1.22) y H ( o Plva (s)+)e1—ayy, (s )€2+aﬁ—aa))

s€Yp
be the T-equivariant character of (Extl(I Zos L. Zﬁ(—ﬁoo)))v. Then by the Atiyah-

Bott Lefschetz fixed point formula we have
(1.23)

A)de—Berte))IY] A)de—Blerte))lY]
ZmSt(€1,€2,a; Aaﬁ) — Z ((ﬁ ) i ) — Z ((ﬁ ) = ) ’
/\_1 Y (n) )% Ha,ﬁ:lj na7ﬁ(€17€27a;18)

where /\_; is the alternating sum of the exterior powers.
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More generally we will consider the partition function with 5D Chern-Simons
term (see [51]): Let € be the universal sheaf on P? x M(n). Consider the line
bundle

L= Ae(Op2(—loo)) ™ = (det par (E@POp2 (—Lo))) L = det RLpas (E@p}Opz (—Lag)).

For an integer m consider the generating function

(1.24)

Zt(er,e,a A, B,7) 1= D O((BA) e PHDICHn S R (1) ch HY (M (n), £°™)

n=0 )
2

a
X exp (T(—n—i- —))
£1&2
We denote Z1%t(g1,e9,a;A,3,0) simply by ZIs%(eq,e9,a;A,3), in particular
Z(i]nSt(ela €2,0; A7 18) = ZiI?St(ela €2,0a; A7 B)

We put

Ch(e1,22,05 B,7) = exp <m,8 Z > (aa s)er —d'(s )52)>
a=1seY,
2

X exp (T( Y|+ a_))
£1€2

Then we get by localization
(1.25)

. 4,-BO+5)(Er+e2)\ Y[V .
Z% ey eq,a; N, B,7) = Z ((BA) e ’ = ) Cm(€1’€2’a”8’T).
% Ha,6:1,2 na7ﬁ(€17€27a;ﬁ)

(see also [51]). We briefly sketch the argument: Let ¥ = (Y3, Y3) correspond to
a fixpoint (Zz,, ®1) & (Zz,, P2) of M(n). By localization we have to show that

HY(P? (Tz, ®Tz,) ® O(— Z 3 ety "7,

a=1s€Y,
as T modules. The exact sequence 0 — (I, ® Zz,) ® T(—Loo) — O(—Lo)®? —
Oz, ® Oz, — 0 induces an isomorphism H'(P%, (Iz, @ Iz,) ® O(—{s)) =~
H°(Og,) @ H°(Ogz,). We have seen that an equivariant basis of H%(Oy,) is
the set {xl/(s)y“,(s) ‘ s € Yo }. By definition (t1,¢2) € I' acts by multiplying = by
tl_l and y by t !, Finally by definition e, acts H 9(0g.) by multiplying with e,.
The claim follows.
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For a variables my, 7 let
(1.26)
EY(€17€27 a'ﬁvT(]aTl)

eBaa

e (33 (1 -y T )

SEY&

Here [], means the part of degree p, where a,e1,e2 have degree 1. This is
eXp(Z;ZO 7, ch,i2(E)/[C?)). (See [42, p.59].) Then an easy computation gives
that

EY (e1,69,a;8,7,m) = CY, (e1,€2,0; B, 7)
3

=)
66162 '

(1.27) S

X exp (m,@<|Y| + (Y2 = Y1)

As a power series in A, Z%(ey, g9, a; A, B, 7) starts with 1. Thus
F?ig,lSt(elv €2,0; A7 Bv 7—) = IOg ZrirrLISt(gly €2,0; A7 B) T)

is well-defined and we put F.25(e1, 2, a; A, B) 1= Fii5'(e1, 22, a; A, 3,0),
Fps(e1, 89,05 A, B) := F™'(e1,€2,a; A, B).

We define the perturbation part, see [43, section 4.2] for more details. We set
(1.28)

3
Terea2B5A) = (—% (2 5ter+22)) +x2log(BA)>

26162
1 e—ﬁnw
' 2231 n (efrer —1)(efre: — 1)’

X 1 w2z ((3
esea(£]8: 4) 1= ey (218:4) + —— <@ _ %)

f1té 2\ | el +e3+3e1en

log(BA) + == | + =————log(BA
26162 < Og('B ) T 6[@) 126162 Og(IB )

for (x,83,A) in a neighbourhood of vV—1Rs¢ x vV—1R.y x v/—1Rso. We for-
mally expand 1627, ,(x|B; A) as a power series of €1,&2 (around e = g2 = 0).
Expanding

1 Cn ,n—2o
1.29 = —t"
(1:29) (es1t —1)(es2t — 1) n§>:0 n! ’
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we obtain

1 e_ﬁnw . Cm m_QL, —Ba
Z ; (eﬂnal _ 1)(6,8nag _ 1) - Z ﬁﬁ 13_m(€ ),

n>1 m>0

where Liz_,, is the polylogarithm (see [43, Appendix B] for details). Here we
choose the branch of log by log(r - €i®) = log(r) + i¢ with log(r) € R for ¢ €
(—7/2,37/2) and r € R. We define 7., .,(—z|B;A) by analytic continuation
along circles in a counter-clockwise way. We then define the perturbation part of
the partition function by

(130) F[Iécrt(‘Sl’g?)x;AvB) = _§€1,€2(2$|IB;A) - %61762(_2$|18;A)7

Then F ﬁert(sl,sg,x;A,B) is a formal power series in e1,e2 whose coefficients
are holomorphic functions in A € C\ V/—1R<q, z € C\ vV/—1R<, B € C with

18] <t
Finally we define
Fn(e1,e0,a; A, B,7) i= F¥™ (21,2, a5 A, B) + log Z2(e1, €9, a; A, B, 7),
Fm(El,EQ,CL; Aaﬁ) = Fm(El,EQ,CL;A,,B,O),
Fi(e1,e2,a; A, B) := Fy(e1,e2,a; A, B).

Formally one defines
Zm(gb €2,0; A7 B) T) = eXp(Frchrt(gly €2, a; A7 B))Z}?ﬁ(gl? €2,0; A7 187 T)7

and similarly for Z,,(e1,e2,a; A, B), Zk(e1,€2,a; A, 3).

1.7. More on the partition function with 5D Chern-Simons term. We
explain how the known properties of the K-theoretic Nekrasov partition func-
tion, obtained in [43], can be generalized to the partition function with 5D
Chern-Simons term, at least conjecturally. Our explanation is mathematical,
so a physical motivation can be found in [27, 51| and the references therein.

This subsection is independent of the rest of this paper, and can be safely
skipped. We also keep the notation in [43] except we set q = ALV

We consider the general case r > 2, although we only consider the case r = 2
in the main part of the paper. Let M(r,n) be the framed moduli space of rank
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7 torsion free sheaves E on P? with co(E) = n. Let £ be the universal sheaf on
P2 x M(r,n). Consider the line bundle

L:= Ae(Op2(—Loo)) ™! = (det po(ERp; Op2(—Loo))) ™! = det R 'poy (E@p; Opz (—Loo)).

For an integer m consider the generating function

(1.31)
2 (v, e A, B) 1= Y ((BA) e P et 2y S (1) e (M (1, m), £57).
n=0 %

By the localization formula we have

(1.32)
ZngSt(gly €2, 67 A,,@)

Z ((BA)%e_ﬁ(’*m)(el+52)/2)|?|
1%

exp (mﬁz Z (aq — l/(S)El - a,(3)52))=

N ”
[ 7Y 51,22, 8) palenvy
a’ﬁ

where Y is an r-tuple of Young diagrams. The argument is the same as in the
rank 2 case.

We have
(133) Zi—nrsr‘;(_gla —&2, _(_ia A7 B) = ZngSt(ela €2, (_ia A7 B)

This is a consequence of Serre duality and the equality Ky, = e~ TBle1tea)n
([43, Lemma 3.6]). But it also follows directly from

[ rds(—e1, —e2,—@; B) = PrEFI T T 0l 5(e1, 22, @ B).
3 ?

1.7.1. Correlation function on blow-up. Let X be the blow-up of P? at the origin
of C2. Let M (r,k,n) be the framed moduli space on X. We define the similar
partition function Z\ig’sl;d(el, €9,d; A, B3) on X by considering

> (1) b HY (M (r, b, 7), £ © u(C) ™),
where £ is defined as in the case of P2 by taking the universal bundle E over X x
M (r,k,m). (See[43, §2.1].) Asin [43, §2.2], we can write down 2;{275,2@(51, g2,a; A\, B)
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in terms of Z%%(e1,eq9,d; A, 3). The new factor comes from

q(@Hl Ox (kaC))e ) Zk36k (e1 + €2) +Z k —U,

Then the blowup formula is a slight modification of [43, (2.2)]:

(1.34)
B(El+€2)(d—(r+m)/2) A 2r (E’E)/2 B(Eﬁ)(d—m/2)
2 fenenah = Y (BAYED 7
kez' HdEA ld’(€17€27 (1)
Zka:k

X exp [m,@( (1 + €2) Zk + 5 Zk%a)]

X 7Y (21 ey — £, + 1k; eﬁel(d_(’*m)/z)/% A, B)
X Z0SU ey — £9,60,d + eok; P2 EmMID2r N 3,

where (k,@) = ~ >aplka — kp)(aa — ag), and similarly for (k,k). Note that
we need to normalize a vector k = (ko)L with > ko = k into I = (k1 —
k. k= %), as we assume Y a, = 0. (We took this normalization in [43]
without an explanation. It was explained in [41, §6].) Under this normalization
we have (k,@) = (I,d), lk(€1,€2, a) = la(€1,€2, a, n aﬁ(el,eg £1,d + e1k) =
a6(€1,€2 —€1,ad + z—:ll) etc. In particular, we simply replace k by [ in the
original partition function with m = 0. However the Chern-Simons term requires

exp [m,@ <Z Z (a0 + €1k —U'(s)er — d/(s) (52 — 61))>] = exp [ﬁmk&’?’]
a s€Y,
X exp [m,@ <Z Z ((aa + e1la — U'(s)er — d'(s)(e2 — 61)))] ,
a s€Y,

k3 ka
Z <F(El + 62) + 7aa>

a —Z( e+ 2o ) + (£ 0D+ 05 ) (420 + Rl
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We rewrite (1.34) in terms of I:

(1.35)
- k3m
Z5 (21,00, A, B) = eXP(GTf(Q +¢e2))
y Z (exp [Bler +22)(d+m (=5 + ) — §)] (BA)*)ED/2
b=k /r [zea li(e1,22,@)
xexp[ l d—i—m—%—i—k))]
X exp ( €1+ €2) Z l3 Zliaa>]
1k
X ZI(e1,60 — £1,d + £1; exp {ﬂ - {d—l—m (—5 + ;) - g}] A, B)
1 Kk
X ZPSY (g1 — 9, 9,d@ + £l exp ['B 2 {d—i— m (—5 + ;) — %H A, B).
Here {I} = —k/r means that the fractional part of I, is independent of o and

equal to —k/r.
By Serre duality we have
Zrlgslg d(€17 €2, ; Av B) = Zi—nrsnak,r—d(_gly —€&2, —G; Av B)

thanks to [43, Lemma 3.6]. It also follows from (1.34) and (1.33) together with

IT %« E(—e1,—€2,~G) = e P ED 11 15 (e1,22,@)

aeA aeA

1.7.2. The perturbation part. In [43, Sect. 4.2] one of the reasons for the intro-
duction of the perturbation part was to simplify the the blowup formula. As we

have an extra factor

R

we need to modify the perturbation part so that it is absorbed in the full partition
function. The answer is the cubic term:

T ai
exp [—mﬁz 66162] .
a=1
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We have the difference equation

a3 LT a3 a3 Pr (1 +e2)l?
r—x+le r—x+le - o ’
6e1e9 e1ey 1 6e1€9 el 522 66162 2 6
E2—E2—E€1 E2—E2

We thus define

3
F, (El,Eg,a A, B):= Z 7&1762 ({d, &>‘ﬂ A) - m'BZ 65152
aeA
+log Z25t (g1, €9, a; A, B),
kad(517527a A ,8 Z 751752 |'8 A mﬂz 66151

aeA
+ log Z;f;s]z d(al, g9, d; A\, B),

where 7, ¢, is as in (1.28). Note that the term . _; 6515 disappears when r = 2

thanks to the condition a; + as = 0. We formally define
Zm(e1,e9,a; A, B):=exp(F,(e1,e2,a; A, 3)),
Zya(er,e2,@ A, B):=exp(Fry a(e1, €2, @ A, B)).
The blowup formula is
(1.36)
Zpnpaler, €2, A, B)

m (=L +E)) =) (r— m
= exp [{—(4(d+ ( 2Z8T)) )( 1)+]2i2}ﬂ(61+62)

X Z Zm(e1,69 —e1,d + e1l; exp[gr {d—l— (—%4—;)—%}]1&,@

{B=—hir Be 1 k\ r
X Zm(e1 — €2,89,d + €3l; exp[ =2 {d—i— <—§+;> —§H A, B).

This is exactly the same as [43, (4.9)] with the replacement d — d+m(—1/2+k/r).

1.7.3. A conjectural blowup equation. For the original K-theoretic Nekrasov par-
tition function we have a blowup equation [43, Th. 2.4 and (4.9)], which de-
termines the partition function from its perturbative part. It was derived from
vanishing of higher direct image sheaves of a determinant line bundle p(C') with
respect to the projection 7: ]\7(7", 0,n) — N(r,n), where N(r,n) is the Uhlenbeck
compactification of the framed moduli space of locally free sheaves on P?, denote
by My(r,n) in [43].
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The proof of the vanishing theorem cannot be carried over to the partition
functions with Chern-Simons terms. But a numerical computation suggests

(1.37) Ai,zl%’d(al,ag,d’;A,,B) = Zi0Y(ey, 9, a@; A, B) for0<d<r,|m|<r.

This is exactly the same what we have proved for the original K-theoretic partition
function, i.e. m = 0 in [43]. It seems likely that the left hand side can be
always written in terms of the correlation function, which is the holomorphic Euler
characteristic of certain (virtual) bundles on M(r,n). But it can be written as
above only in the limited range of d and m. In fact, we check the above equation
holds in a slightly wider situation when r = 2, m = 1: it seems to hold for
0 <d<3=r+m. But we also check that when r = 2, m = 2, the above is not
true for d = 4.

We have the following analogs of [43, Lemma 4.3, Theorem 4.4]:

Proposition 1.38. Suppose (1.37) holds and assume |m| < r. Then
(1) Z}?{bISt(El, —261, d‘; A, ﬁ) = Z}?{bISt(QEl, —&1, Ei; A, ﬁ)

(2) e160log Zi0SY (g1, €9, a@; A, B) is regular at (1,e2) = (0,0).

We only give the proof of (1), as the proof of (2) is exactly the same as the

original.

Proof. By (1.33) we may assume m < 0. By the assumption we have (1.37) for
d =0 and d = r + m. Note that we have 0 # r +m as m # —r.

