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Abstract: Given a modular embedding j : ∆\H/H ∩ K → Γ\G/K asso-
ciated with an equivariant embedding (H, H/H ∩K) → (G,G/K) of sym-
metric domains with actions of a semisimple Lie group G and a reductive
subgroup H, both defined over Q compatibly, together with some other
conditions. Starting from a certain harmonic left H-invariant “spherical”
current on G/K with sigularity along HK/K, we can define a Poincaré se-
ries. Apply ∂∂̄ operator to the analytic continutation of this with respect
to the parameter of eigenvalues of the “Laplacian”. Then as an analogue of
the Kronecker limit formula, we can construct a Green current for the cycle
defined by j. This is a continuation of the previous paper [26], and here we
treat the case of higher-codimensional cycles with compact Γ\G/K.
Keywords: Green current, modular embedding, modular cycle, spherical
functions.

1. Introduction

Arithmetic quotients of hermitian symmetric domains are important objects
to investigate. For example, the moduli spaces of abelian varieties with certain
endomorphisms and polarization types, and the moduli spaces of K3 surfaces, are
realized as such. To understand the cohomology groups and the cycle geometry
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of these quotients is a very interesting arithmetic problem. There is a history
of investigating this theme around the time of establishment of the Matsushima
isomorphism. The construction method of cycles by means of equivariant embed-
dings of locally symmetric spaces is called ‘generalized modular symbols ’. (cf.
[18]).

If both the embedded and the ambient spaces are of hermitian type, there
is an extensive study by Satake [30] for possible embeddings. Sometimes they
have been called modular embeddings. The Hirzebruch-Zagier cycles are typical
examples ([12], [23]). Let

j : ∆\H/H ∩K → Γ\G/K

be a modular embedding with G a semisimple Lie group, K a maximal compact
subgroup of G, H a symmetric subgroup such that H ∩K is maximally compact
in H, and Γ, ∆ are compatible arithmetic subgroups of G, H respectively. Let n

and m be dimensions of the symmetric spaces H/H ∩K and G/K respectively.
Then, for each degree q, j yields the restriction map of cohomology

jq
♥ : Hq

♥(Γ\G/K,C) → Hq
♥(∆\H/H ∩K,C),

where ♥ ∈ {empty, c, !} is a support condition of cohomology theories. Then we
have the Poincaré dual map

jq
♠ : Hm−q

♠ (∆\H/H ∩K,C) → Hn−q
♠ (Γ\G/K,C)

with ♠ the support condition dual to ♥. We propose here a

Problem: Construct the Poincaré dual map jq
♠ explicitly.

This problem seems to be quite difficult to answer generally. But at least
for some special cases, we have a tractable method: to use Poincaré series and
derived Green currents.

In a previous paper [26], we discuss the case when the complex codimension
of ∆\H/H ∩ K in Γ\G/K is one. We can extend the similar construction for
the higher codimensional case associated with the symmetric pair U(p, q), U(p−
1, q) × U(1) in this article. We note that its dual symmetric pair U(p + q −
1, 1), U(p− 1, 1)×U(q), which yields a class of higher codimensional cycles in a
discrete quotient of a complex hyperball, is already treated in [32] by a similar
method. This paper is a continuation of our previous works [26] and [32], which
we follow technically and logically.
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Let us explain the organization of this paper briefly. The aim of this paper is
twofold: one is a local investigation of the secondary spherical function (§§4–5),
and the other is a global investigation of the associated Poincaré series (§§6–8).
Our spherical functions are left H-invariant smooth functions on G which have
special right K-types and are eigenfunctions under the Casimir operator. The
secondary spherical functions have similar properties, but they are distributions
on G with singularities along HK. These kinds of functions play a crucial role
in our construction of Poincaré series and Green currents.

Here is a more detailed explanation of each section. The second section is
preliminary, where we fix basic notations and assemble relevant facts about our
symmetric pair (G,H) = (U(p, q),U(p−1, q)×U(1)), and also fix a normalization
of Haar measures. In §3, we study a certain invariant tensor associated with the
submanifold H/H ∩ K by means of representation theory of compact groups.
The §4 is an analytical preliminary, where we give a concrete expression of the
Hodge Laplacian and the operator ∂∂̄ on the symmetric space G/K in terms of
the ‘polar coordinates’ on H\G. The secondary spherical function is studied in
§5. In Theorem 18, we define the secondary spherical function ϕ

(d)
s for each 0 6

d 6 q as a family of H-invariant (d, d)-forms on G/K with singularities along the
submanifold H/H ∩K which holomorphically depends on a complex parameter
s and satisfies the five characterizing conditions (i)–(v). We explicitly construct
such a family by using the Gaussian hypergeometric series. The characterizing
conditions in Theorem 18 are effectively used to prove the equation in Theorem 26,
which is important to show the Green’s equation (7.1) in §7 Theorem 35.

The remaining sections are occupied by the investigation of global currents.
We study a modular cycle CΓ

H : Γ∩H\H/H ∩K → Γ\G/K defined by a uniform
lattice Γ of G such that Γ∩H\H is also compact. In order to obtain the Poincaré
dual of CΓ

H , in §6, we define a (q, q)-current ΨΓ
H(s) = Φ(q)

s,0 and the related (d, d)-

currents Φ(d)
s,r on Γ\G/K as the Poincaré series using the secondary spherical

function ϕ
(d)
s as the seeds of the ‘geometric current ’ constructed in the last part of

the paper. After establishment of its L1-convergence in the range Re(s) > p+q−1,
in Proposition 31, we show the generalized Poisson equation for Φ(d)

s,r .

Although the form ΨΓ
H(s) is not square-integrable itself, we can establish the

square-integrability for the auxiliary currents Φ(d)
s,r with sufficiently large r by a

similar way to [26]. We obtain the spectral decomposition of the square-integrable
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form Φ(d)
s,r as a Fourier series of the eigenfunction of the Hodge Laplacian, which

eventually yields the meromorphic continuation of ΨΓ
H(s) from the original con-

vergence region Re(s) > p + q − 1 to the whole complex plane.

In §7, we establish Green’s equation (7.1) in Theorem 35, which, together with
the generalized Poisson equation, is used in Theorem 36 to show the current ΨΓ

H =
p+q−1

2 Ress=p+q−1ΨΓ
H(s) is harmonic and is cohomologus to the fundamental class

of CΓ
H . We also show that the constant term of Φ(q−1)

s,0 at s = p + q − 1 yields
a Green current of CΓ

H in the sense of Gillet-Soulé [5], though the conditions at
singularities are different.

In §8, we study some representation theoretical aspects of our global construc-
tion ΨΓ

H . We collect miscellaneous remarks and perspectives related to the theme
of this paper in §9.

Finally, we should say a few words about existing works related to the theme
of this article.

When the complex codimension of H/H ∩ K in G/K is one, the modular
construction of a Green current of CΓ

H is obtained in [26] in the same way as
this paper. If G/K and H/H ∩ K are type IV symmetric domains and if Γ is
a discriminant group of some rational quadratic form, Bruinier [2] constructed
a Green function for a ‘Heegner divisor’ (which is a member of the divisor class
group of Γ\G/K expressed as a linear combination of CΓ

Hi
for various Hi’s defined

over Q) by a ‘regularized theta lifting’. It turns out the Green function in [2]
is built from the one in [26] according to the formation of the relevant Heegner
divisor.

Though the relation is somewhat indirect from technical point of view, there
are some results strongly related from the geometric point of view, which are
worked in the context of Weil representation and the theta correspondence ([23],
[24], [14], [15], [4], [16], [17]). To explain the connection in detail takes some
space; therefore, we leave that to the readers.

The paper [13] is also related to this paper. There we also considered modular
symbols derived from the injection H ↪→ G for a symmetric pair (G,H). But in
this case the image of the locally symmetric space associated with the subgroup
H is totally real, in contrast with the fact that here in this paper we consider
the holomorphic embedding. Actually we have some evidence to believe that the
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modular symbols considered in [13] have the extremal Hodge components (i.e.,
(m, 0)-type components), but our cycles are algebraic hence have only (p, p)-type
Hodge components. In this sense, the two results in this paper and [13] might be
the two edges of some more general phenomena.

Based on a work of Oshima-Matsuki, Tong-Wang [33] provides a fairly general
and simple method to construct an automorphic realization of a discrete series
of a symmetric space, which yields a modular construction of the Poincaré dual
form associated with a cohomology class defined by the symmetric subgroup in
a cohomology group with a local coefficient system. For analytical reasons, they
need to assume that the coefficient system should be sufficiently regular. The
assumption is related to the L1-condition of the discrete series, which is indis-
pensable to guarantee the convergence of the Poincaré series they use. This is a
serious technical limitation to obtaining the Poincaré dual forms in the cohomol-
ogy with constant coefficient. To be more concrete, let us pick the representation
Aq1p defined in §8. It is easy to see that Aq1p is not integrable; so one can not
expect the convergence of the Poincaré series ‘

∑
γ∈Γ∩H\Γ ψH(γg)’ used in [33].

Though the secondary spherical function ψs has a singularity, it will be shown
in this papaer that ψs is good enough to assure the convergence of the Poincaré
series ΨΓ

H(s; g) =
∑

γ∈Γ∩H\Γ ψs(γg) for large Re(s). We can recover the object
‘
∑

γ∈Γ∩H\Γ ψH(γg)’ properly by taking the residue at s = p + q − 1 after the
meromorphic continuation of the series ΨΓ

H(s). This regularization procedure re-
minds us of the ‘Hecke’s trick’ which is used to obtain an Eisenstein series with
low weight in the classical theory of elliptic modular forms ([37]). In this analogy,
the construction of the automorphic Green current can be regarded as a kind of
the second limit formula of Kronecker ([37]).

Acknowledgement: The authors thank Professor Eric Stade for linguistic help.

Notations:

The number 0 is included in the set of natural numbers: N = {0, 1, 2, . . . }. We
understand all the marix in this paper have complex coefficients. For any matrix
B = (bij), B∗ = (b̄ji) denotes its conjugate-transpose matrix. For a poistive
integer p, 1p denotes the identity matrix of size p. For r matrices Aj (1 6 j 6 r),
diag(A1, . . . , Ar) deontes the ‘block diagonal matrix ’corresponding to the linear
endomorphism A1 ⊕ · · · ⊕Ar.
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We follow the usual convention that the Lie algebra of a real Lie group G is
denoted by the corresponding German letter g.

2. Preliminaries

2.1. Unitary group and its symmetric space. Let G be the unitary group of
the Hermitian form Ip,q = diag(1p,−1q) with signature (p+, q−), i.e., G = {g ∈
GLp+q(C)| g∗Ip,qg = Ip,q}. We assume p > q > 2 from now on.

The inner automorphism θ : g 7→ Ip,q g Ip,q is a Cartan involution of G and its
fixed point set

K = {diag(k1, k2)| k1 ∈ U(p), k2 ∈ U(q)}
yields a maximal compact subgroup of G. The (−1)-eigenspace of dθ : g → g

denoted by p is identified with the tangent space of the G-homogeneous manifold
G/K at its origin o = K. The adjoint action J = Ad(zo)|p by the element
zo = diag(

√−1 1p, 1q) in the center of K yields a K-invariant complex structure
on p ∼= To(G/K), which propagates a G-invariant complex structure on G/K.
The complexification pC is decomposed to its holomorphic and anti-holomorphic
subspaces: pC = p+ ⊕ p− with p± = {X ∈ pC|J(X) = ±√−1X}. If we identify
gC = glp+q(C) naturally, we have

p+ = {p+(x′) =
[

0 x′
0 0

] ∈ glp+q(C)|x′ ∈ Mp,q(C)},
p− = {p−(x′′) =

[
0 0

tx′′ 0

] ∈ glp+q(C)|x′′ ∈ Mp,q(C)}.

Let X 7→ X̄ be the complex conjugate in glp+q(C) with respect to its real form g.
Then X̄ = −Ip,qX

∗Ip,q (∀X ∈ gC) and p±(x) = p∓(tx∗) (∀x ∈ Mp,q(C)). The non-
degenerate R-bilinear form Bg(X, Y ) = 2−1tr(XY ) on g entails a positive definite
K-invariant inner product Bp on p, which propagates a G-invariant metric on
G/K. The mertic on G/K is Kählerian and the associated 2-form is given by

ωp(X, Y ) = Bp(X, JY ), X, Y ∈ p (2.1)

on p ∼= To(G/K). Let Bp∗C be the complex bilinear extension of the inner product
Bp∗ on p∗ dual to Bp. Then p∗C is equipped with the hermitian inner product
(ξ|ξ′) = Bp∗C(ξ, ξ̄

′), which is extended to the exterior algebra
∧

p∗C canonically.
Note the natural decomposition of

∧
p∗C to its bidegree (a, b) part

a,b∧
p∗C =

a∧
p∗+ ⊗

b∧
p∗−

is orthogonal.
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The Hodge star operator ∗ is defined to be the C-linear endomorphism of
∧

p∗C
such that ∗ᾱ = ∗α and such that (α|β)volp = α ∧ ∗β̄. Here volp = 1

(pq)!ω
pq
p

is the Kähler volume form. For α ∈ ∧
p∗C, let us define e(α) :

∧
p∗C → ∧

p∗C
by e(α)β = α ∧ β. The operator L = e(ωp) is commonly called the Lefschetz
operator. The adjoint of e(α) with respect to the hermitian inner product of∧

p∗C is denoted by e∗(α). In particular, the operator e∗(ωp), the adjoint of the
Lefschetz operator, is denoted by Λ (cf. [1, Chap.II, §4]

2.2. A symmetric subgroup. Let us consider the involution σ of G defined by

σ(g) = diag(1p−1,−1, 1q) g diag(1p−1,−1, 1q).

Let H = Gσ be the σ-fixed point subgroup of G. Since θ commutes with σ, the
restriction θ|H provides H with a Cartan involution. The θ-fixed points

Hθ = H ∩K = {diag(h1, u, h2)|h1 ∈ U(p− 1), u ∈ U(1), h2 ∈ U(q)}
is a maximal compact subgroup of H. The Cartan decomposition of the Lie
algebra h of H is h = (k∩ h)⊕ (p∩ h). Since the element zo defining the complex
structure J of p belongs to the center of H ∩ K, J yields an H ∩ K-invariant
complex structure of the real vector space h∩p ∼= To(H/H∩K), which propagates
an H-invariant complex structure of H-homogeneous manifold H/H ∩ K. We
put H/H ∩K the H-invariant metric coming from the restriction of Bp to h∩ p.
The metric is Kählerian and the associated 2-form on p ∩ h ∼= To(H/H ∩K) is
ωp∩h = ωp|(p ∩ h)× (p ∩ h).

As a consequence of the constructions so far, the inclusion H/H∩K ↪→ G/K is
a holomorphic map between Kähler manifolds and codimC(G/K;H/H ∩K) = q.

In the following subsection, we recall the standard set up to investigate the
affine symmetric pair (G,H) (cf. Rossmann [29], Oshima-Sekiguchi [28] and
Schlichtkrull [31]).

2.3. Root vectors. For 1 6 i, j 6 p+q, let Ei,j = (δiαδjβ)16α,β6p+q denotes the
matrix unit in Mp+q(C). The matrices Ei,j comprise a C-basis of the complexified
Lie algebra gC = glp+q(C).

