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Abstract: Let X be a smooth quasi-projective variety over the algebraic
closure of the rational number field. We show that the cycle map of the
higher Chow group to Deligne cohomology is injective and the higher Hodge
cycles are generated by the image of the cycle map as conjectured by Beilin-
son and Jannsen, if the cycle map to Deligne cohomology is injective and
the Hodge conjecture is true for certain smooth projective varieties over the
algebraic closure of the rational number field. We also verify the conjecture
on the surjectivity in some cases of the complement of a union of general
hypersurfaces in a smooth projective variety.
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Introduction

Let X be a smooth projective variety over a subfield k of C, and CHp(X, n)Q the
higher Chow group with Q-coefficients [8]. We have a cycle map to the Deligne
cohomology of XC := X ⊗k C (see [2], [9], [14], [15], [16], [19], [31], etc.):

(0.1) CHp(X, n)Q → H2p−n
D (XC,Q(p)).

We are interested in its injectivity when k is a subfield of Q. For n = 0, this is
conjectured by Bloch and Beilinson [2] (at least for cycles algebraically equivalent
to zero), see also [20]. Note that the injectivity of (0.1) for smooth quasi-projective
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varieties would imply the injectivity of the refined cycle map in [32] (see also [1]).
It is expected that (0.1) would be bijective if we replace the Deligne cohomology
by a certain extension group in the derived category of a conjectural category
of mixed motives [4], and that higher extension groups Exti of mixed motives
over a number field would vanish for i > 1, see [2], [7], [20], etc. Since the
Deligne cohomology is expressed as an extension group in the derived category
of mixed Hodge structures, the problem is closely related to the full faithfulness
of the forgetful functor from the (conjectural) category of mixed motives to that
of mixed Hodge structures. Note that the latter problem may be viewed as an
extension of the Hodge conjecture which predicts the full faithfulness for pure
motives, see [12].

Let now X be a smooth quasi-projective variety over Q. Then the cycle map
induces

(0.2) CHp(X, n)Q → HomMHS(Q,H2p−n(XC,Q)(p)),

where the target is called the group of higher Hodge cycles. It is conjectured by
Beilinson [3] and Jannsen [20] that (0.2) would be surjective. Here the source can
be replaced with CHp(XC, n)Q by spreading cycles out as in Remark (1.5)(ii).
Jannsen showed that the injectivity of (0.1) for n = 0 is essentially equivalent
to the surjectivity of (0.2) for n = 1, where X in (0.2) is the complement of
the support of an algebraic cycle of codimension p on X in (0.1). However, any
philosophical reason for the surjectivity of (0.2) does not seem to have been known
in general. We show in this paper the following (see (4.1-2) for a more precise
statement):

0.3. Theorem. If (0.1) is injective and the Hodge conjecture is true for any
smooth projective varieties over Q, then (0.2) is surjective and (0.1) is injective
for any smooth quasi-projective varieties over Q. In particular, the refined cycle
map [32] (see also [1]) is injective in this case.

We prove this in a more general situation including the case of systems of re-
alizations [12], [13], [20]. Theorem (0.3) gives evidence for Bloch’s conjecture [6]
for surfaces with pg = 0, Murre’s conjecture [25] on the Chow-Künneth decom-
position and Voisin’s conjecture [35] on the countability of CH2

ind(X, 1)Q. Indeed,
these can be reduced to the injectivity of the refined cycle map, assuming the
algebraicity of the Künneth components of the diagonal in the case of Murre’s
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conjecture (see [21], [29], [32]). Note that the conclusion of Theorem (0.3) does
not imply the surjectivity of (0.2) for complex algebraic varieties (by taking a
model), because the Leray spectral sequence for a non proper morphism does not
necessarily degenerate at E2 (see also [20], [24]). However, in the case p = n = 2
(which is related to Voisin’s conjecture), any counter example to the surjectivity
does not seem to be known even over the complex number field.

In this paper we verify the surjectivity in some cases (see Theorems (5.5), (5.8)
and (5.11)):

0.4. Theorem. Let X be the complement of a union of sufficiently general
hypersurfaces in a smooth projective variety over a subfield k of C (more precisely,
see Theorems (5.5), (5.8) and (5.11)). In case k is not algebraically closed, replace
the target of (0.2) by the category of mixed Hodge structures with k-structure
(defined by using de Rham cohomology). Then the (modified) morphism (0.2) is
surjective if p = n or p = n + 1 ≤ dimX − 2.