Let us put 3 = 1 for brevity. We take the difference of both sides of (1.34)
with d = r + m, 0 after setting eo = —e1. We have

(Zn(Ela —261,6_5) _ Zn(261, —e1, C—L»)) (e(r+m)n€1/2 - e—(r+m)n51/2)

Z er(_"ﬁ)/zzp(&‘l, —261, Ei + 81/;)21(281, —€&1, ﬁ — Ellg)

K S
(k,E)/2+1+1'=n [laen lZ(e1, —€1,d)

I#n,l'#n
mpB
- Ea kziaa]

% (e(r+m)(1$,a)/2e(r+m)(z’—l)al/z _ e—(r+m)(E76)/2e—(r+m)(l’—l)51/2>

X exp

)
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where we expand ZI'S' as

Zpt(er,e0,@ M, B =1) =Y Znle1,82,@)A*™.

Let us show that Z,(e1,—2¢1,d) = Z,(2¢1, —£1,d) by using the induction on
n. It holds for n = 0 as Zy = 1. Suppose that it is true for I,m < n. Then
the right hand side of the above equation vanishes, as terms with (E,l, I") and
(—k,U',1) cancel thanks to [43, Lemma 4.1(1) and (4.2)], and the term (0,1,1) is
0. Therefore it is also true for n. O

We expand €163 log Z(e1,e2,a; A, 3) as in (4.1). The following can be proved
exactly as in [43, (4.11)]:

Proposition 1.39. Suppose (1.37) holds and assume |m| < r. Then

[ ,32< 7"—|-m>2 0?F
exp | — d— (

8r2 2 dlog A)2

con( - 1 B d_r—l—m 0% Fy
E\  ony—=12r 2 ) dlog AJa

is independent of d =0,...,r. Here

)

1 9*F
"B) = 5T (00
and OF is the Riemann theta function with the characteristic ® (%, %, cee %) (See

[42, Appendix B] for convention.)

We call this the contact term equation.

As O is an even function, the above holds for d if and only if it holds for
r 4+ m — d. In particular, the above expression is independent of 0 < d < r+m
for m >0, and m < d < r for m <0.

We will prove that the Seiberg-Witten prepotential defined via the periods of
hyperelliptic curves satisfies the same equation and has the same perturbation
part in §A. As the contact term equation determines the instanton part of the
prepotential recursively from the perturbation part, we get

Theorem 1.40. Suppose (1.37) holds and assume |m| < r. Then Fy coincides
with the Seiberg- Witten prepotential defined in (A.5).



1056 Lothar Géttsche, Hiraku Nakajima and Kota Yoshioka

As we have (1.37) for the case m = 0, we have the assertion without the
condition in this case. This is the proof of Nekrasov’s conjecture for the K-
theoretic partition function [47]. See [48] for another proof.

By Proposition 1.38(1) the next coefficient H(a; A, 3) of the expansion (4.1)
comes from the perturbation part:

Proposition 1.41. Suppose (1.37) holds and assume |m| < r.
H(aa A7 B) =Ty _1<C_iv p>

1.7.4. Genus 1 parts. Next we turn to the genus 1 parts of the expansion (4.1).
When r = 2, m = 0, we determined A, B explicitly as theta constants in [43]. So
we assume r = 2, m = 1. Let F1:A—%B, G:%B.
We have [43, (4.11)] if we replace d by d — 7. (Note that this is k = 0 case.)
Taking d =1 (and r = 2, m = 1) we have
T> .

B PR p B OFo
128 (9log A)2 | "' \ 167y/—1 9log Ada

(1.42)  exp(G — F1) = exp [

We assume
(1.43) Zinst J(er, €0, A, 8) =0
for 0 <k <r,0<d < r. Then we have [43, the first displayed equation in p.515]

if we replace d by d+m(—1/2+k/r). We take k =1,d =1 (and r =2, m = 1).
Then we have exactly the same equation as in [43]. Therefore we get

1 o0
G+ F, = —glog (—27Tqé H(l — qd)3> +C
d=1

where C' is a function on A. Here ¢ = exp(2my/—17) = exp(—d?F/da?) and the
convention is different from that in [43]. Combining with (1.42), we get
~1/2
)

[ee] 2 2
_ v 1748 _dy-1/2 BT 9°F B 0F
expli = C dl:[l(l a") exp [256 (alogA)Z‘} o (1677\/—_1 dlog Ada
for C" = C’(A). By the same argument in [43, p.515] we have C' = 1. Let us
briefly recall the argument and explain how it is modified in our case. The proofis
based on the observation that 7(7/2) exp Fy depends on A in the form C[[¢1 2A%]],
where (19 = 1_@% (see §4.1). There is an extra factor exp(mBa(|Y?| — |Y1|))

coming from the Chern-Simons terms. Hence the coefficient of A*" is divisible
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by exp(mnﬁa)qﬁ? Under our assumption m = 1, we cannot get a term which is

—1/2
1/2

2. COMPUTATION OF THE WALLCROSSING IN TERMS OF HILBERT SCHEMES

constant with respect to a. Therefore
(1.44)

) 2 2
_ —1/48 _ o dy—1/2 ﬁ_ﬂ ﬁ %o
exp 1 =¢q (11;[1(1 q%) exp {256 (810g/\)2} for ( 16my/—1 0log Ada

00 9 9
_ —1/48 _dy-1/2 B 0K B dFo
e dl;[l(l v eXp{ 256 (8logA)2} for (167n/_—1810g/\8a

Let X be a simply connected smooth projective surface with p, = 0. In this
section we will compute the wallcrossing of the K-theoretic Donaldson invariants
of X in terms of the holomorphic Euler characteristic of certain sheaves on Hilbert
schemes of points on X. Later we will specialize to the case that X is a smooth
toric surface and relate this result to the K-theoretic Nekrasov partition function.

Notation 2.1. Let ¢ be a variable. If Y is a variety and b € H*(Y)[t], we denote
by [b]4 its part of degree d, where elements in H**(Y') have degree n and t has
degree 1.

If R is a ring, ¢t a variable and b € R((t)), we will denote for i € Z by [b];: the
coefficient of * of b.

If E is a vector bundle of rank ron Y, let A _, E:= Y, (—=1)"AY(E)t' € K(Y)[t],
and let Sy(E) := 3, SY(E)t!, where S¢(E) is the i*! symmetric power of E. Note

that Sy(E) = /\,tl( -

2.1. The wallcrossing term. Denote by C the ample cone of X. Then C has a
chamber structure: For a class £ € H?(X,Z)\ {0} let W& :={z €C | (z,&) =0}.
Assume W& # (). Then we call £ a class of type (c1,d) and call W& a wall of type
(c1,d) if the following conditions hold

(1) €+ ¢ is divisible by 2 in H?(X,Z),
(2) d+3+&>0.

We call ¢ a class of type c1, if € + ¢ is divisible by 2 in H?(X,Z). The chambers
of type (c1,d) are the connected components of the complement of the walls of

type (c1,d) in C. Then M3 (c1,d) depends only on the chamber of type (c1,d) of
H.
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Let ¢ € H?(X,Z) be a class of type ¢;. We say that £ good and W¢ is a
good wall if D + Kx is not effective for any divisor D with W< (P) = W&, A
sufficient condition for ¢ to be good is that W¥¢ contains an ample divisor H with
H - Kx < 0. One can show that an ample divisor H is general with respect to
(2,c1,c2) if and only if H lies in a chamber of type (c1,4cy — 3 — 3).

Let & be a class of type ¢1. Let X[ be the Hilbert scheme of subschemes
of length n on X. Let Z,(X) € X x X" be the universal subscheme. Let
7y (resp. I2) be the sheaf pj,(Zz, (x)) (vesp. pi3(Zz,,(x)) on X X X xtml,
We also denote Fp := Il(#) and Fo = 122(612_5,). Note that X[ =
ME(1, Clgg,n) and XM = MF(1, Clz_g,m) and Fy, F» are the corresponding
universal sheaves. Let fi, fo € K(X) be the classes of elements of M} (1, & £ n)

and M (1, 25 g,m) respectively.

Let p: X x X[l x xIml . x5 x4 . X x X x XM — X be the
projections. Let Ae_ 1= —pi(Zy @ T1 ® ¢'€), Aey = —p(ZY @ Io @ ¢'¢Y) €
K (XM x x[m), We also just write A_ and A instead of A¢_, Ag 4.

Now assume ¢ is good. Then Extg(l'g,l'l €)= Extf)(Zg,Il (€)) = 0 and we will
write A¢ _ for its representative Extll,(Ig,Zl (£)), which is a locally free sheaf on
XM x x[ml. Similarly we write A ¢ for the locally free sheaf Extll,(Il,Ig(—g)),
and we put P_ := P(AY) and Py := P(AY) (we use the Grothendieck notation,
i.e. this is the bundle of 1-dimensional quotients). Let 74 : Py — X ("] « XM pe

the projection.

Definition 2.2. Fix ¢; € H?(X,Z), and let v € K(X). Let ¢ € H*(X,Z)
be a class of type ¢;. We denote x(f1 ® v) = X(IZI(Cl;r€ ®v)), x(f2®@v) =
X(IZZ(“Q_5 ®w)) for (Z1,Zy) € X"l x X", By the Riemann-Roch-Theorem we
see that

23 o) - xhov) = —(5.00) + e )

In particular it only depends on rk(v) and ¢;(v), and it is independent of n,m if
rk(v) = 0.



K-theoretic Donaldson Invariants Via Instanton Counting 1059

The wallcrossing terms are

Ad
X (0 AN
Ag,T(Uv A) = Z T%(X(f2®v)—x(f1®v))

n,m>0
d=4(n+m)+£2 -3

(2.4)

A7 (V) @ Az, (V) >
Np (AL D) A (AL )
A?(Uﬂ\) = [AgT(U?A)]TO - [AE{T(WA)](T*)O-

% x(XW x XxIml

Here the right hand side of the first equation is understood as a rational function
in T/ as follows, and [e]7o, [e] (r-1)y0 denote the constant terms of the expansions
at T2 =0, T2 = respectively. We formally apply the Hirzebruch-Riemann-
Roch theorem to get

>‘]:1 (U) ® /\f2 (U) )
Ap (AL ) A_p-1(AL)

_ ch(Az (v)) ch(Ax, (v)) . . -
/X[n]xx[m] ch /\—T(AZ,Jr)Ch /\—Tfl(AZ_) Todd(X™ x X™),

X(XW x Xl

Then we consider ch A _7(A{ ), ch A_p-1(A{ ) as End(H* (X" x X[™M))-valued
Laurent polynomials. Their inverses are defined as their cofactor matrices divided
by their determinants (which are equal to (1 — T)rk(Ag#), 1-7T _1)rk(A€vﬁ)) re-
spectively. Then their inverses are in End(H*(X!" x X)) ®q Q(T). Thus the
integral is an element of Q(7'). This way of understanding the formula will be-
come more apparent when we will consider the equivariant wallcrossing term in
§3. In that case we can interpret the formula so that the computation is done in
the localized equivariant K-theory.

The expansions at T = 0, T" = oo can be also understood differently. Note
that for a vector bundle F of rank » we have
(2.5)

1 1 (=1

AE) =T E: R T dmy e p By~ 1) det (B @S (EY).
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Thus A?T(U; A) can be developed as Laurent series both in 7%/2 and in —L

T1/2
(2.6)

AX (v A AT(T)HA) xl s xtml ) A
Swn = Y T%(X(h@v)_x(ﬁ@v»x( x X" Az (0) @ A, (0)®

n,m>0
d=4(n+m)—£2 -3

det(Ag,) @ S7(AY ) @ Sr(Ag,)) € Z(TH)[[A]]
(2.7)

AéT(U; A) = Z

n,m>0
d=4(n+m)—£2-3

® det(Ae 1) @ Sy (Ag.+) ® Spr (AL)) € Z(T3))[[A]]

Then [AéT(v; A)]7o is equal to the coefficient of T° of (2.6) and [AéT(v; A)]ip-1y0
is equal to the coefficient of (%)° of (2.7). However note that it was not clear
the expressions are in Z((T))[[A]] or Z((T~1))[[A]] in the original formulation in
terms of the Hirzebruch-Riemann-Roch theorem.

Ad(_T—l)rk(A+)

nl o xml
(T—l)%(x(h@v)—x(fz@v))X<X X X2 (0) ® Ay (v)

Remark 2.8. Fix ¢1,d and let ¢ € K(X) be the class of an element in M7 (cy, d).
Let v € K(X). Then either £(x(f2 ®v) — x(f1 ®v)) € Z for all n,m € Z>( with
dn+m)—& -3 =d, or 3(x(fo®v) — x(f1 ®0)) € Z+ 3 for all such n,m. In
the second case the coefficients of A? of [A¢ (v, A)]70 and [A¢ 7 (v, A)](p-1y0 are
trivially 0.

On the other hand, if v € K, then x(f2 ® v) = —x(f1 ® v) and thus %(X(f2 ®
v) — x(f1 ®v)) = x(f2 ®v) € Z.

Remark 2.9. Let v € K(X) be a class of rank 0. Let  be a wall of type (c1,d).
Let | = 43+ Fix | > 0. Write d := 41 — £2 — 3. Note that by [12, Lemma 4.3]
§(§ — Kx) §(§ + Kx)
2 2
Note that by definition the coefficient of A¢ of A? (v;A) is zero if —rk(Ay) <
—(€/2,c1(v)) < tk(A_). By (2.10) it thus follows that the coefficient of A? of
A?(L;A) is O unless 0 < [ < \(%,cl(v) + Kx)|+1+ € which is equivalent to

P
—€2-3<d <&+ |(26,¢1(v) + Kx)| + 1. In particular A?(’U;A) e C[A].

(2.10) rk(A-) = — +1—-1, rk(A;)=-— +1—-1.

The aim of this section is to prove that the wallcrossing for the K-theoretic
Donaldson invariants can be expressed as a sum over A? (v; A).
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Proposition 2.11. Fizcy,d, letc € K(X) be the class of an element of M3 (c1,d).
Letv e K.. Let H_, Hy be ample divisors on X, which do not lie on a wall of type

(c1,d). Let By be the set of classes & of type (c1,d) with ({-Hy) > 0> (£-H_).

Assume that oll classes in B1 are good. Then

XM (c1,d), Av)) = X(MF (c1,d),A(v) = D> [AF(0:A)] -
§eBy

In the rest of this section we will show Prop. 2.11.

M3 (c1,d) and thus x (M3 (c1,d), A(v)) is constant as long as H stays in the
same chamber of type (c¢1,d) and only changes when H crosses a wall of type
(c1,d). By [12], [16] the change of the moduli spaces can be described as follows.
Let By be the set of all £ € By which define a wall of type (ci,d). For the
moment assume for simplicity that By consists of a single element . Let [ :=
(d+ 3+ €2)/4 € Z>o. Write My, = Mj:{(, (c1,d). Then successively for all
n =0,...,l write m := [ —n. Then one has the following: M,, ,, contains a closed
subscheme E™"™ isomorphic to P™" and M, ,, is nonsingular in a neighbourhood
of E™™. Let ]\/an be the blow up of M,, , along E™"™. The exceptional divisor
is isomorphic to the fibre product D™™ := P™"™ X y(n),, yim) Pi’m. We can blow
down ]\/an in D™™ in the other fibre direction to obtain a new variety M, 1 m—1.
The image of D™™ is a closed subset E7}"™ isomorphic to P and My 41 m—1 is
smooth in a neighbourhood of E'""™.

