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Lothar Göttsche, Hiraku Nakajima and Kōta Yoshioka
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Introduction

This paper is a sequel to [20]. In [20] we expressed the wallcrossing terms

of equivariant Donaldson invariants for a smooth toric surface in terms of the

Nekrasov partition function, and then using the solution of the Nekrasov con-

jecture [41],[48],[4] and its refinement [42] we gave the wallcrossing formula for

simply connected projective surfaces with pg = 0 in terms of modular forms, thus

recovering the formula in [19] originally proved assuming the Kotschick-Morgan

conjecture [29]. The Nekrasov partition function is defined as the generating

function of the integrals of the equivariant cohomology class 1 on the Uhlenbeck

partial compactifications M0(r, n) of the moduli spaces of SU(r)-instantons on

R4 with c2 = n. (As M0(r, n) is noncompact, we need a justification of the

integration. See [41] for details.)

There is a natural K-theoretic counterpart of the Nekrasov partition function,

namely we replace the integration in equivariant cohomology by the character

of the coordinate ring of M0(r, n), where we view M0(r, n) as an affine algebraic

variety via the ADHM description. The coordinate ring itself is infinite dimen-

sional, but the weight spaces are finite dimensional (see [41]), so the character

is well-defined. This K-theoretic counterpart is called the 5-dimensional super-

symmetric Yang-Mills theory compactified on a circle in the physics literature

[46],[31]. In [43] we proved the analogues of the results obtained in [41] in the K-

theoretic version. (The approach in [48] can be applied to theK-theoretic version,

while it seems difficult to generalize that of [4].) There is also a mathematical

reason why we should study the K-theoretic Nekrasov partition function. By

the geometric engineering of Katz, Klemm and Vafa [28], it is (after a parameter

is specialized) equal to the generating function of all genus, all degree Gromov-

Witten invariants for a certain noncompact toric Calabi-Yau 3-fold. (See [58] for
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a mathematically rigorous proof). Gromov-Witten invariants for toric Calabi-

Yau 3-folds have been studied intensively both in mathematics and physics (see

e.g. [39] and the references therein).

On the other hand, the K-theoretic Donaldson invariants have not been stud-

ied very much in the mathematical literature, as far as the authors know. One

of the reasons might be a lack of motivation, as it is unlikely that there is an

application to 4-dimensional topology. But another reason seems to lie in tech-

nical difficulties in defining the invariants. For example, the dimension counting

argument used in the definition of the Donaldson invariants cannot be applied

to the K-theoretic situation. Instead of attacking this problem, we restrict our

interest to the case when the base 4-manifold is a projective surface X. Then

we can use Gieseker-Maruyama moduli spaces of semistable sheaves and define

the K-theoretic Donaldson invariants as the holomorphic Euler characteristics

of the determinant line bundles. Then the algebro-geometric techniques used in

[20] to derive the wallcrossing formula for the ordinary Donaldson invariants can

be equally applied to the K-theoretic invariants. We will express the generating

function of wallcrossing terms of the K-theoretic Donaldson invariants in terms

of elliptic functions, which have a power series development in terms of modular

forms. Their lowest order terms are the modular forms which occur in the wall-

crossing formula in [20] for the usual Donaldson invariants. If the moduli spaces

are smooth of the expected dimension, it is easy to see that this is compatible

with the Hirzebruch-Riemann-Roch formula. Our approach is very similar to the

one in [20], though the final step identifying invariants with the q-developments

of modular forms and elliptic functions is more involved than in [20]. We want

to remark that our final answer for the wallcrossing formula strongly suggests

that there should exist a definition of K-theoretic Donaldson invariants for any

4-manifold with a Spinc-structure (see §1.3).

The holomorphic Euler characteristics of determinant line bundles are interest-

ing algebro-geometric objects in their own right. They are refinements of the usual

Donaldson invariants, which contain a lot of geometrical information about the

moduli spaces of stable sheaves on X, their Uhlenbeck compactifications and the

linear systems on them. For instance by a result of [34] the morphism associated

to certain determinant line bundles defines a projective embedding of the Uhlen-

beck moduli spaces. The corresponding Donaldson invariants will determine the

degree of the Uhlenbeck compactification and under suitable assumptions one
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would expect that the K-theoretic Donaldson invariants determine its Hilbert

polynomial.

TheK-theoretic Donaldson invariant is a natural 2-dimensional analogue of the

dimension of the space of conformal blocks (nonabelian theta functions). Another,

closely related, analogue is the genuine space of sections of a determinant line

bundle, rather than the alternating sum of cohomology groups. Its conjectural

formula appeared as four dimensional Verlinde formula in the physics literature

[35],[36]. (It is given as the space of sections, but it is not clear to the authors

whether the physical approach actually yields the space of sections, not Euler

characteristic.) A mathematical formulation was given in [45], where it was called

the space of conformal blocks in 4D WZW-Theory. In case the base manifold is

the projective plane the strange duality conjecture of Le Potier (see e.g. [6]) gives

a duality between the spaces of sections of determinant line bundles for moduli

spaces of sheaves of positive rank and their analogues on moduli spaces of pure

sheaves of rank 0. This conjecture has been checked in some cases in [5],[6]. An

analogue of this conjecture has been proved for some moduli spaces of sheaves

on K3-surfaces in [49]. In many examples, the determinant line bundle is ample,

or at least nef and big, so we have the vanishing of higher cohomology groups.

In those cases there are no difference between the spaces of sections and Euler

characteristics. However it is not clear whether we can control the spaces of

sections in general.

The paper is organized as follows. In Sect. 1 we collect background material on

the holomorphic Euler characteristic of the determinant line bundle and the K-

theoretic Nekrasov partition function. We also explain the partition function with

5D Chern-Simons terms (see [27, 51]), which naturally appears in our approach.

We also calculate the K-theoretic Donaldson invariants for K3 surfaces (see §1.5).
In Sect. 2 we express the wallcrossing terms in terms of the holomorphic Euler

characteristic of some virtual vector bundles on the Hilbert schemes X
[n]
2 of points

on two copies of X. In Sect. 3 we take X a smooth projective toric surface and

express the equivariant wallcrossing terms in terms of the K-theoretic Nekrasov

partition function. These two sections are parallel to [20, Sect’s. 2,3]. Then in

Sect. 4 we take the nonequivariant limit and give the formula of wallcrossing

terms in terms of modular forms and elliptic functions. We use the solution

of the Nekrasov conjecture and its refinement. In particular, we determine the

Hilbert series of the determinant line bundles on MP2

H (0, d) and MP2

H (H, d) for
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small d in §4.5. In Appendix A we explain the Seiberg-Witten curve for the

5-dimensional supersymmetric Yang-Mills theory. We prove that the Seiberg-

Witten prepotential defined via the period of the curve satisfies the contact term

equation, which was also satisfied by the nonequivariant limit of the Nekrasov

partition function [43]. This completes our proof of Nekrasov’s conjecture started

in [43], as the solution of the contact term equation is unique.

This paper is dedicated to Friedrich Hirzebruch, one of the founders of K-

theory. Among the other subjects of this paper related his work are the Hirzebruch-

Riemann-Roch theorem, modular forms and elliptic functions. The first-named

author particularly wants to thank him, his teacher, for all the things he learned

from him.

Acknowledgment. The project started in 2004 Jan. when the first-named au-

thor visited Kyoto for a workshop organized by the second and third-named

authors. They are grateful to the Kyoto University for its hospitality. The

second-named author thanks Yuji Tachikawa and Hiroaki Kanno for their expla-

nations of the partition function with 5D Chern-Simons terms. Part of this paper

was written while the second and third-named authors were visiting the Interna-

tional Centre for Theoretical Physics, and also while the first-named author was

visiting the Institut-Mittag-Leffler. We thank both institutes for the hospitality.

1. Background Material

We will work over C. We usually consider homology and cohomology with

rational coefficients and for a variety Y we will write Hi(Y ), and H i(Y ) for

Hi(Y,Q) and H i(Y,Q) respectively. If Y is projective and α ∈ H∗(Y ), we denote∫
Y α its evaluation on the fundamental cycle of Y . If Y carries an action of a

torus T , α is a T -equivariant class, and p : X → pt is the projection to a point,

we denote
∫
Y α := p∗(α) ∈ H∗

T (pt).

In this whole paper X will be a nonsingular projective surface over C. Later

we will specialize X to a smooth projective toric surface. For a class α ∈ H∗(X),

we denote 〈α〉 :=
∫
X α. If X is a toric surface we use the same notation for the

equivariant pushforward to a point.

Let X be simply connected smooth projective surface with pg(X) = 0. Let H

be an ample divisor on X. We denote by MX
H (r, c1, c2) the moduli space of rank r
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torsion-free H-semistable sheaves (in the sense of Gieseker and Maruyama) with

c1(E) = c1, c2(E) = c2. Let MX
H (r, c1, c2)s be the open subset of stable sheaves.

1.1. Determinant line bundles. We briefly review the determinant line bundle

on the moduli space [11],[32], for more details we refer to [26, Chap. 8].

For a Noetherian scheme Y we denote by K(Y ) and K0(Y ) the Grothendieck

groups of coherent sheaves and locally free sheaves on Y respectively. Then

K0(Y ) is a commutative ring with 1 = [OY ], with the multiplication given by the

tensor product of locally free sheaves. If Y is nonsingular and quasiprojective,

then K(Y ) = K0(Y ). In particular we have K(X) = K0(X) for the smooth

projective surface X. We will identify K0(X) with K(X) hereafter. If we want

to distinguish a sheaf F and its class in K(Y ), we denote the latter by [F ]. But

we may also write F for the class in K(Y ). For a proper morphism f : Y1 → Y2 we

have the pushforward homomorphism f! : K(Y1) → K(Y2) defined by f!([F ]) =∑
i(−1)i[Rif∗F ]. When Y2 = pt, this is the Euler characteristic of F under the

identification of K(pt) ∼= Z: f!([F ]) = χ(Y1,F) =
∑

i(−1)i dimH i(Y1,F). We

also have a pushforward homomorphism K0(Y1) → K0(Y2) when f is a locally

complete intersection morphism. (See [1, §4.4].) For any morphism f : Y1 → Y2

we have the pullback homomorphism f∗ : K0(Y2) → K0(Y1) defined by f∗[F ] =

[f∗F ] for a locally free sheaf F on Y2.

On K(X) we have a quadratic form (u, v) 7→ χ(X,u ⊗ v) ≡ χ(u ⊗ v). (We

denote χ(X,u ⊗ v) by χ(u⊗ v) for brevity hereafter.) We say that u, v ∈ K(X)

are numerically equivalent if u − v is in the radical of this quadratic form, and

denote K(X)num the set of numerical equivalence classes. Let c ∈ K(X)num.

Let E be a flat family of coherent sheaves of class c on X parametrized by a

scheme S, and let p : X × S → S, q : X × S → X be the projections. Define

λE : K(X) → Pic(S) as the composition

(1.1) K(X)
q∗
- K0(X × S)

⊗[E]
- K0(X × S)

p!
- K0(S)

det
- Pic(S),

(see also [26, (2.1.10), (2.1.11)]). The following elementary facts are important

for working with these line bundles:

(1) λE is a homomorphism, i.e. λE(v1 + v2) = λE(v1) ⊗ λE(v2).

(2) If µ ∈ Pic(S) is a line bundle, then λE⊗µ(v) = λE(v) ⊗ µχ(c⊗v).

(3) λE is compatible with base change: if φ : S′ → S is a morphism, then

λφ∗E(v) = φ∗λE(v).
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Let H be a very ample divisor on X. For a class c ∈ K(X)num we denote

by Kc := c⊥ =
{
v ∈ K(X)

∣∣ χ(v ⊗ c) = 0
}
. We denote by Kc,H := c⊥ ∩

{1, h, h2}⊥⊥, where h = [OH ]. Now let c ∈ K(X)num be the class of an element

in MX
H (r, c1, c2). There are homomorphisms λ : Kc → Pic(MX

H (r, c1, c2)s), and

λ : Kc,H → Pic(MX
H (r, c1, c2)), such that λ commute with the inclusions Kc,H ⊂

Kc and Pic(MX
H (r, c1, c2)) ⊂ Pic(MX

H (r, c1, c2)s). Note that λE(v) is independent

of the choice of the universal family E for v ∈ Kc by the property (2) above, and

in fact, we do not need the existence of the universal sheaf to define the map λ.

We call H general with respect to (r, c1, c2) if all the strictly semistable sheaves

in MX
H (r, c1, c2) are strictly semistable with respect to all ample divisors on X

in a neighbourhood of H (the ample cone has the topology induced from the

Euclidean topology on H2(X,R)). In this case any strictly semistable sheaf in

MX
H (r, c1, c2) is of type 1 in the sense of [10, 0.3]. Then the stabilizer subgroup

AutF (which appears in the proof of [26, Theorem 8.1.5]) acts trivially on the

fiber of the determinant line bundle (on the open subscheme of the quot-scheme).

Therefore λ : Kc,H → Pic(MX
H (r, c1, c2)) can be extended to Kc.

If E is a flat family of semistable sheaves of rank r and with Chern classes

c1, c2 on X parametrized by S, then we have φ∗E (λ(v)) = λE(v) for all v ∈ Kc,H

for φ∗E : Pic(MX
H (r, c1, c2)) → Pic(S) the pullback by the classifying morphism.

If H is general with respect to (r, c1, c2), the same statement holds with Kc,H

replaced by Kc. If E is a flat family of stable sheaves, the same statement holds

with Kc,H , MX
H (r, c1, c2) replaced by Kc, M

X
H (r, c1, c2)s.

1.2. K-theoretic Donaldson invariants. We writeMX
H (c1, d) forMX

H (2, c1, c2)

with d = 4c2 − c21 − 3. Let v ∈ Kc, where c is the class of a coherent rank 2 sheaf

with Chern classes c1, c2. Assume that H is general with respect to (2, c1, c2).

The K-theoretic Donaldson invariant of X with respect to v, c1, c2,H is the holo-

morphic Euler characteristic χ(MX
H (c1, d), λ(v)) of the line bundle λ(v).

Notation 1.2. We introduce the following notation that we will often use in

the paper. For i ≥ 0, we put v(i) := [ch(v)ec1/2 Todd(X)]i. Thus v(0) = rk(v),

v(1) = c1(v) + rk(v)
2 (c1 −KX) and v(2) could be interpreted as χ(v ⊗O(c1/2)).

By the Riemann-Roch Theorem it follows that

(1.3) χ(v ⊗ c) = 2v(2) − rk(v)(c2 −
c21
4

),
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in particular we see that the condition v ∈ Kc is independent of d if rk(v) = 0.

An important special case is the following: Let L be a line bundle on X.

Assume that 〈c1(L), c1〉 is even (otherwise replace L by L⊗2). Then for c the

class of a rank 2 coherent sheaf with Chern classes c1, c2, we put

(1.4) v(L) := −(1 − L−1) − 〈c1(L)

2
, c1(L) +KX + c1〉[Ox] ∈ Kc.

Note that v(L) is independent of c2. The condition that 〈c1(L), c1〉 is even implies

that v(L) ∈ K(X). Assume that H is general with respect to (2, c1, c2). Then we

denote µ(L) := λ(v(L)) ∈ Pic(MX
H (c1, d)). The K-theoretic Donaldson invari-

ant of X, with respect to L, c1, d,H is χ(MX
H (c1, d),O(µ(L))). The generating

function is

χH
c1(L; Λ) :=

∑

d≥0

Λdχ(MX
H (c1, d),O(µ(L))).(1.5)

If E is a flat family of coherent sheaves parametrized by S, we have c1(µ(L)) =

(c2(E) − 1
4c1(E)2)/PD(c1(L)) ∈ H2(S) by the Riemann-Roch for a smooth mor-

phism ([1, §4.3]). It extends to a class in H2(MX
H (c1, d)) by the same argument

for µ(L). This coincides with the definition of µ(c1(L)) appearing in the usual

Donaldson invariant. This is the reason why we denote the line bundle by µ(L).

Thus it follows from the definitions and the singular Riemann-Roch theorem [1]

that χ(MX
H (c1, d),O(µ(nL))) is a polynomial of degree d in n, whose leading term

is the algebraic geometric version of the Donaldson invariants ndΦH
c1(c1(L)d/d!)

(in the notations of [20]) when MX
H (c1, d) is of the expected dimension.

The above argument also implies that the invariant χ(MX
H (c1, d), λ(v)) depends

only on ch(v) ∈ H∗(X). Therefore the invariant is well-defined on K(X)hom :=

K(X)/∼ where v ∼ v′ if and only if ch(v) = ch(v′).

1.3. A digression on the definition of the invariants. The definition of the

K-theoretic Donaldson invariants above is only ad hoc and will in general need to

be modified, so that the invariants have good properties and so that they might

be related to gauge-theoretical invariants.

We expect that for general X, when the moduli space MX
H (c1, d) does not

have the expected dimension, one needs to use a virtual structure sheaf (see

[33]) in the definition. If MX
H (c1, d) consists only of stable sheaves, the perfect

obstruction theory was constructed in [52, Th. 3.30]. Then we just need to replace
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χ(MX
H (c1, d), λ(v)) by χ(MX

H (c1, d),Ovirt ⊗ λ(v)). If MX
H (c1, d) has the expected

dimension, then by [33, Prop. 2], the virtual structure sheaf is just the usual

structure sheaf, and this definition reduces to our previous definition. When

MX
H (c1, d) may contain a strictly semistable sheaf, we need to construct a perfect

obstruction theory on another moduli space with additional structures and prove

that it is independent of the additional structure as in [40], or use the blowup

formula as in the definition of the usual Donaldson invariants (see [20, §1.1]). See

§1.4 below for the first step in this approach.

Let us examine the possibility to extend our definition of invariants to a C∞

4-manifold X. To avoid a technical difficulty, we first assume the moduli space

MX
H (c1, d) is smooth. Our definition depends on the complex structure of X, and

if we have a gauge theoretic definition, it should be independent of the complex

structure, and the definition must be modified. Our guess is to consider the index

of a Dirac operator instead of the holomorphic Euler characteristic. If X is spin,

then we have a square root K
1/2
X of KX , and then µ(KX) is a line bundle. It is

known that this is isomorphic to half of the canonical bundle of MX
H (c1, d) when

it is smooth (see e.g. [26, §8.3]). Therefore χ(MX
H (c1, d),O(µ(KX )) is equal to the

index of the Dirac operator. In this special case, our main result Corollary 4.19 is

simplified as v(1) = −KX . In particular, the answer is independent of the complex

structure except the term
√
−1

〈ξ,KX〉
which corresponds to the orientation of the

moduli space.

More generally the complex structure on X and a line bundle L on X induces

the Spinc-structure W+ = (
∧0,0 ⊕ ∧0,2) ⊗ L, W− =

∧0,1 ⊗ L on X with the

characteristic line bundle detW+ = detW− = −KX +2L. We conjecture that it

induces a Spinc-structure on the moduli space. The recipe should be somewhat

similar to the definition of the orientation of the moduli space induced from the

homological orientation onH0(X)⊕H1(X)∗⊕H2
+(X), but we do not know how to

define it in general (even on the nonsingular part of the moduli space). However

in our situation, an obvious candidate for the index is χ(MX
H (c1, d),O(µ(2L)).

This means that the Spinc-structure is the one given by the complex structure

twisted by the line bundle µ(2L). The answer given in Corollary 4.19 is written

in terms of v(1) +KX = KX − 2L. As this is the negative of the characteristic

line bundle of the Spinc structure, the candidate seems reasonable.
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Now we come to discuss more technical points. For a C∞ 4-manifold X, we

do not have the Gieseker-Maruyama compactification MX
H (c1, d) and we need to

use the Uhlenbeck compactification NX
H (c1, d) of the moduli space of instantons

instead. We also need to use its topological K-homology group Ktop(NX
H (c1, d)).

WhenX is a projective surface, we have a homomorphism π∗ : Ktop(MX
H (c1, d)) →

Ktop(NX
H (c1, d)) given by π : MX

H (c1, d) → NX
H (c1, d) and we can pushforward the

virtual structure sheaf on MX
H (c1, d) to NX

H (c1, d). And it can be shown that the

line bundle µ(L) is a pull-back of a line bundle from NX
H (c1, d) under some con-

ditions. (See §1.4. And this assertion, at least for a topological line bundle, is

well-known in the gauge theory context.) Therefore the invariants in (1.5) can

be defined in terms of NX
H (c1, d) and the framework of the topological K-group.

However it is not clear, at least to the authors, how to define the K-theoretic

fundamental class [ONX
H (c1,d)] ∈ Ktop(NX

H (c1, d)) for an arbitrary C∞ 4-manifold

X even under the assumption that NX
H (c1, d) is of expected dimension.

We have considered the determinant line bundle µ(L) above. This is the case

rk(v) = 0. When v ∈ Kc is suitably chosen (see [26, §8.1]) with rk(v) = 2, the

determinant line bundle λ(v) is ample on MX
H (c1, d) and does not come from

NX
H (c1, d). This observation seems to suggest that the invariant can be defined

only for a restricted class v on a C∞ 4-manifold X. We have discussed rk(v) = 0

is sufficient for the existence of the line bundle λ(v) on NX
H (c1, d) above, but we

do not know whether this is necessary.

Also we do not give the definition of the analog of µ(p) ∈ H4(MX
H (c1, d)) where

p is the point class of H0(X). It may be defined as

χ(MX
H (c1, d), p!(q

∗v ⊗ E)),

but it is not independent of the choice of the universal bundle E in general, and

may not be defined when we do not have a universal bundle. A possible candidate,

which can be defined for any v ∈ K(X), is given by replacing E by E ⊗E∨, where
∨ is the involution on K0(X ×MX

H (c1, d)) defined by taking the dual of a vector

bundle. Or more generally, if we have a representation ρ : PGL(2,C) → GL(V ),

we may consider χ(MX
H (c1, d), p!(q

∗v⊗ρ([E ]))), or applying ρ (with an appropriate

change of PGL(2,C)) after the pushforward p!. But we do not study these ‘higher’

invariants, and stick to our χ(MX
H (c1, d), λ(v)), which we believe most basic.
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1.4. Blowup formula and the invariants for moduli spaces with strictly

semistable sheaves. As mentioned in the previous subsection, we give a pro-

posal of the definition of invariants when moduli spaces may contain strictly

semistable sheaves by using a blowup formula. We assume a kind of smoothness

of moduli spaces on the blowup. This allows us to avoid the virtual structure

sheaf. However the smoothness assumption is used much more essentially as we

use Kawamata-Viehweg vanishing theorem. If we could prove the same vanishing

theorem under the assumption that the moduli space is of expected dimension,

we could use the blowup formula as the definition of the invariant, as is done in

the context of usual Donaldson invariants (see e.g., [20]). Then the invariant is

integral, in contrast with the ordinary Donaldson invariants in which we must

divide by powers of 2. Moreover we also prove that the pushforward of the struc-

ture sheaf of the Gieseker-Maruyama compactification is equal to the structure

sheaf of the Uhlenbeck compactification. This seems an evidence of our belief

that the K-theoretic Donaldson invariant has a gauge theoretic definition. The

material in this subsection is technical, so a reader in hurry can just read the

statement of Corollary 1.8 and skip the rest.

Let (X,H) be a polarized rational surface. Let X̂ be the blowup of X in a

point and C the exceptional divisor. In the following we always denote a class

in H∗(X,Z) and its pullback by the same letter. Write c := (2, c1, c2), and

MH(c) := MX
H (c). Let Q be an open subset of a suitable quot-scheme such that

MH(c) = Q/GL(N).

Let NH(c) be the Uhlenbeck compactification of the moduli space of slope

stable vector bundles on X. The line bundle µ(2D) is a pull-back of a line bundle

from NH(c) if D ∈ ⋂ξ:〈H,ξ〉=0 ξ
⊥. In fact, the stability is the same for H and

H + εD with D ∈ ∩ξ:〈H,ξ〉=0ξ
⊥ for a sufficiently small ε. Then µ(H + εD) is nef

and big and gives a map to the Uhlenbeck compactification. In particular, µ(2D)

is the pull-back of a line bundle on the Uhlenbeck compactification, which we

denote by the same symbol. We further assume H is general with respect to c,

then we have {ξ | 〈H, ξ〉 = 0} = {0}. Therefore µ(2D) is the pull-back of a line

bundle on NH(c) for any D.

We shall study the singularities of MH(c) and NH(c).

Lemma 1.6 ([3]). Assume that Q is smooth (e.g. 〈−KX ,H〉 > 0). ThenMH(c) =

Q/GL(N) is normal and has only rational singularities.
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We next consider the singularities of NH(c). Replacing NH(c) by its normal-

ization, we may assume that NH(c) is normal.