Note that the converse of Theorem (0.3) is not true in general (i.e. the sur-
jectivity of (0.2) does not imply the injectivity of (0.1), see (5.12)), although it
holds in some case where n = 0 in (0.1) and n = 1 in (0.2) as treated in [20]
(here it is not necessary to assume X proper for this assertion). We would need
a stronger condition on the surjectivity to show the injectivity in general.

I would like to thank the referee for useful comments.

1. Deligne cohomology of mixed sheaves

1.1. Mixed sheaves. In this paper k is a subfield of C. For a k-variety X, let
M(X) be a category of mixed sheaves such that the M(X) satisfy the axioms of
mixed sheaves in [30]. More precisely, the M(X) should be stable by standard
functors like dual, external products, open pull-backs, and the cohomological
direct images by affine morphisms, and they should satisfy certain compatibility
conditions; then their derived categories DbM(X) are stable by the standard
functors like direct images and pull-backs, etc. We also assume that the weight
filtration W is defined in M(X), and the graded quotients are are polarizable
(e.g. polarizations of Hodge modules are defined over k) so that the pure objects
are semisimple, see loc. cit. for details.
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In this paper we assume there exists a natural forgetful functor

(1.1.1) M(X) → MHM(XC)

in a compatible way with the above standard functors, where MHM(XC) is the
category of mixed Hodge modules [28] on XC = X ⊗k C. This condition implies
for example that any morphism of M(X) is strictly compatible with W .

In case k is not algebraically closed, we assume further a natural factorization

(1.1.2) M(X) → MHM(X) → MHM(XC)

in a compatible way with the above standard functors, where MHM(X) is the
category of mixed Hodge modules on X⊗kC whose underlying filtered D-module
is defined over X/k.

The reader may assume M(X) = MHM(XC) if k is algebraically closed, and
M(X) = MHM(X) otherwise. Depending on the purpose, he may also assume
some more additional structure, e.g. systems of realizations MSR(X) ([30], [32])
which was constructed in [12], [13], [20], etc. in the case X = Spec k.

1.2. Deligne cohomology. Set M(k) = M(Spec k). We denote by Q the
constant object in M(k). For a k-variety X, let

(1.2.1) QX = a∗XQ, DX = a!
XQ in DbM(X),

where aX : X → Spec k is the structure morphism. We can define the Tate twist
(m) for m ∈ Z by using the cohomology of the projective space P1 (see e.g. [30]).
We define

Hj(X,Q) = Hj(aX)∗QX , HBM
j (X,Q) = H−j(aX)∗DX in M(k),

where Hj is the usual cohomology functor. They will be denoted by Hj(X/k,Q)
and HBM

j (X/k,Q) respectively when we have to specify the ground field k ex-
plicitly.

We define analogues of Deligne cohomology and homology by

Hj
D(X,Q(i)) = Extj(Q, (aX)∗QX(i)),

HD
j (X,Q(i)) = Ext−j(Q, (aX)∗DX(−i)),

where Ext is taken in DbM(k).
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Let n = dim X. Then we have a canonical morphism

(1.2.2) QX → DX(−n)[−2n]

using the adjunction relation

(1.2.3) Hom(QX ,DX(−n)[−2n]) = Hom(Q,HBM
2n (X,Q)(−n)),

because HBM
j (X,Q) = 0 for j > 2n and HBM

2n (X,Q) is naturally isomorphic
to a direct sum of Q(n) by restricting to the smooth part of each irreducible
component). If X is smooth and equidimensional, (1.2.2) induces isomorphisms

(1.2.4)
QX(n)[n] = DX [−n] in M(X),

H2n−j
D (X,Q(n− i)) = HD

j (X,Q(i)).

Using semisimplicity of pure objects as in [28], 4.5.3, we get

(1.2.5) HD
j (X,Q(i)) = Ext−j(Q, (aX)∗DX(−i)) = 0 for j < 2i

In the case X is smooth this means

Hj
D(X,Q(i)) = Extj(Q, (aX)∗QX(i)) = 0 for j > 2i.