The transformation from M, ,, to My41,m—1 does not have to be birational.
It is possible that "™ =0, i.e. Ay = 0. As rk(A-) +rk(A4) +2l = d+ 1,
this happens if and only if E™"™ has dimension d and thus by the smoothness
of M, ,n, near E™™ we get that E™™ is a connected component of M, 1. Then
blowing up along E™"™ just means deleting E™"™. Thus in this case My 41m—1 =
Mym \ EZ™. Similarly we have E*™ = (), i.e. A_ = 0, if and only if E)""™ is
a connected component of My 1m—1 and My y1m—1 = My, UEY™. Below, if
the transformation from M,, ,, to My 41 ,m—1 is birational, we say we are in case
(1), otherwise in case (2). Finally we have M4 1 = Mﬁf+ (c1,d). If By consists
of more than one element, one obtains My, (c1,d) from Mp_(c1,d) by iterating
this procedure in a suitable order over all £ € B..

Fix ¢ in By. Fix n,m € Zso with n +m = [ = (d + 3 + £2)/4. We write
M_ = My, My = Myiq1m—1. Let €+ be universal sheaves on X x M4
respectively. Let E_ = E™" E, = Eﬁm Let M be the blowup of M_ along
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E_, and denote by D the exceptional divisor (which is also the exceptional divisor
of the blowup of M, along F.). Write D' := X x D and let j : D — M,
7J:XxD— X x M be the embeddings. Let £_, &, be the pullbacks of £_, £
to X x M.

Notation 2.12. We denote by T (resp. T4 ) the universal quotient line bundle
on P_ =P(AY) (resp. on P, = P(AY)). For a class a € H*(X) we also denote
by a its pullback to X x Y for a variety Y. We write Z1,Z> also for the pullback
of Z1, Iy to D’ and we write T, T_ also for their pullbacks to D and D’.

By the condition x(c ® v) = 0, we can replace 3(x(f2 ® v) — x(fi ® v)) by
X(f2 ® v). We will show

(2.13)
X(M+7 )‘EJr (U)) - X(M—7 )‘E, (U))

SHAY) ® Si(A_) ® det(A_)]

—4)rk(A-)
— X(XM x XM Ap () @ Mg,y (v) ® ([( : tx(f28v)

() MA S (AY) ® Sp(Ay) ® det(AL)
N [ t—x(f2®v) Lo) ’

Formula (2.13) implies Proposition 2.11 by summing over all £ € B, and over
all n,m with n +m = (d + &%+ 3) /4.

Assume first that we are in case (1). Note that this is equivalent to both
rk(A_) and rk(A4) strictly positive, and then it is evident that the first (resp.
second) summand on the left hand side of (2.13) vanishes if x(fy ® v) <0 (resp.
if x(fe ®wv) > 0). Let my : M — M. be the blowup morphisms. By [17,
Prop. VI.4.1] and its proof, Riﬂ'i*OM =0 for i > 0, and 74, Oz; = Opr.. Thus
the projection formula gives x(My, L) = X(M ,m L) for any line bundle L on
M. Therefore it is enough to prove (2.13) with the left-hand side replaced by

X(M, Ae, (v)) — x(M, Ae_(v)).

Lemma 2.14. In K(M) we have

x(f2@v) _ ¢=x(f2@v)
1-—st

Ae, (0) = de_(0) = i ( (A5 (1) ® Agy (0)) o= ).

t=T
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Proof. By [12, section 5] there exists a line bundle x on D such that
) é-=Fiop+FeT ' @pin K(D),

(2.15) N
E, =& —ji(FoT ' u) in K(X x M).

Thus we get Ag, (v) = Ae_(v) @ det(p(v @ jL(Fo @ T-' ® ,u)))_l. Note that
p(v® L (Fy @ T~ ® p)) is a coherent sheaf of rank x(v ® f2) on D. As D is a
Cartier divisor, it follows that

Ae, (v) = Ae_(v) @ det(x(f2 ® v)[Op]) " = Ae_ (v) @ det(O5;(— D)X,

For the second equality we have used that Op = O7; — O3;(—=D) in K(M) and

thus det(Op) = det(OM(—D))_l. Thus we get in K (M) that

Ae. (v) = Ae_(v) = (O (=D —1) © Ae_(v)

) ((tx(f2®v) -1

= e (=" Ce- D)) heryor )-

In the last step we have used that for a locally free sheaf G on M we have (1-

O3(=D)) ®G = j«(j*G) in K(M). As the determinant bundles are compatible
with pullback we obtain by (2.15) that

T (Ae_(0)) = Anr(F)on(0) @ As £y 0r—10, (V)
(2.16) =71 (Ar (0) @ A5, (V) @ Nx(f1®v)+x(f2®v)T_-X(fz@v)
= (g (V) ® Mg, (v) @ T X8V
In the last step we use that x(f1 ® v) + x(f2 ® v) = 0. The result follows. O
In case x(f2 ® v) = 0 the left hand side of Lemma 2.14 is obviously 0. Thus
we only need to show (2.13) in the cases x(f2 ® v) > 0 and x(f2 ® v) < 0.

(a) x(f2 ®v) < 0: We apply the formula

y—c — —1'1'C — y—c a,—b
2.17 R , c€Z
( ) 1 _ f]jy y T — y_l e x y c >0
a>0, b>0

forx =T_, y =T, to Lemma 2.14 to obtain

de) Ao @) =0( Y TCeT'er(n (@) @ An 1)

a+b=—x(fo®v)
a>0, b>0
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in K(M). Let € be a vector bundle of rank e on a variety ¥ and let p : P(EY) — Y
be the projection and O(1) the universal quotient line bundle on P(£Y). Then

by [23, Ex. I11.8.4]

S™MEY) n >0,
p(O(n)) = ¢ (=1)71S¢(&) @ det(E) n < —e,
0 otherwise.

Let 7 : D = P(AY) X yn)y ximl P(AY) — X[ x X[ be the projection. Then we
get using the projection formula

(2.18)

XM, e, (0) =x(M Xe_(v) = > x(D,T*@T " @7 (Ar (v) ® g, (v)))

a+b=—x(fa®v)
a>0, b>0

—— > ()X X g (0) @ Ay (0)

a+b=—x(f2®v)
a>0, b>0

® §%(AY) @ ST (A) @ det(A4) )
= x (X1 x X1 Az (0) @ Ay ()

(=)™ (A @ S (AY) @ Sy(AL) © det(Ay)
tx(f280) LO)'

® [—
(b) x(f2 ® v) > 0: The formula (2.17) for x =T, y = T, gives
Ae, (v) = Ae_(v) = —j*( Y TEeT e (Ax () @ As (v))).

a+b=x(f2®v)
a>0, b>0

Then the same arguments as in the case x(f2 ® v) < 0 show that
- Y KD ORE) @) e T e TLY)

a+b=x(f2®v)
a>0, b>0

= X(X[n] X X[m}7 )\7:1 (U) ® )\7:2 (U)

(—)™"A) @ Sy (AY) ® Sy(A-) @ det(A_))
tx(f2®v) ]t0>'

o

In case (2), we can assume by symmetry that Py = (), thus A, = 0 and A_
has rank d +1 — 2(n + m). Then we have

X(M+=)\E+(U)) = xX(M-, Xz (v)) = —X(P—J\(y)*(é,)(v))
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where j/ : X x P_ — X x M_ is the inclusion. The same argument as in the
proof of (2.16) shows that

Ay (®) = T, ) @ A (v) @ TTX2EY),

Note that differently from case (1) this is not zero when x(f2 ® v) = 0. Now the
same arguments as in the proof of (2.18) show that —X(IP’_, /\(j/)*(E,)(U)) is equal
to
—x (XM 5 XM Az (0) @ Mg, (v) @ STX2EV) (AV))
in case x(f2 ® v) <0, and to
(—1)™A I (X X N7 (0) @ Ay (v) @ SXUEE) AN (4 ) @ det(A))

in case x(fa ®v) > 0. As S;(A;) = 1, this shows (2.13) also in case (2) and thus
finishes the proof of Proposition 2.11.

3. COMPARISON WITH THE PARTITION FUNCTION

For the next two sections (except in §4.6) let X be a smooth projective toric
surface over C, in particular X is simply connected and py(X) = 0. X carries
an action of I' := C* x C* with finitely many fixpoints, which we will denote
by pi,...,Dy, where x is the Euler number of X. Let w(z;), w(y;) the weights
of the I'-action on 7}, X. Then there are local coordinates x;,y; at p;, so that
(t1,t2)x; = e~ (@) g and (t1,t2)y; = e~®Wi)y, By definition w(z;) and w(y;) are
linear forms in e; and ey. For § € H{(X) or § € HY(X), we denote by Ly B its
pullback to the fixpoint p;. More generally, if I' acts on a nonsingular variety Y
and W C Y is invariant under the I'-action, we denote by ¢y, : H\(Y) — H{ (W)
the pullback homomorphism.

Note that Tx and the canonical bundle are canonically equivariant. Thus
any polynomial in the Chern classes ¢;(X) and Kx is canonically an element of
Hp (X).

3.1. Equivariant K-theoretic Donaldson invariants and equivariant wall-
crossing. For t € T denote by F; the automorphism X — X;z — t- z.
Then T' acts on XM x X" by t - (Ty,, Ty,) = (F;Y)*Ty,, (F;')*Zy,) and on
X x XM XM byt (2, Ty, , Ty, ) = (Fy(x), (F71)* Ty, (F7')*Ty,) and the sheaves
711, Is are I'-equivariant. If we choose an equivariant lifting of ¢; and &, then also
F1, Fo are I'-equivariant sheaves.



1066 Lothar Géttsche, Hiraku Nakajima and Kota Yoshioka

We write X := XX and Xg} = peme X x XM, The fixpoints of the I'-
action on X2[l] are the pairs (71, Z3) of zero-dimensional subschemes with support
in {p1,...,py} with len(Z;) + len(Z2) = [ and such that each I, ,, is generated
by monomials in z;,y;. We associate to (Z1, Z3) the x-tuple (371, ... ,?X) with
Yi= (Y, YS), where

YOZ; = {(n,m) € Z~o X Z>o | x?_ly;n_l ¢ IZouPi}'

We write |Y{| for the number of elements of Y and |Y?| := |Y{| + |Y{|. This
gives a bijection from the fixpoint set (XQ[Z])F to the set of the x-tuples of pairs
of Young diagrams (Y!,...,YX), with 3, |V =1.

Similarly T acts on X x M¥ (c1,¢2) by t - (x, E) = (Fy(x), (F,')*E). Assume
for the moment that there exist a universal sheaf £ over X x M (cy,d), then one
can show that £ has a lifting to a I'-equivariant sheaf, unique up to twist by a

character.

The definition of the determinant bundles and the K-theoretic Donaldson in-
variants is easily generalized to the equivariant case. If Y is a variety with
an action of I', we denote by KT (Y), K°'(X) the Grothendieck groups of I'-
equivariant coherent sheaves and I'-equivariant locally free sheaves respectively.
x(u®wv) : K'(X)? — Z is still a quadratic form. The formula (1.1) defines a
homomorphism KT'(X) — Pict(S), where now S is a scheme with a T-action,
and & a flat family of I'-equivariant coherent sheaves of class ¢ € K (X )yum on X,
flat over S. For ¢ € K (X )yum we define K, KEH C K'(X) by the same formula
as in section 1.1. In the same way as in 1.1, there are homomorphisms A: Kf —
Picl (M7 (r,¢1,¢2)5), A: KCFH — Pict (M3¥ (r,c1,¢2)), which commute with the
inclusions KCFH C K and Pich (ME (r,c1,¢2)s) C Pich(M§ (r,c1,¢2)). If H is
general with respect to (7, ¢y, c2), then A: KEH — Picl (M¥ (r, 1, ¢2)) can be ex-
tended to K.. For a flat family £ of equivariant stable sheaves on X parametrized
by S, A and A\¢ commute with the pullback ¢} : Picl (M (r,¢1,¢2)) — Pict(S)
by the classifying morphism.

Let v € K., where c is the class of an element of Mj (c1,d), where d =
4cg —c2 — 3. Assume that H is general with respect to (2,c1,cz). If Y is a variety
with a ['-action and w € K% (Y), we denote

(3.1) X(Y,w) := m(w) € CltF, 5],
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where 7 : Y — pt is the projection to a point. The equivariant K -theoretic Don-
aldson invariant of X with respect to v,c1,d, H is X(M3 (c1,d), A(v)). If L is a
I' equivariant line bundle on X with (c;(L),c1) even, let v(L) € K be an equi-
variant lift of the class defined by (1.4) and u(L) := A\(v(L)) € Pict (M§ (c1,d)).
We put XM (e1,d), p(L)) and T (L; A) = 30 AT (e1,d), p(L)).

Definition 3.2. Let v € K(X). Let £ € H?(X,Z) be an equivariant lifting of
a class of type c¢;. Then Zy, Zo, F1, F2. A¢+ and A¢ _ are in a natural way
equivariant sheaves on X" x XM (resp. elements in KT'(X[ x X)), and
the equivariant wallcrossing terms ﬁng(v; A), &? (v; A) are defined by the right-
hand side of formulas (2.4), with the holomorphic Euler characteristic y replaced
by the equivariant pushforward Y to a point. Now zéT(v;A) can be under-
stood by localization in equivariant K-theory on X™ x X[ Then ﬁéT(v; A) €
A‘§2_3Q(t1,t2,T%)[[A]]. Then using (2.6) we can view AgT(v;A) as an ele-
ment of A‘§2_3Q[tfl,t;tl]((T%))[[A]], and [ﬁgT(v;A)]To is its coefficient of T°.
Similarly using (2.7), AéT(U;A) is an element of A_52_3Q[tf1,t;tl]((T_%))[[A] )
and [AgT(v;A)](Tq)o is its coefficient of (T-1)°. In particular E?(U;A) €
Q" 5 A, and AF (058) 1 =t=1 = AF (57).

Let ¢ € K(X) be the class of an element of Mj;(c1,d). In the same way
as in Remark 2.8, we see that the coefficient of A? of ﬁéT(v;A) is either in
T%Q(tl,tg,T) (and the coefficient of A¢ of ﬁ?(v;/\) is 0) or in Q(tq,t2,T). If
v € KL, then the coefficient is in Q(t1,t2,T).

Let v € K!'. Under the assumptions of Proposition 2.11 let §+ be a set
consisting of one equivariant lift ¢ for each class of type (¢1,d) with (£ - Hy) >
0 > (£-H_). Then the same proof as before (with all sheaves and classes replaced
by their equivariant versions) shows that

XM, (e1,d), A(v)) = X(MF (e1,d),A(v) = D> [AF (i A)] -
§EBy

Now we want to give a formula expressing ﬁng(v; A) in terms of the K-theoretic
Nekrasov partition function Zg. For the rest of this section let £ be an equivariant
lift of a class of type ci, and let v € KT (X). We first give, up to a correction
term, an expression for AéT(U, A) in terms of the instanton part. Then we show
that this correction term is given by the perturbation part.
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Theorem 3.3. Let v € K'(X).