Let q be the (−1)-eigenspace of dσ : g → g. Since θ and σ are mutually
commutative involutions, g is decomposed to their joint eigenspaces: g = (k ∩
h) ⊕ (p ∩ q) ⊕ (p ∩ h) ⊕ (k ∩ q). The pair (g, h) is a symmetric pair of split rank
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one, and a = RY0 with Y0 = Ep,p+1 + Ep+1,p is a maximal abelian subspace of
p ∩ q. The set of a-roots in g is Σ(a) = {±λ,±2λ}. Here λ ∈ a∗ is the unique
simple root such that λ(Y0) = 1. The multiplicity ([28]) of each root is computed
as

(
m+(λ) m+(2λ)

m−(λ) m−(2λ)

)
=

(
2(q−1) 1
2(p−1) 0

)
.

Set M = ZH∩K(a). Then

M = {diag(x1, u, u, x2)|x1 ∈ U(p− 1), u ∈ U(1), x2 ∈ U(q − 1)}

coincides with ZK(a).

For 1 6 i 6 p− 1 and 1 6 j 6 q − 1, set

Xq
0 = Ep,p+1, X̄q

0 = Ep+1,p, Zh
0 =

√−1(Ep,p − Ep+1,p+1),

Xq
j = Ep,p+j+1, X̄q

j = Ep+j+1,p,

Zh
j = −Ep+1,p+j+1, Z̄h

j = Ep+j+1,p+1,

Xh
i = Ei,p+1, X̄h

i = Ep+1,i,

Zq
i = Ei,p, Z̄q

i = −Ep,i,

Xh
ij = Ei,p+j+1, X̄h

ij = Ep+j+1,i.

This notation is consistent with the complex conjugation, and

p+ ∩ qC = 〈Xq
j (0 6 j 6 q − 1)〉C,

p− ∩ qC = 〈X̄q
j (0 6 j 6 q − 1)〉C,

p+ ∩ hC = 〈Xh
i (1 6 i 6 p− 1)〉C ⊕ 〈Xh

ij (1 6 i 6 p− 1, 1 6 j 6 q − 1)〉C,
p− ∩ hC = 〈X̄h

i (1 6 i 6 p− 1)〉C ⊕ 〈X̄h
ij (1 6 i 6 p− 1, 1 6 j 6 q − 1)〉C,

(k ∩ h)C = 〈Zh
0 , Zh

j , Z̄h
j ( 1 6 j 6 q − 1)〉C ⊕mC,

(k ∩ q)C = 〈Zq
i , Z̄q

i (1 6 i 6 p− 1)〉C.

Here is a list of useful bracket relations, which is checked by a direct computation:
For 1 6 i 6 p− 1 and 1 6 j 6 q − 1,

[Zh
0 , Xq

0 ] = 2
√−1Xq

0 , [Zh
0 , X̄q

0 ] = −2
√−1X̄q

0 , [Xq
0 , X̄q

0 ] = −√−1Zh
0 ,

[Zh
0 , Zh

j ] = −√−1Zh
j , [X̄q

0 , Zh
j ] = 0, [Xq

0 , Zh
j ] = −Xq

j ,

[Zh
0 , Xq

j ] =
√−1Xq

j , [X̄q
0 , Xq

j ] = −Zh
j , [Xq

0 , Xq
j ] = 0,

[Zh
0 , Zq

i ] = −√−1Zq
i , [X̄q

0 , Zq
i ] = 0, [Xq

0 , Zq
i ] = −Xh

i ,

[Zh
0 , Xh

i ] =
√−1Xh

i , [X̄q
0 , Xh

i ] = −Zq
i , [Xq

0 , Xh
i ] = 0,

[Zh
0 , Xh

ij ] = 0, [X̄q
0 , Xh

ij ] = 0, [Xq
0 , Xh

ij ] = 0.
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Consider the one parameter subgroup

at = exp(tY0) = diag
(
1p−1,

[
cosht sinht
sinht cosht

]
, 1q−1

)
, (t ∈ R)

of G. Then by general theory, the group G is a disjoint union of double cosets
HatK (t > 0) and the Lie algebra g = Ad(at)−1h + a + k if t > 0. By direct
computation, we have

Xq
0 = 1

2Y0 − 1
2

√−1
sinh(2t) Ad(at)−1Zh

0 +
√−1

2
cosh(2t)
sinh(2t) Z

h
0 , (2.2)

Xq
j = 1

sinhtAd(at)−1Zh
j − cosht

sinht Z
h
j , (1 6 j 6 q − 1),

Xh
i = 1

coshtAd(at)−1Xh
i − sinht

coshtZ
q
i , (1 6 i 6 p− 1).

Lemma 1. For 1 6 i, α 6 p − 1 and 1 6 j, β 6 q − 1 and t > 0, the following
hold in U(gC) modulo (Ad(at)−1hC) U(gC):

Xq
0 X̄q

0 ≡ 1
4Y 2

0 + 1
4 (tanht + cotht)Y0 + 1

16 (tanht + cotht)2(Zh
0 )2 −

√−1
2 Zh

0 ,

Xq
0 X̄h

i ≡ − tanht
2 Y0Z̄

q
i −

√−1
4 (1 + tanh2t)Zh

0 Z̄q
i − Z̄q

i ,

Xh
i X̄q

0 ≡ − tanht
2 Y0Z

q
i +

√−1
4 (1 + tanh2t)Zh

0 Zq
i ,

Xq
0 X̄q

j ≡ − cotht
2 Y0Z̄

h
j −

√−1
4 (1 + coth2t)Zh

0 Z̄h
j − Z̄h

j ,

Xq
j X̄q

0 ≡ − cotht
2 Y0Z

h
j +

√−1
4 (1 + coth2t)Zh

0 Zh
j ,

Xh
i X̄h

α ≡ δiα
tanht

2 Y0 + tanh2t Z̄q
αZq

i −
√−1

4 (1 + tanh2t)δiαZh
0 ,

Xq
j X̄q

β ≡ δjβ
cotht

2 Y0 + coth2t Z̄h
βZh

j −
√−1

4 (1 + coth2t)δjβZh
0 ,

Xq
j X̄h

i ≡ Z̄q
i Zh

j ,

Xh
i X̄q

j ≡ Z̄h
j Zq

i .

Proof. By using the formulas (2.2), we prove this lemma in a similar way to [26,
Lemma 7.1.2]. ¤

The definitions and formulas of this section are used in §4.

2.4. Invariant measures. Let dk and dk0 be the Haar measures of the compact
groups K and H∩K with total volume 1 respectively. Then we can take a unique
Haar measure dg (resp. dh) of G (resp. H) such that the quotient measure dg

dk

(resp. dh
dk0

) coincides with the invariant measure on the symmetric space G/K

(resp. H/KH) determined by the Kähler volume form.
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Lemma 2. For any integrable function f on G, we have
∫

G

f(g) dg =
∫

H

dh

∫

K

dk

∫ +∞

0

f(hatk) %(t) dt (2.3)

with dt the Lebesgue measure of R and

%(t) = 2πq

Γ(q)(sinht)2q−1(cosht)2p−1. (2.4)

Proof. Similar to [32, Lemma 4.1]. ¤

3. Certain invariant tensors

For a C∞-manifold U , let A(U) denote the space of C∞-differential forms on
U and Ac(U) the subspace of those forms with compact support; when necessary
we topologize these spaces in the usual way. When U has a complex structure,
Aa,b(U) denotes the space of C∞-differential forms of bidegree (a, b).

In this section, for U = G/K we define some element dual to Ac(U) by the
H-orbit in U . Some of the contents of this section may be not found in the
literature.

3.1. A current defined by the symmetric subgroup. Let j : H/H ∩K ↪→
G/K be the natural inclusion. Then a (q, q)-current δH/H∩K on G/K is defined
by the integration

〈δH/H∩K , α〉 =
∫

H/H∩K
j∗α, α ∈ Ac(G/K).

Lemma 3. For α ∈ Ac(G/K), we have

〈Λq−dδH/H∩K , ∗ᾱ〉 =
∫

H
(Λq−d(∗volp∩h)|α(h)) dh.

Here

volp∩h = 1
(q(p−1)) !ω

q(p−1)
p∩h ∈

(p−1)q,(p−1)q∧
p∗C

is the K∩H-invariant tensor corresponding to the Kähler volume form of H/H∩K.

Proof. We may assume the bidegree of α is (d, d). Let vH/H∩K be the Kähler
volume form of H/H∩K and ∗H the Hodge star operator of H/H∩K. Then the 0-
form {∗Hj∗(Λq−d∗ᾱ)} on H/H∩K corresponds to the function (Λq−d(∗ᾱ(h))|volp∩h)
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on H. By this remark, we compute

〈Λq−dδH/H∩K , ∗ᾱ〉 = 〈δH/H∩K ,Λq−d(∗ᾱ)〉

=
∫

H/H∩K
(Λq−d(∗ᾱ(h))|volp∩h) dh

=
∫

H/H∩K
(volp∩h|Λq−d(∗α(h))) dh

=
∫

H/H∩K
(Λq−d(∗volp∩h)|α(h)) dh.

¤

3.2. K-spectrum of a certain cyclic K-module. For our purpose, it is im-
portant to understand the nature of the tensor Λq−d(∗volp∩h) in some detail.
The aim of this subsection is to obtain an Ωk-eigendecomposition of the tensor
Λq−d(∗volp∩h). Here Ωk is the Casimir element of K corresponding to the invari-
ant form Bg. For the construction of the secondary spherical function in §5, we
need the decomposition of Λq−d(∗volp∩h) given in Proposition 11.

The coadjoint representation of K on p∗C is naturally extended to a unitary
representation τ : K → GL(

∧
p∗C) in such a way that τ(k)(α ∧ β) = τ(k)α ∧

τ(k)β holds for α, β ∈ ∧
p∗C and k ∈ K. For (a, b) ∈ N2, τa,b denotes the

subrepresentation of τ on
∧a,b p∗C.

For 1 6 i 6 p, 1 6 j 6 q, let us define ωij ∈ p∗C by ωij(Eα,p+β) = δiαδjβ (1 6
α 6 p, 1 6 β 6 q), ωij |p− = 0. Then ωij ’s and their complex conjugates ω̄ij

comprise a C-basis of p∗C dual to the basis of matrix units in pC.

Lemma 4. (1) The family 2−1(ωij+ω̄ij), 2−1
√−1(ω̄ij−ωij), (1 6 i 6 p, 1 6

j 6 q) is an orthonormal basis of p∗ with respect to Bp∗ and is dual to
the orthonormal basis Ei,p+j + Ep+j,i,

√−1(Ei,p+j − Ep+j,i) of p.
(2) We have (ωij |ωαβ) = (ω̄ij |ω̄αβ) = 2δiαδjβ and (ωij |ω̄αβ) = 0.
(3) The action of the matrix units in kC on ωij (16i6p, 16j 6q) is given by

τ(Eµ,α)ωij = −δiµωαj , τ(Eµ,α)ω̄ij = δiαω̄µj , (1 6 µ, α 6 p),

τ(Ep+ν,p+β)ωij = δjβωiν , τ(Ep+ν,p+β)ω̄ij = −δjν ω̄iβ, (1 6 ν, β 6 q).

Proof. Direct computation. ¤
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For 1 6 µ, α 6 p, set

γµα =
√−1

2

q∑

j=1

ωµj ∧ ω̄αj ∈
1,1∧

p∗C.

We have a concise expression of Kähler forms in terms of γµα:

Lemma 5. We have

ωp =
p∑

µ=1

γµµ, ωp∩h = ωp − γpp.

The tensor γpp is H ∩K-invariant.

Proof. Direct consequence of definitions. ¤

The action of kC on the tensors γµα is given as follows.

Lemma 6. For 1 6 i, α, µ 6 p− 1, we have

τ(Zq
i )γpp = γpi, τ(Z̄q

i )γpp = γip,

τ(Zq
i )γαp = −δiαγpp + γαi, τ(Z̄q

i )γpα = −δiαγpp + γiα,

τ(Zq
i )γpα = 0, τ(Z̄q

i )γαp = 0,

τ(Zq
i )γαµ = −δiαγpµ, τ(Z̄q

i )γαµ = −δiµγαp.

For 1 6 j, β 6 q − 1, 1 6 µ, α 6 p, we have

τ(Zh
j )γµα = τ(Z̄h

j )γµα = 0,

τ(Ep+j+1,p+β+1)γµα = τ(Ep+1,p+1)γµα = 0.

For 1 6 i, α 6 p, 1 6 µ, λ 6 p, we have

τ(Ei,α)γµλ = −δiµγαλ + δαλγµi.

Proof. This follows from Lemma 4 readily. ¤

For γ ∈ ∧1,1 p∗C, the r-fold wedge product γ ∧ γ ∧ · · · ∧ γ is denoted by γr.

Lemma 7. For 0 6 d 6 q,

Λq−d(∗volp∩h) = (q−d)!
d! γd

pp.
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Proof. For any subset M of {(i, j)|1 6 i 6 p, 1 6 j 6 q}, set wM =
∏

(i,j)∈M ωij∧
ω̄ij . Then from [38, p.20,p.21], we have

∗wM =
(

2√−1

)2ν(M)−pq
wM ′ , (3.1)

Λ(wM ) = 2√−1

∑

µ∈M

wM−{µ} (3.2)

with ν(M) the cardinality of M , and M ′ the complement of M .

If suffices to show

∗volp∩h = 1
q!γ

q
pp, (3.3)

Λ(γd
pp) = d(q − d + 1) γd−1

pp , (1 6 d 6 q). (3.4)

Since

volp∩h =
(√−1

2

)pq−q
p−1∏

i=1

q∏

j=1

ωij ∧ ω̄ij , γq
pp = q!

q∏

j=1

ωpj ∧ ω̄pj ,

by (3.1), we compute

∗volp∩h =
(√−1

2

)pq−q
∗




p−1∏

i=1

q∏

j=1

ωij ∧ ω̄ij


 =

(√−1
2

)q
q∏

j=1

ωpj ∧ ω̄pj = 1
q!γ

q
pp.

This completes the proof of (3.3). Let Sd be the set of all M ⊂ {(p, j)| 1 6 j 6 q}
with ν(M) = d. Since γd

pp =
(√−1

2

)d
d!

∑
M∈Sd

wM , by (3.2), we compute

Λ(γd
pp) =

(√−1
2

)d
d!

∑

M∈Sd

2√−1

∑

µ∈M

wM−{µ}

=
(√−1

2

)d−1
d! (q − d + 1)

∑

N∈Sd−1

wN = d(q − d + 1)γd−1
pp

to have (3.4). ¤

In order to have a decomposition of γd
pp into eigenvectors of the Casimir opera-

tor Ωk, we first analyze the K-spectrum of U(kC)γd
pp, the cyclic U(kC)-submodule

of
∧d,d p∗C generated by γd

pp.

Since kC ∼= glp(C)⊕ glq(C), the highest weight of an irreducible representation
of k is supposed to take the form

λ = [l1, l2, . . . , lp]⊕ [m1,m2, . . . , mq] (3.5)
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with li,mj ∈ Z such that l1 > l2 > · · · > lp, m1 > m2 > · · ·mq.