1.3. Canonical filtration. Let Fτ be a decreasing filtration on Hj
D(X,Q(i)),

HD
j (X,Q(i)) induced by the canonical truncation τ (see [11]) on (aX)∗QX(i) and

(aX)∗DX(−i). We shift the filtration so that

Gra
Fτ

Hj
D(X,Q(i)), Gra

Fτ
HD

j (X,Q(i))

are respectively subquotients of

Exta(Q,Hj−a(X,Q)(i)), Exta(Q,HBM
j+a(X,Q)(−i)),

via the spectral sequences

Ep,q
2 = Extp(Q,Hq(X,Q)(i)) ⇒ Hp+q

D (X,Q(i))

Ep,q
2 = Extp(Q,HBM

−q (X,Q)(−i)) ⇒ HD
−p−q(X,Q(i)).

These spectral sequences are associated to the truncation τ≤j on (aX)∗QX(i) and
(aX)∗DX(−i) by renumbering the Ep,q

r as in [11].

For a = 0, 1, we have canonical injections

(1.3.1)
Gra

Fτ
Hj
D(X,Q(i)) → Exta(Q,Hj−a(X,Q)(i)),

Gra
Fτ

HD
j (X,Q(i)) → Exta(Q,HBM

j+a(X,Q)(−i)),
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since Ep,q
2 = 0 for p < 0 by vanishing of negative extensions.

If X is smooth proper, the filtration Fτ splits by a variant of the decomposition
theorem [30], and (1.3.1) induces isomorphisms. The surjectivity of (1.3.1) is not
clear except the case where M(k) is the category of graded-polarizable mixed
Q-Hodge structures so that higher extension groups Exti vanish for i > 1 (and
hence Ep,q

2 = 0 for p > 1) as a corollary of Carlson’s formula [10].

1.4. Hodge-type conjecture for Chow groups. Let X be a smooth proper
variety over k. Then the cycle map induces

(1.4.1) CHp(X)Q → Gr0Fτ
H2p
D (X,Q(p)) = HomM(k)(Q,H2p(X,Q)(p)).

The M-Hodge conjecture means the surjectivity of (1.4.1). If k = C and M(C)
is the category of graded-polarizable mixed Hodge structures, this is the usual
Hodge conjecture.

1.5. Remarks. (i) Let U be a smooth variety over k, and X a smooth compact-
ification. Then the pull-back

HomM(k)(Q,H2p(X,Q)(p)) → HomM(k)(Q,H2p(U,Q)(p))

is surjective by the weight spectral sequence as in [11]. So the M-Hodge conjec-
ture for U can be reduced to that for X.

(ii) The M-Hodge conjecture for X can be reduced to the usual Hodge con-
jecture for XC. Indeed, a cycle on XC is defined over a finitely generated k-
subalgebra R of C. (This is called a spreading out.) We can restrict it to the
fiber over a closed point of SpecR. If k is not algebraically closed, then a cycle
ζ is defined over a finite Galois extension k′ of k, and its cycle class in the de
Rham cohomology of Xk′/k′ is invariant by the action of G = Gal(k′/k) using
the factorization (1.1.2). Then we can replace ζ with

|G|−1 ∑
g∈G g∗ζ,

which is defined over k and whose cycle class is not changed, see Remark (iii)
below.

(iii) For a smooth k-variety X, let Hj
DR(X/k) denote the de Rham cohomology

of X/k. For a Galois extension k ⊂ k′, set Xk′ = X⊗k k′. Then the Galois group
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G := Gal(k′/k) acts on Xk′ → k′ and on Hj
DR(Xk′/k′). We have a canonical

isomorphism
Hj

DR(Xk′/k′) = Hj
DR(X/k)⊗k k′,

and the above action is identified with the action associated with the tensor
product with k′ over k. Moreover, the cycle map

CHj(Xk′)Q → H2j
DR(Xk′/k′)(j)

is compatible with the action of G.

(iv) If X = Spec K with K a finite extension of k, then

HomMHM(k)(Q,H0(Spec K/k,Q)) = Q.

Indeed, we may assume K = k[t]/(f(t)) with f(t) irreducible of degree d over k.
Let αi be the roots of f(t) in C. Then

K ⊗k C = C[t]/(f(t)) =
⊕d

i=1C[t]/(t− αi) =
⊕d

i=1C.

Moreover, we have in this case

H0
DR(Spec K/k) = K.

Consider any morphism in MHM(k)

u : Q→ H0(Spec K/k,Q)).