Aée*ﬁt (U7 ﬁA) ’ tlﬂeﬂsl

to—ePe2
3 (6]
- ﬁiAeXp <5<<§g> (T dd2(2X)KX> 4 ([2eh(v) exp(er/2) Todd(X)]3>)

t—

X . )
+ 3 F ) (w(@s), w(ys), e Bus (c1(v) + 252 (1 — KX)))) :
i=1

Note that the left-hand side lies in (BA)~¢"3Q(e!, %2, e!P)[[BA]]. In the
course of the proof we will also have to show how one can interpret the right-hand
side, so that both sides lie in the same ring.

Lemma 3.4. Let M be a I'-equivariant line bundle on X, with ¢y (M) =&. Then
in (BA)~€=3Q(ePe1, P2, ¢P)[[BA]] we have

zéefﬂt (Ua BA) | tlﬁeﬂsl — exp(2ﬁ<v(3)>)
tgﬂeﬂEQ

ins t_L*ig. -8Bk * rk(v
L, 20 (0w, w(p), “ES AP B g (e (o) + 4 (e — Ky)

(BAEF3N_ oo (XX, MY)Y) Ao (=X (X, M)Y)

Proof. Following [20], we denote C'(0) := ch(Z;)ef/? + ch(Zo)e™¢/? on X x X" x
X and C;(0) := [C(0)];. The Grothendieck-Riemann-Roch theorem implies
that

ch(Az, (v) ® Az, (v)) = exp([p«(¢*(ch(v)) ch(F1 & F») Todd(X)]1)
(3.5) = exp([p+ (g7 (ch(v))C(0)et/* Todd(X))]1)
= exp(C3(0)/ rk(v) 4+ C2(0)/0V 4 2/v3)).
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Let (Zy,Zy) € (X" x XD correspond to (Y1,...,YX). By [20, Lemma 3.4]
the cotangent space and the fibres of AY at (77, Z3) are

* = ig.
/\_1 (Z1, 22 n XX ’tlﬂeﬂfl _HHn y)7 ;P 76)7
tz—»eBEQ 1= l—y_
/\_e,m AL(Z1, Za)|,, pe1 = /\_e o XX MY, e
tz—»eﬁsz tz—»eﬁsz
X e
; — L.
(3.6) x [ ris (w(@), wy:), == 8),
=1

/\—etﬂ A\L(Zl’ Z2)‘tléeﬂ51 - /\_etﬂ —X(X, M)v”dﬂeﬂsl

t2~»5352 t2H6552

X
X Hn%?l(w(xl)?w(yl)a Lgngvﬁ)
=1

By (1.27) and [20, (3.11)] we get
(3.7)

X ' ' . »
H exp (B rk(v)| Y| w) Cfrk(v) (w(x;), w(yi), %7 8, BL;@(”)

i=1

X
— t—L*_£ "
[1E (i), wiys), —£=: 8, Be, 0™ 1k(v))
=1

:L?zl,z2)exp([ch(11)e 2 @ ch(Ty)e T ] /U(l

+ [ch(T))e 7" & ch(Tp)e™ "],/ k(v ))ysﬁgsl

eg—PBeg

=z Z2)(exp(02( )/v +C3(0)/rk(v)))gﬁﬁgl( ﬁt) (x(f2@v)=x(f1®v))
g9 —Beg
* 1 v)— v
= p(=280))ilzy 1 (WA ©) @ AR 0)) ., (23D o),
g9 —Beg

In the fourth line we use that cho(Z,) = 1, chi(Z,) = 0 for o = 1,2, and that
cha(Z1)/1 = —n, ch2(12)/1 = —m and thus

LTZLZﬂ([h(Il) @ch@z)e T =t 2 (C2(0) /o) = (€/2,0M) Bt

iz ([D(TET @ ch(To)e™5 ]/ xk(v))

= U2 25) (C3(0)/ rk(v)) + (n — m)
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and formula (2.3). In the last line of (3.7) we use (3.5).

Write |Y|:= |V} +...+ |}7X|, and write (Z, ZY) for the point of X" x X7
with n + m = |Y| determined by an y-tuple Y = (Y,... ,?X) of pairs of Young
diagrams. Using that ¢, Kx = —w(z;) — w(y;), we get by localization, (3.7) and
(1.25)

ins t— 15 —Bey. *
1 2% (@), wlys), — x4 g B o)

BA _52_3 = —rk — — _Be
( ) /\e*ﬂt —X(X7 MV)V /\—eﬂt _X(X’ M)V ) z;ﬂegsé
= > (B

Y:(}?l’"'v?X)
O w(zs)Fw(ys % Eepi€ *
[T exp (Brk(o)|[Vi| 2Ep e ) 0 | w(a), wis), =53 8, Bi5,00)
X
N Y
(A Ty 3y X8 A AUZY 2Y) Ao A2 VD)oo

tzﬁeﬂEQ
=exp(—280P)) Y (BA)
d:4(:+ﬂsfgg2 -3
i m Ar(v) @ Ag, (v
(A% X, e f}(@?))) 20 v 7)o
€ X2 X1 /\—e*ﬂt A—‘,— /\—eﬂt "4— t2~>e'552
= A%, (0, BM)],, 021 exp(—28(0)).
tz—»eﬁgz
In the third line we use (3.7) and equivariant localization. (]

Now we identify the contribution of the perturbation part. Let O be the ring
of holomorphic functions in (A, 3,t) in a neighborhood of v/—1R< ¢ x v/—1R o x
vV _1R>0

Lemma 3.8.
X

ZFPert(w(:Ei),w(yi)’ t_izpiﬁ; Ae_'BL;iKXM,ﬁ)

i=1

= (= (X(M) + x(M")) log(BA) — < X) g(T ddy(X)Kx)

“(’g(A_em e >X XX, MV 7ot

to—ePe2
holds in Olfer, 2])[[T; (w(x:)w(y:)) ).
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Proof. By [20, (3.17)] we get that Y X F};ert(w(:ni),w(yi) = Zp’€ A B) is given
by the same formula with g(Toddg(X)KX> replaced by —z(fzKX> 5 BleKx)t.
Note that by (1.28), when changing A to Ae™PKx /4, the result changes by adding

—ﬁZ ) 00 (g, (o () + Sl

dw(z;)w Pi 6
- (§<52Kx> = temn+ Sitoaay () Kx) ).
The result follows. (]

Writing ch(—x(X, M)) = S0 €%, ch(—x(X, MY)) = Zflzo e, we see that
B~ X@N)+x(MY))
log ( = v v v v>‘t1H6351
/\—eﬁt _X(X7 M) /\—e*f@t _X(X7 M ) tg—eB2

¢
:Zz:og<1_e (o —1)B ) Zlog( —e (ak+t)'6)

Let O denote the ring of holomorphic functions in (¢,A,3) in an open subset of
C? which contains for any (¢,A) € (C\ R<g)? an open neighbourhood of 8 = 0.
Then (3.9) shows that the left hand side of Lemma 3.8 lies in O[[e1,£2]]. Thus
we can view also the left hand side of Lemma 3.8 to lie in O[[e1, £2]], and we can

(3.9)

take the exponential of both sides of the equation. Note that the exponential of
the right hand side lies in Q(e®°1, P2, eP!)[[BA]]. With this remark Theorem 3.3
follows from Lemma 3.4 and Lemma 3.8.

Now we express ﬁéT(v, A) in terms of the Z_ i, (¢1, €2, a; A, B). The Nekrasov
conjecture determines the lowest order terms in e1,e2 of F_ (€122, a; A, B),
but not of F_ i, (€1,€2,a; A, B, 7).

Corollary 3.10. Letv € KF(X).Then

Age,m(v,,BA) —ex(
)

— S Todds (X)(Kx +ex(v) + 2 (er = Kox) + 2{[eh(0)e > Todd (X)]3)) )

2
(zx: —rk 7w(yi)at ;pls Ae™ sz(KX+Cl() #(Cl_KX)))>‘
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Proof. Let 7,0 be variables. In the same way as in [42, section 4.5], we see that

2
) B Ta
Z},’E}St(sl,sg,a; Ae 0/4,,8,7') = exp (—

)zt (1, 2,03 e TF/A ),
£1&2

On the other hand, by [43, formula after (4.12)], we get that

FPe (), e9,a; Ae™ /% B,7) = FP (61,69, a; Ae=(TH)/4 B)

B Ta? B 7(e3 + 3 + 3e162)
£1€&2 24¢e 1€2
The result follows by by localization and Theorem 3.3. O

4. EXPLICIT FORMULAS IN TERMS OF MODULAR FORMS

The result of [43] together with §A implies that the following solution of
Nekrasov’s conjecture and its refinement are true for the K-theoretic partition

function when m = 0:

(1) e1e9F(e1,€2,a; ) is regular at 1, g9 = 0,
(2) Fo(a;A) is the Seiberg-Witten prepotential associated with the Seiberg-
Witten curve Y2 = P(X)? — 4(—X)*™(BA)4,
(3) H comes only from the perturbation part, i.e. H(a,A) = mv/—1a,
1/2
(4) expA = (ﬁ) , exp B = 0g1 exp A, where the 0., are theta functions

with variable ¢ = €>™V~17, where 7 is the period of the above Seiberg-
_ 1 2Fy
21y/—1 9Oa? °

Here Fy, H, A, B are given by the expansion

Witten curve, i.e. 7 =

(4.1) e1e9Fn(e1,82,a; A, 8)

2 2
€1+€2

= Fola; A, B) + (e1 + e2)H(a; A) + e1e2A(a; A, B) + B(a;A,B) +---.

When |m| < 2, the above (1)—(3) follow from a conjectural blowup equation (1.37)
as we explained in §1.7. The analogue of the statement (4) is (1.44) which fol-
lows from the conjecture (1.43). In the above we implicitly assume |m| < 2 as
the Seiberg-Witten curve changes the genus otherwise. According to a physical
argument [27, 51|, the remaining case m = %2 is similar to the case |m| < 2,
in particular (1),(2) should be true. (These probably follow from the approach
in [48].) But we believe that the blowup equation must be modified, and (3) is
probably not true.
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In the following we assume the above (1)—(3) and (1.44) are also true for
m = £1.

Once we have the above (1)—(3), then the same argument as in [20, proof of
Thm. 4.2, in particular of (4.12)] gives

Corollary 4.2.

X _ 1 (€Kx) _1(5)°
A onlw,BN)| = v T i)
2
X exp [g&gﬁ <§(KX o)+ B, - KX))>
2 2
+ %(3({1)0%)2 <<Kx e + T e - KX>>2> +XxA+0B|.

We have expressed the wallcrossing A?@,Bt (v,BA) in terms of the partition
function with 5D Chern-Simons term. As in [20, §4] we use the Nekrasov conjec-
ture to give an explicit formula in terms of ¢-development of modular forms.

We identify ¢/2 with a hereafter.

Theorem 4.3. (1) Let A?(U,ﬁA) = >0 AN~ =3 Then A, is equal to 0
if (€,¢1(v) + @(01 — Kx)) +rk(v)n is odd, and equal to the coefficient in

: 0(2)
2 Coeff | AX 50 (v, A)— ql/8 4
(ql/g)() £,e—28 ( )A a:a(q1/87A) a(ql/8)
otherwise.
(2) Suppose rk(v) = —m = 0. Then the terms in | | above are given in explicit

modular forms in C((¢/®))[[A]].

Here the change of variable from % to ¢'/8 will be explained later during the
proof. It will be done in several steps in §§4.1,4.2,4.3. The explicit forms stated
in (2) will be given in §4.4.

For rk(v) = +1, the terms are written in terms of the Seiberg-Witten prepo-

1/8

tential Fy, but we do not know how to write them explicitly in terms of ¢*/° and

A at this moment. This is a problem about elliptic integrals and modular forms.
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4.1. From the residues at e%* = 0,00 to the residue at e?* = 1. Let
2
Aée,gﬁa (v,BA) = ano A A3,

Proposition 4.4. (1) The coefficient A, is a rational function in eP®, which is
regular on P\ {0,00,1, —1}.
rk(v)
(2) A, is multiplied by (—1)<5’01(”)+%(01—KX)>+rk(”)” under the replacement
P —ePa,
Corollary 4.5. Assume rk(v) and (£, c1(v) + @(cl — Kx)) are even. Then

de—Pa de—Pa
——Ba + Res A5 e,gga(v BA)——— ——pa

de—Pa
—Ba *

A?(U;BA) Res A5 o—20a (Vs BA) —5—

— —ZG%SS 1A§ — 284 (V; A)

The first equality follows from (1) (and T' = e™#" = ¢728%), The second equal-
ity follows from (1) and the residue theorem, together with (2). This corollary
means that we can move the position taking residues from 0, co to 1.

When either rk(v) or (£, ¢ (v) + k(v )(c — Kx)) is not even, the coefficient of
A4=8=3 i the left hand side is 0 or equal to the coefficient in the right hand
side, depending on the parity of (—1)<§’Cl(”) +55 (e Kx))+rk()n e assume that
both are even for brevity in the above corollary, but it is clear that we have a
statement like in Theorem 4.3(1).

Before starting the proof of Proposition 4.4 we give new variables so that the

partition function becomes homogeneous.

Recall we set a; = —a, az = a. Following [43, §5], we set
_ B
Ca8 = T e an)B

We first consider the case when the 5D Chern-Simons term is not included.
By [43, (5.3)] we have

162 F R € Cl(1,2, C2,1, Bl[[E1, €2, C1,2A").
We assign degrees as dege; = degey = degA = 1 and deg3 = deg(np3 = —1.
Then Z}?St is homogeneous of degree 0, and hence 19 F }?St is of degree 2. Let

1nst inst _ inst 4n
Fost = ereo PR o= Y FH(BA)

n>1
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Then the coefficient Fi"t is a homogeneous polynomial of 3 and ¢, g of degree
2 — 4n. When we exchange a; and ag, (21 and (j2 are exchanged accordingly.
Since F't is symmetric in a;, az, F** is symmetric in Ci,2 and (21. By the
equality (2.1 = B — (1,2, we see that there is a weighted homogeneous polynomial
Ayp—o(z,y) € Clz,y] of degree 4n — 2 with degx = 1 and degy = 2 such that

Finst = Agn_o(B,C1262.1).

Moreover, as FiIs is a formal power series in ¢; 2A? by [43, (5.3)], First is divisible
by (C1,262,1)"-

We further introduce

_ —/IBA

T ePar — eBaz’

We have 22 = C172C2,1A2. From the above consideration we have

(4.6) ]—'é“St € 22A%C[B, A][[2?]).
As 2= —2(C12— (21), and 2 ((12 — C21) = 4(2/A)?, we have
inst
aj;(; € (G2 — C2,1)2*A°C[B, AJ[[2°]],
(47) af'inst
822 € 22C[B, A][[2?]).