Lemma 8. Let 0 6 d 6 q and V an irreducible K-submodule of U(kC)γd
pp. Then

the highest weight of V is of the form [κ, 0, . . . , 0,−κ]⊕ [0, . . . , 0] with an integer
0 6 κ 6 d.

Proof. Let us fix a K-invariant inner product on U(kC)γd
pp and take the orthogonal

complement V ⊥ of V in U(kC)γd
pp. Since the projector pr : U(kC)γd

pp → V associ-
ated with the decomposition U(kC)γd

pp = V ⊕V ⊥ is a surjective K-homomorphism
and since γd

pp is H ∩K-invariant, the vector v = pr(γd
pp) ∈ V yields an H ∩K-

invariant U(kC)-cyclic vector of V . In particular, v 6= 0 and V H∩K 6= {0}. Let
λ be the highest weight of V , which is supposed to have the form (3.5). Since
kC ∩ hC = (glp−1(C) ⊕ C) ⊕ glq(C), the condition V H∩K 6= {0} yields that the
irreducible glp(C)-module of highest weight [l1, . . . , lp] contains the trivial repre-
sentation of glp−1(C) and that the irreducible glq(C)-module with highest weight
[m1, . . . , mq] is trivial. Hence

li = 0 (∀i ∈ {2, . . . , p− 1}), mj = 0 (∀j ∈ {1, . . . , q}) (3.6)

by the glp−1 → glp branching law ([6, Theorem 8.1.1 (p.350)]). The center of K

acts on V trivially because a central element of K fixes the tensor γd
pp. Hence

the sum l1 + · · · + lp should be zero. This, combined with the condition (3.6),
forces that λ = [κ, 0 . . . ,−κ] ⊕ [0, . . . , 0] with some κ ∈ N. It remains to show
0 6 κ 6 d. For that, we examine the T -weights occurring in V , where T =
{diag(t1, . . . , tp+q)| ti ∈ U(1)}. For 1 6 i 6 p + q, let εi : T → U(1) be the
character defined by εi(diag(t1, . . . , tp+q)) = ti. From Lemma 6, the T -weight of
the element γµα (1 6 µ, α 6 p) equals εα− εµ. Lemma 6 also shows that U(kC)γd

pp

is contained in C[Γ](d), the subspace of
∧

p∗C spanned by the products of d of p2

tensors γµα (1 6 µ, α 6 p). In particular the highest weight λ = κ(ε1 − εp) of V

is one of T -weights occurring in C[Γ](d). It is obvious that a T -weight of C[Γ](d),
especially κ(ε1 − εp), is a sum of d weights of the form εµ − εα (1 6 µ, α 6 p).
This implies 0 6 κ 6 d. ¤

For 0 6 κ 6 d, let V
(d)
κ be the [κ, 0, . . . , 0,−κ] ⊕ [0, . . . , 0]-isotypic part of

U(kC)γd
pp. Then Lemma 8 implies

U(kC)γd
pp =

d⊕

κ=0

V (d)
κ . (3.7)
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Note that V
(d)
0 is a trivial representation of K.

Lemma 9. For 0 6 d 6 q, the K-module V
(d)
d is irreducible.

Proof. We have τ(Z̄q
1)dγd

pp = d! γd
1p by a short computation using formulas in

Lemma 6. Hence the tensor γd
1p belongs to U(kC)γd

pp. Let u be the nilpotent
subalgebra of glp+q(C) formed by all the lower triangular nilpotent matrices.
Then by the formulas in Lemma 6, it is easy to see that γd

1p is annihilated by
all the matrix units Eαβ ∈ kC ∩ u. This proves that γd

1p is an extremal vector of
kC lying in U(kC)γd

pp, which generates an irreducible K-module of lowest weight

−d(ε1 − εp). Therefore V
(d)
d 6= {0}. It is easy to show that the d(εp − ε1)-

weight space of C[Γ](d) coincides with the one dimensional space Cγd
1p. This

implies d(εp − ε1)-weight space of V
(d)
d also coincides with Cγd

1p. Hence V
(d)
d is

irreducible. ¤

Corollary 10. Let 0 6 d 6 q. Then the operator
∏d

κ=0(−4−1Ωk + κ(κ + p− 1))
annihilates the tensor γd

pp:

d∏

κ=0

(−4−1Ωk + κ(κ + p− 1)) γd
pp = 0.

Proof. Write the element γd
pp as the sum

γd
pp =

d∑

κ=0

vκ, vκ ∈ V (d)
κ (3.8)

along the decomposition (3.7). Since the eigenvalue of Ωk on an irreducible K-
module of highest weight [κ, 0, . . . , 0,−κ]⊕ [0, . . . , 0] is 4κ(κ+p− 1), the element
vκ is annihilated by −4−1Ωk+κ(κ+p−1), a factor of

∏d
κ=0(−4−1Ωk+κ(κ+p−1)).

The conclusion follows from this remark and the decomposition (3.8). ¤

For 0 6 d 6 q, 0 6 κ 6 d, set

θ(d)
κ =

(q − d)!
d!

∏

06α6d
α 6=κ

−4−1Ωk + α(α + p− 1)
(α− κ)(α + κ + p− 1)

· γd
pp ∈

d,d∧
p∗C. (3.9)

Proposition 11. Let 0 6 d 6 q.
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(1) For each 0 6 κ 6 d, the tensor θ
(d)
κ is a nonzero eigenvector of Ωk with

the eigenvalue 4κ(κ + p− 1), i.e.,

Ωkθ
(d)
κ = 4κ(κ + p− 1)θ(d)

κ , θ(d)
κ 6= 0.

The tensor θ
(d)
κ is H ∩K-invariant and is a U(kC)-cyclic vector of V

(d)
κ .

(2) We have

Λq−d(∗volp∩h) =
d∑

κ=0

θ(d)
κ . (3.10)

Moreover, the tensors θ
(d)
d (0 6 d 6 q) are primitive, i.e., Λθ

(d)
d = 0; we

have Λθ
(d)
κ = θ

(d−1)
κ (0 6 κ < d).

Proof. Let T be an indeterminate and consider the polynomial Fd(T ) =
∏d

κ=0(T+
κ(κ + p − 1)). The d + 1 integers ακ = −κ(κ + p − 1) (0 6 κ 6 d) are mutually
distinct and coincides with the set of roots of Fd(T ). Hence the formula 1

Fd(T ) =
∑d

κ=0
1

F ′d(ακ)(T−ακ)
, or equivalently

1 =
d∑

κ=0

F ′
d(ακ)−1Fd,κ(T ) (3.11)

holds, where Fd(T ) = (T − ακ)Fd,κ(T ). A computation shows

θ(d)
κ = F ′

d(ακ)−1Fd,κ(−4−1Ωk)
(q−d)!

d! γd
pp. (3.12)

The substitution T = −4−1Ωk in the identity (3.11) yields yet another identity
of operators on

∧
p∗C; apply this to the element Λq−d(∗volp∩h). Then we obtain

the identity (3.10) by (3.12) and Lemma 7.

Since (T + κ(κ + p− 1))Fd,κ(T ) = Fd(T ), we compute

{−4−1Ωk + κ(κ + p− 1)}θ(d)
κ = F ′

d(ακ)−1Fd(−4−1Ωk)
(q−d)!

d! γd
pp = 0

using Corollary 10 to prove the second equality. This shows the second statement
of (1). Since γd

pp is H∩K-invariant (Lemma 5), the defining formula (3.12) shows

the H ∩K-invariance of θ
(d)
κ .

Lemma 7 implies

Λ( (q−d)!
d! γd

pp) = (q−d+1)!
(d−1)! γd−1

pp .
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Let 0 6 κ < d. Then F ′
d(ακ) = (ακ + d(d + p − 1))F ′

d−1(ακ) and Fd,κ(T ) =
(T + d(d + p− 1))Fd−1,κ(T ). Using these formulas and noting that Λ commutes
with Ωk, we compute

Λ(θ(d)
κ ) = F ′

d(ακ)−1Fd,κ(−4−1Ωk) Λ( (q−d)!
d! γd

pp) (3.13)

= F ′
d(ακ)−1Fd,κ(−4−1Ωk)

(q−d+1)!
(d−1)! γd−1

pp (3.14)

= {ακ + d(d + p− 1)}−1F ′
d−1(ακ)−1

× Fd−1,κ(−4−1Ωk) {−4−1Ωk + d(d + p− 1)} (q−d+1)!
(d−1)! γd−1

pp

= {ακ + d(d + p− 1)}−1{−4−1Ωk + d(d + p− 1)} θ(d−1)
κ

= θ(d−1)
κ .

Note we use Ωkθ
(d−1)
κ = 4κ(κ+p−1)θ(d−1)

κ to obtain the last equality. This proves
the last statement of (3). In the computation above, the first two equalities (3.13)
and (3.14) are true even for κ = d. Since Fd,d(T ) = Fd−1(T ), the right-hand side
of (3.14) equals zero by Corollary 10. This proves Λ(θ(d)

d ) = 0.

The element vκ in the decomposition (3.8) has to be a U(kC)-cyclic vector of
V

(d)
κ . Both (3.8) and (3.10) give Ωk-eigenvector decomposition of γd

pp; comparing

them we obtain θ
(d)
κ = (q−d)!

d! vκ because the relevant eigenvalues −4ακ of Ωk are
different for different κ. Consequently θ

(d)
κ yields a U(kC)-cyclic vector of V

(d)
κ .

Since V
(d)
d 6= {0} (Lemma 9), θ

(d)
d 6= 0. When κ < d, the formula Λd−κ(θ(d)

κ ) =
θ
(κ)
κ 6= 0 shows θ

(d)
κ 6= 0. ¤

Remark: The k-module V
(d)
κ with 0 6 κ < d is not necessarily irreducible. For

example, when p = q = 2, V
(2)
0 = C ⊕ C is two dimensional and contains a non

trivial K-invariant tensor orthogonal to ω2
p .

Example: Consider the case of the rank 2 unitary group G = U(p, 2) (p > 2)
as an example. We can make the invariant tensors θ

(2)
κ defined by (3.9) more

explicit:

θ
(2)
0 = −1

2p(p+1)(A + 2B − C − E),

θ
(2)
1 = 1

p(p+2){A− (p− 2)B + (p− 1)C + pD − E},
θ
(2)
2 = −1

2(p+1)(p+2){A− 2pB − (p2 + p + 1)C + 2(p + 1)D − E},
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where

A = −
p−1∑

i=1

p−1∑

α=1

γiα ∧ γαi, B = −
p−1∑

i=1

γip ∧ γpi, C = γ2
pp,

D = ωp ∧ γpp, E = ω2
p .

4. Polar decomposition of several differential operators

In this subsection we have an expression of several differential operators acting
on the space of H-invariant forms A((G−HK)/K)H .

4.1. Differential forms. For a right K-stable open subset S of G and a unitary
representation (ρ,W ) of K, let C∞(S/K; ρ) denote the space of all the C∞-
functions ϕ : S → W such that

ϕ(gk) = ρ(k)−1ϕ(g), (∀g ∈ S, ∀k ∈ K).

For g ∈ G, let Lg : xK 7→ gxK be the left translation on G/K by g. Its tangent
map To(Lg) at the origin o = K is regarded as a linear map p → TgK(G/K).
Given α ∈ A(S/K), a function α̃ ∈ C∞(S/K; τ) is defined by the formula

〈α̃(g), ξ〉 = 〈α(gK), {∧To(Lg)} ξ〉, (∀g ∈ S, ∀ξ ∈
∧

p).

The map α 7→ α̃ yields a linear bijection from the space of forms Aa,b(S/K)
onto the space of functions C∞(S/K; τa,b); we identify these two spaces by this
isomorphism.

Since G − HK is a left H-stable and right K-stable open subset of G, both
Aa,b((G−HK)/K) and C∞((G−HK)/K; τa,b) have natural left actions by H,
and the isomorphism Aa,b((G − HK)/K) ∼= C∞((G − HK)/K; τa,b) preserves
the H-actions.

Lemma 12. Let ϕ ∈ C∞((G−HK)/K; τ)H . Then for each t > 0, the value ϕ(at)
belongs to the M -invariant part (

∧
p∗C)M . Conversely, given a C∞-function φ :

(0,+∞) → (
∧

p∗C)M , there exists a unique function ϕ ∈ C∞((G −HK)/K; τ)H

such that ϕ(at) = φ(t) (∀t > 0).

Proof. Let t > 0. Since any m ∈ M commutes with at and since M ⊂ H ∩K, we
have ϕ(at) = ϕ(matm

−1) = τ(m)ϕ(at) (∀m ∈ M), which implies φ(t) ∈ (
∧

p∗C)M .
Let us show the converse. Given a C∞-function φ : (0,+∞) → (

∧
p∗C)M , we
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define a function ϕ̃ : H × (0,+∞) × K → ∧
p∗C by ϕ̃(h, t, k) = τ(k)−1φ(t).

Obviously, ϕ̃ is a C∞-function and is constant on an M -orbit in H×(0,+∞)×K

with the M -action m · (h, t, k) = (hm−1, t, mk). Since (h, t, k) 7→ hatk induces a
diffeomorphism (H × (0,+∞)×K)/M ∼= G−HK ([29, Theorem 9,10]), ϕ̃ yields
a function ϕ ∈ C∞((G−HK)/K; τ)H such that ϕ(at) = φ(t) (∀t > 0). ¤

Lemma 13. We have τd,d(Zh
0 )ξ = 0 (∀ξ ∈ (

∧d,d p∗C)M ) for any d ∈ N.

Proof. The operator τ(W0) with W0 =
√−1diag(1p,−1q) ∈ k acts on p± by the

scalar ±2
√−1; hence τd,d(W0) = 0. Since the difference

Zh
0 −W0 =

√−1diag(−1p−1, 0, 0, 1q−1)

belongs to m, τ(Zh
0 − W0) is zero on (

∧d,d p∗C)M . From these, the conclusion
follows. ¤

4.2. Laplacians. Let Ωm, Ωk, Ωh∩k and Ωg be Casimir elements of M , K, H ∩K

and G respectively, corresponding to the invariant form Bg. Then

Ωk∩h = Ωm − (Zh
0 )2 − 2

q−1∑

j=1

(Zh
j Z̄h

j + Z̄h
j Zh

j ),

Ωk = Ωm − (Zh
0 )2 − 2

q−1∑

j=1

(Zh
j Z̄h

j + Z̄h
j Zh

j )− 2
p−1∑

i=1

(Zq
i Z̄q

i + Z̄q
i Zq

i ), (4.1)

Ωg = Ωk + 2
q−1∑

j=0

(Xq
j X̄q

j + X̄q
j Xq

j ) + 2
p−1∑

i=1

(Xh
i X̄h

i + X̄h
i Xh

i ) (4.2)

+ 2
p−1∑

i=1

q−1∑

j=1

(Xh
ijX̄

h
ij + X̄h

ijX
h
ij).