Lemma 1.7. Assume that Q is smooth (e.g. 〈−KX ,H〉 > 0).

(1) Then NH(c) has only rational singularities.

(2) Rπ∗(OMH(c)) = ONH(c).

Proof. (1) We first assume that c is primitive. Then there is a resolution of

π : Mα
H(c) → NH(c), where Mα

H(c) is the moduli space of α-twisted semi-stable

sheaves for suitable α. Then by the Grauert-Riemenschneider vanishing theorem,

Rπ∗(KMα
H(c)) = π∗(KMα

H(c)). Since KMα
H(c)

∼= µ(2KX) comes from NH(c) and

NH(c) is normal, Rπ∗(OMα
H(c)) = π∗(OMα

H(c)) = ONH(c). Thus NH(c) has only

rational singularities.

We next treat MH(c) with c = (2, 0, 2n). We set ĉ := (2, C, 2n) and M̂H(ĉ) :=

M X̂
H−εC(ĉ). Then there is a surjective morphism π̂ : M̂H(ĉ) → NH(c) which is

generically a P1-bundle. Since −µ(C) is π̂-nef and big, the Kawamata-Viehweg

vanishing theorem implies that Riπ̂∗(KM̂H(ĉ)
(−2µ(C))) = 0, i > 0. By our as-

sumption, µ(KX) comes from NH(c). This implies that

c1(KM̂H(ĉ)
) = 2µ(c1(KX̂

)) = 2µ(c1(KX))+2µ(C) ≡ 2µ(C) mod π̂∗H2(NH(c),Q).

Hence Riπ̂∗(OM̂H (ĉ)
) = 0, i > 0. Thus Rπ̂∗(OM̂H (ĉ)

) = ONH(c). Then NH(c) has

rational singularities by [30, Thm. 1].

(2) It is sufficient to prove the following: For a proper birational map f : Y → Z

of normal varieties Y,Z with only rational singularities, Rf∗(OY ) = OZ .

Proof of the claim: Let g : Y ′ → Y be a resolution of the singularities. Since

Y has only rational singularities, Rig∗(OY ′) = 0, i > 0. Then Rif∗(OY ) =

Ri(f ◦ g)∗(OY ′) = 0, i > 0. Hence we get our claim.

�

By the proof, we also get the following.

Corollary 1.8. Let M̂H(ĉ) be the moduli space of stable sheaves on X̂ such that

ĉ = (2, c1 + kC, c2) with k = 0, 1. Then

Rπ̂∗(OM̂H(ĉ)
) = ONH(c) = Rπ∗(OMH(c)).
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In particular,

χ(M̂H(ĉ), µ(D)) = χ(NH(c), µ(D)) = χ(MH(c), µ(D))

for any line bundle D on X such that 〈D, c1〉 is even and 〈D, ξ〉 = 0 for ξ any

class of type (c1, 4c1 − c21 − 3) on X̂ with 〈H, ξ〉 = 0.

Remark 1.9. Since MH(c) is normal, the dualizing sheaf ωMH(c) is reflexive. If

H is a general polarization, then OMH(c)(2µ(KX)) is a line bundle on M which

coincides with the dualizing sheaf on the locus of stable sheaves MH(c)s. If

dim(MH(c) \MH(c)s) ≤ dimMH(c) − 2, then ωMH(c) = OMH(c)(2µ(KX)).

1.5. K-theoretic invariant for K3 surfaces and strange duality. Let X be

a projective K3 surface. In this subsection we calculate theK-theoretic invariants

for X as examples. We also give a formula for the K-theoretic invariants of rank

1 sheaves on abelian surfaces.

For any projective algebraic surface Y and c ∈ K(Y )hom we denote by MY
H (c)

the moduli space of H-stable sheaves E on Y with ch(E) = ch(c). This is just a

change of notation, but is convenient to see the strange duality. We also define the

discriminant by ∆(c) = 2 rk(c)c2(c) − (rk(c) − 1)c1(c)
2, ∆(E) = 2 rk(E)c2(E) −

(rk(E) − 1)c1(E)2.

Proposition 1.10. Let c ∈ K(X)hom with either rk(c) > 0 or rk(c) = 0 and

c1(c) nef and big. Assume that MX
H (c) consists only of stable sheaves. Then for

v ∈ Kc,

χ(MX
H (c), λ(v)) =

(∆(c)
2 − rk(c)2 + ∆(v)

2 − rk(v)2 + 2
∆(c)

2 − rk(c)2 + 1

)
.

Corollary 1.11. Let c, v ∈ K(X)hom with χ(v ⊗ c) = 0. Assume that both c

and v fulfill the assumptions for c in Proposition 1.10. Then χ(MX
H (c), λ(−v)) =

χ(MX
H (v), λ(−c)).

Recall that our invariant is well-defined on K(X)hom (see §1.2). We have

v ∈ Kc = {v | χ(v ⊗ c) = 0} if and only if c ∈ Kv, therefore the line bundles

λ(−v), λ(−c) exist on MX
H (c), MX

H (v) respectively.

Remark 1.12. (1) Corollary 1.11 can be viewed as a weak version of an analogue

of the strange duality conjecture, which was formulated by Le Potier for P2, and

which is in turn an analogue of the strange duality (level-rank duality) for moduli
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spaces of vector bundles on curves (see [2],[7],[44]). Let c ∈ K(P2) with rk(c) > 0

and v ∈ Kc with rk(v) = 0 and c1(v) > 0 and assume MP2
(c) 6= ∅ 6= MP2

(v).

Then the strange duality conjecture of Le Potier (see [5], [6]) predicts an explicit

duality between H0(MP2
(c), λ(−v)) and H0(MP2

(v), λ(−c)). It is shown in [6]

that the higher cohomology groups H i(MP2
(c), λ(−v)) vanish and in the known

cases also the higher cohomology groupsH i(MP2
(v), λ(−c)) are zero, thus one has

in particular that χ(MP2
(c), λ(−v)) = χ(MP2

(v), λ(−c)). Thus Corollary 1.11

says that on K3 surfaces this is true more generally for c, v of any nonnegative

rank, at least when MX
H (c) and MX

H (v) consist only of stable sheaves. It seems

natural to conjecture that the condition that the moduli spaces only consist of

stable sheaves can be dropped.

In the context of Brill-Noether theory of K3 surfaces Markman proposed to

put MX
H (v) := MX

H (−v∨), in case rk(v) is negative (see [37]). It is easy to see

that if χ(v ⊗ c) = 0, then also χ(−v∨ ⊗ c) = 0, and ∆(−v∨) = ∆(v). Thus with

this definition Proposition 1.10 also holds if rk(v) or rk(c) are negative.

In [56] the proof of an equivalent formulation of Proposition 1.10 in terms of

the Mukai vector is sketched. In [49] there is a short sketch of the proof of Proposi-

tion 1.10. Furthermore the duality mapH0(MX
H (c), λ(−v))∨ → H0(MX

H (v), λ(−c))
is constructed and it is checked in some cases that it is an isomorphism.

We first recall some properties of the moduli spaces MX
H (r, c1, c2). The Mukai

lattice of X is H∗(X,Z) with the symmetric bilinear form

(1.13) 〈w,w′〉 =

∫

X
(c1 ∧ c′1 − r ∧ a′̺− r′ ∧ a̺) ,

for any w = (r, c1, a) ∈ H∗(X,Z) and w′ = (r′, c′1, a
′) ∈ H∗(X,Z). Here the

notation w = (r, c1, a) means w = r⊕ c1 ⊕ a̺ with r ∈ H0(X,Z), c1 ∈ H2(X,Z),

a ∈ Z and ̺ ∈ H4(X,Z) is the fundamental cohomology class of X so that
∫
X ̺ =

1. We define a weight 2 Hodge structure on H∗(X,Z) by Hp,q(H∗(X,C)) :=

⊕iH
p+i,q+i(X). We set H∗(X,Z)alg := H∗(X,Z) ∩ H1,1(H∗(X,C)). Let φ :

K(X) → H∗(X,Z) be a homomorphism such that

φ(E) :=
(
ch(E)

√
Todd(X)

)∨

=(rk(E),−c1(E), (c1(E)2)/2 − c2(E) + rk(E)).

Then we see that φ is injective and the image is H∗(X,Z)alg. We set w :=

(r, c1, (c
2
1)/2 − c2 + r) ∈ H∗(X,Z). By the definition of the lattice structure, φ
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induces an isomorphism φ : Kc → w⊥ ∩H∗(X,Z)alg. There is a homomorphism

θw which makes the following diagram commutative:

Kc
λ−−−−→ Pic(MX

H (r, c1, c2))

φ

y
y

w⊥ θw−−−−→ H2(MX
H (r, c1, c2),Z)

If there is a universal family E , then θw is given by

θw(x) =
[
pMX

H (r,c1,c2)∗

(
ch E

√
Todd(X)x∨

)]
1
.

For MX
H (c), the following is known (cf. [54], [55]).

Theorem 1.14. Let c ∈ K(X)hom with rk(c) > 0 or rk(c) = 0 and c1(c) nef and

big. Assume that MX
H (c) consists only of stable sheaves.

(1) MX
H (c) is an irreducible symplectic manifold which is deformation equiva-

lent to X [n], where n = ∆(c)/2 − (rk(c)2 − 1).

(2) If ∆(c)/2 − (rk(c)2 − 1) > 1, then θw is an isomorphism such that θw

preserves the Hodge structure and the Beauville quadratic form qMX
H (c) coincides

with the quadratic form associated to the Mukai lattice: 〈x2〉 = qMX
H (c)(θw(x)). If

∆(c)/2 − (rk(c)2 − 1) = 1, then θw is surjective with the kernel Zw and similar

properties hold.

For the Euler characteristic of an irreducible symplectic manifold, we can use

the following result due to Fujiki (cf. [22, Corollary 23.18]).

Theorem 1.15. For an irreducible symplectic manifold M , there is a polynomial

f(x) ∈ Q[x] such that for all D ∈ H2(M,Z),
∫

M
eD Todd(M) = f(qM(D)),

where qM is the Beauville quadratic form on H2(M,Z). Obviously f(x) is defor-

mation invariant.

Thus it is sufficient to compute the Euler characteristic of λ(v) for the Hilbert

scheme X [n] of n points on a K3 surface X. In this case, the Euler characteristic

is determined by [14] (cf. [22, Example 23.19]).

(1.16) χ(X [n], λ(v)) =

( q
X[n](λ(v))

2 + 2 + n− 1

n

)
.



1044 Lothar Göttsche, Hiraku Nakajima and Kōta Yoshioka

Now let c ∈ K(X) be general. Then for φ(v) = (rk v,−c1(v), c1(v)2/2 − c2(v) +

rk(v)) we have

qMX
H (c)(λ(v)) = 〈φ(v)2〉 = −2 rk(v)(c1(v)

2/2−c2(v)+rk(v))+c1(v)
2 = ∆(v)−2 rk(v)2.

Therefore Proposition 1.10 follows from (1.16).

If c is a class in K(Y ) for a surface Y we want to momentarily introduce the

following notation. We writeM
Y
H(c) for the moduli space ofH-semistable sheaves

E on Y with rk(E) = rk(c), det(E) = det(c) and c2(E) = c2(c), i.e. the moduli

space with fixed determinant. Now let A be an abelian surface, we have a formula

very similar to Proposition 1.10.

Remark 1.17. Let c ∈ K(A) be a class rk(c) = 1. Let v ∈ Kc. Then

χ(M
A
H(c), λ(v)) =

∆(v) + rk(v)2∆(c)

∆(v) + ∆(c)

(∆(v)
2 + ∆(c)

2
∆(c)

2

)
.

Proof. Put n := ∆(c)
2 . Then M

A
H(c) = A[n], and if Z ⊂ A× A[n] is the universal

subscheme, then the universal sheaf is IZ ⊗ p∗A(det(c)). Thus for any v ∈ Kc

we get λ(v) = λ′(v ⊗ det(c)), where λ′(w) is the determinant bundle on A[n] =

M
A
H(c⊗det(c)−1) defined via the universal sheaf IZ . Thus replacing v by v⊗det(c)

we can assume that det(c) = 0. We write r = rk(v). Then we get

λ(v) = det(pA[n]!(p
∗
A(v) ⊗ IZ)) = det(pA[n]∗(p

∗
A(v) ⊗OZ))−1

= det(pA[n]∗(OZ))⊗(1−r) ⊗ det(pA[n]∗(p
∗
A(det(v)) ⊗OZ))−1.

(1.18)

In the last line we use that det(pA[n]∗(p
∗
A(v) ⊗ OZ)) depends only on rk(v) and

det(v), so we can replace v by O⊕(r−1)
A ⊕ det(v). Thus by [14, Theorem 5.3] we

get

χ(A[n], λ(v)) =
c1(v)2

2
c1(v)2

2 − (r2 − 1)n

( c1(v)2

2 − (r2 − 1)n

n

)
.

Finally the condition χ(c⊗ v) gives c1(v)
2/2− c2(v) = rn, which is equivalent to

c1(v)
2/2 = r2n+ ∆(v)

2 . The result follows. �

It seems natural to expect that a similar formula also holds for rk(c) ≥ 0

arbitrary. The simplest formula possible seems to be

χ(M
A
H(c), λ(v)) =

rk(c)2∆(v) + rk(v)2∆(c)

∆(v) + ∆(c)

(∆(v)
2 + ∆(c)

2
∆(c)

2

)
.
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Remark 1.19. Let Y be projective surface and let c, v ∈ K(Y ) with rk(v) =

rk(c) = 1 and χ(c ⊗ v) = 0. Then χ(M
Y
H(c), λ(−v)) =

(∆(c)
2

+∆(v)
2

∆(c)
2

)
, in particular

χ(M
Y
H(c), λ(−v)) = χ(M

Y
H(v), λ(−c)).

Proof. Write c1(c) = L, c1(v) = M , c2(c) = l = ∆(c)/2, c2(v) = m = ∆(c)/2.

Let Z ⊂ Y × Y [l] be the universal subscheme. Then the universal sheaf on

Y ×MY
H (c) = Y × Y [l] is IZ ⊗ p∗Y (L). Thus

λ(−v) = − det(pY [l]!(IZ ⊗ p∗Y (L⊗M))) = det(pY [l]∗(OZ ⊗ p∗Y (L⊗M))).

Thus [14, Lemma 5.1], we get χ(M
Y
H(c), λ(−v)) =

(χ(L⊗M)
l

)
. By the Riemann-

Roch theorem χ(c⊗ v) = 0 is equivalent to ∆(c)
2 + ∆(v)

2 = χ(L⊗M). The result

follows. �

1.6. Nekrasov partition function. We briefly review theK-theoretic Nekrasov

partition function in the case of rank 2. For more details see [43, section 1]. Let

ℓ∞ be the line at infinity in P2. Let M(n) be the moduli space of pairs (E,Φ),

where E is a rank 2 torsion-free sheaf on P2 with c2(E) = n, which is locally free

in a neighbourhood of ℓ∞ and Φ : E|ℓ∞ → O⊕2
ℓ∞

is an isomorphism. M(n) is a

nonsingular quasiprojective variety of dimension 4n. The tangent space to M(n)

at (E,Φ) is Ext1(E,E(−l∞)).

Let Γ := C∗ × C∗ and T̃ := Γ × C∗. T̃ acts on M(n) as follows: For

(t1, t2) ∈ Γ, let Ft1,t2 be the automorphism of P2 defined by Ft1,t2([z0, z1, z2]) 7→
[z0, t1z1, t2z2], and for e2 ∈ C∗ let Ge2 be the automorphism of O⊕2

ℓ∞
given by

(s1, s2) 7→ (e−1
2 s1, e2s2). Then for (E,Φ) ∈ M(n) we put (t1, t2, e2) · (E,Φ) :=(

(F−1
t1,t2)

∗E,Φ′), where Φ′ is the composition

(F−1
t1,t2)

∗(E)|ℓ∞
(F−1

t1,t2
)∗Φ
- (F−1

t1,t2)
∗O⊕2

ℓ∞
- O⊕2

ℓ∞

Ge2
- O⊕2

ℓ∞

where the middle arrow is the homomorphism given by the action.

Notation 1.20. We denote e2 the one-dimensional T̃ -module given by (t1, t2, e2)

7→ e2. and similar we write ti (i = 1, 2) for the 1-dimensional T̃ modules given

by (t1, t2, e2) 7→ ti. We also write e1 := e−1
2 .

Let ε1, ε2, a be the coordinates on the Lie algebra of T̃ corresponding to

t1, t2, e2. Then ε1, ε2, a are generators of the equivariant cohomology H∗
T̃
(pt)
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of a point. We relate the two sets of variables by t1 = eβε1, t2 = eβε2, e2 = eβa,

where β ∈ C is a parameter. We write a1 := −a, a2 := a.

The instanton part of the K-theoretic partition function is defined as

Z inst
K (ε1, ε2, a; Λ,β) :=

∞∑

n=0

((βΛ)4e−β(ε1+ε2))n
∑

i

(−1)i chH i(M(n),O).(1.21)

Here the character ch is a formal sum of weight spaces, which are all finite-

dimensional by [42, section 4].

Let x, y be the coordinates on A2 = P2 \ ℓ∞. The fixpoint set M(n)T̃ is the

set of (IZ1 ,Φ1) ⊕ (IZ2,Φ2), where the IZα are ideal sheaves of zero dimensional

schemes Zα with support in the origin of A2 with len(Z1) + len(Z2) = n, and

Φα (α = 1, 2) are isomorphisms of IZα|ℓ∞ with the α-th factor of O⊕2
ℓ∞

. Write

Iα for the ideal of Zα in C[x, y]. Then the above is a fixpoint if and only if

I1 and I2 are generated by monomials in x, y. The fixed point set M(n)T̃ is

parametrized by the pairs of Young diagrams ~Y = (Y1, Y2) so that the ideal Iα is

generated by the xiyi with (i− 1, j − 1) outside Yi. The total number of boxes is

|~Y | := |Y1| + |Y2| = n.

We use the following notations: For a Young diagram Y let λi be the length of

the ith column. Let Y ′ be the transpose of Y and let λ′j be the length of the jth

column of Y ′ (equal to the length of the jth row of Y ). For s = (i, j) ∈ Z≥0×Z≥0

let

aY (s) := λi − j, lY (s) = λ′j − i, a′(s) = j − 1, l′(s) = i− 1.

Following [43] let, for α, β ∈ {1, 2},

n
~Y
α,β(ε1, ε2, a;β) :=

∏

s∈Yα

(
1 − e

−β(−lYβ
(s)ε1+(aYα (s)+1)ε2+aβ−aα)

)

×
∏

s∈Yβ

(
(1 − e

−β((lYα (s)+1)ε1−aYβ
(s)ε2+aβ−aα)

)(1.22)

be the T̃ -equivariant character of
(
Ext1(IZα ,IZβ

(−ℓ∞))
)∨

. Then by the Atiyah-

Bott Lefschetz fixed point formula we have

(1.23)

Z inst
K (ε1, ε2, a; Λ,β) =

∑

~Y

((βΛ)4e−β(ε1+ε2))|
~Y |

∧
−1 T

∗
~Y
M(n)

=
∑

~Y

((βΛ)4e−β(ε1+ε2))|
~Y |

∏
α,β=1,2 n

~Y
α,β(ε1, ε2, a;β)

,

where
∧

−1 is the alternating sum of the exterior powers.
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More generally we will consider the partition function with 5D Chern-Simons

term (see [51]): Let E be the universal sheaf on P2 ×M(n). Consider the line

bundle

L := λE(OP2(−ℓ∞))−1 = (det p2!(E⊗p∗1OP2(−ℓ∞)))−1 = detR1p2∗(E⊗p∗1OP2(−ℓ∞)).

For an integer m consider the generating function

Z inst
m (ε1, ε2, a; Λ,β, τ) :=

∞∑

n=0

((βΛ)4e−β(1+ m
2

)(ε1+ε2))n
∑

i

(−1)i chH i(M(n),L⊗m)

× exp
(
τ
(
− n+

a2

ε1ε2

))
.

(1.24)

We denote Z inst
m (ε1, ε2, a; Λ,β, 0) simply by Z inst

m (ε1, ε2, a; Λ,β), in particular

Z inst
0 (ε1, ε2, a; Λ,β) = Z inst

K (ε1, ε2, a; Λ,β).

We put

C
~Y
m(ε1, ε2, a;β, τ) := exp

(
mβ

2∑

α=1

∑

s∈Yα

(aα − l′(s)ε1 − a′(s)ε2)
)

× exp
(
τ
(
− |~Y | + a2

ε1ε2

))
.

Then we get by localization

(1.25)

Z inst
m (ε1, ε2, a; Λ,β, τ) =

∑

~Y

((βΛ)4e−β(1+ m
2

)(ε1+ε2))|
~Y |C

~Y
m(ε1, ε2, a;β, τ)∏

α,β=1,2 n
~Y
α,β(ε1, ε2, a;β)

.

(see also [51]). We briefly sketch the argument: Let ~Y = (Y1, Y2) correspond to

a fixpoint (IZ1,Φ1) ⊕ (IZ2,Φ2) of M(n). By localization we have to show that

H1(P2, (IZ1 ⊕ IZ2) ⊗O(−ℓ∞)) =

2∑

α=1

∑

s∈Yα

eαt
−l′(s)
1 t

−a′(s)
2 ,

as T̃ modules. The exact sequence 0 → (IZ1 ⊕ IZ2) ⊗ I(−ℓ∞) → O(−ℓ∞)⊕2 →
OZ1 ⊕ OZ2 → 0 induces an isomorphism H1(P2, (IZ1 ⊕ IZ2) ⊗ O(−ℓ∞)) ≃
H0(OZ1) ⊕ H0(OZ2). We have seen that an equivariant basis of H0(OZα) is

the set
{
xl′(s)ya′(s)

∣∣ s ∈ Yα

}
. By definition (t1, t2) ∈ Γ acts by multiplying x by

t−1
1 and y by t−1

2 . Finally by definition eα acts H0(OZα) by multiplying with eα.

The claim follows.
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For a variables τ0, τ1 let

E
~Y (ε1, ε2, a;β, τ0, τ1)

:= exp
( 2∑

α=1

1∑

ρ=0

τρ

[ eβaα

β2ε1ε2

(
1 − (1 − e−βε1)(1 − e−βε2)

∑

s∈Yα

e−β(l′(s)ε1+a′(s)ε2)
)]

ρ

)
.

(1.26)

Here [·]ρ means the part of degree ρ, where a, ε1, ε2 have degree 1. This is

exp(
∑1

ρ=0 τρ chρ+2(E)/[C2]). (See [42, p.59].) Then an easy computation gives

that

E
~Y (ε1, ε2, a;β, τ,m) = C

~Y
−m(ε1, ε2, a;β, τ)

× exp
(
mβ
(
|~Y |ε1 + ε2

2
+ (|Y2| − |Y1|)

a3

6ε1ε2

))
.

(1.27)

As a power series in Λ, Z inst
m (ε1, ε2, a; Λ,β, τ) starts with 1. Thus

F inst
m (ε1, ε2, a; Λ,β, τ) := logZ inst

m (ε1, ε2, a; Λ,β, τ)

is well-defined and we put F inst
m (ε1, ε2, a; Λ,β) := F inst

m (ε1, ε2, a; Λ,β, 0),

F inst
K (ε1, ε2, a; Λ,β) := F inst

0 (ε1, ε2, a; Λ,β).

We define the perturbation part, see [43, section 4.2] for more details. We set

γε1,ε2(x|β; Λ) :=
1

2ε1ε2

(
−β

6

(
x+

1

2
(ε1 + ε2)

)3

+ x2 log(βΛ)

)

+
∑

n≥1

1

n

e−βnx

(eβnε1 − 1)(eβnε2 − 1)
,

γ̃ε1,ε2(x|β; Λ) := γε1,ε2(x|β; Λ) +
1

ε1ε2

(
π2x

6β
− ζ(3)

β2

)

+
ε1 + ε2
2ε1ε2

(
x log(βΛ) +

π2

6β

)
+
ε21 + ε22 + 3ε1ε2

12ε1ε2
log(βΛ)

(1.28)

for (x,β,Λ) in a neighbourhood of
√
−1R>0 ×

√
−1R<0 ×

√
−1R>0. We for-

mally expand ε1ε2γ̃ε1,ε2(x|β; Λ) as a power series of ε1, ε2 (around ε1 = ε2 = 0).