Even when we include the 5d Chern-Simons term (1.25), we can repeat the above
proof. We only need to replace C[3, A] by C[8, A, e* k(¥)Ba),

Proof of Proposition 4.4. Let us look at the expression of Aé@,zﬂa (v, BA) given
in Corollary 4.2. We will write it as a multiple of an explicit rational function
in e and a formal power series in z. The explicit function comes from the
perturbation part of the partition function.

First note that (6?2%)2 consists only of the instanton part. Therefore (4.6)
implies
0*Fo 272 +rk
APC[B, A, e ™R 12)).
Aoy AJF € ZACIB A, E RO )

Next we have

(4.8)
0= (5l e (3257 ) € 2 (1+ 2700, e MO 2.

e—Pa — ePa 8 a2
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from (4.7). Here we have used

» —/=1B8A
Yo(x|B; A) = 2log <m>

(cf. (A.8)) to calculate the first term coming from the perturbation part.

Next consider the genus 1 parts. When rk(v) = 0, we have

2
exp(xA + oB) = <L> 05, € 4272 (1 + 22C[B, A, e* rk(vma][[z?]]) .
000010
The case rk(v) = £1 is similar thanks to (1.44).

Finally again by (4.7) we have

0% F k N
exp <§W(&KX +ci(v) + L év) (c1 — KX)>> = <€_ﬁa>

é a2f’6nst
8 dadlog A
with N = (£, Kx +c1(v) + 28 (e — Kx)). Note that (€,¢; — Kx) = (£,6~Kx) =

0 mod 2, where the first equality follows from the assumption (§2.1(2)), and the

<exp (N I G e (P

second from the Riemann-Roch theorem. Therefore IV is an integer.

As z = e‘}{:ﬁﬁ, Clo—Co1 = —Bezgaﬂ, the statement (1) becomes clear now.

Let us check the statement (2). We substitute e?® by —eP®. Then z changes
the sign and (j 2, (2,1 are invariant. Therefore the change of the instanton part of
Aé@,zﬂa (v, BA) comes only from C’Zrk(v) (€1,€9,a;6,7) in (1.25). It is multiplied
by (—1)rk(”)(|yl‘+|yz‘). The perturbation part of Aée,wa(v,,BA) is multiplied by

(1)NHE) = (L) Ea@+ 5 (@ -Kx)),
Altogether the coefficient of A"~ &3 in A? 284 (v, BA) is multiplied by

(= 1)@+ 252 e =K +rk(n

4.2. From the expansion at a =0 to a = co. We set 3 = 1 hereafter.
We expand A5 —2a(v,A) at a =0:
(4.9) AF a0 A) = D Apa™ATE TS € ATE3C((a)[A]].

n>0
mEZL



K-theoretic Donaldson Invariants Via Instanton Counting 1077

Then
de et
Bos A, 2003 0) 5 = Cooff | AZ, (03 4) x a] = ST AL A,

Proposition 4.10. Age 2a (V3 A) Qs in A_52_3(C[[%,a]], i.e. Ay = 0 unless
m > —n in (4.9).

This is a consequence of the proof of Proposition 4.4. The key observation is
that z, (CLQ — C271)A € %C[[CLH

We rewrite the above expansion as

A6X672a (v;A) X a= Z Am7nam+lA4n_€2_3

n>0
m+n>0

—-m—1
> Amn@) I
’ a

n>0
m+n>0

The last expression is an element in A_52_2(C((%))[[A]], and ), A_17nA4"_§2_3

is equal to its coefficient of (%)0. Thus we get

Corollary 4.11.

5 Res Ag (o A) de® = 2 Coeff [Age,ga(v;l\) X

er=1 (2)0

i)

4.3. From a = oo to ¢ = 0. By (4.8) we have the following expansion in C[[2, a]]:

¢\® = V-1A <1 +O(a, %)) .

2a

Q>

DIAL

As in the previous subsection, we consider this as an element in C((

Then we have

A A
q'/*® = () +a()A+ -

A /1A 2 AN?
QQ(g) % bg( > +b3<g> + - b,-e(C.

From this we see that (C((%))[[A]] >~ C((qo)[[A]] = C((¢"/#))[[A]]. We now change
the variable from é\—z to ¢%/8 by the following lemma:
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Lemma 4.12. Let us consider the change of the variable from x to y given by
y=y(x,A) = yo(z)+y1(x)A+--- € C((z))[[A]]. Assume yo(x) = x+azx®+--- €
z(1 +zC[[z]]). Let f(y,A) € C((y)[[All = C((x))[[A]]. Then
d
Coeff [y (y, A)] = Coeff |2 f(y(w, A), )77 -
40 20 dx
This lemma just means the invariance of the residue under the change of vari-
ables. As we have an extra parameter A which does not appear in the usual

setting, we give a proof.

Proof. Tt is enough to check the case f(y,A) = y™ ! for m € Z. First suppose
m # 0. Then the left hand side is equal to 0. On the other hand,
1 dy 1 d
A 1%9 e A)™
(o Ay Y = 2y, )™

1

does not contain the term ", as it is a derivative of a formal power series in .

Therefore the right hand side is also 0.
Next suppose m = 0. Then the left hand side is 1. Let us consider
log y(@,A) = log (1 + yl(m)A+ . > .
Yo(x) Yo()
())[[A]]. Then we have

This is well-defined in C(

L dy 1 dyolz)  d f @),
y@Nde @) da *dx{1g<”yo<x>“ >}

:é(1+a2$+...)—1(1+2a2$+...)+%{1og<1+z;g§1\+...>}.

The second term does not contain the term z~! by the same reason as above.

Therefore we get = only from the first term. Hence we have found that the

right hand side is also equal to 1. O

Applying this to the right hand side of Corollary 4.11 we get

X _ X (o a\?
2((353303 [Ag’e%(m/\) x a] =2 Coclt [A&ega(u, A) x ( A) A

s d(3) ]

sy ddT)

A
a

This completes the proof of Theorem 4.3(1).
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4.4. Explicit expressions. Our remaining task is to express the terms in [ | of
the right hand side of Theorem 4.3 in explicit forms in C((¢'/®))[[A]]. We suppose
m = —rk(v) = 0 in this subsection.

By [43, §5] exp(xA + oB) can be written explicitly in terms of ¢'/%.
only need to express ql/8 g((;\l//;)), 3 a%zlig +» and (aii%)?' The expressions will be

given in (4.14), (4.15), (4.16) respectively.

So we

4.4.1. The term ¢'/8 g((é\l//g)) We consider a defined as a period of the Seiberg-

Witten curve as in §A. In particular, we are in the region D* such that v/—1a

has a large real part and 0 < |A| < 1. We will compute ¢'/8 g((;\l//‘;)) first in this

region and then see later that the computation holds in C((¢'/®))[[A]].

For simplicity we introduce a variable u by

_ 80 + 01

LB € BAARC((¢7)
00710

where 6-functions are evaluated at (0,7). This definition is motivated by a fun-
damental variable in the homological version (see [20, (4.1)]). By (A.34) we have

Ui = £2¢/1 4+ u + BAAL

By a certain standard equality for 6-functions (cf. [20, p.29]) we have
du  BA’m 05
dr— 2y/=1 6567
Combining this with (A.35), we get
da  da dU; :l:ﬂ'A 08, 1

d_T_d—[]l?_ 7900910,/1+U+B4A4'

Therefore we have

dr\> 16 03,67
41 o) = 00710 (1 Y.
(4.13) <da> xr g (LTur A

This is a priori an equality on D*. However both sides extend to A = 0: The
1/8 1/8  —V=1BA

oy Baz - Here ~ means

right hand side is a function in ¢*/° and we have ¢

the equality up to the instanton part.

Therefore 019/A and u are regular at A = 0, hence so is the right hand side.
The left hand side is a triple derivative of the prepotential with respect to a, and
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hence has no perturbation part. Thus it is regular at A = 0. Therefore (4.13)
holds even at A = 0.

Next we consider the coefficients of A* for both sides of (4.13). The equality
holds a priori for a such that /—1a has a large real part. However both sides
are rational functions in eA%: This claim can be checked as above. The left
hand side has no perturbation part, so the claim was proved during the proof of
Proposition 4.4. The right hand side is a function in ¢'/®, hence the claim was
again proved during the proof of Proposition 4.4. Considering the expansion at
a = 0, we conclude that (4.13) holds in C((a))[[A]].

From the discussion in §4.2 we see that both sides of (4.13) are in C[[a, %]]
Therefore (4.13) holds in al C|[a, 4], and hence in C((2))[[A]]. We now change
the variable from A/a to ¢'/® as in §4.3 and use the composition law to get

2 2
a_2q1/8 d(3) _ <_ /1 05, A ) 1 ‘
AT d(g®) 000010/ 1+u+ BA4

@ql%, we can determine the branch of the square root to get

As a ~

a® d(A) 08 A _1
4.14 Z g8 a7 0L § :< 2> wt+ BIAYY
( ) Aq d(q1/8) 000010 2\ n ( B8 )

This is an equality in C((¢'/®))[[A]].

92Fy 1 _9F  _ m/=1 9P .
4.4.2. The term Padlogh Let h = 10a9iogh = 2 Dlogh" Let us rewrite

(A.36) in terms of sn associated with the elliptic curve with period 7. (Be aware
that we have used sn with period —2/7 before.) We get

oy, EILC 7= NN
0ov=1" R

Therefore

92 ﬁh 910’6A dx 900/
You—1 o V(1 —22)(1 —k222)  bho \/1 +

Fort tat

Therefore
2v/—1 [PA dx

Bboob1o Jo \/1 + g’ + !

h =
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: I\ U K n—
tine W =Y uzomzkz0 (52) () (W) a2 we get
" s (h)(p) L
,3900910 n>0 dn —2k+1
n>k>0

This gives us an explicit expression in terms of ql/ 8 as, e.g.

B0pob10h = 2\/—_1 <ﬁA — %ﬁA+ .. > .

4.4.3. The term (8{192%)2' We use
O11(5; raT) 011 (52 F )901(2Wr’) BA ex (ﬂz O Fo )
001(0,7) g1 (52— 7 T) 001(0, 7) 32 (Dlog A)2

where the second equality follows from (A.36) and (A.23). We use the formula

(see [53, 21-43]):
011(2,7) — Gai(7) o
—7 L =zexp | — z ,
61,(0,7) kZ::l 2k
where Gop = 2((2k)Esj, are Eisenstein series, and Eoj are normalized Eisenstein

series. Using Jacobi’s derivative formula ([53, 21-41]), we get

B> 9*F o [900910]1] Zsz(7)< Bh >2k
32 (Olog A)? 2v/—1A 2k 2my/—1)

Combining with (4.15), we get an explicit formula of ﬁ in terms of ¢

(4.16)
k=1
1/8

For example, we have
2 2 2
0°F u h

PR Wy

32 (0log A) 6 24
4.5. Explicit computations: the case of P2. Let H be the hyperplane bundle
on P?, we denote by the same letter its first Chern class. As an illustration of
our results we compute the holomorphic Euler characteristics of determinant line
bundles on Mgz (0,d) and MEQ (H,d), and write the corresponding Hilbert series
explicitly for small d.

The determinant line bundles u(H®™) are by (1.4) defined on Mgz (0,d) for all
n and on MEQ(H, d) for n even. Let Y be the blowup of P? in a point, and let £
be the exceptional divisor. Denote by H also its pullback to Y, and write F' =
H — E. Then for e sufficiently small M};JFEH(E,d—I— 1) =0, M}/+EH(H, d) =0, and
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ths (MY g (B, 1), O(u(HE))) = 0, \(MY. .y (H,d), O(u(HZ*"))) = 0 for
all n. On the other hand we get by Corollary 1.8 X(MEZ(O,CZ),O(,U(H@)”))) =
V(MY _ (B, d+1), O(u(HE™), x (M (H, d), O(u(HE))) = x(M};_,p(H, d),
O(pu(H®?™))). Thus we only have to sum the wallcrossing over all the classes &
of type E (respectively of type H) with (¢H) > 0 > (£F). These are {2mH —
(20 +1)E | 1> m > 0} for type E and {(2m —1)H — 2lE | I > m > 0} for type
H.

Putting this into Theorem 4.3 and using the results of subsection §4.4, and
putting 3 = 1, we obtain the following.

> XM (0, d), O(u(HE™))) A
d>0

m 1 1 2_m? m(n —[—
:Cg)éaff[ Z (—1)lmH1gz((F3) ) p(m(n+3)~1=1/2)h

I>m>0
( B 911(%—\}}_—1)>n2+6n+8 865, 1
Ao A0 VI +u+ AL

> XM (H,d), O(u(H®"))) A
>0

m L(12—(m—1)2 m—21)(2n+3)—
:C;)Oeﬂ?[ Z (=1)HFm gz —(m=3)%) o((m=3)(2n+3)-Dh

[>m>0
(_ 011(%—\}}51)>4n2+12n+8 868, 1
Abo, 03,03 V1 +u+ AT|

It is straightforward to write a maple program which computes the lower order
terms in A. This computation can be extended to much higher degrees in A, in

principle up to any given power. We get

S XM 0.4). Ol = A, 5<d <
n>0
S N () O e = P v <a<on
n>0

with Py(t) € Z[t] of degree d—5 with t3=5P;(1/t) = P; and Q4(t) € Z[t] of degree
d — 2 with t772Qg4(1/t) = Qq for d > 4. In particular

Ps=1, Po=1+t>+1t* Ps=1+t+ 72+ 724+ 22t* + 71> + 715 + 7 + 15,
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Pr7=1+3t+27t2+83t3+312t* +504t° +680t° +504¢7 + 3125+ 83t 427410+ 3¢ 11 4412,
Poy = 1+ 6t + T7t% + 48413 + 2877t + 10374t° + 270275 + 46992t + 57532%
+ 46992t 4 2702710 + 10374t + 287712 4+ 484t + 77t + 6¢15 4 ¢16;
Qo=1, Qu=1+t+1t% Qg =14 12t + 57t + 92t3 + 57t* + 12¢5 + 1°,
Q12 = 1 + 43t + 751¢% + 5301¢> + 16598t* + 24137¢° + . ..
Q16 = 1+ 109t + 5149t 4 103820t + 976685t + 46096435 + 11476395t°
+ 15506676t7 + . ..
Q20 = 1 + 231t + 25026t + 1189860t + 26750979t + 308439936t°
+ 19460374115 4 703826424617 + 15046564512t + 19347012191¢° + . ..
Q24 = 1 + 437t + 97958t + 9845240t + 467190310t* 4 11368550417¢°
+ 152640855877t% + 1196951395072¢" + 5716465354180t% + 17128652740280¢”
+ 32841892687972t10 + 40750517543272¢t1 + .. .,

where ... stands for terms of degree larger than deg(Q4)/2. One checks that
Py(1) = CIDISZ(H‘[), Qa(1) = 2d<I>]PI;2(Hd), by comparing with [13], as required by
the Hirzebruch-Riemann-Roch theorem. In [5],[6] the X(MEZ(O,CZ),O(M(H@)”))
were determined for d < 13 and all n and for d = 17,n = 2, 3.