Let us introduce the operators

Sk,q = 1
2

p−1∑

i=1

τ(Zq
i Z̄q

i + Z̄q
i Zq

i ) = −1
4 {τ(Ωk)− τ(Ωk∩h)}, (4.3)

Sk,h = 1
2

q−1∑

j=1

τ(Zh
j Z̄h

j + Z̄h
j Zh

j ) = −1
4 {τ(Ωk∩h)− τ(Ωm) + τ(Zh

0 )2} (4.4)

acting on
∧

p∗C. Let 4 be the Hodge Laplacian acting on A((G−HK)/K).
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Proposition 14. Let ϕ ∈ C∞((G − HK)/K; τ)H and set φ(t) = ϕ(at) (t >

0). Then (4ϕ)(at) = −Dtφ(t) (t > 0) with Dt the (
∧

p∗C)M -valued differential
operator

Dt = d2

dt2
+ ((2p− 1)tanht + (2q − 1)cotht) d

dt

+ 4Sk,h

sinh2t
+ −4Sk,q

cosh2t
+ 1

4(cotht− tanht)2τ(Zh
0 )2 + τ(Ωm).

Proof. By Kuga’s lemma ([1, Chap.II, Theorem 2.5]), the action of Laplacian 4
on Ac(G/K) ∼= C∞

c (G/K; τ) is given by the action of the Casimir RΩg . Hence
the formula follows from (4.2), (4.1) and Lemma 1 by a direct computation. ¤

The next lemma, which is obtained by integration-by-part, will play a key role
in this paper (cf. Propositions 23 and 31).

Lemma 15. Let α, β ∈ C∞((0,+∞); (
∧

p∗C)M ) and 0 < ε < R. The formula
∫ R

ε
(α(t)|Dtβ(t)) %(t) dt = R(α, β; ε)−R(α, β;R) +

∫ R

ε
(Dtα(t)|β(t)) %(t) dt

holds, where

R(α, β; t) = %(t)
{
(α′(t)|β(t))− (α(t)|β′(t))} .

Proof. Fix 0 < ε < R. In the following computation we use the relation d2

dt2
+

((2p−1)tanht+(2q−1)cotht) d
dt = %(t)−1 d

dt%(t) d
dt and the fact that the operators

Sk,h, Sk,q, τ(Z0) and τ(Ωm) are self-adjoint. Then by applying the integration-by-
part twice, we have
∫ R

ε
(α(t)|Dtβ(t)) %(t) dt

=
∫ R

ε
(α(t)| d

dt%(t) d
dtβ(t)) dt

+
∫ R

ε
(α(t)|{ 4Sk,h

sinh2t
+ −4Sk,q

cosh2t
+ (cotht−tanht)2

4 τ(Zh
0 )2 + τ(Ωm)}β(t)) %(t) dt

= −(
α(ε)|%(ε)β′(ε)) + (α(R)|%(R)β′(R))−

∫ R

ε

(
d
dtα(t)|%(t) d

dtβ(t)
)
dt

+
∫ R

ε

({ 4Sk,h

sinh2t
+ −4Sk,q

cosh2t
+ (cotht−tanht)2

4 τ(Zh
0 )2 + τ(Ωm)}α(t)|β(t)

)
%(t) dt

= −(α(ε)|%(ε)β′(ε)) + (α(R)|%(R)β′(R))− (%(R)α′(R)|β(R)) + (%(ε)α′(ε)|β(ε))
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+
∫ R

ε

(
d
dt%(t) d

dtα(t)|β(t)
)
dt

+
∫ R

ε

({ 4Sk,h

sinh2t
+ −4Sk,q

cosh2t
+ (cotht−tanht)2

4 τ(Zh
0 )2 + τ(Ωm)}α(t)|β(t)

)
%(t) dt

= R(α, β; ε)−R(α, β;R) +
∫ R

ε
(Dtα(t)|β(t)) %(t) dt.

¤

4.3. ∂∂̄-operator. Since (G−HK)/K is an open subset of the complex manifold
G/K, we have the usual operators ∂, ∂̄ and their formal adjoints ∂∗, ∂̄∗ acting
on A((G−HK)/K) ∼= C∞((G−HK)/K; τ):

∂ =
p∑

i=1

q∑

j=1

e(ωij)REi,p+j , ∂̄ =
p∑

i=1

q∑

j=1

e(ω̄ij)REp+j,i ,

∂∗ = −
p∑

i=1

q∑

j=1

e∗(ωij)REp+j,i , ∂̄∗ = −
p∑

i=1

q∑

j=1

e∗(ω̄ij)REi,p+j .

In order to describe the composite operator ∂∂̄ and ∂̄∗∂∗ on the H-invariant
forms concretely, let us introduce operators acting on

∧
p∗C:

P+ =
p−1∑

i=1

e(ω̄i1)τ(Z̄q
i ), P− =

p−1∑

i=1

e(ωi1)τ(Zq
i ), e(ηh) =

p−1∑

i=1

e(ωi1 ∧ ω̄i1),

R+ =
q−1∑

j=1

e(ω̄p,j+1)τ(Z̄h
j ), R− =

q−1∑

j=1

e(ωp,j+1)τ(Zh
j ),

e(ηq) =
q−1∑

j=1

e(ωp,j+1 ∧ ω̄p,j+1),

and

A = e(ηh) + 1
2e(ω0 ∧ ω̄0)− e(ω̄0)P− + e(ω0)P+, (4.5)

B = e(ηq) + 1
2e(ω0 ∧ ω̄0)− e(ω̄0)R− + e(ω0)R+, (4.6)

C = e(ω0)(P+ +R+) + P−R+ +R−P+. (4.7)

Here we set ω0 = ωp,1.
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Proposition 16. Let ϕ ∈ C∞((G −HK)/K; τ)H and set φ(t) = ϕ(at) (t > 0).
Then (∂∂̄ϕ)(at) = Etφ(t) (t > 0) with Et the (

∧
p∗C)M -valued differential operator

Et = 1
4e(ω0 ∧ ω̄0) d2

dt2
+ 1

2(tanhtA+ cothtB) d
dt

+ tanh2tP−P+ + coth2tR−R+ + C
+

√−1
4 (1 + tanh2t)

(
2√−1

e(ηh)− e(ω̄0)P− − e(ω0)P+

)
τ(Zh

0 )

+
√−1

4 (1 + coth2t)
(

2√−1
e(ηq)− e(ω̄0)R− − e(ω0)R+

)
τ(Zh

0 )

+
√−1

2 e(ω0 ∧ ω̄0)τ(Zh
0 ) + 1

16(tanht + cotht)2τ(Zh
0 )2.

We have (∂̄∗∂∗ϕ)(at) = E∗t φ(t) (∀t > 0) with E∗t the formal adjoint of Et defined
by

∫ +∞

0
(Etα(t)|β(t)) %(t) dt =

∫ +∞

0
(α(t)|E∗t β(t)) %(t) dt,

(∀α, β ∈ C∞
c ((0,+∞); (

∧
p∗C)M ).

Proof. Using the expression of ∂ and ∂̄ above and also the formulas in Lemma 1,
we prove the formula (∂∂̄ϕ)(at) = Etφ(t) by a direct computation. ¤

Lemma 17. Let α, β ∈ C∞((0,+∞)); (
∧

p∗C)M ) and 0 < ε < R. The formula
∫ R

ε
(Etβ(t)|α(t)) %(t) dt = S(R)−S(ε) +

∫ R

ε
(β(t)|E∗t α(t)) %(t) dt

holds, where

S(t) = %(t)
4

{
(e(ω0 ∧ ω̄0)β′(t)|α(t))− (e(ω0 ∧ ω̄0)β(t)|α′(t))

+ tanht ((2A− (2p− 1)e(ω0 ∧ ω̄0))β(t)|α(t))

+ cotht ((2B − (2q − 1)e(ω0 ∧ ω̄0))β(t)|α(t))
}
.

Proof. Similar to the proof of Lemma 15. ¤

5. The secondary spherical functions

Set ρ0 = p + q − 1. In this section, we fix an integer 0 6 d 6 q and set

D(d) = C− {ρ0 − 2(q − d + n)|n ∈ N}.

Here is the main theorem of this section.
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Theorem 18. (1) There exists a unique family ϕ
(d)
s (s ∈ D(d)) of functions

with the properties:
(i) For s ∈ D(d), ϕ

(d)
s ∈ C∞((G−HK)/K; τd,d)H .

(ii) For each g ∈ G −HK, the value ϕ
(d)
s (g) depends on s ∈ D(d) holo-

morphically.
(iii) For each s ∈ D(d),

Ωgϕ
(d)
s (g) = (s2 − ρ2

0)ϕ
(d)
s (g), (g ∈ G−HK).

(iv) It has the ‘small-time behavior’

lim
t→+0

t2(q−1)ϕ(d)
s (at) = Λq−d(∗volp∩h).

(v) It has the ‘large-time behavior’

ϕ(d)
s (at) = O(e−(Re(s)+ρ0)t), (t → +∞).

(2) The radial value ϕ
(d)
s (at) is given by the explicit formula

ϕ(d)
s (at) =

d∑

κ=0

Fκ(s; t) θ(d)
κ , (t > 0). (5.1)

Here for each κ ∈ N, s ∈ C and t > 0, we set

Fκ(s; t) =
Γ( s+ρ0

2 + κ)Γ( s−ρ0

2 + q − κ)
Γ(s + 1)Γ(q − 1)

× (cosht)−(s+ρ0)
2F1

(
s+ρ0

2 + κ, s−ρ0

2 + q − κ; s + 1; 1
cosh2t

)
.

The next corollary says that only the function ϕ
(q)
s is essential, from which

others ϕ
(d)
s with smaller bidegree (d, d) are obtained by successive application of

Λ.

Corollary 19. We have Λϕ
(d)
s = ϕ

(d−1)
s whenever 1 6 d 6 q, s ∈ D(d).

Proof. This follows immediately from the explicit formula (5.1) and the last state-
ment of Proposition 11 (2). Another proof is first to check that Λϕ

(d)
s has the

same properties (i) to (v) as ϕ
(d−1)
s , which is easy, and then to use the uniqueness

of ϕ
(d−1)
s . ¤
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5.1. Some properties of the secondary spherical functions. In this sub-
section, we fix a family of functions ϕ

(d)
s (s ∈ D(d)) satisfying the conditions (i),

(ii), (iii), (iv) and (v) in Theorem 18. Starting with these five properties, we de-
duce several substantial results which will be used not only to prove Theorem 18
but also to study Poincaré series in the next section .

First of all, to study the local behavior of ϕ
(d)
s (at) near the boundary points

t = 0, +∞, we introduce the local coordinate z = tanh2t around t = 0 and the
one ζ = 1

cosh2t
around t = +∞.

Proposition 20. (1) There exist 0 < ε < 1 and a (
∧d,d p∗C)M -valued holo-

morphic function R(s, ζ) on D(d) × {|ζ| < ε} such that

ϕ(d)
s (at) = ζ(s+ρ0)/2 R(s, ζ), (s ∈ D(d), ζ ∈ (0, ε)). (5.2)

(2) There exist N ∈ N, 0 < δ < 1 and (
∧d,d p∗C)M -valued holomorphic func-

tions Ph(s, z) (0 6 h 6 N) on D(d) × {|z| < δ} such that P0(s, 0) =
Λq−d(∗volp∩h) and

ϕ(d)
s (at) = z−(q−1)

{
P0(s, z) +

N∑

h=1

z(log z)h Ph(s, z)
}
, (s ∈ D(d), z ∈ (0, δ)).

(5.3)

Proof. Set V = (
∧

p∗C)M . From the condition (iii), φ(t) = ϕ
(d)
s (at) satisfies the

differential equation Dtφ(t) = (s2 − ρ2
0)φ(t) on t > 0. Here Dt is the differential

operator given in Proposition 14. By the change of variable z = tanh2t, which
yields a diffeomorphism from t > 0 to 0 < z < 1, the equation Dtφ(t) = (s2 −
ρ2
0)φ(t) becomes

{
d2

dz2 +
(

q
z + ρ0−1

1−z

)
d
dz + Q(s; z)

}
φ(z) = 0, (0 < z < 1) (5.4)

with

Q(s; z) = −Sk,q

z(1−z) + Sk,h

z2(1−z)
+ s2−ρ2

0
4z(1−z)2

1V (∈ End(V )).

This implies that the function Φ(z) =
[

φ(z)
zφ′(z)

]
(∈ V 2⊕) is a solution of the first

order differential equation

dΦ
dz (z) = A(s; z)Φ(z), A(s; z) =

[
0

1
z 1V

−zQ(s;z)

(
1−q
z +

1−ρ0

1−z

)
1V

]
. (5.5)
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Since z = 0 is a simple pole of A(s; z), z = 0 is a regular singular point of
the equation (5.5) ([3, Theorem 2.(p.111)]). The integer −(q − 1) is one of its
characteristic roots at z = 0, which are the eigenvalues of the operator

Resz=0A(s; z) = A0 =
[

0 1V

−Sk,h (1−q)1V

]
. (5.6)

By Lemma 21 below, the characteristic roots are integers; hence by [3, Theorem
4.2(p.121)] the solution Φ(z) has to be of the form Φ(z) = zλ0

∑N
h=0(log z)hF̃h(s, z)

with λ0 the smallest characteristic root. Here F̃h(s, z)’s are V 2⊕-valued holomor-
phic functions on D(s) × {|z| < δ} with small δ > 0. Let P̃h(s, z) be the first
projection of F̃h(s, z) to V . Then we obtain this local expression of φ(z):

φ(z) = zλ0

N∑

h=0

(log z)hP̃h(s, z), (0 < z < δ).

By the condition (iv), the function zq−1φ(z) has the limit Λq−d(∗volp∩h) as
z → +0 with z ∈ R. This implies that P0(s, z) = zλ0+q−1P̃0(s, z) should be
holomorphic at z = 0 with constant term Λq−d(∗volp∩h) and that zλ0+q−1P̃h(s, z)
should be of the form zPh(s, z) with Ph(s, z) holomorphic at z = 0. This com-
pletes the proof of (5.3). The proof of (5.2) is similar. ¤

Lemma 21. The eigenvalues of the linear operator A0 coincides with the set of
numbers λ ∈ C such that det(Sk,h + λ(λ + q− 1)) = 0, which consists of integers.

Proof. For a given w = (v1, v2) ∈ V 2, the equation A0w = λw is equivalent to
the system of equations v2 = λv1, {Sk,h + λ(λ + q − 1)}v1 = 0. This shows the
first assertion of our lemma.

Let
∧

p∗C =
⊕

i∈I Wi be a K ∩H-irreducible decomposition. Taking M -fixed
part, we have the decomposition V =

⊕
i∈I WM

i , by which the Casimir operator
Ωk∩h is diagonalized. Since Sk,h = −1

4 τ(Ωk∩h) on V by (4.4), the eigenvalues of Sk,h

on V are computable from this decomposition. Identify kC∩hC = glp−1(C)⊕C⊕
glq(C) and mC = glp−1(C)⊕C⊕glq−1(C) naturally; then by glq−1 → glq-branching
rule ([6, Theorem 8.1.1(p.350)]), the highest weight of Wi such that WM

i 6= {0} is
of the form [a, 0, · · · , 0,−a]⊕[0]⊕[0, . . . , 0] with a ∈ N. The eigenvalue of Ωk∩h on
this Wi is easily calculated as 4a(a+q−1). Hence Sk,h|WM

i = −a(a+p−1). The
argument so far shows an eigenvalue of Sk,h on V belongs to {−a(a+q−1)| a ∈ N}.