Expanding

(1.29)
1

(eε1t − 1)(eε2t − 1)
=
∑

n≥0

cn
n!
tn−2,
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we obtain

∑

n≥1

1

n

e−βnx

(eβnε1 − 1)(eβnε2 − 1)
=
∑

m≥0

cm
m!

βm−2Li3−m(e−βx),

where Li3−m is the polylogarithm (see [43, Appendix B] for details). Here we

choose the branch of log by log(r · eiφ) = log(r) + iφ with log(r) ∈ R for φ ∈
(−π/2, 3π/2) and r ∈ R. We define γε1,ε2(−x|β; Λ) by analytic continuation

along circles in a counter-clockwise way. We then define the perturbation part of

the partition function by

F pert
K (ε1, ε2, x; Λ,β) := −γ̃ε1,ε2(2x|β; Λ) − γ̃ε1,ε2(−2x|β; Λ),(1.30)

Then F pert
K (ε1, ε2, x; Λ,β) is a formal power series in ε1, ε2 whose coefficients

are holomorphic functions in Λ ∈ C \
√
−1R≤0, x ∈ C \

√
−1R≤0, β ∈ C with

|β| < π
|x| .

Finally we define

Fm(ε1, ε2, a; Λ,β, τ) := F pert
K (ε1, ε2, a; Λ,β) + logZ inst

m (ε1, ε2, a; Λ,β, τ),

Fm(ε1, ε2, a; Λ,β) := Fm(ε1, ε2, a; Λ,β, 0),

FK(ε1, ε2, a; Λ,β) := F0(ε1, ε2, a; Λ,β).

Formally one defines

Zm(ε1, ε2, a; Λ,β, τ) := exp(F pert
m (ε1, ε2, a; Λ,β))Z inst

K (ε1, ε2, a; Λ,β, τ),

and similarly for Zm(ε1, ε2, a; Λ,β), ZK(ε1, ε2, a; Λ,β).

1.7. More on the partition function with 5D Chern-Simons term. We

explain how the known properties of the K-theoretic Nekrasov partition func-

tion, obtained in [43], can be generalized to the partition function with 5D

Chern-Simons term, at least conjecturally. Our explanation is mathematical,

so a physical motivation can be found in [27, 51] and the references therein.

This subsection is independent of the rest of this paper, and can be safely

skipped. We also keep the notation in [43] except we set q = Λ1/2r.

We consider the general case r ≥ 2, although we only consider the case r = 2

in the main part of the paper. Let M(r, n) be the framed moduli space of rank
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r torsion free sheaves E on P2 with c2(E) = n. Let E be the universal sheaf on

P2 ×M(r, n). Consider the line bundle

L := λE(OP2(−ℓ∞))−1 = (det p2!(E⊗p∗1OP2(−ℓ∞)))−1 = detR1p2∗(E⊗p∗1OP2(−ℓ∞)).

For an integer m consider the generating function

Z inst
m (ε1, ε2, a; Λ,β) :=

∞∑

n=0

((βΛ)2re−β(r+m)(ε1+ε2)/2)n
∑

i

(−1)i chH i(M(r, n),L⊗m).

(1.31)

By the localization formula we have

Z inst
m (ε1, ε2,~a; Λ,β)

=
∑

~Y

((βΛ)2re−β(r+m)(ε1+ε2)/2)|
~Y |

∏

α,β

n
~Y
α,β(ε1, ε2,~a;β)

exp
(
mβ

∑

α

∑

s∈Yα

(aα − l′(s)ε1 − a′(s)ε2)
)
,

(1.32)

where ~Y is an r-tuple of Young diagrams. The argument is the same as in the

rank 2 case.

We have

(1.33) Z inst
−m(−ε1,−ε2,−~a; Λ,β) = Z inst

m (ε1, ε2,~a; Λ,β).

This is a consequence of Serre duality and the equality KM(r,n) = e−rβ(ε1+ε2)n

([43, Lemma 3.6]). But it also follows directly from

∏

α,β

n
~Y
α,β(−ε1,−ε2,−~a;β) = eβr(ε1+ε2)|~Y | ×

∏

α,β

n
~Y
α,β(ε1, ε2,~a;β).

1.7.1. Correlation function on blow-up. Let X be the blow-up of P2 at the origin

of C2. Let M̂(r, k, n̂) be the framed moduli space on X. We define the similar

partition function Ẑ inst
m,k,d(ε1, ε2,~a; Λ,β) on X by considering

∑

i

(−1)i chH i(M̂(r, k, n̂), L̂⊗m ⊗ µ(C)⊗d),

where L̂ is defined as in the case of P2 by taking the universal bundle Ê over X×
M̂(r, k, n̂). (See [43, §2.1].) As in [43, §2.2], we can write down Ẑ inst

m,k,d(ε1, ε2,~a; Λ,β)
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in terms of Z inst
m (ε1, ε2,~a; Λ,β). The new factor comes from

c1

(⊕

α

H1(OX(kαC))eα

)
=
∑

α

k3
α − kα

6
(ε1 + ε2) +

∑

α

kα(kα − 1)

2
aα

=
∑

α

k3
α

6
(ε1 + ε2) +

∑

α

k2
α

2
aα − 1

2
(~k,~a).

Then the blowup formula is a slight modification of [43, (2.2)]:

(1.34)

Ẑ inst
m,k,d(ε1, ε2,~a; Λ,β) =

∑

~k∈Zr∑
kα=k

(eβ(ε1+ε2)(d−(r+m)/2)(βΛ)2r)(
~k,~k)/2eβ(~k,~a)(d−m/2)

∏
~α∈∆ l

~k
~α(ε1, ε2,~a)

× exp

[
mβ

(
1

6
(ε1 + ε2)

∑

α

k3
α +

1

2

∑

α

k2
αaα

)]

× Z inst
m (ε1, ε2 − ε1,~a+ ε1~k; e

βε1(d−(r+m)/2)/2r)Λ,β)

× Z inst
m (ε1 − ε2, ε2,~a+ ε2~k; e

βε2(d−(r+m)/2)/2rΛ,β),

where (~k,~a) = 1
2r

∑
α,β(kα − kβ)(aα − aβ), and similarly for (~k,~k). Note that

we need to normalize a vector ~k = (kα)rα=1 with
∑
kα = k into ~l = (k1 −

k
r , . . . , kr − k

r ), as we assume
∑
aα = 0. (We took this normalization in [43]

without an explanation. It was explained in [41, §6].) Under this normalization

we have (~k,~a) = (~l,~a), l
~k
~α(ε1, ε2,~a) = l

~l
~α(ε1, ε2,~a), n

~Y
α,β(ε1, ε2 − ε1,~a + ε1~k) =

n
~Y
α,β(ε1, ε2 − ε1,~a + ε1~l), etc. In particular, we simply replace ~k by ~l in the

original partition function with m = 0. However the Chern-Simons term requires

some care:

exp

[
mβ

(
∑

α

∑

s∈Yα

(
(aα + ε1kα − l′(s)ε1 − a′(s)(ε2 − ε1)

)
)]

= exp

[
βmk

r
ε1|~Y |

]

× exp

[
mβ

(
∑

α

∑

s∈Yα

(
(aα + ε1lα − l′(s)ε1 − a′(s)(ε2 − ε1)

)
)]

,

∑

α

(
k3

α

6
(ε1 + ε2) +

k2
α

2
aα

)

=
∑

α

(
l3α
6

(ε1 + ε2) +
l2α
2
aα

)
+

(
k

2r
(~l,~l) +

k3

6r2

)
(ε1 + ε2) +

k

r
(~l,~a).
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We rewrite (1.34) in terms of ~l:

Ẑ inst
m,k,d(ε1, ε2,~a; Λ,β) = exp(

k3mβ

6r2
(ε1 + ε2))

×
∑

{~l}=−k/r

(exp
[
β(ε1 + ε2)(d+m

(
−1

2 + k
r

)
− r

2)
]
(βΛ)2r)(

~l,~l)/2

∏
~α∈∆ l

~l
~α(ε1, ε2,~a)

× exp

[
β(~l,~a)(d+m(−1

2
+
k

r
))

]

× exp

[
mβ

(
1

6
(ε1 + ε2)

∑

α

l3α +
1

2

∑

α

l2αaα

)]

× Z inst
m (ε1, ε2 − ε1,~a+ ε1~l; exp

[
βε1
2r

{
d+m

(
−1

2
+
k

r

)
− r

2

}]
Λ,β)

× Z inst
m (ε1 − ε2, ε2,~a+ ε2~l; exp

[
βε2
2r

{
d+m

(
−1

2
+
k

r

)
− r

2

}]
Λ,β).

(1.35)

Here {~l} = −k/r means that the fractional part of lα is independent of α and

equal to −k/r.

By Serre duality we have

Ẑ inst
m,k,d(ε1, ε2,~a; Λ,β) = Ẑ inst

−m,k,r−d(−ε1,−ε2,−~a; Λ,β)

thanks to [43, Lemma 3.6]. It also follows from (1.34) and (1.33) together with

∏

~α∈∆

l
~k
~α(−ε1,−ε2,−~a) = e−βr(~k,~a)

∏

~α∈∆

l
~k
~α(ε1, ε2,~a).

1.7.2. The perturbation part. In [43, Sect. 4.2] one of the reasons for the intro-

duction of the perturbation part was to simplify the the blowup formula. As we

have an extra factor

exp

[
mβ

(
1

6
(ε1 + ε2)

∑

α

l3α +
1

2

∑

α

l2αaα

)]
,

we need to modify the perturbation part so that it is absorbed in the full partition

function. The answer is the cubic term:

exp

[
−mβ

r∑

α=1

a3
α

6ε1ε2

]
.
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We have the difference equation

x3

6ε1ε2

∣∣∣∣ x→x+lε1
ε1→ε1

ε2→ε2−ε1

+
x3

6ε1ε2

∣∣∣∣ x→x+lε2
ε1→ε1−ε2

ε2→ε2

− x3

6ε1ε2
= − l

2x

2
− (ε1 + ε2)l

3

6
,

We thus define

Fm(ε1, ε2,~a; Λ,β):=
∑

~α∈∆

−γ̃ε1,ε2(〈~a, ~α〉|β; Λ) −mβ

r∑

α=1

a3
α

6ε1ε2

+ logZ inst
m (ε1, ε2,~a; Λ,β),

F̂m,k,d(ε1, ε2,~a; Λ,β):=
∑

~α∈∆

−γ̃ε1,ε2(〈~a, ~α〉|β; Λ) −mβ

r∑

α=1

a3
α

6ε1ε1

+ logZ inst
m,k,d(ε1, ε2,~a; Λ,β),

where γ̃ε1,ε2 is as in (1.28). Note that the term
∑r

α=1
a3

α
6ε1ε2

disappears when r = 2

thanks to the condition a1 + a2 = 0. We formally define

Zm(ε1, ε2,~a; Λ,β):= exp(Fm(ε1, ε2,~a; Λ,β)),

Ẑm,k,d(ε1, ε2,~a; Λ,β):= exp(F̂m,k,d(ε1, ε2,~a; Λ,β)).

The blowup formula is

Ẑm,k,d(ε1, ε2,~a; Λ,β)

= exp

[{
−
(
4
(
d+m

(
−1

2 + k
r

))
− r
)
(r − 1)

48
+
k3m

6r2

}
β(ε1 + ε2)

]

×
∑

{~l}=−k/r

Zm(ε1, ε2 − ε1,~a+ ε1~l; exp

[
βε1
2r

{
d+m

(
−1

2
+
k

r

)
− r

2

}]
Λ,β)

× Zm(ε1 − ε2, ε2,~a+ ε2~l; exp

[
βε2
2r

{
d+m

(
−1

2
+
k

r

)
− r

2

}]
Λ,β).

(1.36)

This is exactly the same as [43, (4.9)] with the replacement d→ d+m(−1/2+k/r).

1.7.3. A conjectural blowup equation. For the original K-theoretic Nekrasov par-

tition function we have a blowup equation [43, Th. 2.4 and (4.9)], which de-

termines the partition function from its perturbative part. It was derived from

vanishing of higher direct image sheaves of a determinant line bundle µ(C) with

respect to the projection π̂ : M̂(r, 0, n) → N(r, n), where N(r, n) is the Uhlenbeck

compactification of the framed moduli space of locally free sheaves on P2, denote

by M0(r, n) in [43].
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The proof of the vanishing theorem cannot be carried over to the partition

functions with Chern-Simons terms. But a numerical computation suggests

(1.37) Ẑ inst
m,0,d(ε1, ε2,~a; Λ,β) = Z inst

m (ε1, ε2,~a; Λ,β) for 0 ≤ d ≤ r, |m| ≤ r.

This is exactly the same what we have proved for the original K-theoretic partition

function, i.e. m = 0 in [43]. It seems likely that the left hand side can be

always written in terms of the correlation function, which is the holomorphic Euler

characteristic of certain (virtual) bundles on M(r, n). But it can be written as

above only in the limited range of d and m. In fact, we check the above equation

holds in a slightly wider situation when r = 2, m = 1: it seems to hold for

0 ≤ d ≤ 3 = r +m. But we also check that when r = 2, m = 2, the above is not

true for d = 4.

We have the following analogs of [43, Lemma 4.3, Theorem 4.4]:

Proposition 1.38. Suppose (1.37) holds and assume |m| < r. Then

(1) Z inst
m (ε1,−2ε1,~a; Λ,β) = Z inst

m (2ε1,−ε1,~a; Λ,β).

(2) ε1ε2 logZ inst
m (ε1, ε2,~a; Λ,β) is regular at (ε1, ε2) = (0, 0).

We only give the proof of (1), as the proof of (2) is exactly the same as the

original.

Proof. By (1.33) we may assume m ≤ 0. By the assumption we have (1.37) for

d = 0 and d = r +m. Note that we have 0 6= r +m as m 6= −r.

Let us put β = 1 for brevity. We take the difference of both sides of (1.34)

with d = r +m, 0 after setting ε2 = −ε1. We have

(Zn(ε1,−2ε1,~a) − Zn(2ε1,−ε1,~a))
(
e(r+m)nε1/2 − e−(r+m)nε1/2

)

= −
∑

(~k,~k)/2+l+l′=n
l 6=n,l′ 6=n

er(
~k,~a)/2Zl′(ε1,−2ε1,~a+ ε1~k)Zl(2ε1,−ε1,~a− ε1~k)∏

~α∈∆ l
~k
~α(ε1,−ε1,~a)

× exp

[
mβ

2

∑

α

k2
αaα

]

×
(
e(r+m)(~k,~a)/2e(r+m)(l′−l)ε1/2 − e−(r+m)(~k,~a)/2e−(r+m)(l′−l)ε1/2

)
,
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where we expand Z inst
m as

Z inst
m (ε1, ε2,~a; Λ,β = 1) =

∑

n

Zn(ε1, ε2,~a)Λ
2rn.

Let us show that Zn(ε1,−2ε1,~a) = Zn(2ε1,−ε1,~a) by using the induction on

n. It holds for n = 0 as Z0 = 1. Suppose that it is true for l,m < n. Then

the right hand side of the above equation vanishes, as terms with (~k, l, l′) and

(−~k, l′, l) cancel thanks to [43, Lemma 4.1(1) and (4.2)], and the term (0, l, l) is

0. Therefore it is also true for n. �

We expand ε1ε2 logZ(ε1, ε2,~a; Λ,β) as in (4.1). The following can be proved

exactly as in [43, (4.11)]:

Proposition 1.39. Suppose (1.37) holds and assume |m| < r. Then

exp

[
− β2

8r2

(
d− r +m

2

)2 ∂2F0

(∂ log Λ)2

]

× ΘE

(
− 1

2π
√
−1

β

2r

(
d− r +m

2

)
∂2F0

∂ log Λ∂~a

∣∣∣∣ τ(β)

)

is independent of d = 0, . . . , r. Here

τ(β) = − 1

2π
√
−1

∂2F0

(∂~a)2

and ΘE is the Riemann theta function with the characteristic t
(

1
2 ,

1
2 , . . . ,

1
2

)
. (See

[42, Appendix B] for convention.)

We call this the contact term equation.

As ΘE is an even function, the above holds for d if and only if it holds for

r +m− d. In particular, the above expression is independent of 0 ≤ d ≤ r +m

for m ≥ 0, and m ≤ d ≤ r for m ≤ 0.

We will prove that the Seiberg-Witten prepotential defined via the periods of

hyperelliptic curves satisfies the same equation and has the same perturbation

part in §A. As the contact term equation determines the instanton part of the

prepotential recursively from the perturbation part, we get

Theorem 1.40. Suppose (1.37) holds and assume |m| < r. Then F0 coincides

with the Seiberg-Witten prepotential defined in (A.5).
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As we have (1.37) for the case m = 0, we have the assertion without the

condition in this case. This is the proof of Nekrasov’s conjecture for the K-

theoretic partition function [47]. See [48] for another proof.

By Proposition 1.38(1) the next coefficient H(~a; Λ,β) of the expansion (4.1)

comes from the perturbation part:

Proposition 1.41. Suppose (1.37) holds and assume |m| < r.

H(~a; Λ,β) = −π
√
−1〈~a, ρ〉.

1.7.4. Genus 1 parts. Next we turn to the genus 1 parts of the expansion (4.1).

When r = 2, m = 0, we determined A, B explicitly as theta constants in [43]. So

we assume r = 2, m = 1. Let F1 = A− 2
3B, G = 1

3B.

We have [43, (4.11)] if we replace d by d − m
2 . (Note that this is k = 0 case.)

Taking d = 1 (and r = 2, m = 1) we have

(1.42) exp(G − F1) = exp

[
− β2

128

∂2F0

(∂ log Λ)2

]
θ01

(
β

16π
√
−1

∂F0

∂ log Λ∂a

∣∣∣∣ τ
)
.

We assume

(1.43) Ẑ inst
m,k,d(ε1, ε2,~a; Λ,β) = 0

for 0 < k < r, 0 < d < r. Then we have [43, the first displayed equation in p.515]

if we replace d by d+m(−1/2 + k/r). We take k = 1, d = 1 (and r = 2, m = 1).

Then we have exactly the same equation as in [43]. Therefore we get

G+ F1 = −1

3
log

(
−2πq

1
8

∞∏

d=1

(1 − qd)3

)
+ C

where C is a function on Λ. Here q = exp(2π
√
−1τ) = exp(−d2F/da2) and the

convention is different from that in [43]. Combining with (1.42), we get

expF1 = C′q−1/48

∞∏

d=1

(1 − qd)−1/2 exp

[
β2

256

∂2F0

(∂ log Λ)2

]
θ01

(
β

16π
√
−1

∂F0

∂ log Λ∂a

∣∣∣∣ τ
)−1/2

for C ′ = C ′(Λ). By the same argument in [43, p.515] we have C ′ ≡ 1. Let us

briefly recall the argument and explain how it is modified in our case. The proof is

based on the observation that η(τ/2) expF1 depends on Λ in the form C[[ζ1,2Λ
4]],

where ζ1,2 = β

1−e2βa (see §4.1). There is an extra factor exp(mβa(|Y 2| − |Y 1|))
coming from the Chern-Simons terms. Hence the coefficient of Λ4n is divisible
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by exp(mnβa)ζn
1,2. Under our assumption m = 1, we cannot get a term which is

constant with respect to a. Therefore

(1.44)

expF1 = q−1/48

∞∏

d=1

(1 − qd)−1/2 exp

[
β2

256

∂2F0

(∂ log Λ)2

]
θ01

(
β

16π
√
−1

∂F0

∂ log Λ∂a

∣∣∣∣ τ
)−1/2

,

expG = q−1/48

∞∏

d=1

(1 − qd)−1/2 exp

[
− β2

256

∂2F0

(∂ log Λ)2

]
θ01

(
β

16π
√
−1

∂F0

∂ log Λ∂a

∣∣∣∣ τ
)1/2

.

2. Computation of the wallcrossing in terms of Hilbert schemes

Let X be a simply connected smooth projective surface with pg = 0. In this

section we will compute the wallcrossing of the K-theoretic Donaldson invariants

ofX in terms of the holomorphic Euler characteristic of certain sheaves on Hilbert

schemes of points on X. Later we will specialize to the case that X is a smooth

toric surface and relate this result to the K-theoretic Nekrasov partition function.

Notation 2.1. Let t be a variable. If Y is a variety and b ∈ H∗(Y )[t], we denote

by [b]d its part of degree d, where elements in H2n(Y ) have degree n and t has

degree 1.

If R is a ring, t a variable and b ∈ R((t)), we will denote for i ∈ Z by [b]ti the

coefficient of ti of b.

If E is a vector bundle of rank r on Y , let
∧

−tE :=
∑

i(−1)iΛi(E)ti ∈ K(Y )[t],

and let St(E) :=
∑

i S
i(E)ti, where Si(E) is the ith symmetric power of E. Note

that St(E) = 1∧
−t(E) .

2.1. The wallcrossing term. Denote by C the ample cone of X. Then C has a

chamber structure: For a class ξ ∈ H2(X,Z)\{0} let W ξ :=
{
x ∈ C

∣∣ 〈x, ξ〉 = 0
}
.

Assume W ξ 6= ∅. Then we call ξ a class of type (c1, d) and call W ξ a wall of type

(c1, d) if the following conditions hold

(1) ξ + c1 is divisible by 2 in H2(X,Z),

(2) d+ 3 + ξ2 ≥ 0.

We call ξ a class of type c1, if ξ + c1 is divisible by 2 in H2(X,Z). The chambers

of type (c1, d) are the connected components of the complement of the walls of

type (c1, d) in C. Then MX
H (c1, d) depends only on the chamber of type (c1, d) of

H.
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Let ξ ∈ H2(X,Z) be a class of type c1. We say that ξ good and W ξ is a

good wall if D + KX is not effective for any divisor D with W c1(D) = W ξ. A

sufficient condition for ξ to be good is that W ξ contains an ample divisor H with

H ·KX < 0. One can show that an ample divisor H is general with respect to

(2, c1, c2) if and only if H lies in a chamber of type (c1, 4c2 − c21 − 3).

Let ξ be a class of type c1. Let X [n] be the Hilbert scheme of subschemes

of length n on X. Let Zn(X) ⊂ X × X [n] be the universal subscheme. Let

I1 (resp. I2) be the sheaf p∗1,2(IZn(X)) (resp. p∗1,3(IZm(X)) on X × X [n] × X [m].

We also denote F1 := I1(
c1+ξ

2 ) and F2 := IZ2(
c1−ξ

2 , ). Note that X [n] =

MX
H (1, c1+ξ

2 , n) and X [m] = MX
H (1, c1−ξ

2 ,m) and F1, F2 are the corresponding

universal sheaves. Let f1, f2 ∈ K(X) be the classes of elements of MX
H (1, c1+ξ

2 , n)

and MX
H (1, c1−ξ

2 ,m) respectively.

Let p : X × X [n] × X [m] → X [n] × X [m], q : X × X [n] × X [m] → X be the

projections. Let Aξ,− := −p!(I∨
2 ⊗ I1 ⊗ q!ξ), Aξ,+ := −p!(I∨

1 ⊗ I2 ⊗ q!ξ∨) ∈
K(X [n] ×X [m]). We also just write A− and A+ instead of Aξ,−, Aξ,+.

Now assume ξ is good. Then Ext0p(I2,I1(ξ)) = Ext2p(I2,I1(ξ)) = 0 and we will

write Aξ,− for its representative Ext1p(I2,I1(ξ)), which is a locally free sheaf on

X [n] ×X [m]. Similarly we write Aξ,+ for the locally free sheaf Ext1p(I1,I2(−ξ)),
and we put P− := P(A∨

−) and P+ := P(A∨
+) (we use the Grothendieck notation,

i.e. this is the bundle of 1-dimensional quotients). Let π± : P± → X [n] ×X [m] be

the projection.

Definition 2.2. Fix c1 ∈ H2(X,Z), and let v ∈ K(X). Let ξ ∈ H2(X,Z)

be a class of type c1. We denote χ(f1 ⊗ v) = χ(IZ1(
c1+ξ

2 ⊗ v)), χ(f2 ⊗ v) =

χ(IZ2(
c1−ξ

2 ⊗ v)) for (Z1, Z2) ∈ X [n] ×X [m]. By the Riemann-Roch-Theorem we

see that

(2.3)
1

2
(χ(f2 ⊗ v) − χ(f1 ⊗ v)) = −

〈ξ
2
, v(1)

〉
+

rk(v)

2
(n −m).