4.6. Generalization to non-toric surfaces. In this section we will general-
ize our results to arbitrary simply connected surfaces. We extend Corollary 4.2
and Theorem 4.3 for the wallcrossing terms to any good wall & on any sim-
ply connected projective surface X with p, = 0. More generally let X be a
smooth projective surface (not necessarily connected), and let £ € Pic(X) and
v € K(X). We define the wallcrossing terms Ang(v, A), A? (v, A) by the formulas
(2.4),(2.6),(2.7), where we replace in the summation index d = 4(n+m)—¢&2—3 by
d = 4(n+m)—£2—3x(Ox). Then we show that these are computed by a suitable
generalization of Corollary 4.2 and Theorem 4.3. This is done by adapting the
corresponding argument of [20] for the wallcrossing of the usual Donaldson in-
variants, which is based on the fact that intersection numbers on Hilbert schemes
of points on X are given by universal formulas in terms of intersection numbers
on X.

If X is a simply connected with p, = 0 and { is a good class, then Proposi-
tion 2.11 shows that the wallcrossing of the K-theoretic Donaldson invariants for
the wall defined by & is given by the wallcrossing terms, thus we get a formula for
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the wallcrossing in terms of modular forms and elliptic functions. In the future
we plan to adapt the arguments of [40] to show that Proposition 2.11 and thus
our wallcrossing formula also holds in case £ is not good.

We start by sketching a proof of the following result:

Lemma 4.17. Fixr € Z. There exist universal power series A; € AQ((T))[[A]],
(i =1,...,7), such that for all projective surfaces X, & € Pic(X) and all v €
K(X) of rank r
(_T)ﬁ(E—KX)/2+X((9X)A§2+3X((9X)
TEvW/2(1 — T)8+2x(0x)

eXp(£2A1 + gKXAQ + K%Ag + 62( )A4 + f’U A5 + KXv( )AG + (U(l))2A7).

Agr(v,A) =

Here, as before v = ¢ (v) + @(cl — Kx).

A simple modification of the proof of [20, Lemma 5.5] shows the following.

Lemma 4.18. Fiz n,m > 0. Let P be any polynomial in ch; (Ay), chy,(A-),
Chi3 (Il)£i4/(v(1))i5 Chig (Ig)gi7/(’[)(l))i8, Cig (X[n} X X[n}) fO’/“ il, e ,ig S ZZO‘ Then
there exists a universal polynomial Q (depending only on P) in &2, éKx, K)z(,
co(X), o, Kxo®, (vW)2, such that St xtm P = Q.

The statement is very similar to [20, Lemma 5.5]. The only differences are
that we replaced XQM by X" x X" and that we also allow the ¢; (X[ x X[™])
in P. However looking at the proof of [20, Lemma 5.5] it obviously also works
for X" x X™l and in [14] the argument is also made for the ¢;(X ™). Tt readily
generalizes to X" x xml,

Denote the left-hand-side of Lemma 4.17 by ZéT(U,A). By applying the
Riemann-Roch theorem to definition (2.6), we obtain that

A (v, A) A / S
er(A)= > > g S

n,m>0i€Z
where S, i is a polynomial in the Chern characters of Ay, A_, Ar, (v), Az, (v)
and the ¢; (X" x X" which is zero for i < 0. By (3.5) the Chern characters of
the Az, (v) are polynomials in the ch;, (Z. €2 /(vD)3. Thus by Lemma 4.18 we
see that Z?T(v A) =350z A4lPl7,~T’, where P, ; is a universal polynomial
in €2, (Kx, K%, co(X), v, Kxv® | (v)2 which is zero for i < 0. From the
definition (2.6), one readily computes that the coefficient of A? of ZgT(U,A) as
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a power series in A is 1. Now the proof of Lemma 4.17 is finished by the same
arguments as that of [20, Theorem 5.1].

Corollary 4.19. (1) Corollary 4.2 and Theorem 4.3 hold for any simply con-
nected smooth projective surface with p, =0 and any & € Pic(X).
(2) More generally for any smooth projective surface X and any & € Pic(X)
we have

<£> U(l) + KX>

_1c&
AX (0. BA) = ﬁ_1<£7Kx>¢ <ﬂ 82 Fo
§767 @ ’ o

(BA)X©x) TP\ 8 9adlog A

+ ﬁﬂ((v(l) + Kx)?) | exp(A)™O%) exp(B — A)°
32 (Olog A)?

Proof. 1t is enough to show part (2). We put T3 = e P2 and as above write
1
p = —y-1BA \/jllfé\ﬂTQ. Then by (4.8) we have gs = zexp(ly), with [; €

e—Ba_ePa

22C[B, T+ ™W/2 AJ[[22]] ¢ A2C[B, A]((T?)). Similarly (4.7) implies Pk €

A2C[B, A]((T%)), % € A%C[B, A]((T%)), and from the definition we see that
82]_-ge7“t

Jaoiogx = —8a. Finally by (1.44) we have exp(A) = g1 exp(l2), exp(B — A) =
exp(ls), with ls,l3 € AC[B,A]((T)). Thus we see that the left hand side of
Corollary 4.19 can be rewritten as M exp(£2B1+£(vV 4+ K x ) Bo+(vM + K x)? B3+
¢2(X)By + K2 Bs), with B; € AC((T2))[[A]] and

U V=IBAT \ €= o+Kx)/2
_ (&, Kx) 18AT 2\ € 2x(0Ox) TV +Kx
M= VT () — T

Tﬁv(l)/2(1 — T)&+2x(Ox)
T (—T)EEEx)727x(0x) A3x(0x)

As the A;,i=1,...,7 of Lemma 4.17 are determined by the Ag{T(v, A) for toric
surfaces, Corollary 4.2 implies the result. O

When v = v(2L), we have v + Ky = Kx — 2L, which is equal to the
negative of the characteristic line bundle det W* of the Spin® structure W= in-
duced from the complex structure of X and the line bundle L (see §1.3). Then
\/—_1_<§’KX> [A? (v, BA)} N is a polynomial in (£, ¢ (det W¥)) and (¢ (det W*)?2)
whose coefficients depend only on (¢2), d and the homotopy type of X. This
statement is a natural analogue of the Kotschick-Morgan conjecture [29] in the
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context of the K-theoretic Donaldson invariants. Thus our formula above sup-
ports our belief that the K-theoretic Donaldson invariants have a gauge theoretic
definition.

APPENDIX A. SEIBERG-WITTEN CURVES FOR K-THEORETIC VERSION

The purpose of this appendix is to prove some results on Seiberg-Witten curves
for the K-theoretic version with Chern-Simons terms. In particular, we show

a) the perturbation part of the Seiberg-Witten prepotential coincides with
the genus 0 part of the perturbation part introduced in §1.7.2,

b) the Seiberg-Witten prepotential satisfies the contact term equation in
Proposition 1.39.

The corresponding results of the Seiberg-Witten curves for the homological ver-
sion have been known [25, 38, 50, 18], and were reproduced in [43, §2]. Our proofs
go along the same line, while we need to consider the cases r +m even and odd
separately. The adaptation might be standard to experts, but we cannot find the
statements or proofs in the literature.

A.1. Seiberg-Witten curves. We consider a family of curves parametrized by

—

U= (U,....,U_1):
Cp . (—V/=1pA) X (rrm)/2 <w + l) = P(X),
b w
PX)=X"+U X" '+ ULX" 2+ 4 U1 X + (-1

for |m| < r, m € Z. We call them Seiberg- Witten curves. When r + m is odd,
we should understand this expression formally, and the rigorous definition will
be given soon below. The projection Cﬁ,m > (w, X) — X € P! gives a structure
of hyperelliptic curves. The hyperelliptic involution ¢ is given by ¢(w) = 1/w.

We introduce a new variable Y = (—v/—18A)" X "+m)/2 (4 — L). Thus we have
Y2 — P(X)2 _ 4(—X)T+m(BA)2T.

This does make sense for r + m odd also.

Note that |m| < r guarantees that the curve has genus r — 1. Later we further
assume |m| # r.
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If we replace the coordinate X (near 0) by 1/X (near co), then the equation
of the curve becomes

Y2 = X¥(P(1/X)? - 4(~1/X)"™(BA)*") = P(X)? — 4(—X)""™(BA)™,

where P(X) = X" + (=1)"U,_1 X"~ '+ --- + (=1)". Thus the curves for m and
—m are essentially the same (exactly the same when r = 2), once written in a

coordinate near 0 and once in a coordinate near infinity.

Let us define the Seiberg- Witten differential by

(r+m)/2 —(r+m)/2 /
g5 = — 1 jogx®_ 1 o xX (X PX))ydX
2my/—18 w27V 18 Y
1 2XP'(X) — (r + m)P(X)
- log X dx,
o/ —18 ° XY

where we have used

d 1\ d /

x—O+m2y @0 gy <w - —) W _ (X‘(T’+m)/2P(X)> dx.
w w) w

This is a multi-valued meromorphic differential on Cp; . The last expression

makes sense even in the case r + m odd.

Let Xi,..., X, be the zeroes of P(X) = 0. We have [[ X; = 1.

A.2. Homological limit 3 — 0. We move 3 in a small disk around the ori-
gin. We see that the Seiberg-Witten curve becomes the Seiberg-Witten curve
for the homological version (i.e. the 4-dimensional gauge theory in the physics
terminology) at 3 = 0.

We choose z; with X; = e~V=1Bz_ We consider 7 = (z;) is a parameter for the
_2—/—1B=z
curve. Let X = Ry v Then
(—V/=TB) "X~/ p(X)
r4+m
2.2\ "3 ] m r —/=18z; 1 —/=1Bz; _ 1
:<1+ﬂz> <1+” B)He tl_c :
4 2 Pl 2 —/—10
If we introduce a new variable y = (—v/—108)7"Y (1 + @Bz)", we have

2 _

r —v/—1Bz; —/=1Bz; _ 2 2\"—m — 2m

y2:H e +1Z_e 1 A2 1+ﬁ_z 1_\/ 1ﬁz '
P 2 —/-13 4
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Therefore in the limit 8 — 0, the Seiberg-Witten curve converges to

1 T r
A(w+ E) = H(z —z) or y? = H(z — 2)? — 4A*".
i=1 1=1
This is the Seiberg-Witten curve for the homological version. (The variable w is
the same.) The Seiberg-Witten differential converges to that of the homological
1 _dw

version, 1.e. — 52’? .

The points X = 0, co correspond to z = %, —%. Therefore in the limit

B — 0, both points go to a common point z = co.
We find XZ-jE near X; such that
P(X") = £2(—V/=1BA) (X)),

When 7 +m is odd, we take the branch of (Xij:)l/2 so that it is the same branch
as Xz-l/2 = ¢ V=1P%/2 Let us choose zE so that [](2f — 2z;) = £2A". Then

XZ-jE — zfc (more precisely after moving to the z-coordinates).

The correspondence between the coefficients is more tricky, as U; is the i*" ele-
mentary symmetric function in e~ V=182 while u; is the it? elementary symmetric
function in z;, up to sign. For example, r = 2

2
Up=—(e V7P f e VolBy 04 7(7:% + 22) = =2 — BPuy.

A.3. a;, aP

.~ and the prepotential Fj,. We first work in the region containing

Z1,...,2- € Rand 2z > 29 > .-+ > z.. Then we will analytically continue
to the whole region. The curve itself is parametrized by U , but its homology
basis introduced below depends on Z = (z;). We also first suppose that A is a
sufficiently small positive real number and then will analytically continue to a
small punctured disk.

We take cycles A;, Bj (i =1,...,r,j=2,...,r) so that it gives the cycles for
the Seiberg-Witten curves for the homological version given in [42, §2] at 3 = 0.
Let us explain a little bit more precisely: Our curve C is hyperelliptic and is
made up of two copies of the Riemann sphere, glued along the r cuts between
X, and X;r . We then define A; as the cycle encircling the cut between X, and
X;". Note that we have >, A; = 0. We choose cycles B; (j =2,...,r) as in [42,
Figure 1], i.e. Bj is the sum Ei:z C) where Cf is a cycle starting from X,;t_l,
passing through X ,;t, and then returning back to X ,;t_l in the another sheet. Here
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the sign is + for ¢ odd, — for i even. Then A;, B; (i = 2,...,r) form a symplectic
basis of H1(C,Z).

We define a;, a]D by

ai:/ds, af:/ dS, i:l,...,r,sz,...,r.
Ai Bj

We consider a region disjoint from a segment from oo to 0 which does not pass
e~V~=1B%  Therefore log X is single-valued in the region. We take the branch of
log X so that it is given by —v/—18z at X; = e~V=1Bz  The A;, B; cycles are
taken from the region.

We have the following expansion:

(A.1)

1 1 1 m
i=——— | log Xd |1 X3 —e VB X3) | — Zlog X A
@i = 5 =5 /A,L- og og ]1;[1( 2 —¢ iX72) 5 log + O(A)

= _\/__122' + O(A)

We invert the roles of a; and U, so we consider a; as variables and U, are
functions in a;.

Let us differentiate the defining equation of C; with respect to U, by setting
w to be constant:

10X
A2 — (x-O+tm)/2pxy) 2 x(r-m)/2—p
(A-2) 0= ( (%)) o0, +
Therefore the differential of the Seiberg-Witten differential d.S' is
(A.3)
idS _ 1 X (r=m)/2=p—1 d_w L 1 Xr-r-lgx
aU w=const a 27TV B ( —(r+m /2P(X)) w N 271-,/_1B Y

It is well-known that these form a basis of holomorphic differentials on C; for p =
1,...,7 —1 (see e.g., [21, §2.3]). In other words, the Seiberg-Witten differential
is a ‘potential’ for holomorphic differentials.

Let (04p) be the matrix given by

da; Xr—pr— 1dX

T oU, T 21 3/
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If (oP%) is the inverse matrix, the normalized holomorphic 1-forms
r—p—1
1 Z pi X P dX i ds
277\/ ,3

wj =
I Y Oa;
satisfies [ A, wj = 0ij. Therefore the period matriz T = (7;) of the curve Cy is

w=const

given by

oaP
(A4) Tijg = /Bl wj = 8aj .

Since (7;;) is symmetric (see e.g., [21, §2.2]), there exists a locally defined function
Fo such that

1 OF
(A.5) b = ———— =70
2 vV -1 8aj
It is unique up to a function independent of a;. The ambiguity will be fixed later.
This function Fy is called the Seiberg- Witten prepotential. We may also write

Fo(a@) or Fo(d; AN).

A.4. Perturbative part. We determine the perturbative part of the prepoten-
tial Fq in this subsection.

Let

2 2 27‘( — 3
To(w|B; A) =2 <§<Lis<e‘ﬁ ) = ¢(3)) + - log(BA) + @”“’) T ;/_1 _ ﬁg |

where Lis is the trilogarithm. See [42, App. B] for the definition and prop-
erties of polylogarithms. The relation to the perturbative part 7, .,(z|3;A)
in §1.6 is the following: We have defined 7., .,(z|3;A) first when Bz > 0
and then analytically continued it to the whole plane. Then we considered
Ver,e0(®]B; A) 4+ ey 2o (—2|B; A). The coefficient of 1/e1e5 is equal to ¥y (x|B; A).
See [43, p. 510, the second displayed formula from the bottom]. This becomes
regular and its value is —z2 <log Fm) + 2 at B =0 ([loc.cit., p.510, the last
displayed formulal).