Its de Rham part is given by a polynomial g(t) ∈ k[t]/(f(t)) = K, where
deg g < d. Its base change by k → C is then given by (g(αi))1≤i≤d using the
above calculation. So we get g(αi) ∈ Q, since they are the de Rham part of the
morphism

u⊗k C : Q→ H0(Spec K ⊗k C/C,Q).

This implies that g(t) ∈ k, i.e. deg g(t) = 0, since the αm
i (0 ≤ m < d) are linearly

independent over k for each i.

(v) Let X be an irreducible projective variety over k. Set K = k(X) ∩ k in
k(X). If X is normal, then K ∈ Γ(X,OX), and X is absolutely irreducible over
K. So we get in this case

H0(X/k,Q) = H0(Spec K/k,Q) in MHM(k),

and we have by Remark (iv) above

HomMHM(k)(Q,H0(X/k,Q)) = Q.
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The last assertion holds without assuming X normal, since we have the injective
morphisms

H0(Spec k/k,Q) → H0(X/k,Q) → H0(X̃/k,Q),

where X̃ is the normalization of X.

2. Cycle map of higher Chow groups

2.1. Higher Chow groups ([8]). Let ∆n = Spec (C[t0, . . . , tn]/(
∑

ti − 1)). For
a subset I of {0, . . . , n}, let ∆n

I = {ti = 0 (i ∈ I)} ⊂ ∆n. We have an inclusion
ιi : ∆n−1 → ∆n whose image is ∆n

{i} for 0 ≤ i ≤ n.

Let X be an equidimensional variety. We define Zp(X, n) to be the free
abelian group with generators the irreducible closed subvarieties Z of X × ∆n

of codimension p, intersecting al the faces X × ∆n
I of X × ∆n properly (i.e.

dim(Z ∩X ×∆n
I ) = dim Z − |I|), see [8]. We have face maps

∂i : Zp(X, n) → Zp(X, n− 1),

induced by ιi. Let ∂ =
∑

(−1)i∂i. Then ∂2 = 0, and CHp(X, n) is defined
to be the homology of the complex (i.e. Ker ∂/Im ∂) which is a subquotient of
Zp(X, n). Let Zp(X, •)′ be the subcomplex of Zp(X, •) defined by

Zp(X, n)′ =
⋂

0≤i<n Ker(∂i : Zp(X, n) → Zp(X, n− 1)).

Then the inclusion induces a quasi-isomorphism

(2.1.1) Zp(X, •)′ → Zp(X, •)

by [8] (see also [31], 2.1).

2.2. Filtration G. Set

Sn =
⋃

0≤i≤n ∆n
{i}, S′n =

⋃
0≤i<n ∆n

{i}, Un = ∆n \ Sn, U ′
n = ∆n \ S′n,

with the inclusions in : Sn → ∆n, i′n : S′n → ∆n, jn : Un → ∆n, j′n : U ′
n → ∆n.

(These morphisms will sometimes denote also the base change of them.) We have
a short exact sequence in M(∆n)

(2.2.1) 0 → (jn−1)!QUn−1 [n− 1] → (jn)!QUn [n] → (j′n)!QU ′n [n] → 0,
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where ∆n−1 is identified with ∆n
{n}, and the direct images by closed embeddings

are omitted to simplify the notation. This gives an increasing filtration G on
(jn)!QUn [n] such that

(2.2.2) GrG
m(jn)!QUn [n] = (j′m)!QU ′m [m] for 0 < m ≤ n,

and GrG
0 (jn)!QUn [n] = QSpec k, where Spec k is identified with the closed point of

∆n defined by ti = 0 for i 6= 0. Since U ′
n = (Gm)n, we have

(2.2.3) (a∆n)∗(j′n)!QU ′n = 0, (a∆n)∗(jn)!QUn = QSpec k[−n].

2.3. Cycle map. Let ζ =
∑

j aj [Zj ] ∈ Zp(X, n)′. Put Z = supp ζ (:=
⋃

j Zj),
d = dim X − p, and d′ = dim Z = d + n. We define

uζ ∈ Ext−2d′(QZ ,DX×∆n(−d′))

to be the composition of morphisms

QZ →
⊕

j QZj →
⊕

j DZj (−d′)[−2d′] → DX×∆n(−d′)[−2d′],

where the second morphism is given by the sum of the canonical morphisms
(1.2.2) multiplied by aj , and the other morphisms are canonical ones. Consider
the composition of uζ with