In particular it only depends on rk(v) and c1(v), and it is independent of n,m if

rk(v) = 0.
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The wallcrossing terms are

∆X
ξ,T (v; Λ) :=

∑

n,m≥0

d=4(n+m)+ξ2−3

Λd

T
1
2
(χ(f2⊗v)−χ(f1⊗v))

× χ
(
X [n] ×X [m],

λF1(v) ⊗ λF2(v)∧
−T (A∨

ξ,+)
∧

−T−1(A∨
ξ,−)

)
,

∆X
ξ (v; Λ) := [∆X

ξ,T (v; Λ)]T 0 − [∆X
ξ,T (v; Λ)](T−1)0 .

(2.4)

Here the right hand side of the first equation is understood as a rational function

in T 1/2 as follows, and [•]T 0 , [•](T−1)0 denote the constant terms of the expansions

at T 1/2 = 0, T 1/2 = ∞ respectively. We formally apply the Hirzebruch-Riemann-

Roch theorem to get

χ
(
X [n] ×X [m],

λF1(v) ⊗ λF2(v)∧
−T (A∨

ξ,+)
∧

−T−1(A∨
ξ,−)

)

=

∫

X[n]×X[m]

ch(λF1(v)) ch(λF2(v))

ch
∧

−T (A∨
ξ,+) ch

∧
−T−1(A∨

ξ,−)
Todd(X [n] ×X [m]).

Then we consider ch
∧

−T (A∨
ξ,+), ch

∧
−T−1(A∨

ξ,−) as End(H∗(X [n]×X [m]))-valued

Laurent polynomials. Their inverses are defined as their cofactor matrices divided

by their determinants (which are equal to (1 − T )rk(A∨
ξ,+), (1 − T−1)rk(A∨

ξ,−)) re-

spectively. Then their inverses are in End(H∗(X [n] ×X [m])) ⊗Q Q(T ). Thus the

integral is an element of Q(T ). This way of understanding the formula will be-

come more apparent when we will consider the equivariant wallcrossing term in

§3. In that case we can interpret the formula so that the computation is done in

the localized equivariant K-theory.

The expansions at T = 0, T = ∞ can be also understood differently. Note

that for a vector bundle E of rank r we have

(2.5)
1∧

−T (E)
= ST (E),

1∧
−T−1(E)

=
(−T )r

det(E) ⊗∧−T E
∨ = (−T )r det(E∨)⊗ST (E∨).
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Thus ∆X
ξ,T (v; Λ) can be developed as Laurent series both in T 1/2 and in 1

T 1/2

∆X
ξ,T (v; Λ) =

∑

n,m≥0

d=4(n+m)−ξ2−3

Λd(−T )rk(A−)

T
1
2
(χ(f2⊗v)−χ(f1⊗v))

χ
(
X [n] ×X [m], λF1(v) ⊗ λF2(v)⊗

det(Aξ,−) ⊗ ST (A∨
ξ,+) ⊗ ST (Aξ,−)

)
∈ Z((T

1
2 ))[[Λ]],

(2.6)

∆X
ξ,T (v; Λ) =

∑

n,m≥0

d=4(n+m)−ξ2−3

Λd(−T−1)rk(A+)

(T−1)
1
2
(χ(f1⊗v)−χ(f2⊗v))

χ
(
X [n] ×X [m], λF1(v) ⊗ λF2(v)

⊗ det(Aξ,+) ⊗ ST−1(Aξ,+) ⊗ ST−1(A∨
ξ,−)

)
∈ Z((T− 1

2 ))[[Λ]].

(2.7)

Then [∆X
ξ,T (v; Λ)]T 0 is equal to the coefficient of T 0 of (2.6) and [∆X

ξ,T (v; Λ)](T−1)0

is equal to the coefficient of ( 1
T )0 of (2.7). However note that it was not clear

the expressions are in Z((T ))[[Λ]] or Z((T−1))[[Λ]] in the original formulation in

terms of the Hirzebruch-Riemann-Roch theorem.

Remark 2.8. Fix c1, d and let c ∈ K(X) be the class of an element in MX
H (c1, d).

Let v ∈ K(X). Then either 1
2(χ(f2 ⊗ v)− χ(f1 ⊗ v)) ∈ Z for all n,m ∈ Z≥0 with

4(n+m) − ξ2 − 3 = d, or 1
2(χ(f2 ⊗ v) − χ(f1 ⊗ 0)) ∈ Z + 1

2 for all such n,m. In

the second case the coefficients of Λd of [∆ξ,T (v,Λ)]T 0 and [∆ξ,T (v,Λ)](T−1)0 are

trivially 0.

On the other hand, if v ∈ Kc, then χ(f2 ⊗ v) = −χ(f1 ⊗ v) and thus 1
2(χ(f2 ⊗

v) − χ(f1 ⊗ v)) = χ(f2 ⊗ v) ∈ Z.

Remark 2.9. Let v ∈ K(X) be a class of rank 0. Let ξ be a wall of type (c1, d).

Let l = d+3+ξ2

4 . Fix l ≥ 0. Write d := 4l − ξ2 − 3. Note that by [12, Lemma 4.3]

(2.10) rk(A−) = −ξ(ξ −KX)

2
+ l − 1, rk(A+) = −ξ(ξ +KX)

2
+ l − 1.

Note that by definition the coefficient of Λd of ∆X
ξ (v; Λ) is zero if − rk(A+) <

−〈ξ/2, c1(v)〉 < rk(A−). By (2.10) it thus follows that the coefficient of Λd of

∆X
ξ (L; Λ) is 0 unless 0 ≤ l ≤ |〈 ξ

2 , c1(v) + KX〉| + 1 + ξ2

2 , which is equivalent to

−ξ2 − 3 ≤ d ≤ ξ2 + |〈2ξ, c1(v) +KX〉| + 1. In particular ∆X
ξ (v; Λ) ∈ C[Λ].

The aim of this section is to prove that the wallcrossing for the K-theoretic

Donaldson invariants can be expressed as a sum over ∆X
ξ (v; Λ).
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Proposition 2.11. Fix c1, d, let c ∈ K(X) be the class of an element of MX
H (c1, d).

Let v ∈ Kc. Let H−, H+ be ample divisors on X, which do not lie on a wall of type

(c1, d). Let B+ be the set of classes ξ of type (c1, d) with 〈ξ ·H+〉 > 0 > 〈ξ ·H−〉.
Assume that all classes in B+ are good. Then

χ(MX
H+

(c1, d), λ(v)) − χ(MX
H−(c1, d), λ(v)) =

∑

ξ∈B+

[
∆X

ξ (v; Λ)
]
Λd .

In the rest of this section we will show Prop. 2.11.

MX
H (c1, d) and thus χ(MX

H (c1, d), λ(v)) is constant as long as H stays in the

same chamber of type (c1, d) and only changes when H crosses a wall of type

(c1, d). By [12], [16] the change of the moduli spaces can be described as follows.

Let Bd be the set of all ξ ∈ B+ which define a wall of type (c1, d). For the

moment assume for simplicity that Bd consists of a single element ξ. Let l :=

(d + 3 + ξ2)/4 ∈ Z≥0. Write M0,l := MX
H−(c1, d). Then successively for all

n = 0, . . . , l write m := l−n. Then one has the following: Mn,m contains a closed

subscheme En,m
− isomorphic to P

n,m
− and Mn,m is nonsingular in a neighbourhood

of En,m
− . Let M̂n,m be the blow up of Mn,m along En,m

− . The exceptional divisor

is isomorphic to the fibre product Dn,m := P
n,m
− ×X[n]×X[m] P

n,m
+ . We can blow

down M̂n,m in Dn,m in the other fibre direction to obtain a new variety Mn+1,m−1.

The image of Dn,m is a closed subset En,m
+ isomorphic to P

n,m
+ and Mn+1,m−1 is

smooth in a neighbourhood of En,m
+ .

The transformation from Mn,m to Mn+1,m−1 does not have to be birational.

It is possible that En,m
+ = ∅, i.e. A+ = 0. As rk(A−) + rk(A+) + 2l = d + 1,

this happens if and only if En,m
− has dimension d and thus by the smoothness

of Mn,m near En,m
− , we get that En,m

− is a connected component of Mn,m. Then

blowing up along En,m
− just means deleting En,m

− . Thus in this case Mn+1,m−1 =

Mn,m \ En,m
− . Similarly we have En,m

− = ∅, i.e. A− = 0, if and only if En,m
+ is

a connected component of Mn+1,m−1 and Mn+1,m−1 = Mn,m ⊔ En,m
+ . Below, if

the transformation from Mn,m to Mn+1,m−1 is birational, we say we are in case

(1), otherwise in case (2). Finally we have Ml+1,−1 = MX
H+

(c1, d). If Bd consists

of more than one element, one obtains MH+(c1, d) from MH−(c1, d) by iterating

this procedure in a suitable order over all ξ ∈ B+.

Fix ξ in Bd. Fix n,m ∈ Z≥0 with n + m = l := (d + 3 + ξ2)/4. We write

M− := Mn,m, M+ := Mn+1,m−1. Let E± be universal sheaves on X × M±
respectively. Let E− := En,m

− , E+ = En,m
+ . Let M̃ be the blowup of M− along
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E−, and denote by D the exceptional divisor (which is also the exceptional divisor

of the blowup of M+ along E+). Write D′ := X × D and let j : D → M̃ ,

j′ : X ×D → X × M̃ be the embeddings. Let E−, E+ be the pullbacks of E−, E+

to X × M̃ .

Notation 2.12. We denote by T− (resp. T+) the universal quotient line bundle

on P− = P(A∨
−) (resp. on P+ = P(A∨

+)). For a class a ∈ H∗(X) we also denote

by a its pullback to X × Y for a variety Y . We write I1,I2 also for the pullback

of I1, I2 to D′ and we write T+, T− also for their pullbacks to D and D′.

By the condition χ(c ⊗ v) = 0, we can replace 1
2 (χ(f2 ⊗ v) − χ(f1 ⊗ v)) by

χ(f2 ⊗ v). We will show

χ(M+, λE+
(v)) − χ(M−, λE−

(v))

= χ

(
X [n] ×X [m], λF1(v) ⊗ λF2(v) ⊗

([(−t)rk(A−)St(A∨
+) ⊗ St(A−) ⊗ det(A−)

tχ(f2⊗v)

]
t0

−
[(−t)rk(A+)St(A∨

−) ⊗ St(A+) ⊗ det(A+)

t−χ(f2⊗v)

]
t0

))
.

(2.13)

Formula (2.13) implies Proposition 2.11 by summing over all ξ ∈ B+, and over

all n,m with n+m = (d+ ξ2 + 3)/4.

Assume first that we are in case (1). Note that this is equivalent to both

rk(A−) and rk(A+) strictly positive, and then it is evident that the first (resp.

second) summand on the left hand side of (2.13) vanishes if χ(f2 ⊗ v) ≤ 0 (resp.

if χ(f2 ⊗ v) ≥ 0). Let π± : M̃ → M± be the blowup morphisms. By [17,

Prop. VI.4.1] and its proof, Riπ±∗OM̃
= 0 for i > 0, and π±∗OM̃

= OM± . Thus

the projection formula gives χ(M±, L) = χ(M̃, π∗±L) for any line bundle L on

M±. Therefore it is enough to prove (2.13) with the left-hand side replaced by

χ(M̃, λE+(v)) − χ(M̃, λE−(v)).

Lemma 2.14. In K(M̃ ) we have

λE+(v) − λE−(v) = j∗
(( tχ(f2⊗v) − s−χ(f2⊗v)

1 − st
π∗(λF1(v) ⊗ λF2(v)

)
| s=T−

t=T+

)
.
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Proof. By [12, section 5] there exists a line bundle µ on D such that

(j′)∗E− = F1 ⊗ µ+ F2 ⊗ T−1
− ⊗ µ in K(D′),

E+ = E− − j′∗(F2 ⊗ T−1
− ⊗ µ) in K(X × M̃).

(2.15)

Thus we get λE+(v) = λE−(v) ⊗ det
(
p!(v ⊗ j′∗(F2 ⊗ T−1

− ⊗ µ))
)−1

. Note that

p!(v ⊗ j′∗(F2 ⊗ T−1
− ⊗ µ)) is a coherent sheaf of rank χ(v ⊗ f2) on D. As D is a

Cartier divisor, it follows that

λE+(v) = λE−(v) ⊗ det(χ(f2 ⊗ v)[OD])−1 = λE−(v) ⊗ det(O
M̃

(−D))χ(f2⊗v).

For the second equality we have used that OD = O
M̃

−O
M̃

(−D) in K(M̃) and

thus det(OD) = det(O
M̃

(−D))−1. Thus we get in K(M̃) that

λE+(v) − λE−(v) = (O
M̃

(−D)χ(f2⊗v) − 1) ⊗ λE−(v)

= j∗
(( tχ(f2⊗v) − 1

1 − t
j∗(λE−(v))

)
|t=T+⊗T−

)
.

In the last step we have used that for a locally free sheaf G on M̃ we have (1 −
O

M̃
(−D)) ⊗ G = j∗(j∗G) in K(M̃). As the determinant bundles are compatible

with pullback we obtain by (2.15) that

j∗(λE−(v)) = λπ∗(F1)⊗µ(v) ⊗ λπ∗(F2)⊗T−1
− ⊗µ(v)

= π∗(λF1(v) ⊗ λF2(v)) ⊗ µχ(f1⊗v)+χ(f2⊗v)T
−χ(f2⊗v)
−

= π∗(λF1(v) ⊗ λF2(v)) ⊗ T
−χ(f2⊗v)
− .

(2.16)

In the last step we use that χ(f1 ⊗ v) + χ(f2 ⊗ v) = 0. The result follows. �

In case χ(f2 ⊗ v) = 0 the left hand side of Lemma 2.14 is obviously 0. Thus

we only need to show (2.13) in the cases χ(f2 ⊗ v) > 0 and χ(f2 ⊗ v) < 0.

(a) χ(f2 ⊗ v) < 0: We apply the formula

(2.17)
y−c − xc

1 − xy
= y−1x

c − y−c

x− y−1
=

∑

a+b=c
a≥0, b>0

xay−b, c ∈ Z>0

for x = T−, y = T+ to Lemma 2.14 to obtain

λE+(v) − λE−(v) = j∗
( ∑

a+b=−χ(f2⊗v)
a≥0, b>0

T a
− ⊗ T−b

+ ⊗ π∗(λF1(v) ⊗ λF2(v))
)
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in K(M̃). Let E be a vector bundle of rank e on a variety Y and let p : P(E∨) → Y

be the projection and O(1) the universal quotient line bundle on P(E∨). Then

by [23, Ex. III.8.4]

p!(O(n)) =





Sn(E∨) n ≥ 0,

(−1)e−1S−n−e(E) ⊗ det(E) n ≤ −e,
0 otherwise.

Let π : D = P(A∨
+)×X[n]×X[m] P(A∨

+) → X [n] ×X [m] be the projection. Then we

get using the projection formula

χ(M̃, λE+(v)) − χ(M̃, λE−(v)) =
∑

a+b=−χ(f2⊗v)
a≥0, b>0

χ
(
D,T a

− ⊗ T−b
+ ⊗ π∗(λF1(v) ⊗ λF2(v))

)

= −
∑

a+b=−χ(f2⊗v)
a≥0, b>0

(−1)rk(A+)χ
(
X [n] ×X [m], λF1(v) ⊗ λF2(v)

⊗ Sa(A∨
−) ⊗ Sb−rk(A+)(A+) ⊗ det(A+)

)

= χ
(
X [n] ×X [m], λF1(v) ⊗ λF2(v)

⊗
[
− (−t)rk(A+) ⊗ St(A∨

−) ⊗ St(A+) ⊗ det(A+)

t−χ(f2⊗v)

]
t0

)
.

(2.18)

(b) χ(f2 ⊗ v) > 0: The formula (2.17) for x = T+, y = T−, gives

λE+(v) − λE−(v) = −j∗
( ∑

a+b=χ(f2⊗v)
a≥0, b>0

T a
+ ⊗ T−b

− ⊗ π∗(λF1(v) ⊗ λF2(v))
)
.

Then the same arguments as in the case χ(f2 ⊗ v) < 0 show that

−
∑

a+b=χ(f2⊗v)
a≥0, b>0

χ
(
D,π∗(λF1(v) ⊗ λF2(v)) ⊗ T a

− ⊗ T−b
+ )
)

= χ(X [n] ×X [m], λF1(v) ⊗ λF2(v)

⊗
[(−t)rk(A−) ⊗ St(A∨

+) ⊗ St(A−) ⊗ det(A−)
)

tχ(f2⊗v)

]
t0

)
.

In case (2), we can assume by symmetry that P+ = ∅, thus A+ = 0 and A−
has rank d+ 1 − 2(n+m). Then we have

χ(M+, λE+
(v)) − χ(M−, λE−

(v)) = −χ(P−, λ(j′)∗(E−)(v))
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where j′ : X × P− → X ×M− is the inclusion. The same argument as in the

proof of (2.16) shows that

λ(j′)∗(E−)(v) = π∗−(λF1(v) ⊗ λF2(v)) ⊗ T
−χ(f2⊗v)
− .

Note that differently from case (1) this is not zero when χ(f2 ⊗ v) = 0. Now the

same arguments as in the proof of (2.18) show that −χ
(
P−, λ(j′)∗(E−)(v)

)
is equal

to

−χ
(
X [n] ×X [m], λF1(v) ⊗ λF2(v) ⊗ S−χ(f2⊗v)(A∨

−))

in case χ(f2 ⊗ v) ≤ 0, and to

(−1)rk(A−)χ(X [n] ×X [m], λF1(v) ⊗ λF2(v) ⊗ Sχ(f2⊗v)−rk(A−)(A−) ⊗ det(A−))

in case χ(f2 ⊗ v) > 0. As St(A+) = 1, this shows (2.13) also in case (2) and thus

finishes the proof of Proposition 2.11.

3. Comparison with the partition function

For the next two sections (except in §4.6) let X be a smooth projective toric

surface over C, in particular X is simply connected and pg(X) = 0. X carries

an action of Γ := C∗ × C∗ with finitely many fixpoints, which we will denote

by p1, . . . , pχ, where χ is the Euler number of X. Let w(xi), w(yi) the weights

of the Γ-action on TpiX. Then there are local coordinates xi, yi at pi, so that

(t1, t2)xi = e−w(xi)xi and (t1, t2)yi = e−w(yi)yi. By definition w(xi) and w(yi) are

linear forms in ε1 and ε2. For β ∈ H∗
Γ(X) or β ∈ HΓ

∗ (X), we denote by ι∗pi
β its

pullback to the fixpoint pi. More generally, if Γ acts on a nonsingular variety Y

and W ⊂ Y is invariant under the Γ-action, we denote by ι∗W : H∗
Γ(Y ) → H∗

Γ(W )

the pullback homomorphism.

Note that TX and the canonical bundle are canonically equivariant. Thus

any polynomial in the Chern classes ci(X) and KX is canonically an element of

H∗
Γ(X).

3.1. Equivariant K-theoretic Donaldson invariants and equivariant wall-

crossing. For t ∈ Γ denote by Ft the automorphism X → X;x 7→ t · x.
Then Γ acts on X [n] × X [m] by t · (IY1,IY2) = ((F−1

t )∗IY1, (F
−1
t )∗IY2) and on

X×X [n]×X [m] by t·(x,IY1 ,IY2) = (Ft(x), (F
−1
t )∗IY1, (F

−1
t )∗IY2) and the sheaves

I1, I2 are Γ-equivariant. If we choose an equivariant lifting of c1 and ξ, then also

F1, F2 are Γ-equivariant sheaves.
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We write X2 := X⊔X and X
[l]
2 :=

∐
n+m=lX

[n]×X [m]. The fixpoints of the Γ-

action on X
[l]
2 are the pairs (Z1, Z2) of zero-dimensional subschemes with support

in {p1, . . . , pχ} with len(Z1) + len(Z2) = l and such that each IZα,pi is generated

by monomials in xi, yi. We associate to (Z1, Z2) the χ-tuple (~Y 1, . . . , ~Y χ) with
~Y i = (Y i

1 , Y
i
2 ), where

Y i
α =

{
(n,m) ∈ Z>0 × Z>0

∣∣ xn−1
i ym−1

i 6∈ IZα,pi

}
.

We write |Y i
α| for the number of elements of Y i

α and |~Y i| := |Y i
1 | + |Y i

2 |. This

gives a bijection from the fixpoint set (X
[l]
2 )Γ to the set of the χ-tuples of pairs

of Young diagrams (~Y 1, . . . , ~Y χ), with
∑

i |~Y i| = l.

Similarly Γ acts on X ×MH
X (c1, c2) by t · (x,E) = (Ft(x), (F

−1
t )∗E). Assume

for the moment that there exist a universal sheaf E over X×MH
X (c1, d), then one

can show that E has a lifting to a Γ-equivariant sheaf, unique up to twist by a

character.

The definition of the determinant bundles and the K-theoretic Donaldson in-

variants is easily generalized to the equivariant case. If Y is a variety with

an action of Γ, we denote by KΓ(Y ), K0Γ(X) the Grothendieck groups of Γ-

equivariant coherent sheaves and Γ-equivariant locally free sheaves respectively.

χ(u ⊗ v) : KΓ(X)2 → Z is still a quadratic form. The formula (1.1) defines a

homomorphism KΓ(X) → PicΓ(S), where now S is a scheme with a Γ-action,

and E a flat family of Γ-equivariant coherent sheaves of class c ∈ K(X)num on X,

flat over S. For c ∈ K(X)num we define KΓ
c ,K

Γ
c,H ⊂ KΓ(X) by the same formula

as in section 1.1. In the same way as in 1.1, there are homomorphisms λ : KΓ
c →

PicΓ(MX
H (r, c1, c2)s), λ : KΓ

c,H → PicΓ(MX
H (r, c1, c2)), which commute with the

inclusions KΓ
c,H ⊂ KΓ

c and PicΓ(MX
H (r, c1, c2)s) ⊂ PicΓ(MX

H (r, c1, c2)). If H is

general with respect to (r, c1, c2), then λ : KΓ
c,H → PicΓ(MX

H (r, c1, c2)) can be ex-

tended to Kc. For a flat family E of equivariant stable sheaves on X parametrized

by S, λ and λE commute with the pullback φ∗E : PicΓ(MX
H (r, c1, c2)) → PicΓ(S)

by the classifying morphism.

Let v ∈ KΓ
c , where c is the class of an element of MX

H (c1, d), where d =

4c2− c21−3. Assume that H is general with respect to (2, c1, c2). If Y is a variety

with a Γ-action and w ∈ K0Γ(Y ), we denote

(3.1) χ̃(Y,w) := π!(w) ∈ C[t±1
1 , t±1

2 ],
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where π : Y → pt is the projection to a point. The equivariant K-theoretic Don-

aldson invariant of X with respect to v, c1, d,H is χ̃(MX
H (c1, d), λ(v)). If L is a

Γ equivariant line bundle on X with 〈c1(L), c1〉 even, let v(L) ∈ KΓ
c be an equi-

variant lift of the class defined by (1.4) and µ(L) := λ(v(L)) ∈ PicΓ(MX
H (c1, d)).

We put χ̃(MX
H (c1, d), µ(L)) and χ̃H

c1(L; Λ) :=
∑

d≥0 Λdχ̃(MX
H (c1, d), µ(L)).

Definition 3.2. Let v ∈ K(X). Let ξ ∈ H2(X,Z) be an equivariant lifting of

a class of type c1. Then I1, I2, F1, F2. Aξ,+ and Aξ,− are in a natural way

equivariant sheaves on X [n] × X [m] (resp. elements in KΓ(X [n] × X [m])), and

the equivariant wallcrossing terms ∆̃X
ξ,T (v; Λ), ∆̃X

ξ (v; Λ) are defined by the right-

hand side of formulas (2.4), with the holomorphic Euler characteristic χ replaced

by the equivariant pushforward χ̃ to a point. Now ∆̃X
ξ,T (v; Λ) can be under-

stood by localization in equivariant K-theory on X [n] ×X [m]. Then ∆̃X
ξ,T (v; Λ) ∈

Λ−ξ2−3Q(t1, t2, T
1
2 )[[Λ]]. Then using (2.6) we can view ∆̃X

ξ,T (v; Λ) as an ele-

ment of Λ−ξ2−3Q[t±1
1 , t±1

2 ]((T
1
2 ))[[Λ]], and [∆̃X

ξ,T (v; Λ)]T 0 is its coefficient of T 0.

Similarly using (2.7), ∆̃X
ξ,T (v; Λ) is an element of Λ−ξ2−3Q[t±1

1 , t±1
2 ]((T− 1

2 ))[[Λ]],

and [∆̃X
ξ,T (v; Λ)](T−1)0 is its coefficient of (T−1)0. In particular ∆̃X

ξ (v; Λ) ∈
Q[t±1

1 , t±1
2 ][[Λ]], and ∆̃X

ξ (v; Λ)|t1=t2=1 = ∆X
ξ (v; Λ).