If λ satisfies det(Sk,h + λ(λ + q− 1)) = 0, then λ(λ + q− 1) = a(a + q− 1) with
some a ∈ N. Hence λ = a, 1− q − a, in particular λ ∈ Z. ¤
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Since HK is a zero set of G with respect to the Haar measure, the form ϕ
(d)
s

is regarded as a measurable form on G/K.

Lemma 22. The measurable form ϕ
(d)
s on G/K is locally integrable.

Proof. Let {Un}n∈N be an open covering of H by relatively compact subsets.
The sets Gε,n = Un exp([0, ε]Y0)K, (ε > 0, n ∈ N) form an open covering of G

by relatively compact sets. Fix ε > 0 and n ∈ N. From the property (iv), there
exists a constant Cε > 0 such that ‖ϕ(d)

s (at)‖ 6 Cεt
−2(q−1) (∀t ∈ [0, ε]). Using

this estimation, by Lemma 2, we have
∫

Gε,n

‖ϕ(d)
s (g)‖dg = vol(Un)

∫ ε

0
‖ϕ(d)(at)‖%(t) dt 6 Cεvol(Un)

∫ ε

0
t−2(q−1)%(t) dt.

Since t−2(q−1)%(t) = O(t), (|t| 6 ε) by (2.4), the last integral is convergent. ¤

Proposition 23. Assume Re(s) > ρ0. Then the (d, d)-current ϕ
(d)
s on G/K

satisfies the differential equation:

(4+ s2 − ρ2
0) ϕ(d)

s = 4πq

Γ(q−1)Λ
q−dδH/H∩K .

Proof. Let f ∈ Ac(G/K). Then

〈(4+ s2 − ρ2
0)ϕ

(d)
s , ∗f̄〉 = 〈ϕ(d)

s , (4+ s2 − ρ2
0) ∗ f̄〉 (5.7)

=
∫ +∞

0

(
ϕ(d)

s (at)|
∫

H
(4+ s̄2 − ρ2

0)f(hat) dh
)
%(t) dt.

Since f is of compact support, the integral fH(g) =
∫
H f(hg) dh (g ∈ G) con-

verges absolutely and defines an H-invariant function fH ∈ C∞(G/K; τ)H .
Moreover, f 7→ fH is a Z(gC)-homomorphism from Ac(G/K) to C∞(G/K; τ)H .
Here Z(gC) is the center of the universal enveloping algebra of gC. By this remark
and Proposition 14 , we have

∫

H
(4+ s̄2 − ρ2

0)f(hg) dh = (4+ s̄2 − ρ2
0)f

H(at)

= (−Dt + s̄2 − ρ2
0)f

H(at)

for t > 0. Use this formula to obtain the expression of the paring (5.7) in terms
of fH

〈(4+ s2 − ρ2
0)ϕ

(d)
s , ∗f̄〉 =

∫ +∞

0

(
ϕ(d)

s (at)|(−Dt + s̄2 − ρ2
0)f

H(at)
)
%(t) dt. (5.8)
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Fix 0 < ε < R and apply Lemma 15 with α(t) = ϕ
(d)
s (at) and β(t) = fH(at).

Then ∫ R

ε

(
ϕ(d)

s (at)|(−Dt + s̄2 − ρ2
0)f

H(at)
)
%(t) dt = R(R)−R(ε) (5.9)

since (−Dt +s2−ρ2
0)ϕ

(d)
s (at) = 0 (∀t > 0) by the property (i) and Proposition 14.

Here

R(t) = −%(t)(ϕ(d)
s (at)| d

dtf
H(at)) + %(t)( d

dtϕ
(d)
s (at)|fH(at)). (5.10)

Let us compute the limit of R(ε) as ε → +0. By differentiation of (5.3), we have

d
dtϕ

(d)
s (at) = −(q − 1)z−q dz

dt {P0(s, z) +
N∑

h=1

z(log z)hPh(s, z)}

+ z−q+1 dz
dt

{
∂P0
∂z (s, z) +

N∑

h=1

(log z + h)(log z)h−1Ph(s, z)

+
N∑

h=1

z(log z)h ∂Ph
∂z (s, z)

}

for small z. Since P0(s, z) = Λq−d(∗volp∩h) + O(z), Ph(s, z) = O(1), ∂Ph
∂z (s, z) =

O(1) and dz
dt = 2z

1
2 (1− z), we have the estimation

d
dtϕ

(d)
s (at) = −2(q − 1)z

1
2
−q(1 + O(z))

{
Λq−d(∗volp∩h) + O(z) +

N∑

h=1

O(z(log z)h)
}

+ z1−q
{
O(1) +

N∑

h=1

O((log z)h) +
N∑

h=1

O(z
3
2 (log z)h)

}

= −2(q − 1)z
1
2
−qΛq−d(∗volp∩h) + O(z1−q(log z)N )

= −2(q − 1)t−2q+1Λq−d(∗volp∩h) + O(t2−2q(log t)N )

for small t > 0. Since d
dtf

H(at) is continuous at t = 0 and ϕ
(d)
s (at) = O(t−2q+2),

%(t) = 2πq

Γ(q) t
2q−1(1 + O(t)) for small t, the first term of (5.10) is majorized by

O(%(t)t−2q+2) = O(t). Hence

lim
ε→+0

R(ε) = lim
ε→+0

%(t)( d
dtϕ

(d)
s (at)|fH(at)) (5.11)

= −4πq

Γ(q−1)(Λ
q−d(∗volp∩h)|fH(e)).

Let us compute the limit of R(R) as R → +∞. Since f is of compact support
in G and H exp([0, R)Y0)K, (R > 0) is an open covering of G, there exists an
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R0 > 0 such that supp(f) ⊂ H exp([0, R0]Y0)K. Hence fH(at) = 0 (∀t > R0).
This yields R(R) = 0 (∀R > R0), especially

lim
R→+∞

R(R) = 0. (5.12)

By (5.8), (5.9), (5.11), (5.12) and Lemma 3, we obtain

〈(4+ s2 − ρ2
0)ϕ

(d)
s , ∗f̄〉 = 4πq

Γ(q−1)

∫

H
(Λq−d(∗volp∩h)|f(h)) dh

= 4πq

Γ(q−1)〈Λq−dδH/H∩K , ∗f̄〉.
¤

5.2. The proof of Theorem 18.

5.2.1. The construction of a solution. By Proposition 14 and Lemma 12, finding
a function ϕ

(d)
s with the properties (i) and (iii) is equivalent to finding the function

φ(t) = ϕ
(d)
s (at) on t > 0 which takes its values in the vector space (

∧
p∗C)M and

satisfies the ordinary differential equation

Dtφ(t) = (s2 − ρ2
0)φ(t). (5.13)

We search for a solution of (5.13) assuming the form

φ(t) =
d∑

κ=0

φκ(t) θ(d)
κ (t > 0) (5.14)

with d + 1 unknown functions φκ(t). By (3.10), the condition (iv) for (5.14) is
equivalent to requiring

lim
t→+0

t2(q−1)φκ(t) = 1. (5.15)

For the function (5.14) to meet the condition (v), we also have to require

φκ(t) = O(e−(Re(s)+ρ0)t), (t → +∞). (5.16)

By Lemma 13 and H∩K-invariance of θ
(d)
κ (Lemma 5), the operators τ(Zh

0 ), Sk,h,
τ(Ωk∩h) and τ(Ωm) are all zero when applied to θ

(d)
κ . By (4.3) and Proposition 11

(1), we have Sk,qθ
(d)
κ = −1

4 τ(Ωk)θ
(d)
κ = −κ(κ + p − 1)θ(d)

κ . Hence the equation
(5.13) is simplified as

{
d2

dt2
+

(
(2p− 1)tanht + (2q − 1)cotht

)
d
dt + 4κ(κ+p−1)

cosh2t
+ ρ2

0 − s2
}

φκ(t) = 0.

(5.17)
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Lemma 24. Let p, q, A,B,C ∈ C and choose α and β such that

β2 + (q − 1)β + B
4 = 0, (5.18)

(α + β)(α + β + p + q − 1) + C
4 = 0. (5.19)

Then, by the change of variable ζ = 1
cosh2t

, the ordinary differential equation
{

d2

dt2
+

(
(2p− 1)tanht + (2q − 1)cotht

)
d
dt +

(
A

cosh2t
+ B

sinh2t
+ C

)}
f(t) = 0

for a unknown function f(t) on t > 0 is transformed to the Gaussian hypergeo-
metric equation

ζ(1− ζ)F ′′(ζ) + {c− (a + b + 1)ζ}F ′(ζ)− abF (ζ) = 0 (5.20)

with

(a + b, ab, c) =
(−2α− p + 1, α2 + (p− 1)α− A

4 , −(p + q + 2α + 2β − 2)
)
,

(5.21)

for the unknown function F (ζ) = (cosh2t)−α(sinh2t)−βf(t) on 0 < ζ < 1.

Proof. A direct computation. ¤

Let us apply this lemma to our equation (5.17) taking A = 4κ(κ+p−1), B = 0
and C = ρ2

0− s2. Then β = 0, α = −1
2(ρ0 + s) satisfies (5.18) and (5.19). We can

easily find

(a, b, c) =
(

s+p+q−1
2 + κ, s−p+q+1

2 − κ, s + 1
)

.

satisfies (5.21). The condition (5.16) is equivalent to the condition that F (ζ) =
(cosht)s+ρ0φκ(t) should be bounded as ζ → +0. The solution of (5.20) given by
the hypergeometric series

F (ζ) = 2F1(a, b; c; ζ) = Γ(c)
Γ(a)Γ(b)

∞∑

n=0

Γ(a+n)Γ(b+n)
Γ(c+n) n! ζn, (|ζ| < 1)

meets this requirement. Thus we have shown that the function

φκ(t) = Cκ (cosht)−(s+ρ0)
2F1

(
s+p+q−1

2 + κ, s−p+q+1
2 − κ; s + 1; 1

cosh2t

)

with a constant Cκ ∈ C satisfies all the conditions we require except (5.15). For
this function to satisfy (5.15), the constant Cκ has to be

Cκ =
Γ( s+p+q−1

2 + κ)Γ( s−p+q+1
2 − κ)

Γ(s + 1)Γ(q − 1)
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by a formula in [19, p.49]. This completes the proof that the function given by
(5.1) satisfies all the conditions in Theorem 18.

5.2.2. The uniqueness. Let us prove the uniqueness of ϕ
(d)
s (s ∈ D(d)) satisfying

the conditions (i) to (v) in Theorem 18. For that, take another family ψ
(d)
s (s ∈

D(d)) with the same properties as ϕ
(d)
s . Fix s ∈ C such that Re(s) > ρ0 and

consider the difference fs(g) = ϕ
(d)
s (g)−ψ

(d)
s (g), which defines a (d, d)-current on

G/K by Lemma 22 and satisfies the differential equation 4fs = (ρ2
0 − s2) fs by

Proposition 23. Since 4 is an elliptic differential operator, fs is automatically
real analytic on G/K.

Let 0 < ε < R. We obtain Dtfs(at) = (ρ2
0 − s2)fs(at) (∀t > 0) from 4fs =

(ρ2
0 − s2) fs by Proposition 14; thus, Lemma 15 yields the identity

(s2 − s̄2)
∫ R

ε
‖fs(at)‖2 %(t) dt = F(ε)− F(R) (5.22)

with

F(t) = %(t)
{(

fs(at)
∣∣ d
dtfs(at)

)− (
d
dtfs(at)

∣∣fs(at)
)}

.

Since fs is real analytic on G/K, the function t 7→ fs(at) is smooth on R. Noting
this, the limit of F(ε) as ε → +0 is easily computed as

lim
ε→+0

F(ε) = 0. (5.23)

By (5.2), the function t 7→ fs(at) as well as its derivative d
dtfs(at) is majorized by

O(e−(Re(s)+ρ0)t) for large t. Hence F(R) = O(%(t)e−(Re(s)+ρ0)t) = O(e−(Re(s)−ρ0)t),
which implies

lim
R→+∞

F(R) = 0. (5.24)

By (5.22), (5.23) and (5.24), we obtain

(s2 − s̄2)
∫ +∞

0
‖fs(at)‖2 %(t) dt = 0.

This identity yields
∫ +∞
0 ‖fs(at)‖2 %(t) dt = 0 as long as s2 6∈ R. Since the

function ‖fs(at)‖2%(t) on t > 0 is continuous and non-negative, the vanishing of
its integral implies the vanishing of the function itself: ‖fs(at)‖2%(t) = 0 (∀t > 0).
Noting %(t) > 0 (∀t > 0), we consequently obtain fs(at) = 0 (∀t > 0) under the
assumption Re(s) > ρ0, s2 6∈ R. By the decomposition G = H{at| t > 0}K and
by the equivariance fs(hgk) = τ(k)−1fs(g) (∀(h, k) ∈ H × K), the value fs(g)
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has to be zero for all g ∈ G and for all s such that s2 6∈ R, Re(s) > ρ0. Using
the condition (ii), we finally conclude ϕ

(d)
s (g) = ψ

(d)
s (g) (∀g ∈ G − HK) for all

s ∈ D(d) by analytic continuation.

5.3. A finer form of small-time asymptotic. By the explicit formula (5.1),
we obtain a finer small-time asymptotic than (5.3).

Proposition 25. There exists a unique family cα(s) (0 6 α 6 q − 2) of tensors
in (

∧d,d p∗C)H∩K such that the following properties hold.

(1) There exist (
∧

p∗C)H∩K-valued holomorphic functions P(s, z) and Q(s, z)
on D(d) × {|z| < 1} such that

ϕ(d)
s (at) =

q−2∑

α=0

cα(s)z−q+α+1 + P(s, z) + log z Q(s, z), (5.25)

(s ∈ D(d), z = tanh2t ∈ (0, 1)).

(2) We have c0(s) = Λq−d(∗volp∩h), and cα(s) satisfies the recurrence rela-
tion:

4α(q − α− 1) cα(s) =
α−1∑

κ=0

{τ(Ωk) + (α− κ)(ρ2
0 − s2) (5.26)

− 4(ρ0 − 1)(q − κ− 1)} cκ(s), (0 < α 6 q − 2).

(3) For α, r ∈ N such that 0 6 α 6 inf(r − 1, q − 2),
(−1

2s
d
ds

)r
cα(s) = 0.

Proof. The formula (5.25) follows readily from our explicit formula (5.1) combined
with a property of the hypergeometric function [19, p.49].

The recurrence formula (5.26) is obtained first by substituting the expansion
(5.25) to the equation (5.4) and then by equating the coefficient of z−q+α−1 in
the left-hand side with 0.

By (2), it is obvious that cα(s) (0 6 α 6 q−2) is a polynomial function in s ∈ C
such that cα(s) = cα(−s) and deg cα(s) = 2α. Hence cα(s) = b(s2) with some
polynomial b(t) of degree α. If we set t = s2, then

(−1
2s

d
ds

)r
cα(s) =

(− d
dt

)r
b(t) =

0 since r > α. This shows (3). ¤
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5.4. A differential relation. The functions φs = ϕ
(q−1)
s = Λϕ

(q)
s and ψs = ϕ

(q)
s

are of particular importance in our investigation of the modular cycles arising
from H. They are related by the simple formula:

Theorem 26. Let s ∈ D(q). Then we have

∂∂̄φs(g) = −√−1(s2−ρ2
0)

2 ψs(g), g ∈ G−HK.