Proposition A.6.

=3 Aol as18:8) ~ P25 at o).

i<j i=1
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The term — >, ¥o(ai — a;|B; A) — mTﬁ Sr_, a} is called the perturbative part
of Fy. Recall that Fy was defined up to a function (in A) independent of a;. We,
in fact, prove

— 8F/0a; = 27v/—1aP
S Z%(al —aj|B; A) + Z Folai — a;|B; A) — Z Yola; — a;|B; A)

§>1 Jri<j Jij<i
mp

+ = (a7 —al) + O(A).

(A7)

Then we take a function so that the above formula holds. The remained ambiguity
in O(A) will be fixed later.

Note that in the r = 2 case the term mTﬂ Zzzl ag’ vanishes as a; + a9 = 0.
Therefore this does not show up in §1.6.

Let us describe the branch of 7,. As our 3 is in a small disk around the origin,
it is enough for us to fix the branch at 3 = 0. Then the ambiguity occurs only
at log (ﬁx) . When 2z; > -+ > z, and A € Ry, a; is pure imaginary and
vV—1(a; — aj) € Ryg for i < j. We then choose log (ﬁm) € R. Therefore we

have a? € R.

Note that

1

B

(A8) Fh(alB:A) = 2 ( :

w2 x2
(Lig(eP%) — F) - xlog(,@A)) — /1 — '8—

We denote Lig(e™P%) — %ﬁ — Bxlog(BA) by Ijig(e_m) for brevity.

Our proof is given so that it reduces to the proof of [42, Prop. 2.2] when 3 — 0.
(The proof of [42, Prop. 2.2] was based on [25] in turn.)

Proof of Proposition A.6. In the proof we move A in a punctured disk by analytic
continuation, starting from positive real numbers. Then aZD is a multi-valued
holomorphic function in A.

Let C; be a cycle starting from e_‘/__lﬁziifl, passing through e_\/__l'ezii, and
then returning back to e_\/__mziifl in the another sheet. Here the sign is + for ¢
odd, — for 7 even. Then B; = 22:2 Ch.
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We note that fCZ- dS is a local function of A?". Since C; changes to C; + A; —
A;_1 under the analytic continuation along A2 — e2mV=IA2r fo s — (a; —
a;_1)log A?" is a single valued function on the punctured disk 0 < |A?"| < 1.

We take a small positive real number ¢ with |A| < § and rewrite the integral

7\/7,52
/ dsS =2 /
x/_ﬂzl 1
—V=1B(z—1-9) e—V—1B(z;+9)
ds +2 ds +2 / dsS
/ Yaar e i—1 e~ V—1B(z;_1-9) o= V=IB(z;+9)
We first compute the second term. Let us write 3 = —/—13 for brevity.

Then

B (zi496)

— 271'/ ds
B (z-1-9)

zi+0 / 1 Bz v—3
mpB't Z log X Xz —eP5 X2

- - / 2 lOg IA
#-1=0 p B (zii1-9)

zi+6 _ B (t—z))
Bt 1—e g
_/Z“_(Szj <_2 +log <—ﬂ,A ))dtJrO(é)

| mg 1 — e Pzi=z) T 9 ‘ 1—e P9 T 9
_[ —2 +;zllog< A —|—2Bzi+zllog A _ZBZ’

_ _ZL12 /(2 —25) +_ZL12 /(25— 2i) +Zﬁ _Zz ]

Jj>i j<i j<i

eﬁl(zi+6)

+0(5).

— [the same term with z; — z;_1

Here we have determined the branch of log so that this is real-valued when

B = 0 and z;’s are all real with z; > --- > z. As 3 is small, we have

1_6*3/(75*23')
B'A

of log(t — z;) is given so that it is a real number, i.e. logl|t — zj|. There-

log ( ~ log(t — zj). We may also suppose ¢ is real. Then the branch

fore when t < z; (i.e. when we are integrating the summand j < 7), we have

B (t—=;) "(t—z)
log <1_e§+> = log <1_62+> — B'(t — zj), with the branch of log in the
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right hand is determined so that it is approximated by log |z; — t| = log(t — 2;).

Similarly we have [ log (#) dt = —éfig(eﬂ,(t_zﬂ')) - M, and the

branch of Li is given by the same way.

Let us turn to the third term:
,5/2:!: 8’ +

e’ % e %i
1 dw
—2m / ds = —; log X —
B (2;49) B Jes zivo) w
B2 B
1 [° gdw 1 [° dw

= — loge” #*— + — log X — log eP
,8/ eﬂ’(zi+5) w B/ eﬂ/(ziJﬂS)( g g )w

We take a positive number Ny < § such that

/ -1
(PP )
Ns <m <0

Then for |A| < Ns, we have
(PP Gty 7

We note that w| gt = EL
e i

g8t s
1 o B’zidw _ .[1 ]e = — 2 |1 Y+P(X) .
I T R e Sl YU U N T (T EN B
1 P(eP (zi+9)
= — z;log (e )

Q(ﬂ,A)T wl s e(r+m)B' (zi+6)/2

e

B’ (zi+9)
_ 2r (e )
1 yrmae (He ) )

1 — e Bzi—z) 1—e P9 (r—m)g3
— o (S () e () + ) 0
- 22N 2N 2

where the branch of log is the same as before.

Claim. .
!
1

/ dw
= log X —logeP#)— = .
7 eﬂ,(zl_m(og oge” )~ =0()
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Proof. It X = eP't and |t — z| ~ 8, we have
log X — log €'

X — Pz =e P54 0(9),
X —ef=
- — =14 0(9).
Hj;éi(e[j i —eP#)"1P(X)
Thus we get
Bz _ Bzi\—1
/ T (e eP %) P(X
log X —logeP?i = ¢ P=it30z L )" PE) + E(X)

with E(X) = O(62). The integration of E(X) yields O(62)O(logé) = O(4).

For the main part we have

o aw (X" P(X))
/ﬂ X~ P(X)= = / XTI P(X) T o dX
(2;46) w B (2;+9) X 2Y
— LX—L%ﬂyﬂ
P’ (2;+9)
= B"70(6).
Since
H(eﬂlzi — Py~ g 1H — 2j),
JFi JF#i
we get the assertion. O

The computation of the first term is similar. Since O(A)logA = O(9) for
A < 6§, we have the following:

(A.9)
/
—27r/ ds —2 —L(zf—z ZL12 —B(zi=2)y
7>
Zng B'(z—2) +— D Lig(e Pe172))
7<i 7>i—1
D I B S e 0!
Jj<i—1 7j<i j<i—1

We now replace 3'z; by Ba;. As a; ++v/—12; = O(A) by (A.1), the left hand side
is still O(6) after the replacement. Since the LHS is a single valued holomorphic
function of A on 0 < |A] < Np, it is extended to a holomorphic function on
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|A| < Ns. Since the LHS does not depend on ¢, it is 0 at A = 0. Thus the left
hand side of (A.9) is O(A).

Therefore we have

(A.10)

omyv/—laP = 2m/—12/ ds
k=2 " Chk

r—m)3 2 . Bla—an s
= {(z)(a?a%)ﬁz <L12(€ Blas ’))—€>

J>t
2 < ‘ —Blaj—ai) 7T2> : < i —B(a1—a;) 7T2>
+ = Lig(e P47 %)) — — | 4+ — Lis(e i) = —
+ Z B(aj — a;)? + 2r(a; — a1)log(BA) — rav/—1(a; — a1)| + O(A).
J<t
By (A.8) we get (A.7). O

A.5. A renormalization group equation. We assume m # +r hereafter.

We give an analogue of the renormalization group equation for the homological
version (see [42, §2.4]).

We set w to be constant and differentiate the defining equation of C; with
respect to log A to get

0X rX—+m2p(x) X U, x (r+m)/2—p
dlog A (X—(r+m)/2p(X Z Olog A (X—(rtm)/2 (X))~
Therefore
(A.11)
0 Js B 1 0X dw
Olog A w=const_ "~ 2my/—18 dlog A Xw
1 rX- (r+m)/2P r— » X (r+m)/2—p dw
C2my/—18 | (X-rtm)/2p(X ZﬁlogA X-(+tm)/2p(X)) | Xw

1 rP(X)dX i ou, erldx]
5 .

2/ —13 XY log A Y
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We thus have

r—1

_ Oa; 1 rP(X)dX oU, 0a;
(A-12) 0= dlogA  27/—18 /A XY +p; dlog A OU,’
(A.13) daP 1 / rP(X)dX | i oU, daP
. OlogA 218 Jp, XY o dlog A OU,"

Combining these equalities we get

da? 1 / rP(X)dX_ZT:&zZD / rP(X)dX
dlogA  2my/=18 |Jp, XY = Oaj Ju, XY

2nV/=18 _ 9 dS‘

has vanish-
X . . X w=const
ing A-periods. Its poles are inverse images of X = 0,00. As they are not branch

From (A.12) the meromorphic differential === 575+

points, we have four points. Let us denote them by 04, co_ (w = o0), 0_, ooy
(w = 0). This convention is taken so that their residues are given by

O:t : :|:17 o0+ ¢ +1.

The assumption m # +r is used here, otherwise X = 0, oo may not correspond

to w = 0, co.

By the Riemann bilinear relation (see e.g., [21, §2.2]) we have

1 9% F aa? ro [O0+too+ or [0+
(A.14) - = = — Wi = — Wi,
27y/—10a;0log A OlogA B Jo_ 100 B B

where we have used the hyperelliptic involution ¢ in the second equality. The
path of the integral is taken disjoint from the cycles A;, B;.

When 38 — 0, two points X = 0, oo converge to a single point z = co as we
observed in §A.2. Here more precisely, 04, co_ go to z = 0o, w = oo and 0_,
004 goes to z = 0o, w = 0.

As w; = 8%idS , this equation suggests a?g; 0 = —4“2__” fooot dS. However the

integral does not make sense as dS' has singularities at 05 and co_. We overcome
the difficulty by introducing a new differential

(r+m)/2 —(r+m)/2 /
G L pexX (X P(X))dX
P(X) 2mv/—18 P(X)
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Then dS — dS’ can be integrated from 04 to co_. From (A.3, A.11) we have

9 oU, XTP=1dx
ds’ = — p :
8@,’ w=const 27TV _1,3 zp: 80/1' P(X)
(A.15) L
9 / 1 rdX Z Xrr=lgx
alOgA w=const 27T V-1 (910gA P(X)
Differentiating P(X) = [[(X — e_\/jlﬁzi) by U, we get
Xr—r-1 A e~V 1Bz 92
P( ) IBZ \/jﬁzz)aU BZ \/7’3218(]
where we have used ZZ z; = 0. Therefore we have
(A.16)
0+ xr—p-1 92 . X=0
/ —~dX =V log(X — e~V 182)
o P(X) U,
X=00
8zl 1 2 8ZZ' _J1 2
=/— 'BZ log e—V-18 ) — O—Upbg(l_e vV-18 /X)X =

az-
_ 32 (AU 2_+~ Y L )2
=h . 90,” 2 au, Z 2r au, Z;(Z 2i)

where we take a path in the upper half plane and we also used ), z; = 0.
Therefore .
+ 0 B 0
as’ = — )2
oo da; w=const 4/ —1r Oa; %(Zj Zk)

Combining with (A.14), we get

0+
/ (dS — ds') — 7477\5_—17« g(zj — )’

o0 —

1 PR w0
2my/—1 0a;0log A B Oa;

Therefore we have
1 0Fo 2r / , 1
- = — dS —dS’") —
orv—10logh B Jo ( ) = o ;(Z

up to a function of A independent of a,. The right hand side has a perturbative

(A.17)

expansion as

%\/_ > (a; 24 0(A).

1<j
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This is exactly equal to the one given in Proposition A.6. Therefore we finally
fix the ambiguity of Fy in O(A) so that (A.17) holds.

When 8 — 0, both points 04, co_ converge to z = co, w = co. We have
dS = dS’ at the limit point. Therefore the first integral disappears in the limit

and we get

8.770 2
= Zy — Z4i) .
dlogAfg_ Z;( 2

This is nothing but the renormalization group equation [42, 2.3] in the homolog-
ical version. On the other hand, if 3 stays nonzero, 8?0% could not be expressed

as a simple function in U.

We differentiate (A.17) by log A:

1 0*Fy 2 , 1 )
B omyv/—1 (0logA)2 E . Olog A (dS B dS) Comy/—1 Olog A ;(ZZ ~ %)

o /0+ r(P(X) = Y)dX i Uy (Xrpt Xrv N
oV =18% XY dlog A Y P(X)
T— a )
2m/_ZZ alogAaU ~ %)
o /0+ r(P(X)—Y)dX i U, XrP-ldx
Cav/=16% Jo Xy = 0logA Y :
where we have used (A.16) in the last equality.
Let us consider
(A18) (P(X) -Y)dX 1< 89U, X' P ldx
’ 2XY 27’p « Olog A Y )

From (A.12) and [ A d))(( = 0, it also has the vanishing A-periods. Its poles are
0_ and ooy with residues —1 and 1 respectively. These properties characterize
the meromorphic differential form uniquely. Let us denote it by weet+—o_ as
customary. Substituting this into above, we get

a2f0 47,2 /oo
A.19 _gJo T Woos —0...
(4.19) @log A2 ~ @ Jo,
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A.6. Case r +m even. We assume that r + m is even in this subsection.

Recall that we set X1, ..., X, be the zeroes of P(X) = 0. For small A, we
can find X7 near X; such that P(X;") = £2(—/—18A)"(XF)"+™)/2, These are
branch points of the Seiberg-Witten curve Cﬁ,m' We have a natural partition of
them as {X;7} U {X; }, which corresponds to the even half-integer characteristic
E. Tt is the same as one in the homological version, i.e. t(%, %, %, -++). This is true
regardless of the parity of r.

Recall that the Szeg6 kernel of the hyperelliptic curve is explicitly given by

X3
V(X1 Xo) = Op([x! dlT) 1 (i;/l/}E(Xl) n <L/wE(XQ)> VAX1dXs

Or(0)E (X1,X2) 2 YE(Xa) Ye(X1) ) Xo—Xa
- WBI(X - X))+ (X2 - XT) dX1d X
N 2(Xs — X)) Yo [1(X) — X)) (X — X))’

where F is the prime form and

[[(X — X) _ P(X) —2(-/TBAY X(rém)/2

[(X —Xa)  P(X) + 2(-V1BAy XCom/2

See [15, p.12 Example]. We have ¢¥g(0+) = ¢¥g(cox) = 1. Therefore
@E fo d|r)?

- 0p(0)?