Let c ∈ K(X) be the class of an element of MX
H (c1, d). In the same way

as in Remark 2.8, we see that the coefficient of Λd of ∆̃X
ξ,T (v; Λ) is either in

T
1
2 Q(t1, t2, T ) (and the coefficient of Λd of ∆̃X

ξ (v; Λ) is 0) or in Q(t1, t2, T ). If

v ∈ KΓ
c , then the coefficient is in Q(t1, t2, T ).

Let v ∈ KΓ
c . Under the assumptions of Proposition 2.11 let B̃+ be a set

consisting of one equivariant lift ξ for each class of type (c1, d) with 〈ξ · H+〉 >
0 > 〈ξ ·H−〉. Then the same proof as before (with all sheaves and classes replaced

by their equivariant versions) shows that

χ̃(MX
H+

(c1, d), λ(v)) − χ̃(MX
H−(c1, d), λ(v)) =

∑

ξ∈B+

[
∆̃X

ξ (v; Λ)
]
Λd .

Now we want to give a formula expressing ∆̃X
ξ,T (v; Λ) in terms of the K-theoretic

Nekrasov partition function ZK . For the rest of this section let ξ be an equivariant

lift of a class of type c1, and let v ∈ KΓ(X). We first give, up to a correction

term, an expression for ∆̃X
ξ,T (v,Λ) in terms of the instanton part. Then we show

that this correction term is given by the perturbation part.
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Theorem 3.3. Let v ∈ KΓ(X).

∆̃X
ξ,e−βt(v;βΛ)| t1→eβε1

t2→eβε2

=
1

βΛ
exp

(
β
(〈K3

X〉
48

− 〈Todd2(X)KX〉
2

+ 〈[2 ch(v) exp(c1/2)Todd(X)]3〉
)

+

χ∑

i=1

F− rk(v)

(
w(xi), w(yi),

t−ι∗pi
ξ

2 ; Λe−βι∗pi
KX/4,βι∗pi

(c1(v) + rk(v)
2 (c1 −KX)))

)
.

Note that the left-hand side lies in (βΛ)−ξ2−3Q(eε1 , eε2 , etβ)[[βΛ]]. In the

course of the proof we will also have to show how one can interpret the right-hand

side, so that both sides lie in the same ring.

Lemma 3.4. Let M be a Γ-equivariant line bundle on X, with c1(M) = ξ. Then

in (βΛ)−ξ2−3Q(eβε1 , eβε2, eβt)[[βΛ]] we have

∆̃X
ξ,e−βt(v,βΛ)| t1→eβε1

t2→eβε2

= exp(2β〈v(3)〉)

·
∏χ

i=1 Z
inst
− rk(v)

(
w(xi), w(yi),

t−ι∗pi
ξ

2 ; Λe−βι∗pi
(KX)/4,β,βι∗pi

(c1(v) + rk(v)
2 (c1 −KX)

)

(βΛ)ξ2+3
∧

−e−βt(−χ̃(X,M∨)∨)
∧

−eβt(−χ̃(X,M)∨)
.

Proof. Following [20], we denote C(0) := ch(I1)e
ξ/2 + ch(I2)e

−ξ/2 on X ×X [n] ×
X [m], and Ci(0) := [C(0)]i. The Grothendieck-Riemann-Roch theorem implies

that

ch(λF1(v) ⊗ λF2(v)) = exp([p∗(q
∗(ch(v)) ch(F1 ⊕F2)Todd(X)]1)

= exp([p∗(q
∗(ch(v))C(0)ec1/2 Todd(X))]1)

= exp(C3(0)/ rk(v) + C2(0)/v
(1) + 2/v(3)).

(3.5)
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Let (Z1, Z2) ∈ (X [n] ×X [m])Γ correspond to (~Y 1, . . . , ~Y χ). By [20, Lemma 3.4]

the cotangent space and the fibres of A∨
± at (Z1, Z2) are

∧
−1
T ∗

(Z1,Z2)
X [n] ×X [m]| t1→eβε1

t2→eβε2

=

χ∏

i=1

2∏

γ=1

n
~Yi
γ,γ(w(xi), w(yi),

t−ιpiξ

2 ;β),

∧
−e−tβ

A∨
+(Z1, Z2)| t1→eβε1

t2→eβε2

=
∧

−e−tβ
−χ̃(X,M∨)∨| t1→eβε1

t2→eβε2

×
χ∏

i=1

n
~Yi
1,2

(
w(xi), w(yi),

t−ιpiξ
2 ;β),

∧
−etβ

A∨
−(Z1, Z2)| t1→eβε1

t2→eβε2

=
∧

−etβ
−χ̃(X,M)∨| t1→eβε1

t2→eβε2

×
χ∏

i=1

n
~Yi
2,1

(
w(xi), w(yi),

t−ιpiξ

2 ;β).

(3.6)

By (1.27) and [20, (3.11)] we get

χ∏

i=1

exp
(
β rk(v)|~Yi|

w(xi) + w(yi)

2

)
C

~Y
− rk(v)(w(xi), w(yi),

t−ι∗pi
ξ

2 ;β,βι∗pi
v(1))

=

χ∏

i=1

E
~Y (w(xi), w(yi),

t−ι∗pi
ξ

2 ;β,βι∗pi
v(1), rk(v))

= ι∗(Z1,Z2)
exp
( [

ch(I1)e
ξ−βt

2 ⊕ ch(I2)e
βt−ξ

2
]
2
/v(1)

+
[
ch(I1)e

ξ−βt
2 ⊕ ch(I2)e

βt−ξ
2
]
3
/ rk(v)

)
| ε1→βε1

ε2→βε2

= ι∗(Z1,Z2)

(
exp
(
C2(0)/v

(1) + C3(0)/ rk(v)
))

ε1→βε1
ε2→βε2

(eβt)
1
2
(χ(f2⊗v)−χ(f1⊗v))

= exp(−2β〈v(3)〉)ι∗(Z1,Z2)

(
ch(λF1(v) ⊗ λF2(v)))

)
ε1→βε1
ε2→βε2

(eβt)
1
2
(χ(f2⊗v)−χ(f1⊗v)).

(3.7)

In the fourth line we use that ch0(Iα) = 1, ch1(Iα) = 0 for α = 1, 2, and that

ch2(I1)/1 = −n, ch2(I2)/1 = −m and thus

ι∗(Z1,Z2)

([
ch(I1)e

ξ−βt
2 ⊕ ch(I2)e

βt−ξ
2
]
2
/v(1)

)
= ι∗(Z1,Z2)

(
C2(0)/v

(1)
)
− 〈ξ/2, v(1)〉βt,

ι∗(Z1,Z2)

([
ch(I1)e

ξ−βt
2 ⊕ ch(I2)e

βt−ξ
2

]
3
/ rk(v)

)

= ι∗(Z1,Z2)

(
C3(0)/ rk(v)

)
+ (n−m)

rk(v)

2
βt,
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and formula (2.3). In the last line of (3.7) we use (3.5).

Write |Y | := |~Y1|+ . . .+ |~Yχ|, and write (ZY
1 , Z

Y
2 ) for the point of X [n] ×X [m]

with n +m = |Y | determined by an χ-tuple Y = (~Y1, . . . , ~Yχ) of pairs of Young

diagrams. Using that ι∗pi
KX = −w(xi) −w(yi), we get by localization, (3.7) and

(1.25)

(βΛ)−ξ2−3

∏χ
i=1 Z

inst
− rk(v)

(
w(xi), w(yi),

t−ι∗pi
ξ

2 ; Λe−βι∗pi
KX/4,β,βι∗pi

v(1)
)

∧
e−βt −χ̃(X,M∨)∨

∧
−eβt −χ̃(X,M)∨

)| t1→eβε1

t2→eβε2

=
∑

Y =(~Y1,...,~Yχ)

(βΛ)4|Y |−ξ2−3

×
∏χ

i=1 exp
(
β rk(v)|~Yi|w(xi)+w(yi)

2

)
C

~Y
− rk(v)(w(xi), w(yi),

t−ι∗pi
ξ

2 ;β,βι∗pi
v(1))

(∧
−1(T

∗
(ZY

1 ,ZY
2 )
X

[|Y |]
2 )

∧
−e−βt A∨

+(ZY
1 , Z

Y
2 )
∧

−eβt A∨
−(ZY

2 , Z
Y
1 ))
)
| t1→eβε1

t2→eβε2

= exp(−2β〈v(3)〉)
∑

n,m≥0

d=4(n+m)−ξ2−3

(βΛ)d

× χ̃
(
X [n] ×X [m],

λF1(v) ⊗ ΛF2(v)

e−βt( 1
2
χ(f2⊗v)−χ(f1⊗v)))∧

−e−βt A∨
+

∧
−eβt A∨

−

)
| t1→eβε1

t2→eβε2

= ∆̃X
ξ,e−βt(v,βΛ)| t1→eβε1

t2→eβε2

exp(−2β〈v(3)〉).

In the third line we use (3.7) and equivariant localization. �

Now we identify the contribution of the perturbation part. Let Õ be the ring

of holomorphic functions in (Λ,β, t) in a neighborhood of
√
−1R>0 ×

√
−1R<0 ×√

−1R>0.

Lemma 3.8.

χ∑

i=1

F pert(w(xi), w(yi),
t−i∗pi

ξ

2 ; Λe−βι∗pi
KX/4,β)

=
(
− (χ(M) + χ(M∨)

)
log(βΛ) − β〈K3

X〉
48

+
β

2
〈Todd2(X)KX〉

+ log
( 1∧

−eβt −χ̃(X,M)∨
∧

−e−βt −χ̃(X,M∨)∨

)
| t1→eβε1

t2→eβε2

.

holds in Õ[[ε1, ε2]][
∏

i(w(xi)w(yi))
−1].
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Proof. By [20, (3.17)] we get that
∑χ

i=1 F
pert
K (w(xi), w(yi),

t−i∗pi
ξ

2 ; Λ,β) is given

by the same formula with β
2 〈Todd2(X)KX 〉 replaced by −β

4 〈ξ2KX〉 + β
2 〈ξKX〉t.

Note that by (1.28), when changing Λ to Λe−βKX/4, the result changes by adding

−β

χ∑

i=1

w(xi) + w(yi)

4w(xi)w(yi)

(
(t− ι∗pi

ξ)2 +
w(xi)

2 + w(yi)
2 + 3w(xi)w(yi)

6

)

=
(β

4
〈ξ2KX〉 − β

2
〈ξKX〉t+

β

2
〈Todd2(X)KX 〉

)
.

The result follows. �

Writing ch(−χ̃(X,M)) =
∑ℓ

i=0 e
αj , ch(−χ̃(X,M∨)) =

∑ℓ′

i=0 e
α′

k , we see that

log
( β−(χ(M)+χ(M∨))

∧
−eβt −χ̃(X,M)∨

∧
−e−βt −χ̃(X,M∨)∨

)
| t1→eβε1

t2→eβε2

=

ℓ∑

j=1

log
( β

1 − e−(αj−t)β

)
+

ℓ′∑

k=1

log
( β

1 − e−(α′
k+t)β

)
.

(3.9)

Let O denote the ring of holomorphic functions in (t,Λ,β) in an open subset of

C3 which contains for any (t,Λ) ∈ (C \ R≤0)
2 an open neighbourhood of β = 0.

Then (3.9) shows that the left hand side of Lemma 3.8 lies in O[[ε1, ε2]]. Thus

we can view also the left hand side of Lemma 3.8 to lie in O[[ε1, ε2]], and we can

take the exponential of both sides of the equation. Note that the exponential of

the right hand side lies in Q(eβε1, eβε2 , eβt)[[βΛ]]. With this remark Theorem 3.3

follows from Lemma 3.4 and Lemma 3.8.

Now we express ∆̃X
ξ,T (v,Λ) in terms of the Z− rk(v)(ε1, ε2, a; Λ,β). The Nekrasov

conjecture determines the lowest order terms in ε1, ε2 of F− rk(v)(ε1, ε2, a; Λ,β),

but not of F− rk(v)(ε1, ε2, a; Λ,β, τ).

Corollary 3.10. Let v ∈ KΓ(X).Then

∆̃X
ξ,e−βt(v,βΛ) =

1

βΛ
exp

(
β
(〈K3

X〉
48

− 1

2

〈
Todd2(X)(KX + c1(v) +

rk(v)

2
(c1 −KX))

〉
+ 2〈[ch(v)ec1/2 Todd(X)]3〉

))

×
( χ∑

i=1

F− rk(v)

(
w(xi), w(yi),

t−ι∗pi
ξ

2 ; Λe−
β

4
ι∗pi

(KX+c1(v)+ rk(v)
2

(c1−KX)))).
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Proof. Let τ, σ be variables. In the same way as in [42, section 4.5], we see that

Z inst
m (ε1, ε2, a; Λe

−σ/4,β, τ) = exp
( τa2

ε1ε2

)
Z inst

m (ε1, ε2, a; Λe
−(τ+σ)/4 ,β).

On the other hand, by [43, formula after (4.12)], we get that

F pert
m (ε1, ε2, a; Λe

−σ/4,β, τ) = F pert
m (ε1, ε2, a; Λe

−(τ+σ)/4 ,β)

− τa2

ε1ε2
− τ(ε21 + ε22 + 3ε1ε2)

24ε1ε2
.

The result follows by by localization and Theorem 3.3. �

4. Explicit formulas in terms of modular forms

The result of [43] together with §A implies that the following solution of

Nekrasov’s conjecture and its refinement are true for the K-theoretic partition

function when m = 0:

(1) ε1ε2Fm(ε1, ε2, a; Λ) is regular at ε1, ε2 = 0,

(2) F0(a; Λ) is the Seiberg-Witten prepotential associated with the Seiberg-

Witten curve Y 2 = P (X)2 − 4(−X)2+m(βΛ)4,

(3) H comes only from the perturbation part, i.e. H(a,Λ) = π
√
−1a,

(4) expA =
(

2
θ00θ10

)1/2
, expB = θ01 expA, where the θ∗∗ are theta functions

with variable q = e2π
√
−1τ , where τ is the period of the above Seiberg-

Witten curve, i.e. τ = − 1
2π

√
−1

∂2F0
∂a2 .

Here F0, H, A, B are given by the expansion

(4.1) ε1ε2Fm(ε1, ε2, a; Λ,β)

= F0(a; Λ,β) + (ε1 + ε2)H(a; Λ) + ε1ε2A(a; Λ,β) +
ε21 + ε22

3
B(a; Λ,β) + · · · .

When |m| < 2, the above (1)−(3) follow from a conjectural blowup equation (1.37)

as we explained in §1.7. The analogue of the statement (4) is (1.44) which fol-

lows from the conjecture (1.43). In the above we implicitly assume |m| ≤ 2 as

the Seiberg-Witten curve changes the genus otherwise. According to a physical

argument [27, 51], the remaining case m = ±2 is similar to the case |m| < 2,

in particular (1),(2) should be true. (These probably follow from the approach

in [48].) But we believe that the blowup equation must be modified, and (3) is

probably not true.
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In the following we assume the above (1)−(3) and (1.44) are also true for

m = ±1.

Once we have the above (1)−(3), then the same argument as in [20, proof of

Thm. 4.2, in particular of (4.12)] gives

Corollary 4.2.

∆X
ξ,e−βt(v,βΛ)

∣∣∣
t=2a

=
1

βΛ

√
−1

〈ξ,KX〉
q−

1
2(

ξ
2)

2

× exp

[
β

8

∂2F0

∂a∂ log Λ

〈
ξ(KX + c1(v) +

rk(v)

2
(c1 −KX))

〉

+
β2

32

∂2F0

(∂ log Λ)2

〈
(KX + c1(v) +

rk(v)

2
(c1 −KX))2

〉
+ χA+ σB

]
.

We have expressed the wallcrossing ∆X
ξ,e−βt(v,βΛ) in terms of the partition

function with 5D Chern-Simons term. As in [20, §4] we use the Nekrasov conjec-

ture to give an explicit formula in terms of q-development of modular forms.

We identify t/2 with a hereafter.

Theorem 4.3. (1) Let ∆X
ξ (v,βΛ) =

∑
n≥0 ∆nΛ4n−ξ2−3. Then ∆n is equal to 0

if 〈ξ, c1(v) + rk(v)
2 (c1 −KX)〉 + rk(v)n is odd, and equal to the coefficient in

2 Coeff
(q1/8)0

[
∆X

ξ,e−2βa(v,Λ)
a2

Λ

∣∣∣∣
a=a(q1/8,Λ)

q1/8 ∂
(

Λ
a

)

∂(q1/8)

]

otherwise.

(2) Suppose rk(v) = −m = 0. Then the terms in [ ] above are given in explicit

modular forms in C((q1/8))[[Λ]].

Here the change of variable from Λ
a to q1/8 will be explained later during the

proof. It will be done in several steps in §§4.1,4.2,4.3. The explicit forms stated

in (2) will be given in §4.4.

For rk(v) = ±1, the terms are written in terms of the Seiberg-Witten prepo-

tential F0, but we do not know how to write them explicitly in terms of q1/8 and

Λ at this moment. This is a problem about elliptic integrals and modular forms.
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4.1. From the residues at eβa = 0,∞ to the residue at eβa = 1. Let

∆X
ξ,e−2βa(v,βΛ) =

∑
n≥0 ∆nΛ4n−ξ2−3.

Proposition 4.4. (1) The coefficient ∆n is a rational function in eβa, which is

regular on P1 \ {0,∞, 1,−1}.

(2) ∆n is multiplied by (−1)〈ξ,c1(v)+
rk(v)

2
(c1−KX)〉+rk(v)n under the replacement

eβa 7→ −eβa.

Corollary 4.5. Assume rk(v) and 〈ξ, c1(v) + rk(v)
2 (c1 −KX)〉 are even. Then

∆X
ξ (v;βΛ) = Res

e−βa=0
∆X

ξ,e−2βa(v;βΛ)
de−βa

e−βa
+ Res

e−βa=∞
∆X

ξ,e−2βa(v;βΛ)
de−βa

e−βa

= −2 Res
e−βa=1

∆X
ξ,e−2βa(v; Λ)

de−βa

e−βa
.

The first equality follows from (1) (and T = e−βt = e−2βa). The second equal-

ity follows from (1) and the residue theorem, together with (2). This corollary

means that we can move the position taking residues from 0, ∞ to 1.

When either rk(v) or 〈ξ, c1(v) + rk(v)
2 (c1 −KX)〉 is not even, the coefficient of

Λ4n−ξ2−3 in the left hand side is 0 or equal to the coefficient in the right hand

side, depending on the parity of (−1)〈ξ,c1(v)+ rk(v)
2

(c1−KX)〉+rk(v)n. We assume that

both are even for brevity in the above corollary, but it is clear that we have a

statement like in Theorem 4.3(1).

Before starting the proof of Proposition 4.4 we give new variables so that the

partition function becomes homogeneous.

Recall we set a1 = −a, a2 = a. Following [43, §5], we set

ζα,β :=
β

1 − e−(aα−aβ)β
.

We first consider the case when the 5D Chern-Simons term is not included.

By [43, (5.3)] we have

ε1ε2F
inst
K ∈ C[ζ1,2, ζ2,1,β][[ε1, ε2, ζ1,2Λ

4]].

We assign degrees as deg ε1 = deg ε2 = deg Λ = 1 and deg β = deg ζα,β = −1.

Then Z inst
K is homogeneous of degree 0, and hence ε1ε2F

inst
K is of degree 2. Let

F inst
0 := ε1ε2F

inst
K

∣∣
ε1=ε2=0

=
∑

n≥1

F inst
n (βΛ)4n.
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Then the coefficient F inst
n is a homogeneous polynomial of β and ζα,β of degree

2 − 4n. When we exchange a1 and a2, ζ2,1 and ζ1,2 are exchanged accordingly.

Since F inst
n is symmetric in a1, a2, F inst

n is symmetric in ζ1,2 and ζ2,1. By the

equality ζ2,1 = β − ζ1,2, we see that there is a weighted homogeneous polynomial

A4n−2(x, y) ∈ C[x, y] of degree 4n− 2 with deg x = 1 and deg y = 2 such that

F inst
n = A4n−2(β, ζ1,2ζ2,1).

Moreover, as F inst
K is a formal power series in ζ1,2Λ

4 by [43, (5.3)], F inst
n is divisible

by (ζ1,2ζ2,1)
n.

We further introduce

z :=
−
√
−1βΛ

eβa1 − eβa2
.

We have z2 = ζ1,2ζ2,1Λ
2. From the above consideration we have

(4.6) F inst
0 ∈ z2Λ2C[β,Λ][[z2]].

As ∂
∂az = −z(ζ1,2 − ζ2,1), and ∂

∂a(ζ1,2 − ζ2,1) = 4(z/Λ)2, we have

∂F inst
0

∂a
∈ (ζ1,2 − ζ2,1)z

2Λ2C[β,Λ][[z2]],

∂F inst
0

∂a2
∈ z2C[β,Λ][[z2]].

(4.7)

Even when we include the 5d Chern-Simons term (1.25), we can repeat the above

proof. We only need to replace C[β,Λ] by C[β,Λ, e± rk(v)βa].

Proof of Proposition 4.4. Let us look at the expression of ∆X
ξ,e−2βa(v,βΛ) given

in Corollary 4.2. We will write it as a multiple of an explicit rational function

in eβa and a formal power series in z. The explicit function comes from the

perturbation part of the partition function.

First note that ∂2F0
(∂ log Λ)2

consists only of the instanton part. Therefore (4.6)

implies

∂2F0

(∂ log Λ)2
∈ z2Λ2C[β,Λ, e± rk(v)βa][[z2]].

Next we have

q1/8 =

( −
√
−1βΛ

e−βa − eβa

)
exp

(
−1

8

∂2F inst

∂a2

)
∈ z

(
1 + z2C[β,Λ, e± rk(v)βa][[z2]]

)
.

(4.8)
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from (4.7). Here we have used

γ′′0(x|β; Λ) = 2 log

( −
√
−1βΛ

eβx/2 − e−βx/2

)

(cf. (A.8)) to calculate the first term coming from the perturbation part.

Next consider the genus 1 parts. When rk(v) = 0, we have

exp(χA+ σB) =

(
2

θ00θ10

)2

θσ
01 ∈ 4z−2

(
1 + z2C[β,Λ, e± rk(v)βa][[z2]]

)
.

The case rk(v) = ±1 is similar thanks to (1.44).

Finally again by (4.7) we have

exp

(
β

8

∂2F0

∂a∂ log Λ
〈ξ,KX + c1(v) +

rk(v)

2
(c1 −KX)〉

)
=
(
e−βa

)N

× exp

(
N

β

8

∂2F inst
0

∂a∂ log Λ

)
∈
(
e−βa

)N
C[β,Λ, e± rk(v)βa][[(ζ1,2 − ζ2,1)z

2Λ2, z2]],

with N = 〈ξ,KX +c1(v)+
rk(v)

2 (c1−KX)〉. Note that 〈ξ, c1−KX〉 ≡ 〈ξ, ξ−KX〉 ≡
0 mod 2, where the first equality follows from the assumption (§2.1(2)), and the

second from the Riemann-Roch theorem. Therefore N is an integer.

As z = −
√
−1βΛ

e−βa−eβa , ζ1,2− ζ2,1 = −β e2βa+1
e2βa−1

, the statement (1) becomes clear now.

Let us check the statement (2). We substitute eβa by −eβa. Then z changes

the sign and ζ1,2, ζ2,1 are invariant. Therefore the change of the instanton part of

∆X
ξ,e−2βa(v,βΛ) comes only from C

~Y
− rk(v)(ε1, ε2, a;β, τ) in (1.25). It is multiplied

by (−1)rk(v)(|Y 1|+|Y 2|). The perturbation part of ∆X
ξ,e−2βa(v,βΛ) is multiplied by

(−1)N+〈ξ2〉 = (−1)〈ξ,c1(v)+ rk(v)
2

(c1−KX)〉.

Altogether the coefficient of Λ4n−ξ2−3 in ∆X
ξ,e−2βa(v,βΛ) is multiplied by

(−1)〈ξ,c1(v)+ rk(v)
2

(c1−KX)〉+rk(v)n.