In order to prove this, it suffices to show that ψ̃s = 2
√−1(s2 − ρ2

0)
−1∂∂̄φs

has the properties (i) to (v) for d = q which characterizes the function ψs by
Theorem 18.

The property (i) for ψ̃s is obvious by definition. The property (ii) is also
obvious by the explicit formula (5.1) and Proposition 16. The property (iii) for
ψ̃s follows from the corresponding equation for φs because Ωg is commutative
with the operators ∂, ∂̄. The large-time asymptotic of ψ̃s(at) is easy to prove by
Proposition 16, because (5.2) shows that any derivative dj

dtj
φs(at) is majorized by

O(e−(Re(s)+ρ0)t) for large t. It remains to show

lim
t→+0

t2(q−1)∂∂̄φs(at) = −√−1(s2−ρ2
0)

2 ∗ volp∩h. (5.27)

The rest of this subsection is devoted to the proof of (5.27).

From the equation Ωgφs(g) = (s2−ρ2
0)φs(g) (g ∈ G−HK) and Proposition 14,

we have

d2

dt2
φ(t) = −(

(2p− 1)tanht + (2q − 1)cotht
)

d
dtφ(t) + 4Sk,q

cosh2t
φ(t) + (s2 − ρ2

0)φ(t)

with φ(t) = φs(at). By this, we eliminate the second derivative φ′′(t) in the
formula Etφ(t) in Proposition 16 to obtain

∂∂̄φs(at)

=
{−1

4

(
(2p− 1)tanht + (2q − 1)cotht

)
e(ω0 ∧ ω̄0) + 1

2(Atanht + Bcotht)
}

φ′(t)

+
{

e(ω0∧ω̄0)

cosh2t
Sk,q + P−P+tanh2t +R−R+coth2t + C + s2−ρ2

0
4 e(ω0 ∧ ω̄0)

}
φ(t).

By the coordinate z = tanh2t, this becomes

∂∂̄φs(at)

= (1− z)
{−1

2 ((2p− 1)z + 2q − 1) e(ω0 ∧ ω̄0) + (Az + B)
} dφ

dz (z)

+
{

(1− z) e(ω0 ∧ ω̄0)Sk,q + P−P+ z +R−R+ z−1 + C + s2−ρ2
0

4 e(ω0 ∧ ω̄0)
}

φ(z).
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Using this and (5.25), we can compute the first two terms of the singular part of
∂∂̄φs(at) in the z-expansion, which is of the form

∂∂̄φs(at) =
q∑

j=1

aq−j(s)
zj + P1(s, z) + (log z) P2(s, z) (5.28)

with some polynomial functions aj(s) and some holomorphic functions P1(s, z),
P2(s, z). We are interested in a0(s) and a1(s). A short computation yields

a0(s) =
{
−(q − 1)

(
−2q−1

2 e(ω0 ∧ ω̄0) + B
)

+R−R+

}
c0(s),

a1(s) =
{
−(q − 1)

(
−2p−1

2 e(ω0 ∧ ω̄0) +A
)

+ (q − 1)
(
−2q−1

2 e(ω0 ∧ ω̄0) + B
)

+ e(ω0 ∧ ω̄0)Sk,q + C + s2−ρ2
0

4 e(ω0 ∧ ω̄0)
}

c0(s)

+





{
−R−R+ + (q − 2)

(
−2q−1

2 e(ω0 ∧ ω̄0) + B
)}

c1(s), (q > 2),{
−2q−1

2 e(ω0 ∧ ω̄0) + B
}

Q(s, 0), (q = 2).

By (5.26), we have

(q − 1)! c0(s) = γq−1
pp =

(√−1
2

)q−1
(ωp1 ∧ ω̄p1 + ηq)q−1,

(q − 1)! (q − 2) c1(s) =
{

s2−ρ2
0

4 + (q − 1)(ρ0 − 1)
}

γq−1
pp + Sk,qγ

q−1
pp , (q > 2),

Q(s, 0) = s2−ρ2
0

4 γpp + Sk,qγpp, (q = 2)

with ηq =
∑q−1

j=1 ωp,j+1 ∧ ω̄p,j+1.

Lemma 27.

{
2q−1

2 e(ω0 ∧ ω̄0)− B
}

γq−1
pp ={(q − 1)ωp1 ∧ ω̄p1 − ηq} ∧ γq−1

pp = 0.
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Proof. Since γpp is H ∩K-invariant, R±γq−1
pp = 0. Hence we have

{
2q−1

2 e(ω0 ∧ ω̄0)− B
}

γq−1
pp

= {(q − 1)ωp1 ∧ ω̄p1 − ηq} ∧ γq−1
pp

=
(√−1

2

)q−1
{(q − 1)ωp1 ∧ ω̄p1 − ηq} ∧ (ωp1 ∧ ω̄p1 + ηq)q−1

=
(√−1

2

)q−1
{(q − 1)ωp1 ∧ ω̄p1 − ηq} ∧

{
ηq−1

q + (q − 1)ωp1 ∧ ω̄p1 ∧ ηq−2
q

}

= −
(√−1

2

)q−1
ηq

q

= 0.

¤

Since c0(s) and c1(s) are H ∩K-invariant (Proposition 25),

R±c0(s) = R±c1(s) = 0.

Therefore, by Lemma 27, a0(s) = 0.

By (4.5), (4.6), (4.7) and Lemma 27, noting that R+c1(s) = 0, we have

(q − 1)! a1(s) (5.29)

=
{
−(q − 1)

(
−2p−1

2 e(ω0 ∧ ω̄0) +A
)

+ e(ω0 ∧ ω̄0)Sk,q + C + s2−ρ2
0

4 e(ω0 ∧ ω̄0)
}

γq−1
pp

+
{
−2q−1

2 e(ω0 ∧ ω̄0) + B
}
Sk,qγ

q−1
pp

= (q − 1) {(p− 1)e(ωp1 ∧ ω̄p1) + e(ω̄p1)P− − e(ωp1)P+ − e(ηh)} γq−1
pp

+ {e(ωp1 ∧ ω̄p1)Sk,q + e(ωp1)P+ +R−P+} γq−1
pp

+ {−(q − 1)ωp1 ∧ ω̄p1 + ηq} ∧ Sk,qγ
q−1
pp

+ s2−ρ2
0

4 e(ωp1 ∧ ω̄p1)γq−1
pp .

Lemma 28. Set B = −∑p−1
i=1 γpi ∧ γip. Then

e(ωp1 ∧ ω̄p1) γq−1
pp = 2

q
√−1

γq
pp,

P−γq−1
pp = (q − 1)

p−1∑

i=1

ωi1 ∧ γpi ∧ γq−2
pp ,

P+γq−1
pp = (q − 1)

p−1∑

i=1

ω̄i1 ∧ γip ∧ γq−2
pp ,
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R−P+γq−1
pp = (q − 1)

{
−2√−1

B ∧ γq−2
pp −

p−1∑

i=1

ωp1 ∧ ω̄i1 ∧ γip ∧ γq−2
pp

}
,

Sk,qγ
q−1
pp = (q − 1)

{
−(p− 1)γq−1

pp +
p−1∑

i=1

γii ∧ γq−2
pp − (q − 2)B ∧ γq−3

pp

}
,

(√−1
2

)q−1
1
qSk,qη

q
q = 2√−1

{−(p− 1)γq
pp +

p−1∑

i=1

γii ∧ γq−1
pp − (q − 1)B ∧ γq−2

pp }

− ωp1 ∧ ω̄p1 ∧ Sk,qγ
q−1
pp − e(ηh)γq−1

pp + (p− 1)ωp1 ∧ ω̄p1 ∧ γq−1
pp

+ (q − 1)ω̄p1 ∧
(

p−1∑

i=1

ωi1 ∧ γpi

)
∧ γq−2

pp

− (q − 1)ωp1 ∧
(

p−1∑

i=1

ω̄i1 ∧ γip

)
∧ γq−2

pp .

Proof. A direct computation with the aid of Lemma 6. ¤

By this lemma, a direct computation yields the identity

(q − 1) {(p− 1)e(ωp1 ∧ ω̄p1) + e(ω̄p1)P− − e(ωp1)P+ − e(ηh)} γq−1
pp

+ {e(ωp1 ∧ ω̄p1)Sk,q + e(ωp1)P+ +R−P+} γq−1
pp

+ {−(q − 1)ωp1 ∧ ω̄p1 + ηq} ∧ Sk,qγ
q−1
pp

=
(√−1

2

)q−1
q−1

q Sk,qη
q
q,

which simplifies (5.29) considerably:

(q − 1)! a1(s) =
(√−1

2

)q−1
q−1

q Sk,qη
q
q + s2−ρ2

0
4 e(ωp1 ∧ ω̄p1) γq−1

pp

= s2−ρ2
0

2q
√−1

γq
pp

= s2−ρ2
0

2
√−1

(q − 1)! ∗ volp∩h,

where the second equality follows from ηq
q = 0 combined with the first formula in

Lemma 28 and the third equality follows from Lemma 7. Summing up, we obtain

a0(s) = 0, a1(s) = −√−1(s2−ρ2
0)

2 ∗ volp∩h.

This, combined with (5.28), implies the desired limit (5.27). As explained at the
begining of this subsection, this completes the proof of Theorem 26.
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6. Poincaré series

From now on, we fix a Q-structure on G such that the involution σ defining H

is defined over Q. Let Γ be an arithmetic subgroup in G. Then H is a Q-subgroup
of G and the intersection Γ ∩H is an arithmetric subgroup of H. The quotient
spaces Γ\G and Γ ∩ H\H have finite invariant volumes. For simplicity we set
ΓH = Γ ∩ H and KH = H ∩K, and suppose that Γ is neat. Then, the Kähler
manifold structures on the discrete quotients ΓH\H/KH and Γ\G/K are pushed
down from those on their universal coverings H/KH and G/K. Moreover, ΓH is
a closed subset of G and the inclusion Γ ∩H\H ↪→ Γ\G has the closed image.

6.1. Currents defined by Poincaré series. Let ϕ
(d)
s (s ∈ D(d)) be the sec-

ondary spherical function of bidegree (d, d) constructed in Theorem 18. For
r ∈ N, we define an auxiliary function ϕ

(d)
s,r by

ϕ(d)
s,r (g) = 1

r!

(−1
2s

d
ds

)r
ϕ(d)

s (g), (s ∈ D(d), g ∈ G−HK).

Let us consider the Poincaré series

Φ(d)
s,r (g) = Γ(q−1)

πq

∑

γ∈ΓH\Γ
ϕ(d)

s,r (γg) (6.1)

for (s, g) belonging to the set {s ∈ C|Re(s) > ρ0}× (G−ΓHK), where the series
is L1-convergent as the next proposition shows. Note Re(s) > ρ0 is contained in
the domain D(d).

Proposition 29. Suppose Re(s) > ρ0. Then
∫

Γ\G

∑

γ∈ΓH\Γ
‖ϕ(d)

s,r (g)‖dg < +∞.

In particular, the measurable function Φ(d)
s,r (g) on Γ\G/K is integrable.

Proof. By the integration formula (2.3), the integral in question equals
∫

ΓH\G
‖ϕ(d)

s,r (g)‖dg =
∫

ΓH\H
dh

∫

K
dk

∫ +∞

0
‖ϕ(d)

s,r (hatk)‖ %(t) dt.

Since ϕ
(d)
s,r (hgk) = τ(k)−1ϕ

(d)
s (g) (∀(h, k) ∈ H × K), and since τ is unitary, the

integral over ΓH\H yields the factor vol(ΓH\H), which is finite as we remarked
above, and the integral over K yields the factor 1. To complete the proof, it
suffices to show the convergence of the integral

∫ +∞
0 ‖ϕ(d)

s,r (at)‖%(t) dt.
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By applying the differential operator (−1
2s

∂
∂s)

r to the formula (5.25), noting
Proposition 25 (3), we obtain the estimation ‖ϕ(d)

s,r (at)‖ = O(t−2q+2r+2) on (0, 1].
Hence the function ‖ϕ(d)

s,r (at)‖ is majorized by O(%(t)t−2q+2r+2) = O(t2r+1) on
(0, 1], especially integrable there.

By applying (−1
2s

∂
∂s)

r to the formula (5.2), we easily see that ϕ
(d)
s,r (at) is still

majorized by O(e−(Re(s)+ρ0)t) on the interval [1,+∞). Hence ‖ϕ(d)
s (at)‖%(t) =

O(e−(Re(s)−ρ0)t), which implies the convergence of the improper integral over
[1,+∞) when Re(s) > ρ0. This completes the proof. ¤

Therefore the measurable (d, d)-form Φ(d)
s,r on Γ\G/K yields a current, denoted

by the same notation Φ(d)
s,r , by the integration:

〈Φ(d)
s,r , α〉 =

∫

Γ\G/K
Φ(d)

s,r ∧ α, (∀α ∈ Ac(Γ\G/K)).

6.2. The Poisson equation. Let CΓ
H : ΓH\H/KH → Γ\G/K be the holomor-

phic map obtained from the inclusion H/KH ↪→ G/K by passing to the discrete
quotients. Since we assume that Γ is neat, the map CΓ

H is an inclusion and its
image is a closed complex analytic subset of Γ\G/K. The integration

〈δCΓ
H

, α〉 =
∫

ΓH\H/KH

(CΓ
H)∗α, α ∈ Ac(Γ\G/K)

defines a (q, q)-current on Γ\G/K.

Lemma 30. For α ∈ Ac(Γ\G/K), we have

〈Λq−dδCΓ
H

, ∗ᾱ〉 = (Λq−d(∗volp∩h)|αΓH\H(e)),

where

αΓH\H(g) =
∫

ΓH\H
α(hg) dh.

Proof. This is proved by a similar way to Lemma 3. See also [32, Proposition
6.1]. ¤

For a while, we use the simpler notation C for CΓ
H . Our currents Φ(d)

s,r satisfy
the generalized Poisson equation:
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Proposition 31.

(4+ s2 − ρ2
0)

r+1Φ(d)
s,r = 4Λq−dδC

for Re(s) > ρ0, r ∈ N.

Proof. The proof is similar to the local counterpart Proposition 23. For α ∈
Ac(Γ\G/K), set Ir(α) = 〈(4 + s2 − ρ2

0)
r+1Φ(d)

s,r , ∗ᾱ〉. Then it suffices to prove
Ir(α) = Ir−1(α) (∀r > 1) and I0(α) = 〈4Λq−dδC , ∗α〉. We have

Ir(α) = 〈Φ(d)
s,r , (4+ s2 − ρ2

0)
r+1 ∗ ᾱ〉

=
∫

Γ\G/K
(Φ(d)

s,r (g)|(4+ s̄2 − ρ2
0)

r+1α(g)) dg

= Γ(q−1)
πq

∫

Γ\G

∑

γ∈ΓH\Γ
(ϕ(d)

s,r (γg)|(4+ s̄2 − ρ2
0)

r+1α(γg)) dg

= Γ(q−1)
πq

∫

ΓH\G
(ϕ(d)

s,r (g)|(4+ s̄2 − ρ2
0)

r+1α(g)) dg

= Γ(q−1)
πq

∫ +∞

0
(ϕ(d)

s,r (at)|
∫

ΓH\H
(4+ s̄2 − ρ2

0)
r+1α(hat) dh) %(t) dt. (6.2)

Since the support of the function α is compact modulo Γ and since ΓH\H is
closed in Γ\G, the integral αΓH\H(g) converges absolutely and defines a function
αΓH\H ∈ C∞(G/K; τ)H . The map α 7→ αΓH\H is a Z(gC)-homomorphism from
Ac(Γ\G/K) to C∞(G/K; τ)H . By this remark and Proposition 14, we have this
expression of Ir(α) in terms of the integral αΓH\H :

Ir(α) = Γ(q−1)
πq

∫ +∞

0
(ϕ(d)

s,r (at)|fr+1(t)) %(t) dt (6.3)

with fr(t) = (−Dt + s̄2− ρ2
0)

rαΓH\H(at). Fix 0 < ε < R. Then by Lemma 15, we
have

∫ R

ε
(ϕ(d)

s,r (at)|fr+1(t)) %(t) dt (6.4)

= R(R)−R(ε) +
∫ R

ε
((−Dt + s2 − ρ2

0)ϕ
(d)
s,r (at)|fr(t)) %(t) dt

with
R(t) = %(t)

{−(
ϕ(d)

s,r (at)| d
dtfr(t)

)
+

(
d
dtϕ

(d)
s,r (at)|fr(t)

)}
.