DX×∆n → (ιi)∗ι∗iDX×∆n = DX×∆n−1(1)[2]

for i 6= n, which is induced by ι∗i : Q∆n → Q∆n−1 . (Here the base change of ιi is
also denoted by it.) Let Z(i) = Z ∩X ×∆n

{i}. Then the composition vanishes by
the assumption that ζ ∈ Ker ∂i. Indeed, it is identified with an element of

Ext2−2d′(QZ(i)
,DZ(i)

(1− d′)) = Hom(Q,HBM
2d′−2(Z(i),Q)(1− d′))

=
⊕

j Q

by using the adjunction relations for the inclusion ιi : X ×∆n−1 → X ×∆n, and
is given by the intersection multiplicity of ζ with X × ∆n

{i} at each irreducible
component of Z(i), because the cycle map is compatible with the pull-back for a
closed immersion of a locally principal divisor (see e.g. [29], II). Combined with
vanishing of negative extensions, this implies vanishing of the composition of uζ

with

DX×∆n → (i′n)∗(i′n)∗DX×∆n ,
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because (i′n)∗D∆n = QS′n(n)[2n] and the graded-pieces of the weight filtration on
QS′n [n− 1] ∈M(S′n) are constant sheaves supported on intersections of faces. So
uζ is uniquely lifted to

u′ζ ∈ Ext−2d′(QZ , (j′n)!DX×U ′n(−d′))

by using the long exact sequence together with vanishing of negative extensions.

If furthermore ζ ∈ Ker ∂n, we see that u′ζ is uniquely lifted to

u′′ζ ∈ Ext−2d′(QZ , (jn)!DX×Un(−d′))

by a similar argument. Taking the composition with QX×∆n → QZ we get

vζ ∈ Ext−2d′(QX×∆n , (jn)!DX×Un(−d′))

= Ext−2d′(Q, (aX×∆n)∗(jn)!DX×Un(−d′)),

and it defines cl(ζ) ∈ HD
2d+n(X,Q(d)), because (a∆n)∗(jn)!DUn = Q(n)[n].

This construction defines the cycle map

(2.3.1) cl : CHp(X, n) → HD
2d+n(X,Q(d)).

Indeed, if ζ belongs to the image of the differential of Zp(X, •)′, then vζ comes
from

Ext−2d′−2(Q, (aX×∆n+1)∗(jn+1)!DX×Un+1(−d′ − 1)),

(which vanishes by (2.2.3)) by using the compatibility of the cycle map and the
pull-back for X ×∆n → X ×∆n+1.

If X is smooth, (2.3.1) gives

(2.3.2) cl : CHp(X, n) → H2p−n
D (X,Q(p)).

If n = 0 and X is smooth proper, this induces the Abel-Jacobi map [18] using
Carlson’s formula [10]. We can show that the cycle map is compatible with the
pushforward by a proper morphism and the pull-back by a morphism of smooth
quasi-projective varieties, see [31]. So it is also compatible with the action of
algebraic correspondences.

Let Fτ denote also the induced filtration on CHp(X, n) by the cycle map, see
(1.3). We have the induced morphisms

(2.3.3) Gri
Fτ

cl : Gri
Fτ

CHp(X, n) → Gri
Fτ

H2p−n
D (X,Q(p)).
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Note that the target is Exti(Q,H2p−n−i(X,Q)(p)) if X is smooth proper, see
(1.3).

2.4. Lemma. Let X, Y be smooth projective varieties over k. If the M-Hodge
conjecture holds for cycles of codimension dimY − j in X ×k Y , then for ζ ∈
CHj+dim X(X ×k Y )Q, we have

(2.4.1) ζ∗(ImGri
Fτ

cl) = Im Gri
Fτ

cl ∩ Im ζ∗ in Exti(Q,H2p−n−i(Y,Q)(p)),

where

ζ∗ : Exti(Q,Hq−2j(X,Q)(p− j)) → Exti(Q,Hq(Y,Q)(p))

is induced by ζ, and Gri
Fτ

cl is as in (2.3.3).

Proof. By assumption, there exists ζ ′ ∈ CHdim Y−j(Y ×k X)Q such that

ζ ′∗ : Hq(Y,Q) → Hq−2j(X,Q)(−j)

vanishes for q 6= 2p − n − i, and the restriction of ζ∗◦ζ ′∗ to Im ζ∗ ⊂ Hq(Y,Q) is
the identity for q = 2p − n − i, because Hq−2j(X,Q) and Hq(Y,Q) are semi-
simple. So the assertion follows from the compatibility of (2.3.3) with the action
of correspondences.