�

4.2. From the expansion at a = 0 to a = ∞. We set β = 1 hereafter.

We expand ∆X
ξ,e−2a(v,Λ) at a = 0:

(4.9) ∆X
ξ,e−2a(v; Λ) =

∑

n≥0
m∈Z

∆m,na
mΛ4n−ξ2−3 ∈ Λ−ξ2−3C((a))[[Λ]].
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Then

Res
ea=1

∆X
ξ,e−2a(v; Λ)

dea

ea
= Coeff

(a)0

[
∆X

ξ,e−2a(v; Λ) × a
]

=
∑

n

∆−1,nΛ4n−ξ2−3.

Proposition 4.10. ∆X
ξ,e−2a(v; Λ) is in Λ−ξ2−3C[[Λa , a]], i.e. ∆m,n = 0 unless

m ≥ −n in (4.9).

This is a consequence of the proof of Proposition 4.4. The key observation is

that z, (ζ1,2 − ζ2,1)Λ ∈ Λ
a C[[a]].

We rewrite the above expansion as

∆X
ξ,e−2a(v; Λ) × a =

∑

n≥0
m+n≥0

∆m,na
m+1Λ4n−ξ2−3

=
∑

n≥0
m+n≥0

∆m,n

(
Λ

a

)−m−1

Λ4n+m+1−ξ2−3.

The last expression is an element in Λ−ξ2−2C((Λ
a ))[[Λ]], and

∑
n ∆−1,nΛ4n−ξ2−3

is equal to its coefficient of
(

Λ
a

)0
. Thus we get

Corollary 4.11.

2 Res
ea=1

∆X
ξ,e−2a(v; Λ)

dea

ea
= 2Coeff

(Λ
a
)0

[
∆X

ξ,e−2a(v; Λ) × a

Λ
Λ
]
.

4.3. From a = ∞ to q = 0. By (4.8) we have the following expansion in C[[Λa , a]]:

q1/8 =

√
−1Λ

2a

(
1 +O(a,

Λ

a
)

)
.

As in the previous subsection, we consider this as an element in C((Λ
a ))[[Λ]].

Then we have

q1/8 = q0(
Λ

a
) + q1(

Λ

a
)Λ + · · · ,

q0(
Λ

a
) =

√
−1Λ

2a
+ b2

(
Λ

a

)2

+ b3

(
Λ

a

)3

+ · · · , bi ∈ C.

From this we see that C((Λ
a ))[[Λ]] ∼= C((q0))[[Λ]] ∼= C((q1/8))[[Λ]]. We now change

the variable from Λ
a2

to q1/8 by the following lemma:
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Lemma 4.12. Let us consider the change of the variable from x to y given by

y = y(x,Λ) = y0(x)+y1(x)Λ+ · · · ∈ C((x))[[Λ]]. Assume y0(x) = x+a2x
2 + · · · ∈

x(1 + xC[[x]]). Let f(y,Λ) ∈ C((y))[[Λ]] ∼= C((x))[[Λ]]. Then

Coeff
y0

[yf(y,Λ)] = Coeff
x0

[
xf(y(x,Λ),Λ)

dy

dx

]
.

This lemma just means the invariance of the residue under the change of vari-

ables. As we have an extra parameter Λ which does not appear in the usual

setting, we give a proof.

Proof. It is enough to check the case f(y,Λ) = ym−1 for m ∈ Z. First suppose

m 6= 0. Then the left hand side is equal to 0. On the other hand,

y(x,Λ)m−1 dy

dx
=

1

m

d

dx
(y(x,Λ)m)

does not contain the term x−1, as it is a derivative of a formal power series in x.

Therefore the right hand side is also 0.

Next suppose m = 0. Then the left hand side is 1. Let us consider

log
y(x,Λ)

y0(x)
= log

(
1 +

y1(x)

y0(x)
Λ + · · ·

)
.

This is well-defined in C((x))[[Λ]]. Then we have

1

y(x,Λ)

dy

dx
=

1

y0(x)

dy0(x)

dx
+

d

dx

{
log

(
1 +

y1(x)

y0(x)
Λ + · · ·

)}

=
1

x
(1 + a2x+ · · · )−1 (1 + 2a2x+ · · · ) +

d

dx

{
log

(
1 +

y1(x)

y0(x)
Λ + · · ·

)}
.

The second term does not contain the term x−1 by the same reason as above.

Therefore we get x−1 only from the first term. Hence we have found that the

right hand side is also equal to 1. �

Applying this to the right hand side of Corollary 4.11 we get

2 Coeff
(Λ

a
)0

[
∆X

ξ,e2a(u; Λ) × a
]

= 2 Coeff
(q1/8)0

[
∆X

ξ,e2a(u; Λ) ×
( a

Λ

)2
Λ

∣∣∣∣
Λ
a
=Λ

a
(q1/8,Λ)

q1/8 d(Λ
a )

d(q1/8)

]
.

This completes the proof of Theorem 4.3(1).
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4.4. Explicit expressions. Our remaining task is to express the terms in [ ] of

the right hand side of Theorem 4.3 in explicit forms in C((q1/8))[[Λ]]. We suppose

m = − rk(v) = 0 in this subsection.

By [43, §5] exp(χA + σB) can be written explicitly in terms of q1/8. So we

only need to express q1/8 ∂(Λ/a)

∂(q1/8)
, ∂2F0

∂a∂ log Λ , and ∂2F0
(∂ log Λ)2 . The expressions will be

given in (4.14), (4.15), (4.16) respectively.

4.4.1. The term q1/8 ∂(Λ/a)

∂(q1/8)
. We consider a defined as a period of the Seiberg-

Witten curve as in §A. In particular, we are in the region D∗ such that
√
−1a

has a large real part and 0 < |Λ| ≪ 1. We will compute q1/8 ∂(Λ/a)

∂(q1/8)
first in this

region and then see later that the computation holds in C((q1/8))[[Λ]].

For simplicity we introduce a variable u by

u := −θ
4
00 + θ4

10

θ2
00θ

2
10

β2Λ2 ∈ β2Λ2C((q1/8))

where θ-functions are evaluated at (0, τ). This definition is motivated by a fun-

damental variable in the homological version (see [20, (4.1)]). By (A.34) we have

U1 = ±2

√
1 + u+ β4Λ4.

By a certain standard equality for θ-functions (cf. [20, p.29]) we have

du

dτ
= −β2Λ2π

2
√
−1

θ8
01

θ2
00θ

2
10

.

Combining this with (A.35), we get

da

dτ
=

da

dU1

dU1

dτ
= ±πΛ

4

θ8
01

θ00θ10

1√
1 + u+ β4Λ4

.

Therefore we have

(4.13)

(
dτ

da

)2

=
16

π2Λ2

θ2
00θ

2
10

θ16
01

(
1 + u+ β4Λ4

)
.

This is a priori an equality on D∗. However both sides extend to Λ = 0: The

right hand side is a function in q1/8 and we have q1/8 ∼ −
√
−1βΛ

eβa1−eβa2
. Here ∼ means

the equality up to the instanton part.

Therefore θ10/Λ and u are regular at Λ = 0, hence so is the right hand side.

The left hand side is a triple derivative of the prepotential with respect to a, and
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hence has no perturbation part. Thus it is regular at Λ = 0. Therefore (4.13)

holds even at Λ = 0.

Next we consider the coefficients of Λk for both sides of (4.13). The equality

holds a priori for a such that
√
−1a has a large real part. However both sides

are rational functions in eβa: This claim can be checked as above. The left

hand side has no perturbation part, so the claim was proved during the proof of

Proposition 4.4. The right hand side is a function in q1/8, hence the claim was

again proved during the proof of Proposition 4.4. Considering the expansion at

a = 0, we conclude that (4.13) holds in C((a))[[Λ]].

From the discussion in §4.2 we see that both sides of (4.13) are in 1
a2 C[[a, Λ

a ]].

Therefore (4.13) holds in 1
a2 C[[a, Λ

a ]], and hence in C((Λ
a ))[[Λ]]. We now change

the variable from Λ/a to q1/8 as in §4.3 and use the composition law to get

(
a2

Λ
q1/8 d

(
Λ
a

)

d(q1/8)

)2

=

(
−
√
−1

θ8
01Λ

θ00θ10

)2
1

1 + u+ β4Λ4
.

As a ∼
√
−1
2

Λ
q1/8 , we can determine the branch of the square root to get

(4.14)
a2

Λ
q1/8 d

(
Λ
a

)

d(q1/8)
=

√
−1

θ8
01Λ

θ00θ10

∑

n≥0

(−1
2

n

)
(u+ β4Λ4)n.

This is an equality in C((q1/8))[[Λ]].

4.4.2. The term ∂2F0
∂a∂ logΛ . Let h := −1

4
∂2F0

∂a∂ logΛ = π
√
−1

2
∂aD

∂ log Λ . Let us rewrite

(A.36) in terms of sn associated with the elliptic curve with period τ . (Be aware

that we have used sn with period −2/τ before.) We get

−θ10
θ00

sn(θ2
00

βh

2
√
−1

, κ(τ)) =
θ11(

βh
2π

√
−1

)

θ01(
βh

2π
√
−1

)
= −βΛ.

Therefore

θ2
00

βh

2
√
−1

=

∫ θ00
θ10

βΛ

0

dx√
(1 − x2)(1 − κ2x2)

=
θ00
θ10

∫ βΛ

0

dx√
1 + u

β2Λ2x
2 + x4

.

Therefore

h =
2
√
−1

βθ00θ10

∫ βΛ

0

dx√
1 + u

β2Λ2x
2 + x4

.
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Using 1√
1+ u

β2Λ2 x2+x4
=
∑

n≥0,n≥k≥0

(− 1
2

n

)(n
k

) (
u

β2Λ2

)k
x4n−2k, we get

(4.15) h =
2
√
−1

βθ00θ10

∑

n≥0
n≥k≥0

(−1
2

n

)(
n

k

)
uk(βΛ)4(n−k)+1

4n − 2k + 1
.

This gives us an explicit expression in terms of q1/8 as, e.g.

βθ00θ10h = 2
√
−1
(
βΛ − u

6
βΛ + · · ·

)
.

4.4.3. The term ∂2F0
(∂ log Λ)2 . We use

θ11(
βh

2π
√
−1
, τ)

θ01(0, τ)
=
θ11(

βh
2π

√
−1
, τ)

θ01(
βh

2π
√
−1
, τ)

θ01(
βh

2π
√
−1
, τ)

θ01(0, τ)
= −βΛexp

(
β2

32

∂2F0

(∂ log Λ)2

)
,

where the second equality follows from (A.36) and (A.23). We use the formula

(see [53, 21·43]):
θ11(z, τ)

θ′11(0, τ)
= z exp

(
−

∞∑

k=1

G2k(τ)

2k
z2k

)
,

where G2k = 2ζ(2k)E2k are Eisenstein series, and E2k are normalized Eisenstein

series. Using Jacobi’s derivative formula ([53, 21·41]), we get

(4.16)
β2

32

∂2F0

(∂ log Λ)2
= log

[
θ00θ10h

2
√
−1Λ

]
−

∞∑

k=1

G2k(τ)

2k

(
βh

2π
√
−1

)2k

.

Combining with (4.15), we get an explicit formula of ∂2F0
(∂ log Λ)2

in terms of q1/8.

For example, we have

β2

32

∂2F0

(∂ log Λ)2
= −u

6
+
h2

24
E2β

2 + · · · .

4.5. Explicit computations: the case of P2. Let H be the hyperplane bundle

on P2, we denote by the same letter its first Chern class. As an illustration of

our results we compute the holomorphic Euler characteristics of determinant line

bundles on MP2
H (0, d) and MP2

H (H, d), and write the corresponding Hilbert series

explicitly for small d.

The determinant line bundles µ(H⊗n) are by (1.4) defined on MP2
H (0, d) for all

n and on MP2
H (H, d) for n even. Let Y be the blowup of P2 in a point, and let E

be the exceptional divisor. Denote by H also its pullback to Y , and write F =

H−E. Then for ǫ sufficiently small MY
F+ǫH(E, d+1) = ∅, MY

F+ǫH(H, d) = ∅, and
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thus χ(MY
F+ǫH(E, d+1),O(µ(H⊗n))) = 0, χ(MY

F+ǫH(H, d),O(µ(H⊗2n))) = 0 for

all n. On the other hand we get by Corollary 1.8 χ(MP2

H (0, d),O(µ(H⊗n))) =

χ(MY
H−ǫE(E, d+1),O(µ(H⊗n))), χ(MP2

H (H, d),O(µ(H⊗2n))) = χ(MY
H−ǫE(H, d),

O(µ(H⊗2n))). Thus we only have to sum the wallcrossing over all the classes ξ

of type E (respectively of type H) with 〈ξH〉 > 0 > 〈ξF 〉. These are
{
2mH −

(2l + 1)E
∣∣ l ≥ m > 0

}
for type E and

{
(2m− 1)H − 2lE

∣∣ l ≥ m > 0
}

for type

H.

Putting this into Theorem 4.3 and using the results of subsection §4.4, and

putting β = 1, we obtain the following.

∑

d≥0

χ(MP2

H (0, d),O(µ(H⊗n)))Λd

= Coeff
q0

[
∑

l≥m>0

(−1)l+m+1q
1
2
((l+ 1

2
)2−m2)e(m(n+3)−l−1/2)h

(
−
θ11(

h
2π

√
−1

)

Λθ01

)n2+6n+8 8θ8
01

Λθ3
00θ

3
10

1√
1 + u+ Λ4

]
,

∑

d≥0

χ(MP2

H (H, d),O(µ(H⊗2n)))Λd

= Coeff
q0

[
∑

l≥m>0

(−1)l+mq
1
2
(l2−(m− 1

2
)2)e((m− 1

2
)(2n+3)−l)h

(
−
θ11(

h
2π

√
−1

)

Λθ01

)4n2+12n+8 8θ8
01

θ3
00θ

3
10

1√
1 + u+ Λ4

]
.

It is straightforward to write a maple program which computes the lower order

terms in Λ. This computation can be extended to much higher degrees in Λ, in

principle up to any given power. We get

∑

n≥0

χ(MP2

H (0, d),O(µ(H⊗n))tn =
Pd(t)

(1 − t)d+1
, 5 ≤ d ≤ 21,

∑

n≥0

χ(MP2

H (H, d),O(µ(H⊗2n))tn =
Qd(t)

(1 − t)d+1
, 0 ≤ d ≤ 24,

with Pd(t) ∈ Z[t] of degree d−5 with td−5Pd(1/t) = Pd and Qd(t) ∈ Z[t] of degree

d− 2 with td−2Qd(1/t) = Qd for d ≥ 4. In particular

P5 = 1, P9 = 1 + t2 + t4, P13 = 1 + t+ 7t2 + 7t3 + 22t4 + 7t5 + 7t6 + t7 + t8,
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P17 =1+3t+27t2+83t3+312t4+504t5+680t6+504t7+312t8+83t9+27t10+3t11+t12,

P21 = 1 + 6t+ 77t2 + 484t3 + 2877t4 + 10374t5 + 27027t6 + 46992t7 + 57532t8

+ 46992t9 + 27027t10 + 10374t11 + 2877t12 + 484t13 + 77t14 + 6t15 + t16;

Q0 = 1, Q4 = 1 + t+ t2, Q8 = 1 + 12t+ 57t2 + 92t3 + 57t4 + 12t5 + t6,

Q12 = 1 + 43t+ 751t2 + 5301t3 + 16598t4 + 24137t5 + . . .

Q16 = 1 + 109t+ 5149t2 + 103820t3 + 976685t4 + 4609643t5 + 11476395t6

+ 15506676t7 + . . .

Q20 = 1 + 231t+ 25026t2 + 1189860t3 + 26750979t4 + 308439936t5

+ 1946037411t6 + 7038264246t7 + 15046564512t8 + 19347012191t9 + . . .

Q24 = 1 + 437t+ 97958t2 + 9845240t3 + 467190310t4 + 11368550417t5

+ 152640855877t6 + 1196951395072t7 + 5716465354180t8 + 17128652740280t9

+ 32841892687972t10 + 40750517543272t11 + . . . ,

where . . . stands for terms of degree larger than deg(Qd)/2. One checks that

Pd(1) = ΦP2

0 (Hd), Qd(1) = 2dΦP2

H (Hd), by comparing with [13], as required by

the Hirzebruch-Riemann-Roch theorem. In [5],[6] the χ(MP2

H (0, d),O(µ(H⊗n))

were determined for d ≤ 13 and all n and for d = 17, n = 2, 3.

4.6. Generalization to non-toric surfaces. In this section we will general-

ize our results to arbitrary simply connected surfaces. We extend Corollary 4.2

and Theorem 4.3 for the wallcrossing terms to any good wall ξ on any sim-

ply connected projective surface X with pg = 0. More generally let X be a

smooth projective surface (not necessarily connected), and let ξ ∈ Pic(X) and

v ∈ K(X). We define the wallcrossing terms ∆X
ξ,T (v,Λ), ∆X

ξ (v,Λ) by the formulas

(2.4),(2.6),(2.7), where we replace in the summation index d = 4(n+m)−ξ2−3 by

d = 4(n+m)−ξ2−3χ(OX). Then we show that these are computed by a suitable

generalization of Corollary 4.2 and Theorem 4.3. This is done by adapting the

corresponding argument of [20] for the wallcrossing of the usual Donaldson in-

variants, which is based on the fact that intersection numbers on Hilbert schemes

of points on X are given by universal formulas in terms of intersection numbers

on X.

If X is a simply connected with pg = 0 and ξ is a good class, then Proposi-

tion 2.11 shows that the wallcrossing of the K-theoretic Donaldson invariants for

the wall defined by ξ is given by the wallcrossing terms, thus we get a formula for
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the wallcrossing in terms of modular forms and elliptic functions. In the future

we plan to adapt the arguments of [40] to show that Proposition 2.11 and thus

our wallcrossing formula also holds in case ξ is not good.

We start by sketching a proof of the following result:

Lemma 4.17. Fix r ∈ Z. There exist universal power series Ai ∈ ΛQ((T ))[[Λ]],

(i = 1, . . . , 7), such that for all projective surfaces X, ξ ∈ Pic(X) and all v ∈
K(X) of rank r

(−T )ξ(ξ−KX)/2+χ(OX )Λξ2+3χ(OX)

T ξv(1)/2(1 − T )ξ
2+2χ(OX)

∆X
ξ,T (v,Λ) =

exp(ξ2A1 + ξKXA2 +K2
XA3 + c2(X)A4 + ξv(1)A5 +KXv

(1)A6 + (v(1))2A7).

Here, as before v(1) = c1(v) + rk(v)
2 (c1 −KX).

A simple modification of the proof of [20, Lemma 5.5] shows the following.

Lemma 4.18. Fix n,m ≥ 0. Let P be any polynomial in chi1(A+), chi2(A−),

chi3(I1)ξ
i4/(v(1))i5 chi6(I2)ξ

i7/(v(1))i8 , ci9(X
[n]×X [n]) for i1, . . . , i9 ∈ Z≥0. Then

there exists a universal polynomial Q (depending only on P ) in ξ2, ξKX , K2
X ,

c2(X), ξv(1), KXv
(1), (v(1))2, such that

∫
X[n]×X[m] P = Q.

The statement is very similar to [20, Lemma 5.5]. The only differences are

that we replaced X
[l]
2 by X [n] ×X [m], and that we also allow the ci(X

[n] ×X [m])

in P . However looking at the proof of [20, Lemma 5.5] it obviously also works

for X [n] ×X [m], and in [14] the argument is also made for the ci(X
[n]). It readily

generalizes to X [n] ×X [m].

Denote the left-hand-side of Lemma 4.17 by ∆
X
ξ,T (v,Λ). By applying the

Riemann-Roch theorem to definition (2.6), we obtain that

∆
X
ξ,T (v,Λ) =

∑

n,m≥0

∑

i∈Z

Λ4(n+m)T i

∫

X[n]×X[m]

Sn,m,i,

where Sn,m,i is a polynomial in the Chern characters of A+, A−, λF1(v), λF2(v)

and the cj(X
[n]×X [n]), which is zero for i≪ 0. By (3.5) the Chern characters of

the λFj (v) are polynomials in the chi1(Ij)ξ
i2/(v(1))i3 . Thus by Lemma 4.18 we

see that ∆
X
ξ,T (v,Λ) =

∑
l≥0

∑
i∈Z Λ4lPl,iT

i, where Pl,i is a universal polynomial

in ξ2, ξKX , K2
X , c2(X), ξv(1), KXv

(1), (v(1))2, which is zero for i≪ 0. From the

definition (2.6), one readily computes that the coefficient of Λ0 of ∆
X
ξ,T (v,Λ) as
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a power series in Λ is 1. Now the proof of Lemma 4.17 is finished by the same

arguments as that of [20, Theorem 5.1].

Corollary 4.19. (1) Corollary 4.2 and Theorem 4.3 hold for any simply con-

nected smooth projective surface with pg = 0 and any ξ ∈ Pic(X).

(2) More generally for any smooth projective surface X and any ξ ∈ Pic(X)

we have

∆X
ξ,e−2βa(v,βΛ) =

√
−1

〈ξ,KX〉 q−
1
2
( ξ
2
)2

(βΛ)χ(OX )
exp

(
β

8

∂2F0

∂a∂ log Λ
〈ξ, v(1) +KX〉

+
β2

32

∂2F0

(∂ log Λ)2
〈(v(1) +KX)2〉

)
exp(A)4χ(OX ) exp(B −A)σ

Proof. It is enough to show part (2). We put T
1
2 := e−βa, and as above write

z = −
√
−1βΛ

e−βa−eβa =
√
−1βΛT

1
2

1−T . Then by (4.8) we have q
1
8 = z exp(l1), with l1 ∈

z2C[β, T± rk(v)/2,Λ][[z2]] ⊂ Λ2C[β,Λ]((T
1
2 )). Similarly (4.7) implies ∂2F0

(∂ log Λ)2 ∈
Λ2C[β,Λ]((T

1
2 )),

∂2Finst
0

∂a∂ log Λ ∈ Λ2C[β,Λ]((T
1
2 )), and from the definition we see that

∂2Fpert
0

∂a∂ log Λ = −8a. Finally by (1.44) we have exp(A) = q
1
16 exp(l2), exp(B − A) =

exp(l3), with l2, l3 ∈ ΛC[β,Λ]((T )). Thus we see that the left hand side of

Corollary 4.19 can be rewritten asM exp(ξ2B1+ξ(v
(1)+KX)B2+(v(1)+KX)2B3+

c2(X)B4 +K2
XB5), with Bi ∈ ΛC((T

1
2 ))[[Λ]] and

M =
√
−1

〈ξ,KX〉(
√
−1βΛT

1
2

1 − T

)−ξ2−2χ(OX)T 〈ξ(v(1)+KX)〉/2

Λχ(OX)

=
T ξv(1)/2(1 − T )ξ

2+2χ(OX)

(−T )ξ(ξ−KX)/2+χ(OX )Λ3χ(OX)
.

As the Ai, i = 1, . . . , 7 of Lemma 4.17 are determined by the ∆X
ξ,T (v,Λ) for toric

surfaces, Corollary 4.2 implies the result. �

When v = v(2L), we have v(1) + KX = KX − 2L, which is equal to the

negative of the characteristic line bundle detW± of the Spinc structure W± in-

duced from the complex structure of X and the line bundle L (see §1.3). Then√
−1

−〈ξ,KX〉 [
∆X

ξ (v,βΛ)
]
Λd

is a polynomial in 〈ξ, c1(detW±)〉 and 〈c1(detW±)2〉
whose coefficients depend only on 〈ξ2〉, d and the homotopy type of X. This

statement is a natural analogue of the Kotschick-Morgan conjecture [29] in the
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context of the K-theoretic Donaldson invariants. Thus our formula above sup-

ports our belief that the K-theoretic Donaldson invariants have a gauge theoretic

definition.

Appendix A. Seiberg-Witten curves for K-theoretic version

The purpose of this appendix is to prove some results on Seiberg-Witten curves

for the K-theoretic version with Chern-Simons terms. In particular, we show

a) the perturbation part of the Seiberg-Witten prepotential coincides with

the genus 0 part of the perturbation part introduced in §1.7.2,
b) the Seiberg-Witten prepotential satisfies the contact term equation in

Proposition 1.39.

The corresponding results of the Seiberg-Witten curves for the homological ver-

sion have been known [25, 38, 50, 18], and were reproduced in [43, §2]. Our proofs

go along the same line, while we need to consider the cases r +m even and odd

separately. The adaptation might be standard to experts, but we cannot find the

statements or proofs in the literature.