Let us compute the limit of R(ε) as ε → +0. As we noticed in the proof of Propo-
sition 29, we have the estimations %(t)ϕ(d)

s,r (at) = O(%(t)t−2q+2r+2) = O(t2r+1)
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and %(t) d
dtϕ

(d)
s,r (at) = O(t2r) for small t > 0. Since fr(t) is continuous, we have

fr(t) = O(1). Hence if r > 0, then R(t) = O(t) for small t > 0, which implies
limε→+0 R(ε) = 0. When r = 0, we compute the limit exactly the same way as
in the proof of Proposition 23. Summing up, we obtain

lim
ε→+0

R(ε) = −4πq

Γ(q−1)(Λ
q−d(∗volp∩h)|f0(0)) δr,0. (6.5)

Let us compute the limit of R(R) as R → +∞. By (5.2), the estimations
%(t)ϕ(d)

r,s (at) = O(e−(Re(s)−ρ0)t) and %(t) d
dtϕ

(d)
r,s (at) = O(e−(Re(s)−ρ0)t) hold for

large t. Since fr(t) is bounded on t > 0, we have

lim
R→+∞

R(R) = 0. (6.6)

By the formula [s2, 1
r!(

−1
2s

d
ds)

r] = 1
(r−1)!(

−1
2s

d
ds)

r−1, we have

(−Dt + s2 − ρ2
0)ϕ

(d)
s,r (at) = 1

r!

(−1
2s

d
ds

)r
(−Dt + s2 − ρ2

0)ϕ
(d)
s (at) + ϕ

(d)
s,r−1(at)

(6.7)

= ϕ
(d)
s,r−1(at)

using (−Dt + s2 − ρ2
0)ϕ

(d)
s (at) = 0 (∀t > 0). Hence taking the limit as ε → +0,

R → +∞ of (6.4) and using (6.5), (6.6) and (6.7), from (6.3), we obtain

Ir(α)

= 4(Λq−d(∗volp∩h)|f0(0)) δr,0 + Γ(q−1)
πq

∫ +∞

0
((−Dt + s2 − ρ2

0)ϕ
(d)
s,r (at)|fr(t)) %(t) dt

= 4(Λq−d(∗volp∩h)|αΓH\H(e)) δr,0 + Γ(q−1)
πq

∫ +∞

0
(ϕ(d)

s,r−1(at)|fr(t)) %(t)dt

= 〈4Λq−d(∗volp∩h), ∗ᾱ〉 δr,0 + Ir−1(α).

Note the last equality is by Lemma 30. ¤

6.3. Spectral expansions of Poincaré series. In order to obtain a mero-
morphic continuation of the function s 7→ Φ(d)

s,0 beyond the convergence region
Re(s) > ρ0, we want to use the L2-theory, i.e., the spectral decomposition of
the Laplace-Beltrami operator acting on the Hilbert space of square integrable
(d, d)-forms. Unfortunately, the form Φ(d)

s,0 is not square-integrable, even when

Γ\G is compact. This difficulty is circumvented by considering Φ(d)
s,r with a large

r (cf. [8]).
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Proposition 32. Let r > q − 1. Suppose one of the conditions (a) and (b) is
satisfied:

(a) Γ\G is compact, and Re(s) > ρ0.
(b) Γ\G is non compact, and Re(s) > ρ0(3− 2p−1).

Then the measurable (d, d)-form Φ(d)
s,r on Γ\G/K is L2+ε for some ε > 0.

Proof. From Proposition 25 (3), the term
∑q−2

α=0 cα(s)z−q+α+1 in the formula
(5.25) is annihilated by (−1

2s
d
ds)

r if r > q − 1. Hence

ϕ(d)
s,r (at) = Pr(s, tanh2t) + log(tanh2t) Qr(s, tanh2t)

for small t > 0 with Pr(s, z) = 1
r!(

−1
2s

d
ds)

rP(s, z) and Qr(s, z) = 1
r!(

−1
2s

d
ds)

rQ(s, z).
For large t > 0, the estimation ϕ

(d)
s,r (at) = O(e−(Re(s)+ρ0)t) holds as we noticed

in Proposition 29. Using these estimation of ϕ
(d)
s,r (at), we can argue exactly the

same way as [26, Section 5] to have the conclusion. ¤

Remark: Since vol(Γ\G) < +∞, Hölder’s inequality yields the inclusion

L2+ε(Γ\G) ⊂ L2(Γ\G).

Let Ad,d
(2)(Γ\G/K) be the completion of the space Ad,d

c (Γ\G/K) by the inner
product

〈α|β〉 =
∫

Γ\G/K
α ∧ ∗β̄.

From now on, we further assume that Γ is a uniform lattice, i.e., the manifold
Γ\G/K is compact. Then the Hodge Laplacian 4 with the domain Ad,d(Γ\G/K)
is essentially self-adjoint operator on the Hilbert space Ad,d

(2)(Γ\G/K). The do-

main of 4̄, the minimal closed extension of 4, consists of all α ∈ Ad,d
(2)(Γ\G/K)

such that the distribution4α belongs toAd,d
(2)(Γ\G/K). There exists an orthonor-

mal basis {αn}n∈N of Ad,d
(2)(Γ\G/K) consisting of eigenvectors of 4̄; let {λn} be

the corresponding system of eigenvalues: 4̄αn = λnαn. Note αn’s are C∞-forms
and λn’s are non-negative real numbers because the differential operator 4 is
positive, formally self-adjoint and elliptic.
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Theorem 33. Let r > q − 1 and Re(s) > ρ0. Then

Φ(d)
s,r =

∞∑

n=0

4〈Λq−dδC , ∗ᾱn〉
(λn + s2 − ρ2

0)r+1
αn

is the spectral expansion of Φ(d)
s,r ∈ Ad,d

(2)(Γ\G/K).

Proof. Since Γ\G/K is compact by assumption and since Φ(d)
s,r ∈ A(2)(Γ\G/K) by

Proposition 32, we have Φ(d)
s,r =

∑
n〈Φ(d)

s,r |αn〉αn in a weak sense. By Theorem 31,
we can evaluate the coefficient of αn concretely :

〈Φ(d)
s,r |αn〉 =

4〈Λq−dδC , ∗ᾱn〉
(λn + s2 − ρ2

0)r+1
.

¤

The spectral expansion immediately yields a meromorphic continuation of s 7→
Φ(d)

s,r if r > q− 1. After a bit more argument, we can remove the restriction on r.

Theorem 34. Let r ∈ N and β ∈ A(Γ\G/K). The function s 7→ 〈Φ(d)
s,r |β〉 has

a meromorphic continuation to the whole complex plane C. A point s0 ∈ C with
Re(s0) > 0 is a pole of 〈Φ(d)

s,r |β〉 if and only if there exists an index n ∈ N such
that 〈Λq−dδC , ∗ᾱn〉 6= 0, 〈αn|β〉 6= 0 and s2

0 − ρ2
0 = −λn. The function

〈Φ(d)
s,r |β〉+

∑

n∈N
λn=ρ2

0−s2
0

−4〈Λq−dδC , ∗ᾱn〉
(λn + s2 − ρ2

0)r+1
〈αn|β〉

is holomorphic at s = s0. We have the functional equation Φ(d)
s,r = Φ(d)

−s,r.

Proof. Suppose first r > q−1 and fix a point s0 ∈ C such that Re(s0) > ρ0. Given
a relatively compact open set U disjoint from the discrete set S = {s ∈ C| s2 =
ρ2
0 − λn (∃n ∈ N)}, there exists a constant CU > 0 such that |λn − ρ2

0 + s2
0| 6

CU |λn − ρ2
0 + s2| (∀n ∈ N, ∀s ∈ U). Using this and the Parseval equality, we

obtain
∑

n∈N
sup
s∈U

|4〈Λq−dδC ,∗ᾱn〉|
|λn+s2−ρ2

0|r+1 |〈αn|β〉| 6 Cr+1
U {

∑

n∈N
|〈αn|β〉|2}1/2 · {

∑

n∈N

|4〈Λq−dδC ,∗ᾱn〉|2
|λn+s2

0−ρ2
0|2(r+1) }1/2

= Cr+1
U ‖β‖ ‖Φ(d)

s0,r‖ < +∞.
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This shows that the series

〈Φ(d)
s,r |β〉 =

∑
n

4〈Λq−dδC ,∗ᾱ〉
(λn−ρ2

0+s2)r+1 〈αn|β〉

converges absolutely and uniformly on arbitrary compact set disjoint from S,
providing a meromorphic analytic continuation of 〈Φ(d)

s,r |β〉 to the whole C. The
remaining assertions are also obvious from this formula.

We use a downward-induction to establish the theorem for r, assuming it
holds for r + 1. Fix β ∈ A(Γ\G/K). Then there exists a meromorphic func-
tion Fr+1(s) on C such that Fr+1(s) = 〈Φ(d)

s,r+1|β〉 (Re(s) > ρ0) and Fr+1(s) +
∑

n∈N
λn=ρ2

0−s2
0

4〈Λq−dδC ,∗ᾱn〉
(λn+s2−ρ2

0)r+2 〈αn|β〉 is holomorphic at s = s0 for each s0 ∈ C. This

implies the residue of sFr+1(s) at its arbitrary pole is zero, which guarantees that
the integral

Fr(s) = −2(r + 1)
∫

Ls

ζFr+1(ζ) dζ + 〈Φ(d)
s0,r|β〉 (6.8)

is independent of the choice of a path Ls connecting s0 and s in C − S. Since
−1

2(r+1)s
d
ds〈Φ

(d)
s,r |β〉 = Fr+1(s) on Re(s) > ρ0, the function Fr(s) defined by (6.8)

establishes a meromorphic analytic continuation of 〈Φ(d)
s,r |β〉 (Re(s) > ρ0) to the

whole C. All the assertions except the functional equation Fr(s) = Fr(−s) are
obvious from (6.8). It remains to prove the functional equation. By induction-
assumption, Fr+1(s) = Fr+1(−s) holds. Therefore,

d
ds(Fr(s)− Fr(−s)) = F ′

r(s) + F ′
r(−s) = −2(r + 1)s{Fr+1(s)− Fr+1(−s)} = 0.

This implies the difference Fr(s) − Fr(−s) is a constant, which should be zero
since Fr(s)− Fr(−s) is an odd function of s. Hence Fr(s) = Fr(−s) as desired.

¤

7. Automorphic Poincaré dual forms and Green currents

Set GΓ
H(s) = Φ(q−1)

s,0 and ΨΓ
H(s) = Φ(q)

s,0.

Theorem 35. The equations

(4+ s2 − ρ2
0) GΓ

H(s) = 4ΛδCΓ
H

,

(4+ s2 − ρ2
0)ΨΓ

H(s) = 4δCΓ
H

,

dcdGΓ
H(s) + (s2 − ρ2

0)ΨΓ
H(s) = 4δCΓ

H
(7.1)
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hold for s outside the poles of GΓ
H(s) and ΨΓ

H(s).

Proof. Since the first two equation is already proved in Theorem 31, it suffices to
show the third equation (7.1). Let α ∈ Ac(Γ\G/K). Then, in the same way as
the computation (6.2),

〈14dcdGΓ
H(s), ∗ᾱ〉 = 1

2
√−1

〈∂∂̄ GΓ
H(s), ∗ᾱ〉 (7.2)

=
√−1

2 〈GΓ
H(s), ∂̄∂ ∗ ᾱ〉

= −√−1
2 〈GΓ

H(s), ∗∂̄∗∂∗α〉

= −√−1Γ(q−1)
2πq

∫ +∞

0
%(t) (φs(at)|(∂̄∗∂∗α)ΓH\H(at)) dt

= −√−1Γ(q−1)
2πq

∫ +∞

0
%(t) (φs(at)|(∂̄∗∂∗(αΓH\H))(at)) dt

= −√−1Γ(q−1)
2πq

∫ +∞

0
%(t) (φs(at)|E∗t {αΓH\H(at)}) dt.

Here we use Lemma 16 to obtain the last equality. Fix 0 < ε < R. Then by
Lemma 17, using Theorem 26 and Proposition 16, we have
∫ R

ε
(φs(at)|E∗t f(t)) %(t) dt = −S(R) + S(ε) + −√−1(s2−ρ2

0)
2

∫ R

ε
(ψs(at)|f(t)) %(t) dt,

(7.3)

with f(t) = αΓH\H(at) (∀t > 0) and

S(t) = %(t)
4

{
(e(ω0 ∧ ω̄0) d

dtφs(at)|f(t))− (e(ω0 ∧ ω̄0)φs(at)|f ′(t)) (7.4)

+ tanht ((2A− (2p− 1)e(ω0 ∧ ω̄0))φs(at)|f(t))

+ cotht ((2B − (2q − 1)e(ω0 ∧ ω̄0))φs(at)|f(t))
}
.

We have

S(t)

= %(t)
4

{
(e(ω0 ∧ ω̄0) d

dtφs(at)|f(t))

+ cotht ((2B − (2q − 1)e(ω0 ∧ ω̄0))φs(at)|f(t))
}

+ O(t log t)

= 1
4

2πq

Γ(q) (
{−2(q − 1)e(ω0 ∧ ω̄0)Λ(∗volp∩h)

+ (2B − (2q − 1)e(ω0 ∧ ω̄0))Λ(∗volp∩h)
}|f(0)) + O(t log t)

= −πq

Γ(q−1) (e(ω0 ∧ ω̄0)Λ(∗volp∩h)|f(0)) + O(t log t),
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since (2B − (2q − 1)e(ω0 ∧ ω̄0))Λ(∗volp∩h) = 0 by Lemma 27 and Lemma 7.
Therefore, we obtain

lim
ε→+0

S(ε) = −πq

Γ(q−1) (e(ω0 ∧ ω̄0)Λ(∗volp∩h)|f(0)) (7.5)

= −πq

Γ(q−1) (e(ω0 ∧ ω̄0) 1
(q−1)!γ

q−1
pp |f(0))

= −πq

Γ(q−1)
2√−1

1
q!(γ

q
pp|f(0))

= −2πq√−1Γ(q−1)
(∗volp∩h|f(0))

by the first formula in Lemma 28 and Lemma 7. Since f(t) is bounded,

lim
R→+∞

S(R) = 0 (7.6)

is proved similarly to the corresponding part in the proof of Proposition 31. From
(7.2), (7.3), (7.5) and (7.6),

〈14dcdGΓ
H(s), ∗ᾱ〉 = (∗volp∩h|f(0))− s2−ρ2

0
4

Γ(q−1)
πq

∫ +∞

0
(ψs(at)|f(t)) %(t) dt

= 〈δC , ∗ᾱ〉 − s2−ρ2
0

4 〈ΨΓ
H(s), ∗ᾱ〉.