Yp(X) =

dXs
(A20) E(O_, OO+)2 Xm‘X1=0, <X—22>

Xo=004

On the other hand, [15, p.17, Remark v)] we have

dX
E(0-,004) dXi|x,—o_ <X—22>
2

X2=OO+

00— T co_
= exp / Wooy—0_ + Zmz/ wi,
0+ i— 0+

X(co4)

(A.21)

where m; = - f A, darg e In our situation, this is equal to 0. We thus

W
get
@E(foof>+ 5)2 0-
+

By (A.19) and (A.14) we get

aD
On(£ sz r) { B K }
————— =exp -

(4.23) ©1(0]7) 812 (Dlog A2
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Thus we get the contact term equation [43, (4.12) with d = §]. More precisely,
the above holds up to sign. However both sides go to 1 when 8 — 0, so the above
holds without the sign ambiguity.

A.6.1. A differential equation for U,. By [15, Prop. 2.10 (38)] we have
(A.24)
Up(X,0_)Vg(X,00) [alogQE /°°+ L. OlogOg
= Weo + w
Up(0-,004) w0 Z 96 0 )~ 9&i

— 7 (0) | wi(X).

The left hand side is equal to

(P(X) - Y)dX
2XY
dlogOg

As E is an even characteristic, —5=£(0) = 0. Looking at (A.18) we have

12 U, Xt 1dX OlogOp "
ﬂpzlalogA Z o€ /0 Gpi(X).

r—1

In other words,

ou,

f= B 027y Oa;
4m+/—1r Olog Aoa

1 ou, 1 Zalog@E

A2 — = —
(A.25) 2r dlog A 2mv/ =10 0&;

This is an analog of the equation in [42, Th. 2.4]. This equation suggests that it
is possible to define U, in terms of the instanton counting as in the homological

version.

A.6.2. Higher order equations. By [15, Cor. 2.19 (43)] we have
Op(Xiy v — Yy i) [y B2 Eysp0) ( On(y — =) )
©5(0) I1: ; E(zi, ;) Op(0)E(zi, x;)
= det (¥ p(z;,y)) .-

Let us study the limit of this equation when all z; (resp. y;) goes to 0_ (resp.

004). As E(x;,xj) = \/i_\ZT (1+ O(z; — x;)?), we have

det (¥ p(x;, y])) N (_1)d(d—1)/2 det La;aj(\l’E)(ZE, Y)

EII)‘ZEE . . ’L" Y =0-
[Lic; E(@i, z5) E(y;, ys) J 1=+ o< j<d-t
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Therefore the answer depends only on the differentials of Vg up to order d — 1.
Note that

P(X) — 2X( /(- \/_ﬂA)’“

X) =
wE( ) P(X)+2X(r+m /2 A)r
_ 4xr+m)/2(_\/ZIBA)" 14+ O0(X0+m)/2)  as X — 0,
C P(X) +2X0m2(—/ZIBA)T )14 O(X0m™/2) as X oo

Therefore we can replace either g (z;) or ¥g(y;) by 1 when we compute the limit
if 0 < d < max(r+m,r—m)/2. We may assume m < 0 without loss of generality.
Then we can replace ¥g(y;) by 1. Thus

(A.26)
Op(d [;°F d)  det Wp(xi,y;) [1;; E(xi,y;)
©£(0) Hi<j E(wi, 2)E(Y;,9i) | gi=0_
yj =00+

= det (1 <4 Vvp(z;) + 1 > \/d_xl\/%> H” E(z;,y5)

2 Y T,Z)E(l’l) Y — T4 Hi<j E(xiaxj)E(yﬁyi) z;=0_

Yj =00+

d d
= H <1 (4 Dp (T + %) \ /dxi> H /dy;
- 2 VYE(;) i

< 1 > [L; E(ziy5)

x det

Yi — @i ) [lic; BE@i, 25) E(Yj,9i) | 2=0_
Yj =00+

d2
dXs
= | E(0_, dX
< (0-,004) v 1X1:0< % >X2:w+>

d2 oo
= exp <?/ woo+_0> 5
0+

where we have used (A.20, A.22) in the last equality. Hence we get

(A.27)

[lD
@E(%a?ogA’T) B d’B8>  9*Fy
©r(0]7) B 8r2 (0log A)?

for 0 < d < max(r +m,r —m)/2. This is the same equation derived in Proposi-
tion 1.39 under the assumption (1.37).

A.7. Case r + m odd. We assume that » + m is odd in this subsection.
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Let us introduce a new variable W = v/X and consider the branched double

~

covering p: C;  — Cp - given by
Y2 — P(W2)2 o 4(_W2)r(6A)2r

(A.28) = (P(W?) — 2(vV=IWBAY") (P(W2) + 2(V—IWBA)") .

The branched points are X = 04, co4+. The genus of éﬁ is 2r — 1.

For the new curve 6’[} ., the calculation of the previous section can be applied.
We then use formulas in [15, §5] relating the theta functions for 5[7 ., and those
for C .. This is our strategy to prove the contact term equation for the r +m

odd case.

Let us fix notations. See [loc. cit.] for more detail. Let ¢ be the involution
W +— —W corresponding to the projection p. We choose a symplectic basis Ao,
By,..., Ay, By, Ay, By, A, BS,..., AL, Bl of Hl(aﬁ,Z) as in Figure 1, where
the involution ¢ is the rotation by 7 about the vertical axis passing through 04,

0o+. They satisfy

(1) A;, B; i = 2,...r are taken so that they are in a single sheet of p and
mapped to the corresponding cycles in the original curve C-,

(2) A= —8(A:), Bj = —¢(By),

(3) Ax+ ¢(Ay) =0 = Bi + ¢(By).

VR

| oo

FI1GURE 1. Double cover of the Seiberg-Witten curve for r = 3, m: even

The normalized holomorphic differentials @;, ., &} on 60 satisfy

OO = —@l, P = —

and are related to those on CU as

* ~ At
D Wi = W; — Ww;.
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We denote a vector in C*~! by [¢,,¢/] with §,¢' € C"~1, n e C. Let m*: Jo(Cp) —
Jo(éﬁ) be the pull-back homomorphism of the divisor classes. It lifts to a map
(Cr—l N (c2r—1 by

7'('*(6) = [6707 _g] .
Let us choose two points S,T from four branched points 04, oot. Let S’, T”
be the remaining two points. Let & = 4 ;:}T & where & = (wa,...,w,) is the

vector of the normalized holomorphic differentials. Then [15, p.91 (102)] says
that there exists a unique half-period [0, ¢4, 0] € JO(C ) such that

é[c,c,ﬁ,—c] (77*5)
Oc(§ + £0)Oc(€ — o)

is independent of ¢ € C"~! and a half-integer characteristic ¢ for the curve Cy-
We choose S, T =0_,00_, so

A 1 044004 . 1 004 .

The double cover éﬁ is also a hyperelliptic curve by the involution z: Y +— —Y.

(A.29) k?(]Z:

In Figure 1 the involution 7 is the rotation by 7 about the horizontal axis. Note
that 0_ and ooy lie in the same sheet of the covering 6’[7 — Aﬁ/fz P! as we
have P(X) ~ Y at both points. (We have P(X) ~ —Y in another sheet.) The
sheet is the upper part of éﬁ in Figure 1.

The branched points are W = \/Xii, —\/Xii. (Recall that we have fixed
the branch of XjE so that \/XjE ~ VX = e~V=1Pzi/2  \We have a natural

partition of them as {{/X;", —1/X; } U {1/X;,—1/X;}. It corresponds to the

factorization of the right hand side of (A.28). Let E be the corresponding even
theta characteristic. We now repeat the argument in §A.6. We do not determine
the characteristic F explicitly at this moment, as the argument goes through if E
corresponds to the above partition. We need to take the path 0, — oo_ disjoint
from A, B-cycles. This can be accomplished if we shift A, a little bit. For this
choice, m; appeared in (A.21) is also 0. The remaining arguments are unchanged,
and by (A.26) we get

O4(2d [+ &7 oo—
(A.31) M = exp {2d2 / @OO+_0} ,
@E(O) 0+
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for 2d < max(r +m,r —m) (i.e. d < (max(r + m,r —m) — 1)/2), where & is
the vector of the normalized holomorphic differentials of C 5, and Wee, —o_ is the
meromorphic differential with Ress,, = +1, Resp_ = —1 having the vanishing
A-periods.

Lemma A.32. The characteristic E is of the form [E,c., —FE] where the half-
period [0, ¢, 0] corresponds to the partition {04,004} U{0_,00_} as above.

Proof. We took the idea of proof from that of [15, Prop. 5.3]. We pinch two cycles
in éﬁ as in Figure 2. The limit is the union of a genus 1 curve C, (containing A,
B.) and two copies of C- These curves are glued at P and @ as in Figure 2, i.e.,
two points P, @ in C; are identified with a point in C and its copy in another

Cp respectively.

,[ VL
£}

FIGURE 2. Degenerate curve

Then it is enough to calculate the characteristic in the limit. It is clear that
the C;-parts have characteristic E' and —F respectively.

Let us concentrate on the genus 1 part. Among the original branched points,
+ X1+ are contained in Cy, and P, ) are new branched points. As the limit of
the partition corresponding to E, we get the partition {{/X;", Q}u{—/X;", P}.
This can be seen by pinching only one of the two cycles, say one corresponding
to (). As each part has the equal number of branched points, we must have

{Q, \/F, @,...}U{—ﬁ, \/Xil_, E,} Pinching the remaining cy-

cle corresponding to P, we get the assertion. On the other hand, the partition
{04,004} LU{0_,00_} of the branched points of ¢ is clearly preserved under the
degeneration.

Thus the elliptic curve C, has two hyperelliptic involutions 7 and ¢, and we
have the corresponding partitions of branched points {y/ X", Q} U {—+/X{", P}
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and {04,004} U{0_,00_}. It is clear from the picture that both give rise to the
same characteristic of the theta function (in fact, it is o). O

The denominator of the left hand side of (A.31) is
004

ko®p(&)? = kOQE(%/ @)?.

On the other hand, we have

004 004 004
2d = [d/ @, d, —d/ &} .
0_ _ _

To evaluating the value of the theta function at this point, we can replace d by
0 as d is an integer. Therefore the numerator of the left hand side of (A.31) is

equal to
~ oo 4 oo+ 1 o0 4 1 oo 4
6. <d/ 3, o,—d/ w) — koOp((d+ 5)/ 3)Op((d - 5)/ a).
_ _ 0_ 0_
On the other hand, we have Ws, —o_ = %p*(woo +—0_)- Therefore the right

hand side of (A.31) is

o0
exp{d2/ wOO+_0}.
0+
Thus we have

Op(d+}) [y a) [445D ™ o ),
04

Op(3 [y°F ) 2
ie.
aD
Op((d+ )& 51517 dd+1) 32 0°F
(A.33) B _0ak - 2 42 (9log A)?
On(f arexlm) r? (0logA)

for 0 < d < (max(r +m,r —m) — 1)/2. This is the same equation derived in
Proposition 1.39 under the assumption (1.37).

A.8. rank 2 case. We assume r = 2, m = 0 in this subsection.
We have P(X) = X2 +U; X + 1. Then
Y?=P(X)? - 4Xx23*A*
={X? + U1 X +1+2XB°A*} { X2+ U1 X + 1 - 2X3%A?}
= {0 (X +1)? = B4 (X =1’} {a (X +1)° - (X — 1)}
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where 5o .
_1 U1 ,BA . 1 Ul BA
=g+t D fe=—gt A

Then the solutions of P(X)? — 4X?3%A* = 0 are

] b b B
o tl -y +1 =41 a1

/8 ’ [6— ¢ [B— _ 4 /B '

— i -1 =/ -1 —-1 i -1
Here we choose the branch of /(4 /a4 so that the above are X;, X1, X5, X5
in sequence. (Recall the A-cycle encircles X, , X2+ , and B-cycles encircles X,

X, .) We introduce new variables

i X+1 1 Y

TV x-1 VT Jmg (x -1

Then the Seiberg-Witten curve is

y* = (1—a?)(1 - w%2?),

where
a_fy 52/\2
[{ = = 1 .
oy Uz (a2, 1)?
5 \"2 t32

In the z-coordinates, the A-cycle encircles 1, 1/k, and the B-cycle encircles
+1/k. Note that the A-cycle encircles 1 usually, so A, B-cycles are interchanged
in our convention. Note also that the curve has period 27 instead of 7 usually.
Therefore when we use various formulas in textbooks (e.g. [53]), we need to
replace 7 by —2/7. From [53, 22 - 11] we have

a By _ o 010(—2/7)*
ayfB- foo(—2/7)2

Therefore
U? 2)2 22 1)\? Boo(—2/7)* 22 1)\?
1 — '82 + <B + _) — _62A2 00( /7—)4 + <B + _)
(A3qy 16 w71 2 2 Oo1(—2/7) 3 2
1 O00(T)* + 010(7)* L5\ 2 4 4>
=—|1- A+ B%A* ).
4( Boo(1) 20002 P N TP

We also have
b0 K'(=2/7)

S Y
oUy  o2my/—=1BJ4 Y 21/ 18/ a B )1 y 2B/
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Note that a_ (4 = ayf_ + B%A%. Therefore

20 2900( 2/7)4 2 2910( 2/7')4
N e P = P

Substituting K'(—2/7) = v/—1m6oo(—2/7)? /7 ([53, 22 - 32]) we get

—9/7)2
da__ fo( : /T)° _ \/_—1900(7');910(7')'
oU, 2B°AT 26°A
Here we fix the sign so that it coincides with the formula for the homological

version when 8 — 0, i.e. da/du = —v/—10po(7)010(7)/2A.

Let sn(e, k(—2/7)), cn(e,k(—2/7)), dn(e,x(—2/7)) be Jacobi’s elliptic func-
tions for the period —2/7. From (A.14) we have

ﬂa?ngA:‘L/oM”‘ K37 /¢ i 4X27> “_1(\/%)'

Here we have used that w is normalized so that [ QW =2 f Lk = 1, and hence

ayf- =

(A.35)

_ dx
W avmiKy:

Let h := —% 8@%2£ g 1= ”F 8(?ggDA‘ Then by using addition theorem for theta
functions and the definition of Jacobi’s elliptic functions,

011(5; F’T) 910(4wf’2)911(4wﬁ’g)

001(27r\/_1’ 7) 900(47r\/_1’2)901(47r\/_1’72—)

_\/_901(27r3h_7 _;)911(27“/_7
(27r\/7'r _%)910(27&/77

= _\/__1“,(_2) KpBh

ﬂlw ﬂlw
~—

~—

where K = K(—2/7). As W[\;%LT = —5 r\/ 1K' = —sn1(, /%), the above

is equal to
a Py [og
_ = +0A
ayf-\ By \/5+ —ay \/5— —a- an,

where we have used a4 — G+ = 1. Hence we get

911(27“/77 ) _ _BA

(A.36)
901 ( 27“/*17 )
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Here the sign was fixed by considering the limit 3 — 0:

10757 oo 0401 18R

5901(%,7) o1 8ty/—10adlogA

—A

The equation (A.36) can be also derived from the blowup formula [43, Prop. 3.2(1)]
for ¢; = odd together with the argument in [43, §4.3].
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