A.1. Seiberg-Witten curves. We consider a family of curves parametrized by
~U = (U1, . . . , Ur−1):

C~U,m : (−
√
−1βΛ)rX(r+m)/2

(
w +

1

w

)
= P (X),

P (X) = Xr + U1X
r−1 + U2X

r−2 + · · · + Ur−1X + (−1)r

for |m| ≤ r, m ∈ Z. We call them Seiberg-Witten curves. When r + m is odd,

we should understand this expression formally, and the rigorous definition will

be given soon below. The projection C~U,m ∋ (w,X) 7→ X ∈ P1 gives a structure

of hyperelliptic curves. The hyperelliptic involution ι is given by ι(w) = 1/w.

We introduce a new variable Y = (−
√
−1βΛ)rX(r+m)/2(w− 1

w ). Thus we have

Y 2 = P (X)2 − 4(−X)r+m(βΛ)2r.

This does make sense for r +m odd also.

Note that |m| ≤ r guarantees that the curve has genus r− 1. Later we further

assume |m| 6= r.
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If we replace the coordinate X (near 0) by 1/X (near ∞), then the equation

of the curve becomes

Y 2 = X2r
(
P (1/X)2 − 4(−1/X)r+m(βΛ)2r

)
= P̃ (X)2 − 4(−X)r−m(βΛ)2r,

where P̃ (X) = Xr + (−1)rUr−1X
r−1 + · · · + (−1)r. Thus the curves for m and

−m are essentially the same (exactly the same when r = 2), once written in a

coordinate near 0 and once in a coordinate near infinity.

Let us define the Seiberg-Witten differential by

dS =
1

2π
√
−1β

logX
dw

w
=

1

2π
√
−1β

logX
X(r+m)/2(X−(r+m)/2P (X))′dX

Y

=
1

2π
√
−1β

logX
2XP ′(X) − (r +m)P (X)

2XY
dX,

where we have used

X−(r+m)/2Y
dw

w
= (−

√
−1βΛ)r

(
w − 1

w

)
dw

w
=
(
X−(r+m)/2P (X)

)′
dX.

This is a multi-valued meromorphic differential on C~U,m. The last expression

makes sense even in the case r +m odd.

Let X1,. . . , Xr be the zeroes of P (X) = 0. We have
∏
Xi = 1.

A.2. Homological limit β → 0. We move β in a small disk around the ori-

gin. We see that the Seiberg-Witten curve becomes the Seiberg-Witten curve

for the homological version (i.e. the 4-dimensional gauge theory in the physics

terminology) at β = 0.

We choose zi with Xi = e−
√
−1βzi . We consider ~z = (zi) is a parameter for the

curve. Let X = 2−
√
−1βz

2+
√
−1βz

. Then

(−
√
−1β)−rX−(r+m)/2P (X)

=

(
1 +

β2z2

4

)− r+m
2
(

1 +

√
−1β

2

)m r∏

i=1

[
e−

√
−1βzi + 1

2
z − e−

√
−1βzi − 1

−
√
−1β

]
.

If we introduce a new variable y = (−
√
−1β)−rY (1 +

√
−1
2 βz)r, we have

y2 =

r∏

i=1

[
e−

√
−1βzi + 1

2
z − e−

√
−1βzi − 1

−
√
−1β

]2

− 4Λ2r

(
1 +

β2z2

4

)r−m(
1 −

√
−1β

2
z

)2m

.
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Therefore in the limit β → 0, the Seiberg-Witten curve converges to

Λr(w +
1

w
) =

r∏

i=1

(z − zi) or y2 =

r∏

i=1

(z − zi)
2 − 4Λ2r.

This is the Seiberg-Witten curve for the homological version. (The variable w is

the same.) The Seiberg-Witten differential converges to that of the homological

version, i.e. − 1
2πz

dw
w .

The points X = 0, ∞ correspond to z = 2
√
−1

β
, −2

√
−1

β
. Therefore in the limit

β → 0, both points go to a common point z = ∞.

We find X±
i near Xi such that

P (X±
i ) = ±2(−

√
−1βΛ)r(X±

i )(r+m)/2.

When r+m is odd, we take the branch of (X±
i )1/2 so that it is the same branch

as X
1/2
i = e−

√
−1βzi/2. Let us choose z±i so that

∏
(z±i − zi) = ±2Λr. Then

X±
i → z±i (more precisely after moving to the z-coordinates).

The correspondence between the coefficients is more tricky, as Ui is the ith ele-

mentary symmetric function in e−
√
−1βzi while ui is the ith elementary symmetric

function in zi, up to sign. For example, r = 2

U1 = −(e−
√
−1βz1 + e−

√
−1βz2) ≈ −2 +

β2

2
(z2

1 + z2
2) = −2 − β2u2.

A.3. ai, a
D
i and the prepotential F0. We first work in the region containing

z1, . . . , zr ∈ R and z1 > z2 > · · · > zr. Then we will analytically continue

to the whole region. The curve itself is parametrized by ~U , but its homology

basis introduced below depends on ~z = (zi). We also first suppose that Λ is a

sufficiently small positive real number and then will analytically continue to a

small punctured disk.

We take cycles Ai, Bj (i = 1, . . . , r, j = 2, . . . , r) so that it gives the cycles for

the Seiberg-Witten curves for the homological version given in [42, §2] at β = 0.

Let us explain a little bit more precisely: Our curve C~U is hyperelliptic and is

made up of two copies of the Riemann sphere, glued along the r cuts between

X−
i and X+

i . We then define Ai as the cycle encircling the cut between X−
i and

X+
i . Note that we have

∑
iAi = 0. We choose cycles Bj (j = 2, . . . , r) as in [42,

Figure 1], i.e. Bj is the sum
∑j

k=2Ck where Ck is a cycle starting from X±
k−1,

passing through X±
k , and then returning back to X±

k−1 in the another sheet. Here
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the sign is + for i odd, − for i even. Then Ai, Bi (i = 2, . . . , r) form a symplectic

basis of H1(C~U ,Z).

We define ai, a
D
j by

ai =

∫

Ai

dS, aD
j =

∫

Bj

dS, i = 1, . . . , r, j = 2, . . . , r.

We consider a region disjoint from a segment from ∞ to 0 which does not pass

e−
√
−1βzi . Therefore logX is single-valued in the region. We take the branch of

logX so that it is given by −
√
−1βzi at Xi = e−

√
−1βzi . The Ai, Bi cycles are

taken from the region.

We have the following expansion:

ai =
1

2π
√
−1β

∫

Ai

logXd


log




r∏

j=1

(X
1
2 − e−

√
−1βzjX− 1

2 )


− m

2
logX


+O(Λ)

= −
√
−1zi +O(Λ).

(A.1)

We invert the roles of ai and Up, so we consider ai as variables and Up are

functions in ai.

Let us differentiate the defining equation of C~U with respect to Up by setting

w to be constant:

(A.2) 0 =
(
X−(r+m)/2P (X)

)′ ∂X
∂Up

+X(r−m)/2−p.

Therefore the differential of the Seiberg-Witten differential dS is

(A.3)

∂

∂Up
dS

∣∣∣∣
w=const

= − 1

2π
√
−1β

X(r−m)/2−p−1

(X−(r+m)/2P (X))′
dw

w
= − 1

2π
√
−1β

Xr−p−1dX

Y
.

It is well-known that these form a basis of holomorphic differentials on C~U
for p =

1, . . . , r − 1 (see e.g., [21, §2.3]). In other words, the Seiberg-Witten differential

is a ‘potential ’ for holomorphic differentials.

Let (σip) be the matrix given by

σip =
∂ai

∂Up
= − 1

2π
√
−1β

∫

Ai

Xr−p−1dX

Y
i = 2, . . . , r, p = 1, . . . , r − 1.
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If (σpi) is the inverse matrix, the normalized holomorphic 1-forms

ωj = − 1

2π
√
−1β

∑

p

σpjX
r−p−1dX

Y
=

∂

∂aj
dS

∣∣∣∣
w=const

satisfies
∫
Ai
ωj = δij. Therefore the period matrix τ = (τij) of the curve C~U is

given by

(A.4) τij =

∫

Bi

ωj =
∂aD

i

∂aj
.

Since (τij) is symmetric (see e.g., [21, §2.2]), there exists a locally defined function

F0 such that

(A.5) aD
i = − 1

2π
√
−1

∂F0

∂aj
.

It is unique up to a function independent of ai. The ambiguity will be fixed later.

This function F0 is called the Seiberg-Witten prepotential. We may also write

F0(~a) or F0(~a; Λ).

A.4. Perturbative part. We determine the perturbative part of the prepoten-

tial F0 in this subsection.

Let

γ0(x|β; Λ) = 2

(
1

β2 (Li3(e
−βx) − ζ(3)) +

x2

2
log(βΛ) +

π2

6β
x

)
− x2π

√
−1

2
− βx3

6
,

where Li3 is the trilogarithm. See [42, App. B] for the definition and prop-

erties of polylogarithms. The relation to the perturbative part γ̃ε1,ε2(x|β; Λ)

in §1.6 is the following: We have defined γ̃ε1,ε2(x|β; Λ) first when βx > 0

and then analytically continued it to the whole plane. Then we considered

γ̃ε1,ε2(x|β; Λ) + γ̃ε1,ε2(−x|β; Λ). The coefficient of 1/ε1ε2 is equal to γ0(x|β; Λ).

See [43, p. 510, the second displayed formula from the bottom]. This becomes

regular and its value is −x2
(
log

√
−1x
Λ

)
+ 3

2x
2 at β = 0 ([loc.cit., p.510, the last

displayed formula]).

Proposition A.6.

F0(~a; Λ) = −
∑

i<j

γ0(ai − aj |β; Λ) − mβ

6

r∑

i=1

a3
i +O(Λ).
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The term −∑i<j γ0(ai − aj|β; Λ)− mβ
6

∑r
i=1 a

3
i is called the perturbative part

of F0. Recall that F0 was defined up to a function (in Λ) independent of ai. We,

in fact, prove

− ∂F0/∂ai = 2π
√
−1aD

i

= −
∑

j>1

γ′0(a1 − aj |β; Λ) +
∑

j:i<j

γ′0(ai − aj |β; Λ) −
∑

j:j<i

γ′0(aj − ai|β; Λ)

+
mβ

2

(
a2

i − a2
1

)
+O(Λ).

(A.7)

Then we take a function so that the above formula holds. The remained ambiguity

in O(Λ) will be fixed later.

Note that in the r = 2 case the term mβ
6

∑r
i=1 a

3
i vanishes as a1 + a2 = 0.

Therefore this does not show up in §1.6.

Let us describe the branch of γ0. As our β is in a small disk around the origin,

it is enough for us to fix the branch at β = 0. Then the ambiguity occurs only

at log
(√

−1x
Λ

)
. When z1 > · · · > zr and Λ ∈ R>0, ai is pure imaginary and

√
−1(ai − aj) ∈ R>0 for i < j. We then choose log

(√
−1x
Λ

)
∈ R. Therefore we

have aD
i ∈ R.

Note that

(A.8) γ′0(x|β; Λ) = −2

(
1

β
(Li2(e

−βx) − π2

6
) − x log(βΛ)

)
− xπ

√
−1 − βx2

2
.

We denote Li2(e
−βx) − π2

6 − βx log(βΛ) by L̂i2(e
−βx) for brevity.

Our proof is given so that it reduces to the proof of [42, Prop. 2.2] when β → 0.

(The proof of [42, Prop. 2.2] was based on [25] in turn.)

Proof of Proposition A.6. In the proof we move Λ in a punctured disk by analytic

continuation, starting from positive real numbers. Then aD
i is a multi-valued

holomorphic function in Λ.

Let Ci be a cycle starting from e−
√
−1βz±i−1 , passing through e−

√
−1βz±i , and

then returning back to e−
√
−1βz±i−1 in the another sheet. Here the sign is + for i

odd, − for i even. Then Bi =
∑i

k=2Ck.
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We note that
∫
Ci
dS is a local function of Λ2r. Since Ci changes to Ci + Ai −

Ai−1 under the analytic continuation along Λ2r → e2π
√
−1Λ2r,

∫
Ci
dS − (ai −

ai−1) log Λ2r is a single valued function on the punctured disk 0 < |Λ2r| ≪ 1.

We take a small positive real number δ with |Λ| ≪ δ and rewrite the integral

as

∫

Ci

dS = 2

∫ e−
√

−1βz±
i

e
−
√
−1βz±

i−1

dS

= 2

∫ e−
√

−1β(zi−1−δ)

e
−
√
−1βz±

i−1

dS + 2

∫ e−
√
−1β(zi+δ)

e−
√
−1β(zi−1−δ)

dS + 2

∫ e−
√

−1βz±
i

e−
√
−1β(zi+δ)

dS.

We first compute the second term. Let us write β′ = −
√
−1β for brevity.

Then

− 2π

∫ eβ′(zi+δ)

eβ′(zi−1−δ)
dS

= −
∫ zi+δ

zi−1−δ

mβ′t
2

dt+


∑

j

logX

β′ log

(
X

1
2 − eβ

′zjX− 1
2

β′Λ

)


eβ′(zi+δ)

eβ′(zi−1−δ)

−
∫ zi+δ

zi−1−δ

∑

j

(
β′t
2

+ log

(
1 − e−β′(t−zj)

β′Λ

))
dt+O(δ)

=

[
−mβ′

4
z2
i +

∑

j 6=i

zi log

(
1 − e−β′(zi−zj)

β′Λ

)
+
r

2
β′z2

i + zi log

(
1 − e−β′δ

β′Λ

)
− r

4
β′z2

i

− 1

β′
∑

j>i

L̂i2(e
−β′(zi−zj)) +

1

β′
∑

j<i

L̂i2(e
−β′(zj−zi)) +

∑

j<i

β′(zj − zi)
2

2

]

−
[
the same term with zi → zi−1

]
+O(δ).

Here we have determined the branch of log so that this is real-valued when

β = 0 and zj ’s are all real with z1 > · · · > zr. As β is small, we have

log

(
1−e−β′(t−zj)

β′Λ

)
≈ log(t− zj). We may also suppose t is real. Then the branch

of log(t − zj) is given so that it is a real number, i.e. log |t − zj |. There-

fore when t < zj (i.e. when we are integrating the summand j < i), we have

log

(
1−e−β′(t−zj)

β′Λ

)
= log

(
1−eβ′(t−zj)

β′Λ

)
− β′(t− zj), with the branch of log in the
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right hand is determined so that it is approximated by log |zj − t| = log(t− zj).

Similarly we have
∫

log

(
1−e−β′(t−zj)

β′Λ

)
dt = − 1

β′ L̂i2(e
β′(t−zj))− β′(t−zj)2

2 , and the

branch of L̂i is given by the same way.

Let us turn to the third term:

−2π

∫ eβ′z±
i

eβ′(zi+δ)
dS =

1

β′

∫ eβ′z±
i

eβ′(zi+δ)
logX

dw

w

=
1

β′

∫ eβ′z±
i

eβ′(zi+δ)
log eβ

′zi
dw

w
+

1

β′

∫ eβ′z±
i

eβ′(zi+δ)
(logX − log eβ

′zi)
dw

w
.

We take a positive number Nδ < δ such that

N r
δ

(
P (eβ

′(zi+δ))

β′rerβ′(zi+δ)/2

)−1

≪ δ.

Then for |Λ| < Nδ, we have
√

1 − 4Λ2r

(
P (eβ

′(zi+δ))

β′rerβ′(zi+δ)/2

)−2

= 1 +O(δ).

We note that w
|eβ′z±

i
= ±1.

1

β′

∫ eβ′z±
i

eβ′(zi+δ)
log eβ

′zi
dw

w
= zi[logw]e

β′z±
i

eβ′(zi+δ) = zi

[
log

Y + P (X)

2(β′Λ)rX(r+m)/2

]eβ′z±
i

eβ′(zi+δ)

= − zi log


 1

2(β′Λ)r


 P (eβ

′(zi+δ))

w
|eβ′z±

i
e(r+m)β′(zi+δ)/2




×


1 +

√

1 − 4Λ2r

(
P (eβ

′(zi+δ))

β′rerβ′(zi+δ)/2

)−2





= − zi


∑

j 6=i

log

(
1 − e−β′(zi−zj)

β′Λ

)
+ log

(
1 − e−β′δ

β′Λ

)
+

(r −m)β′

2
zi


+O(δ),

where the branch of log is the same as before.

Claim.

1

β′

∫ eβ′z±
i

eβ′(zi+δ)
(logX − log eβ

′zi)
dw

w
= O(δ).
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Proof. If X = eβ
′t and |t− zi| ≈ δ, we have

logX − log eβ
′zi

X − eβ
′zi

= e−β′zi +O(δ),

X − eβ
′zi

∏
j 6=i(e

β′zi − eβ
′zj )−1P (X)

= 1 +O(δ).

Thus we get

logX − log eβ
′zi = e−β′zi+

r
2
β′zi

∏
j 6=i(e

β′zi − eβ
′zj )−1P (X)

X
r
2

+ E(X)

with E(X) = O(δ2). The integration of E(X) yields O(δ2)O(log δ) = O(δ).

For the main part we have

∫ eβ′z±
i

eβ′(zi+δ)
X− r+m

2 P (X)
dw

w
=

∫ eβ′z±
i

eβ′(zi+δ)
X− r+m

2 P (X)
(X− r+m

2 P (X))′

X− r+m
2 Y

dX

=
[
X− r+m

2 Y
]eβ′z±

i

eβ′(zi+δ)

= β′rO(δ).

Since ∏

j 6=i

(eβ
′zi − eβ

′zj ) ≈ β′r−1
∏

j 6=i

(zi − zj),

we get the assertion. �

The computation of the first term is similar. Since O(Λ) log Λ = O(δ) for

Λ ≪ δ, we have the following:

− 2π

∫

Ci

dS − 2


−rβ

′

4
(z2

i − z2
i−1) −

1

β′
∑

j>i

L̂i2(e
−β′(zi−zj))

+
1

β′
∑

j<i

L̂i2(e
−β′(zj−zi)) +

1

β′
∑

j>i−1

L̂i2(e
−β′(zi−1−zj))

− 1

β′
∑

j<i−1

L̂i2(e
−β′(zj−zi−1)) +

∑

j<i

β′(zj − zi)
2

2
−
∑

j<i−1

β′(zj − zi−1)
2

2


 = O(δ).

(A.9)

We now replace β′zi by βai. As ai +
√
−1zi = O(Λ) by (A.1), the left hand side

is still O(δ) after the replacement. Since the LHS is a single valued holomorphic

function of Λ on 0 < |Λ| < Nδ, it is extended to a holomorphic function on
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|Λ| < Nδ. Since the LHS does not depend on δ, it is 0 at Λ = 0. Thus the left

hand side of (A.9) is O(Λ).

Therefore we have

2π
√
−1aD

i = 2π
√
−1

i∑

k=2

∫

Ck

dS

=


−(r −m)β

2
(a2

i − a2
1) −

2

β

∑

j>i

(
Li2(e

−β(ai−aj)) − π2

6

)

+
2

β

∑

j<i

(
Li2(e

−β(aj−ai)) − π2

6

)
+

2

β

∑

j>1

(
Li2(e

−β(a1−aj)) − π2

6

)

+
∑

j<i

β(aj − ai)
2 + 2r(ai − a1) log(βΛ) − rπ

√
−1(ai − a1)

]
+O(Λ).

(A.10)

By (A.8) we get (A.7). �

A.5. A renormalization group equation. We assume m 6= ±r hereafter.

We give an analogue of the renormalization group equation for the homological

version (see [42, §2.4]).

We set w to be constant and differentiate the defining equation of C~U with

respect to log Λ to get

∂X

∂ log Λ
=

rX−(r+m)/2P (X)

(X−(r+m)/2P (X))′
−

r−1∑

p=1

∂Up

∂ log Λ

X(r+m)/2−p

(X−(r+m)/2P (X))′
.

Therefore

∂

∂ log Λ
dS

∣∣∣∣
w=const

=
1

2π
√
−1β

∂X

∂ log Λ

dw

Xw

=
1

2π
√
−1β


 rX−(r+m)/2P (X)

(X−(r+m)/2P (X))′
−

r−1∑

p=1

∂Up

∂ log Λ

X(r+m)/2−p

(X−(r+m)/2P (X))′


 dw

Xw

=
1

2π
√
−1β


rP (X)dX

XY
−

r−1∑

p=1

∂Up

∂ log Λ

Xr−p−1dX

Y


 .

(A.11)
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We thus have

0 =
∂ai

∂ log Λ
=

1

2π
√
−1β

∫

Ai

rP (X)dX

XY
+

r−1∑

p=1

∂Up

∂ log Λ

∂ai

∂Up
,(A.12)

∂aD
i

∂ log Λ
=

1

2π
√
−1β

∫

Bi

rP (X)dX

XY
+

r−1∑

p=1

∂Up

∂ log Λ

∂aD
i

∂Up
.(A.13)

Combining these equalities we get

∂aD
i

∂ log Λ
=

1

2π
√
−1β



∫

Bi

rP (X)dX

XY
−

r∑

j=2

∂aD
i

∂aj

∫

Aj

rP (X)dX

XY


 .

From (A.12) the meromorphic differential 2π
√
−1β
r

∂
∂ log ΛdS

∣∣∣
w=const

has vanish-

ing A-periods. Its poles are inverse images of X = 0,∞. As they are not branch

points, we have four points. Let us denote them by 0+, ∞− (w = ∞), 0−, ∞+

(w = 0). This convention is taken so that their residues are given by

0± : ±1, ∞± : ±1.

The assumption m 6= ±r is used here, otherwise X = 0, ∞ may not correspond

to w = 0,∞.

By the Riemann bilinear relation (see e.g., [21, §2.2]) we have

− 1

2π
√
−1

∂2F0

∂ai∂ log Λ
=

∂aD
i

∂ log Λ
=
r

β

∫ 0++∞+

0−+∞−

ωi =
2r

β

∫ 0+

∞−

ωi,(A.14)

where we have used the hyperelliptic involution ι in the second equality. The

path of the integral is taken disjoint from the cycles Ai, Bi.

When β → 0, two points X = 0, ∞ converge to a single point z = ∞ as we

observed in §A.2. Here more precisely, 0+, ∞− go to z = ∞, w = ∞ and 0−,

∞+ goes to z = ∞, w = 0.

As ωi = ∂
∂ai
dS, this equation suggests ∂F0

∂ log Λ = −4π
√
−1r

β

∫ 0+

∞−
dS. However the

integral does not make sense as dS has singularities at 0+ and ∞−. We overcome

the difficulty by introducing a new differential

dS′ =
Y

P (X)
dS =

1

2π
√
−1β

logX
X(r+m)/2(X−(r+m)/2P (X))′dX

P (X)
.



K-theoretic Donaldson Invariants Via Instanton Counting 1097

Then dS − dS′ can be integrated from 0+ to ∞−. From (A.3, A.11) we have

∂

∂ai
dS′
∣∣∣∣
w=const

= − 1

2π
√
−1β

∑

p

∂Up

∂ai

Xr−p−1dX

P (X)
,

∂

∂ log Λ
dS′
∣∣∣∣
w=const

=
1

2π
√
−1β


rdX
X

−
r−1∑

p=1

∂Up

∂ log Λ

Xr−p−1dX

P (X)


 .

(A.15)

Differentiating P (X) =
∏

(X − e−
√
−1βzi) by Up, we get

Xr−p−1

P (X)
=

√
−1β

∑

i

e−
√
−1βzi

X(X − e−
√
−1βzi)

∂zi
∂Up

=
√
−1β

∑

i

1

X − e−
√
−1βzi

∂zi
∂Up

,

where we have used
∑

i zi = 0. Therefore we have

∫ 0+

∞−

Xr−p−1

P (X)
dX =

√
−β

[
∑

i

∂zi
∂Up

log(X − e−
√
−1βzi)

]X=0

X=∞

=
√
−1β

∑

i

∂zi
∂Up

log(−e−
√
−1βzi) −

∑

i

∂zi
∂Up

log(1 − e−
√
−1βzi/X)|X=∞

= β2
∑

i

∂zi
∂Up

zi =
β2

2

∂

∂Up

∑

i

z2
i =

β2

2r

∂

∂Up

∑

i<j

(zi − zj)
2,

(A.16)

where we take a path in the upper half plane and we also used
∑

i zi = 0.

Therefore ∫ 0+

∞−

∂

∂ai
dS′
∣∣∣∣
w=const

= − β

4π
√
−1r

∂

∂ai

∑

j<k

(zj − zk)
2

Combining with (A.14), we get

− 1

2π
√
−1

∂2F0

∂ai∂ log Λ
=

2r

β

∂

∂ai



∫ 0+

∞−

(
dS − dS′)− β

4π
√
−1r

∑

j<k

(zj − zk)
2


 .