Here the last equality follows from Lemma 30 and by a similar computation we
did to prove (6.2). This completes the proof. ¤

Since GΓ
H(s) and ΨΓ

H(s) are meromorphic on C with at most simple poles
at s = ρ0, we can consider the constant term and the residue of their Laurent
expansion:

GΓ
H = 1

4CTs=ρ0G
Γ
H(s), ΨΓ

H = ρ0

2 Ress=ρ0Ψ
Γ
H(s).

Theorem 36. We have

4GΓ
H = ΛδCΓ

H
, 4ΨΓ

H = 0, dcdGΓ
H + ΨΓ

H = δCΓ
H

.

Proof. The first equation is obtained by comparing the constant terms of the
Laurent expansion at s = ρ0 in both sides of the first equation of Theorem 35.
The last equation is justified by the equation (7.1) in the same way. The second
equation is proved by taking the residue at s = ρ0 of the second equation of
Theorem 35. ¤

Remark 1: By the Hodge theory for compact Kähler manifolds, the fundamental
class of the cycle CΓ

H has a unique harmonic representative in Aq,q(Γ\G/K) called
the Poincaré dual form of CΓ

H . Our result tells an explicit way how to construct
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that harmonic form. Indeed, the second equation in Theorem 36 shows the (q, q)-
form ΨΓ

H is harmonic and the third one means ΨΓ
H is cohomologus to the current

δCΓ
H

. Therefore, ΨΓ
H meets the requirements of the Poincaré dual form.

Remark 2: Theorem 36 also tells that (q − 1, q − 1)-current GΓ
H is a Green

current for the cycle CΓ
H in the sense of Gillet-Soulé [5]. Though there are many

Green currents for CΓ
H , our construction fixes a choice, whose dependence on Γ is

tractable. Another advantage of our choice GΓ
H is that the form ΨΓ

H is harmonic.

8. Some global consequences on cycle geometry

Along the K-module decomposition (3.7), the current ΨΓ
H(s) is decomposed as

ΨΓ
H(s) =

q∑

κ=0

ΨΓ
H,κ(s), ΨΓ

H,κ(s) ∈ C∞((G− ΓHK)/K;V (d)
κ )Γ.

Each component function ΨΓ
H,κ(s) is also meromorphic in s ∈ C and the Poincaré

dual form ΨΓ
H is a sum of forms ΨΓ

H,κ = ρ0

2 Ress=ρ0Ψ
Γ
H,κ(s) (0 6 κ 6 q), each

of which is also harmonic. Moreover ΨΓ
H,q is primitive, i.e., ΛΨΓ

H,q = 0. The
aim of this section is to study these forms ΨΓ

H,κ by using the knowledge on the
(gC,K)-module they generate in the space of L2-automorphic forms.

The form ΨΓ
H,0 is fairly easy to deal with.

Proposition 37. We have

ΨΓ
H,0 = vol(ΓH\H/KH)

vol(Γ\G/K) θ
(q)
0 .

In particular, ΨΓ
H,0 6= 0.

Proof. Since θ
(q)
0 is a K-fixed tensor, it is obvious from the construction that

ΨΓ
H,0(s; g) = Φ0

s(g) θ
(q)
0 , where

Φ0
s(g) = Γ(q−1)

πq

∑

γ∈ΓH\Γ
ϕ0

s(γg), Re(s) > ρ0

with ϕ0
s ∈ C∞((G − HK)/K), a scalar valued function, such that ϕ0

s(at) =
F0(s; t) (∀t > 0). Set f(g) = Ress=ρ0Φ

0
s(g). Then f ∈ L2(Γ\G/K) and ΨΓ

H,0 =
ρ0

2 f(g) θ
(q)
0 . From 4ΨΓ

H,0 = 0, the function f(g) should be a harmonic function
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of the compact Riemanian manifold Γ\G/K. Hence f(g) has to be a constant,
say C. To determine this constant C, we compute the integral

1
vol(ΓH\H)

∫

Γ\G
Φ0

s(g) dg

= 1
vol(ΓH\H)

Γ(q−1)
πq

∫

ΓH\G
ϕ0

s(g) dg

= Γ(q−1)
πq

∫ +∞

0
F0(s; t) %(t)dt

= 2
q−1

Γ(
s+ρ0

2
)Γ(

s−ρ0
2

+q)

Γ(s+1)Γ(q−1)

∫ +∞

0
(sinht)2q−1(cosht)−(s+ρ0−2p+1)

× 2F1

(
s+ρ0

2 , s−ρ0

2 + q; s + 1; 1
cosh2t

)
dt

= 2
q−1

Γ(
s+ρ0

2
)Γ(

s−ρ0
2

+q)

Γ(s+1)Γ(q−1)
1
2

∫ 1

0
(1− z)q−1z

s−ρ0−2
2 2F1

( s+ρ0

2 , s−ρ0

2 + q; s + 1; z
)

dz

= 1
q−1

Γ(
s+ρ0

2
)Γ(

s−ρ0
2

+q)

Γ(s+1)Γ(q−1)

Γ(s+1)Γ(
s−ρ0

2
)Γ(q)

Γ(
s−ρ0

2
+q)Γ(

s−ρ0
2

+1)Γ(
s+ρ0

2
+1)

= Γ(
s−ρ0

2
)Γ(

s+ρ0
2

)

Γ(
s−ρ0

2
+1)Γ(

s+ρ0
2

+1)
.

Here we use the integration formula (2.3) to have the second equality, make a
change of variable z = 1

cosh2t
to obtain the fourth equality and use the formula [9,

7-512,3(p.806)] to prove the fifth equality when Re(s) is sufficiently large. Taking
the residue at s = ρ0, we have

vol(Γ\G)
vol(ΓH\H)C = Ress=ρ0

Γ(
s−ρ0

2
)Γ(

s+ρ0
2

)

Γ(
s−ρ0

2
+1)Γ(

s+ρ0
2

+1)
= 2 Γ(ρ0)

Γ(ρ0+1) .

Hence ΨΓ
H,0 = ρ0

2 C θ
(q)
0 = vol(ΓH\H)

vol(Γ\G) θ
(q)
0 as desired. ¤

To investigate the other components ΨΓ
H,κ (1 6 κ 6 q), we recall basic facts

about cohomological unitary representations (Vogan-Zuckerman [34], Wong [36],
Vogan [35]).

Let T (∼= U(1)p+q) be the compact Cartan subgroup of G formed by all the
diagonal matrices in G. For a tC-root β ∈ t∗C, let gC(t;β) = {X ∈ gC| [Z, X] =
β(Z)X (∀Z ∈ t)} be the corresponding root space in gC. Note a t-root β is real
valued on

√−1t. For H0 ∈
√−1t, let q(H0) be the θ-stable parabolic subalgebra

of g with Levi part l(H0) = {X ∈ gC| [H0, X] = 0}, and whose radical u(H0) is
the sum of those root spaces gC(t;β) such that β(H0) > 0. The θ-stable parabolic
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subalgebra q = q(H0) determines a unitarizable irreducible (gC,K)-module Aq

with non trivial cohomology H∗(gC,K;Aq) 6= 0; Aq is characterized as a unique
irreducible unitarizable (gC,K)-module with the two properties: (1) Aq contains
the K-type of highest weight λ(q) = 2ρ(u(H0) ∩ pC), the sum of those T -roots β

occurring in u(H0) ∩ pC; (2) Ωg acts by 0 ([34, Proposition 6.1]).

About the intermediate forms ΨΓ
H,κ (1 6 κ 6 q − 1), we have the vanishing

theorem.

Proposition 38. For 0 < κ < q, we have ΨΓ
H,κ = 0.

Proof. On the contrary, suppose that ΨΓ
H,κ 6= 0 with 0 < κ < q. Let V

be the closed G-submodule of L2(Γ\G) generated by the coefficient functions
ΨΓ

H,κ(v; g) = (ΨΓ
H,κ(g)|v) with v ∈ V

(q)
κ ; by assumption V 6= {0}. Since Γ\G is

compact, the unitary representation L2(Γ\G) is discretely decomposable, a for-
tiori its closed submodule V is. In particular, V has an irreducible closed subspace
H 6= {0}. By definition of V, there exists a v ∈ V

(q)
κ such that the orthogonal pro-

jection of ΨΓ
H,κ(v) to H is nonzero. Let τκ be the irreducible K-module with the

highest weight κ(ε1 − εp). Then τκ occurs not only in
∧q,q p∗C by Proposition 11

but also in the K-module H. Moreover, since 4ΨΓ
H,κ = 0, the Casimir element

Ωg annihilates the space H. Hence Hq,q(gC,K;H) = HomK(
∧q,q pC,H) 6= {0}

([1, Proposition 3.1(p.52)]). Then by [34, Theorem 4.1], there exists an ele-
ment H0 ∈

√−1t such that the (g,KC)-module HK is isomorphic to Aq with
q = q(H0). Set u = u(H0) for simplicity. Since T -weight λ(q) is the highest
weight of the unique K-type shared by

∧
p∗C(∼= ∧

pC) and Aq ([35, Corollary 5.3,
Theorem 5.6]), and since τκ occurs both in

∧q,q p∗C and in HK
∼= Aq, we must

have λ(q) = κ(ε1 − εp).

Let X be the set of eigenvalues of τ(H0) acting on
∧

p∗C. Since both λ(q)
and q(ε1− εp) are T -weights of

∧
p∗C, the numbers 〈λ(q),H0〉 and 〈q(ε1− εp),H0〉

belong to the set X.

If the space u ∩ pC were zero, then H0(gC,K;Aq) 6= 0, which yields Aq
∼= C,

a contradiction. This shows u ∩ pC 6= {0}, which in turn implies 〈λ(q),H0〉 >

0, because the number 〈λ(q),H0〉 is the maximal element of the set X ([35,
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Proposition 5.2]). We have the inequality

0 < 〈λ(q),H0〉 = κ 〈ε1 − εp,H0〉 < q 〈ε1 − εp,H0〉,
which contradicts the maximality of the number 〈λ(q),H0〉 in X mentioned above.

¤

The remaining is the primitive form ΨΓ
H,q, which can be regarded as the essen-

tial ingredient of the Poincaré dual form.

Lemma 39. The secondary spherical function ψs = ϕ
(q)
s has a simple pole at

s = ρ0 with ψH = Ress=ρ0ψs such that

ψH(at) = 2 Γ(ρ0+q)
Γ(ρ0+1)Γ(q−1)(cosht)−2ρ0 θ(q)

q , (∀t > 0). (8.1)

The (q, q)-current ψH is a harmonic form belonging to the space Aq,q(G/K)H .
The coefficient functions g 7→ (ψH(g)|v) (v ∈ V

(q)
q ) belong to L2(H\G) and to-

gether with their right U(gC) translates span a (gC,K)-submodule πq of L2(H\G)
isomorphic to Aq1p with q1p = q(q(ε1 − εp)).

Proof. The formula (8.1) follows directly from (5.1) by taking the residue. The
formula (8.1) shows first that the singularity of ψs along HK vanishes in the
level of the residue ψH , second that the K-type of ψH is q(ε1 − εp) (see Propo-
sition 11). Moreover, from the equation in Proposition 23, ψH ∈ Aq,q(G/K)H

is harmonic, i.e., 4ψH = 0. By a direct computation using the integration for-
mula (2.3), we can easily confirm that ψH is square-integrable on H\G. From
these properties, by the characterization of Aq1p recalled above, we conclude that
πq is Aq1p-isotypic. Irreducibility of πq follows from [33, Lemma 5.3] since the

K-module V
(q)
q is irreducible. ¤

Proposition 40. Our global construction ΨΓ
H,q, if non-zero, yields an automor-

phic realization of Aq1p in the space of L2-automorphic forms L2(Γ\G).

Proof. The U(gC) translates of the coefficient functions of ΨΓ
H,q spans a (gC,K)-

submodule Π of L2(Γ\G); Π contains the K-type τq and is annihilated by Ωg.
Use the characterization of Aq1p and [33, Lemma 5.3] to conclude Π ∼= Aq1p . ¤

Remark: It is a subtle and difficult arithmetic problem to find whether the
primitive form ΨΓ

H,q is zero or not for a fixed Γ.
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Non-vanishing statements of the Poincaré series constructed from an ordinary
spherical function with regular spectral parameter (for small Γ) are found in
Oshima [27] and Tong-Wang [33].

9. Remarks and further observations

• Let us discuss the case when G = U(2, 2), K = U(2) × U(2) and H =
U(1, 2) × U(1) in some detail. Since the complex dimension of the as-
sociated symmetric space G/K is 4, the fundamental class of the cycle
CΓ

H is in the cohomology group H4(Γ\G/K;C) of middle degree 4. It
is known that a non-trivial (gC,K)-modules contributing degree 4 co-
homology group is a member of the discrete series representations with
the same infinitesimal character as C. By the classification, there exist
6 such representations π(Λ), labeled by the Harish-Chandra parameters
Λ = Λj (j ∈ {1, 2, 3, 4, 5, 6}):

Λ1 =
(

3
2 , 1

2 , −1
2 , −3

2

)
, Λ2 =

(
3
2 , −1

2 , 1
2 , 3

2

)
, Λ3 =

(
3
2 , −3

2 , 1
2 , −1

2

)
,

Λ4 =
(

1
2 , −1

2 , 3
2 , −3

2

)
, Λ5 =

(
1
2 , −3

2 , 3
2 , 1

2

)
, Λ6 =

(−1
2 , −3

2 , 3
2 , 1

2

)
.

The highest weight of the minimal K-type of the representation π(Λ) is
given by [λ1+1/2, λ2−1/2]⊕[λ3−1/2, λ4+1/2] if Λ = (λ1, λ2, λ3, λ4). The
representation Aq12 defined in the last section is π(Λ3), which is one of
two ‘middle discrete series representations ’ π(Λ3) and π(Λ4) contributing
the (2, 2) Hodge component of the cohomology group.

The K-type decomposition of ΨΓ
H in this case is

ΨΓ
H = vol(ΓH\H/KH)

vol(Γ\G/K)
1
12(ωp + γ2

11 + γ2
22 + 2γ12 ∧ γ21) + ΨΓ

H,2.

If the primitive form ΨΓ
H,2 is nonzero, it generates a middle discrete se-

ries π(Λ3) in L2(Γ\G). In order to investigate this form, the detailed
knowledge about various spherical functions on U(2, 2) ([7], [11]) should
be basic.

• Though our global results after Proposition 33 in this paper are stated
under the assumption that Γ\G is compact, the same statements (except
a proper modification of the functional equation of Φ(d)

s,r ) should be true
for arithmetic non-uniform lattices Γ. But the situation is technically
more sophisticated.
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