Therefore we have

(A.17) − 1

2π
√
−1

∂F0

∂ log Λ
=

2r

β

∫ 0+

∞−

(
dS − dS′)− 1

2π
√
−1

∑

i<j

(zi − zj)
2

up to a function of Λ independent of aα. The right hand side has a perturbative

expansion as
1

2π
√
−1

∑

i<j

(ai − aj)
2 +O(Λ).
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This is exactly equal to the one given in Proposition A.6. Therefore we finally

fix the ambiguity of F0 in O(Λ) so that (A.17) holds.

When β → 0, both points 0+, ∞− converge to z = ∞, w = ∞. We have

dS = dS′ at the limit point. Therefore the first integral disappears in the limit

and we get

∂F0

∂ log Λ

∣∣∣∣
β=0

=
∑

i<j

(zi − zj)
2.

This is nothing but the renormalization group equation [42, 2.3] in the homolog-

ical version. On the other hand, if β stays nonzero, ∂F0
∂ log Λ could not be expressed

as a simple function in Up.

We differentiate (A.17) by log Λ:

− 1

2π
√
−1

∂2F0

(∂ log Λ)2
=

2r

β

∫ 0+

∞−

∂

∂ log Λ

(
dS − dS′)− 1

2π
√
−1

∂

∂ log Λ

∑

i<j

(zi − zj)
2

=
r

π
√
−1β2

∫ 0+

∞−


r(P (X) − Y )dX

XY
−

r−1∑

p=1

∂Up

∂ log Λ

(
Xr−p−1

Y
− Xr−p−1

P (X)

)
dX




− 1

2π
√
−1

∑

i<j

r−1∑

p=1

∂Up

∂ log Λ

∂

∂Up
(zi − zj)

2

=
r

π
√
−1β2

∫ 0+

∞−


r(P (X) − Y )dX

XY
−

r−1∑

p=1

∂Up

∂ log Λ

Xr−p−1dX

Y


 ,

where we have used (A.16) in the last equality.

Let us consider

(A.18)
(P (X) − Y )dX

2XY
− 1

2r

r−1∑

p=1

∂Up

∂ log Λ

Xr−p−1dX

Y
.

From (A.12) and
∫
Aα

dX
X = 0, it also has the vanishing A-periods. Its poles are

0− and ∞+ with residues −1 and 1 respectively. These properties characterize

the meromorphic differential form uniquely. Let us denote it by ω∞+−0− as

customary. Substituting this into above, we get

(A.19)
∂2F0

(∂ log Λ)2
=

4r2

β2

∫ ∞−

0+

ω∞+−0− .
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A.6. Case r +m even. We assume that r +m is even in this subsection.

Recall that we set X1, . . . , Xr be the zeroes of P (X) = 0. For small Λ, we

can find X±
i near Xi such that P (X±

i ) = ±2(−
√
−1βΛ)r(X±

i )(r+m)/2. These are

branch points of the Seiberg-Witten curve C~U,m. We have a natural partition of

them as {X+
i } ⊔ {X−

i }, which corresponds to the even half-integer characteristic

E. It is the same as one in the homological version, i.e. t(1
2 ,

1
2 ,

1
2 , · · · ). This is true

regardless of the parity of r.

Recall that the Szegö kernel of the hyperelliptic curve is explicitly given by

ΨE(X1,X2) =
ΘE(

∫ X2

X1
~ω|τ)

ΘE(0)E(X1,X2)
=

1

2

(
4

√
ψE(X1)

ψE(X2)
+ 4

√
ψE(X2)

ψE(X1)

) √
dX1dX2

X2 −X1

=
Y2
∏

(X1 −X+
α ) + Y1

∏
(X2 −X+

α )

2(X2 −X1)

√
dX1dX2

Y1Y2
∏

(X1 −X+
α )(X2 −X+

α )
,

where E is the prime form and

ψE(X) =

∏
(X −X+

α )∏
(X −X−

α )
=
P (X) − 2(−

√
−1βΛ)rX(r+m)/2

P (X) + 2(−
√
−1βΛ)rX(r+m)/2

.

See [15, p.12 Example]. We have ψE(0±) = ψE(∞±) = 1. Therefore

(A.20) E(0−,∞+)2 dX1|X1=0−

(
dX2

X2
2

)∣∣∣∣
X2=∞+

=
ΘE(

∫∞+

0−
~ω|τ)2

ΘE(0)2
.

On the other hand, [15, p.17, Remark v)] we have

E(0−,∞+)2 dX1|X1=0−

(
dX2

X2
2

)∣∣∣∣
X2=∞+

= exp

{∫ ∞−

0+

ω∞+−0− +

r∑

i=2

mi

∫ ∞−

0+

ωi,

}(A.21)

where mi = 1
2π

∫
Ai
d arg X−X(∞+)

X−X(0−) . In our situation, this is equal to 0. We thus

get

(A.22)
ΘE(

∫∞+

0−
~ω)2

ΘE(0)2
= exp

{∫ ∞−

0+

ω∞+−0−

}
.

By (A.19) and (A.14) we get

(A.23)
ΘE( β

2r
∂aD

α
∂ log Λ |τ)

ΘE(0|τ) = exp

{
β2

8r2
∂2F0

(∂ log Λ)2

}
.



1100 Lothar Göttsche, Hiraku Nakajima and Kōta Yoshioka

Thus we get the contact term equation [43, (4.12) with d = r
2 ]. More precisely,

the above holds up to sign. However both sides go to 1 when β → 0, so the above

holds without the sign ambiguity.

A.6.1. A differential equation for Up. By [15, Prop. 2.10 (38)] we have

(A.24)

ΨE(X, 0−)ΨE(X,∞+)

ΨE(0−,∞+)
= ω∞+−0−+

r∑

i=2

[
∂ log ΘE

∂ξi
(

∫ ∞+

0−
~ω) − ∂ log ΘE

∂ξi
(0)

]
ωi(X).

The left hand side is equal to

(P (X) − Y )dX

2XY
.

As E is an even characteristic, ∂ log ΘE
∂ξα

(0) = 0. Looking at (A.18) we have

1

2r

r−1∑

p=1

∂Up

∂ log Λ

Xr−p−1dX

Y
=
∑

i

∂ log ΘE

∂ξi
(

∫ ∞+

0−

~ω)ωi(X).

In other words,

(A.25)
1

2r

∂Up

∂ log Λ
= − 1

2π
√
−1β

∑

i

∂ log ΘE

∂ξi

∣∣∣∣
~ξ=− β

4π
√

−1r

∂2F0
∂ log Λ∂~a

∂Up

∂ai
.

This is an analog of the equation in [42, Th. 2.4]. This equation suggests that it

is possible to define Up in terms of the instanton counting as in the homological

version.

A.6.2. Higher order equations. By [15, Cor. 2.19 (43)] we have

ΘE(
∑d

i=1 yi −
∑d

i=1 xi)

ΘE(0)

∏
i<j E(xi, xj)E(yj , yi)∏

i,j E(xi, yj)
= det

(
ΘE(yj − xi)

ΘE(0)E(xi, xj)

)

= det (ΨE(xi, yj)) .

Let us study the limit of this equation when all xi (resp. yj) goes to 0− (resp.

∞+). As E(xi, xj) =
(xi−xj)√
dxi

√
dxj

(
1 +O(xi − xj)

2
)
, we have

det (ΨE(xi, yj))∏
i<j E(xi, xj)E(yj , yi)

→ (−1)d(d−1)/2 det


 1

i!j!
∂i

x∂
j
y(ΨE)(x, y)

∣∣∣∣ x=0−
y=∞+




0≤i,j≤d−1

.
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Therefore the answer depends only on the differentials of ΨE up to order d− 1.

Note that

ψE(X) =
P (X) − 2X(r+m)/2(−

√
−1βΛ)r

P (X) + 2X(r+m)/2(−
√
−1βΛ)r

= 1 − 4X(r+m)/2(−
√
−1βΛ)r

P (X) + 2X(r+m)/2(−
√
−1βΛ)r

=





1 +O(X(r+m)/2) as X → 0,

1 +O(X−(r−m)/2) as X → ∞.

Therefore we can replace either ψE(xi) or ψE(yi) by 1 when we compute the limit

if 0 ≤ d ≤ max(r+m, r−m)/2. We may assume m ≤ 0 without loss of generality.

Then we can replace ψE(yi) by 1. Thus

ΘE(d
∫∞+

0−
~ω)

ΘE(0)
=

det ΨE(xi, yj)
∏

i,j E(xi, yj)∏
i<j E(xi, xj)E(yj , yi)

∣∣∣∣∣ xi=0−
yj=∞+

= det

(
1

2

(
4
√
ψE(xi) +

1
4
√
ψE(xi)

) √
dxi

√
dyj

yj − xi

) ∏
i,j E(xi, yj)∏

i<j E(xi, xj)E(yj , yi)

∣∣∣∣∣ xi=0−
yj=∞+

=
d∏

i=1

(
1

2

(
4
√
ψE(xi) +

1
4
√
ψE(xi)

)
√
dxi

)
d∏

j=1

√
dyj

× det

(
1

yj − xi

) ∏
i,j E(xi, yj)∏

i<j E(xi, xj)E(yj , yi)

∣∣∣∣∣ xi=0−
yj=∞+

=

(
E(0−,∞+)

√
dX1

∣∣∣
X1=0−

(√
dX2

X2

)∣∣∣∣
X2=∞+

)d2

= exp

(
d2

2

∫ ∞−

0+

ω∞+−0−

)
,

(A.26)

where we have used (A.20, A.22) in the last equality. Hence we get

(A.27)
ΘE(dβ

2r
∂aD

α
∂ log Λ |τ)

ΘE(0|τ) = exp

{
d2β2

8r2
∂2F0

(∂ log Λ)2

}

for 0 ≤ d ≤ max(r +m, r −m)/2. This is the same equation derived in Proposi-

tion 1.39 under the assumption (1.37).

A.7. Case r +m odd. We assume that r +m is odd in this subsection.
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Let us introduce a new variable W =
√
X and consider the branched double

covering p : Ĉ~U,m → C~U,m given by

Y 2 = P (W 2)2 − 4(−W 2)r(βΛ)2r

=
(
P (W 2) − 2(

√
−1WβΛ)r

) (
P (W 2) + 2(

√
−1WβΛ)r

)
.

(A.28)

The branched points are X = 0±, ∞±. The genus of Ĉ~U is 2r − 1.

For the new curve Ĉ~U,m the calculation of the previous section can be applied.

We then use formulas in [15, §5] relating the theta functions for Ĉ~U,m and those

for C~U,m. This is our strategy to prove the contact term equation for the r +m

odd case.

Let us fix notations. See [loc. cit.] for more detail. Let φ be the involution

W 7→ −W corresponding to the projection p. We choose a symplectic basis A2,

B2,. . . , Ar, Br, A∗, B∗, A′
2, B

′
2,. . . , A

′
r, B

′
r of H1(Ĉ~U ,Z) as in Figure 1, where

the involution φ is the rotation by π about the vertical axis passing through 0±,

∞±. They satisfy

(1) Ai, Bi i = 2, . . . r are taken so that they are in a single sheet of p and

mapped to the corresponding cycles in the original curve C~U ,

(2) A′
i = −φ(Ai), B

′
i = −φ(Bi),

(3) A∗ + φ(A∗) = 0 = B∗ + φ(B∗).

A2A3

B3

B2
A′

2 A′

3

B′

2

B′

3

∞+

∞−

0+

0−

A∗

B∗

√
X+

1
−
√

X+

1

√
X−

1

√
X−

2

√
X+

2

√
X+

3

√
X−

3

Figure 1. Double cover of the Seiberg-Witten curve for r = 3, m: even

The normalized holomorphic differentials ω̂i, ω̂∗, ω̂′
i on Ĉ~U satisfy

φ∗ω̂i = −ω̂′
i, φ∗ω̂∗ = −ω̂∗

and are related to those on C~U
as

p∗ωi = ω̂i − ω̂′
i.
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We denote a vector in C2r−1 by [ξ, η, ξ′] with ξ, ξ′ ∈ Cr−1, η ∈ C. Let π∗ : J0(C~U ) →
J0(Ĉ~U ) be the pull-back homomorphism of the divisor classes. It lifts to a map

Cr−1 → C2r−1 by

π∗(ξ) = [ξ, 0,−ξ] .

Let us choose two points S, T from four branched points 0±, ∞±. Let S′, T ′

be the remaining two points. Let ξ0 = 1
4

∫ S′+T ′

S+T ~ω where ~ω = (ω2, . . . , ωr) is the

vector of the normalized holomorphic differentials. Then [15, p.91 (102)] says

that there exists a unique half-period [0, c∗, 0] ∈ J0(Ĉ~U ) such that

(A.29) k0:=
Θ̂[c,c∗,−c](π

∗ξ)

Θc(ξ + ξ0)Θc(ξ − ξ0)

is independent of ξ ∈ Cr−1 and a half-integer characteristic c for the curve C~U .

We choose S, T = 0−,∞−, so

(A.30) ξ0 =
1

4

∫ 0++∞+

0−+∞−
~ω =

1

2

∫ ∞+

0−
~ω.

The double cover Ĉ~U is also a hyperelliptic curve by the involution ι̂ : Y 7→ −Y .

In Figure 1 the involution ι̂ is the rotation by π about the horizontal axis. Note

that 0− and ∞+ lie in the same sheet of the covering Ĉ~U → Ĉ~U/ι̂ = P1 as we

have P (X) ≈ Y at both points. (We have P (X) ≈ −Y in another sheet.) The

sheet is the upper part of Ĉ~U
in Figure 1.

The branched points are W =
√
X±

i ,−
√
X±

i . (Recall that we have fixed

the branch of
√
X±

i so that
√
X±

i ≈ √
Xi = e−

√
−1βzi/2. We have a natural

partition of them as {
√
X+

i ,−
√
X−

i } ⊔ {
√
X−

i ,−
√
X+

i }. It corresponds to the

factorization of the right hand side of (A.28). Let Ê be the corresponding even

theta characteristic. We now repeat the argument in §A.6. We do not determine

the characteristic Ê explicitly at this moment, as the argument goes through if Ê

corresponds to the above partition. We need to take the path 0+ → ∞− disjoint

from A, B-cycles. This can be accomplished if we shift A∗ a little bit. For this

choice, mi appeared in (A.21) is also 0. The remaining arguments are unchanged,

and by (A.26) we get

(A.31)
Θ̂Ê(2d

∫∞+

0−
~ω )̂

Θ̂
Ê
(0)

= exp

{
2d2

∫ ∞−

0+

ω̂∞+−0−

}
,
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for 2d ≤ max(r + m, r − m) (i.e. d ≤ (max(r + m, r − m) − 1)/2), where ~ωˆ is

the vector of the normalized holomorphic differentials of Ĉ~U , and ω̂∞+−0− is the

meromorphic differential with Res∞+ = +1, Res0− = −1 having the vanishing

A-periods.

Lemma A.32. The characteristic Ê is of the form [E, c∗,−E] where the half-

period [0, c∗, 0] corresponds to the partition {0+,∞+} ⊔ {0−,∞−} as above.

Proof. We took the idea of proof from that of [15, Prop. 5.3]. We pinch two cycles

in Ĉ~U as in Figure 2. The limit is the union of a genus 1 curve C∗ (containing A∗,

B∗) and two copies of C~U
. These curves are glued at P and Q as in Figure 2, i.e.,

two points P , Q in C∗ are identified with a point in C~U and its copy in another

C~U
respectively.

∞+

∞−

0+

0−

A∗

B∗

√
X+

1
−
√

X+

1
QP

Figure 2. Degenerate curve

Then it is enough to calculate the characteristic in the limit. It is clear that

the C~U -parts have characteristic E and −E respectively.

Let us concentrate on the genus 1 part. Among the original branched points,

±
√
X+

1 are contained in C∗, and P , Q are new branched points. As the limit of

the partition corresponding to Ê, we get the partition {
√
X+

1 , Q}⊔{−
√
X+

1 , P}.
This can be seen by pinching only one of the two cycles, say one corresponding

to Q. As each part has the equal number of branched points, we must have

{Q,
√
X+

1 ,
√
X+

2 , . . . } ⊔ {−
√
X+

1 ,
√
X−

1 ,
√
X−

2 , . . . }. Pinching the remaining cy-

cle corresponding to P , we get the assertion. On the other hand, the partition

{0+,∞+} ⊔ {0−,∞−} of the branched points of φ is clearly preserved under the

degeneration.

Thus the elliptic curve C∗ has two hyperelliptic involutions ι̂ and φ, and we

have the corresponding partitions of branched points {
√
X+

1 , Q} ⊔ {−
√
X+

1 , P}
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and {0+,∞+} ⊔ {0−,∞−}. It is clear from the picture that both give rise to the

same characteristic of the theta function (in fact, it is θ00). �

The denominator of the left hand side of (A.31) is

k0ΘE(ξ0)
2 = k0ΘE(

1

2

∫ ∞+

0−

~ω)2.

On the other hand, we have

2d

∫ ∞+

0−

~ωˆ=

[
d

∫ ∞+

0−

~ω, d,−d
∫ ∞+

0−

~ω

]
.

To evaluating the value of the theta function at this point, we can replace d by

0 as d is an integer. Therefore the numerator of the left hand side of (A.31) is

equal to

Θ̂
Ê

(
d

∫ ∞+

0−

~ω, 0,−d
∫ ∞+

0−

~ω

)
= k0ΘE((d+

1

2
)

∫ ∞+

0−

~ω)ΘE((d− 1

2
)

∫ ∞+

0−

~ω).

On the other hand, we have ω̂∞+−0− = 1
2p

∗(ω∞+−0−). Therefore the right

hand side of (A.31) is

exp

{
d2

∫ ∞−

0+

ω∞+−0−

}
.

Thus we have

ΘE((d+ 1
2)
∫∞+

0−
~ω)

ΘE(1
2

∫∞+

0−
~ω)

= exp

{
d(d+ 1)

2

∫ ∞−

0+

ω∞+−0−

}
,

i.e.

(A.33)
ΘE((d+ 1

2 ) β
2r

∂aD
α

∂ log Λ |τ)
ΘE( β

4r
∂aD

α
∂ log Λ |τ)

= exp

{
d(d+ 1)

2

β2

4r2
∂2F0

(∂ log Λ)2

}

for 0 ≤ d ≤ (max(r + m, r − m) − 1)/2. This is the same equation derived in

Proposition 1.39 under the assumption (1.37).

A.8. rank 2 case. We assume r = 2, m = 0 in this subsection.

We have P (X) = X2 + U1X + 1. Then

Y 2 = P (X)2 − 4X2β4Λ4

=
{
X2 + U1X + 1 + 2Xβ2Λ2

}{
X2 + U1X + 1 − 2Xβ2Λ2

}

=
{
α+(X + 1)2 − β+(X − 1)2

}{
α−(X + 1)2 − β−(X − 1)2

}



1106 Lothar Göttsche, Hiraku Nakajima and Kōta Yoshioka

where

α± =
1

2
+
U1

4
± β2Λ2

2
, β± = −1

2
+
U1

4
± β2Λ2

2
.

Then the solutions of P (X)2 − 4X2β4Λ4 = 0 are

−
√

β+

α+
+ 1

−
√

β+

α+
− 1

,
−
√

β−
α−

+ 1

−
√

β−
α−

− 1
,

√
β−
α−

+ 1
√

β−
α−

− 1
,

√
β+

α+
+ 1

√
β+

α+
− 1

.

Here we choose the branch of
√
β±/α± so that the above are X+

1 , X−
1 , X−

2 , X+
2

in sequence. (Recall the A-cycle encircles X−
2 , X+

2 , and B-cycles encircles X−
1 ,

X−
2 .) We introduce new variables

x =

√
α+

β+

X + 1

X − 1
, y =

1√
β+β−

Y

(X − 1)2

Then the Seiberg-Witten curve is

y2 = (1 − x2)(1 − κ2x2),

where

κ =

√
α−β+

α+β−
=

√√√√√1 +
β2Λ2

U2
1

16 −
(

β2Λ2

2 + 1
2

)2 .

In the x-coordinates, the A-cycle encircles 1, 1/κ, and the B-cycle encircles

±1/κ. Note that the A-cycle encircles ±1 usually, so A, B-cycles are interchanged

in our convention. Note also that the curve has period 2τ instead of τ usually.

Therefore when we use various formulas in textbooks (e.g. [53]), we need to

replace τ by −2/τ . From [53, 22 · 11] we have
√
α−β+

α+β−
= κ =

θ10(−2/τ)2

θ00(−2/τ)2
.

Therefore

U2
1

16
=

β2Λ2

κ2 − 1
+

(
β2Λ2

2
+

1

2

)2

= −β2Λ2 θ00(−2/τ)4

θ01(−2/τ)4
+

(
β2Λ2

2
+

1

2

)2

=
1

4

(
1 − θ00(τ)

4 + θ10(τ)
4

θ00(τ)2θ10(τ)2
β2Λ2 + β4Λ4

)
.

(A.34)

We also have

∂a

∂U1
= − 1

2π
√
−1β

∫

A

dX

Y
=

1

2π
√
−1β

√
α+β−

∫ 1/κ

1

dx

y
=

K ′(−2/τ)

2πβ
√
α+β−

.
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Note that α−β+ = α+β− + β2Λ2. Therefore

α+β− = −β2Λ2 θ00(−2/τ)4

θ01(−2/τ)4
, α−β+ = −β2Λ2 θ10(−2/τ)4

θ01(−2/τ)4
.

Substituting K ′(−2/τ) =
√
−1πθ00(−2/τ)2/τ ([53, 22 · 32]) we get

(A.35)
∂a

∂U1
=
θ01(−2/τ)2

2β2Λτ
=

√
−1

θ00(τ)θ10(τ)

2β2Λ
.

Here we fix the sign so that it coincides with the formula for the homological

version when β → 0, i.e. da/du = −
√
−1θ00(τ)θ10(τ)/2Λ.

Let sn(•, κ(−2/τ)), cn(•, κ(−2/τ)), dn(•, κ(−2/τ)) be Jacobi’s elliptic func-

tions for the period −2/τ . From (A.14) we have

β
∂aD

∂ log Λ
= 4

∫ ∞+

0−
ω = − 2

√
−1

K ′(−2/τ)

∫ √
α+
β+

−
√

α+
β+

dx

y
= − 4

√
−1

K ′(−2/τ)
sn−1(

√
α+

β+
).

Here we have used that ω is normalized so that
∫
A ω = 2

∫ 1/κ
1 ω = 1, and hence

ω = dx
2
√
−1K ′y

.

Let h := −1
4

∂2F0
∂a∂ log Λ = π

√
−1

2
∂aD

∂ logΛ . Then by using addition theorem for theta

functions and the definition of Jacobi’s elliptic functions,

θ11(
βh

2π
√
−1
, τ)

θ01(
βh

2π
√
−1
, τ)

=
θ10(

βh
4π

√
−1
, τ

2 )θ11(
βh

4π
√
−1
, τ

2 )

θ00(
βh

4π
√
−1
, τ

2 )θ01(
βh

4π
√
−1
, τ

2 )

=
√
−1

θ01(
βh

2π
√
−1τ

,− 2
τ )θ11(

βh
2π

√
−1τ

,− 2
τ )

θ00(
βh

2π
√
−1τ

,− 2
τ )θ10(

βh
2π

√
−1τ

,− 2
τ )

= −
√
−1κ′(−2

τ
)

sn( Kβh
π
√
−1τ

, κ(− 2
τ ))

cn( Kβh
π
√
−1τ

, κ(− 2
τ )) dn( Kβh

π
√
−1τ

, κ(− 2
τ ))

,

where K = K(−2/τ). As Kβh
π
√
−1τ

= − βh
2π

√
−1

√
−1K ′ = − sn−1(

√
α+

β+
), the above

is equal to

−
√
−1

√
1 − α−β+

α+β−

√
α+

β+

√
β+

β+ − α+

√
β−

β− − α−
= ±βΛ,

where we have used α± − β± = 1. Hence we get

(A.36)
θ11(

βh
2π

√
−1
, τ)

θ01(
βh

2π
√
−1
, τ)

= −βΛ.
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Here the sign was fixed by considering the limit β → 0:

1

β

θ11(
βh

2π
√
−1
, τ)

θ01(
βh

2π
√
−1
, τ)

β→0−−−→ −θ
′
11(0, τ)

θ01

1

8π
√
−1

∂2F0

∂a∂ log Λ
= −Λ

The equation (A.36) can be also derived from the blowup formula [43, Prop. 3.2(1)]

for c1 = odd together with the argument in [43, §4.3].
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