3. Case of varieties with normal crossings

3.1. Variant for higher Chow groups. We say that Y is a variety with
normal crossings if Y is equidimensional, and is locally isomorphic to a divisor
with normal crossings. In this paper we assume that the irreducible components
Yi (1 ≤ i ≤ r) are smooth. For a subset I of {1, . . . , r}, we define YI =

⋂
i∈I Yi.

Consider the double complex

→
⊕

|I|=i+1

Zp−i(YI , •) →
⊕

|I|=i

Zp−i+1(YI , •) → · · · →
⊕

|I|=1

Zp(YI , •) → 0,

where the differential is given by the alternating sum as usual, and
⊕

|I|=1Zp(YI , •)

is placed at the degree zero. Let Z̃p(Y, •) be its total complex, and similarly for
Z̃p(Y, •)′ (with Zp(YI , •) replaced by Zp(YI , •)′). We have a canonical quasi-
isomorphism Z̃p(Y, •)′ → Z̃p(Y, •) by (2.1.1).
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We can verify that the canonical morphisms

(3.1.1) Z̃p(Y, •) → Zp(Y, •), Z̃p(Y, •)′ → Zp(Y, •)′

are quasi-isomorphisms. (Indeed, for an irreducible subvariety Z of Y × ∆n

intersecting all the faces Y ×∆n
I properly, let J be the subset of {1, . . . , r} such

that Yi ×∆n contains Z for i ∈ J . Then Z defines an element of Zp−|I|+1(YI , n)
for I ⊂ J . This gives an acyclic complex if we define an augmented complex by
adding the term for Y∅ = Y . So we get the first quasi-isomorphism. Then the
second follows from (2.1.1).)

Let W be an increasing filtration on Z̃p(Y, •)′ such that GrW
i Z̃p(Y, •)′ consists

of
⊕

|I|=i+1Zp−i(YI , •) for i ≥ 0 and W−1Z̃p(Y, •) = 0. We define

Z̃p(Y [a,b], •)′ = WbZ̃p(Y, •)′/Wa−1Z̃p(Y, •)′.

Let CHp(Y [a,b], n) be its homology. We denote them by Z̃p(Y [a], •)′,CHp(Y [a], n)
if a = b, and by Z̃p(Y ≥a, •)′,CHp(Y ≥a, n) if b = +∞. Then we have a canonical
long exact sequence

(3.1.2) CHp(Y [a], n) → CHp(Y ≥a, n) → CHp(Y ≥a+1, n) → CHp(Y [a], n− 1)

Note that we have by definition

(3.1.3) CHp(Y [a], n) =
⊕

|I|=a+1 CHp−a(YI , n− a).

3.2. Variant for Deligne cohomology. Let W be the weight filtration on
DY ∈M(Y )[dimY ] (which is a mixed sheaf shifted by dimY ) so that

GrW
a DY =

⊕
|I|=a+1DYI

[a] ∈M(Y )[dimY ].

Let D[a,b]
Y = WbDY /Wa−1DY , and

HD
j (Y [a,b],Q(i)) = Ext−j(Q, (aY )∗D

[a,b]
Y (−i)).

We denote it by HD
j (Y [a],Q(i)) if a = b, and by HD

j (Y ≥a,Q(i)) if b = +∞. Then
we have a long exact sequence
(3.2.1)

HD
j (Y [a],Q(i)) → HD

j (Y ≥a,Q(i)) → HD
j (Y ≥a+1,Q(i)) → HD

j−1(Y
[a],Q(i)).

Note that we have by definition

(3.2.2) HD
j (Y [a],Q(i)) =

⊕
|I|=a+1 HD

j−a(YI ,Q(i)).
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The filtration W induces naturally a filtration W on DY×Un which is the ex-
ternal product of DY and DUn . Let

D≥a
Y×Un

= DY×Un/Wa−1DY×Un .

We define an increasing filtration G on

(jn)!D≥a
Y×Un

∈M(Y ×∆n)[n + dimY ]

to be the convolution (see [5]) of W on D≥a
Y and G on (jn)!DUn , where the latter

is induced by G on
(jn)!QUn [n] = (jn)!DUn(−n)[−n].

(Note that (jn)!D≥a
Y×Un

is the external product of D≥a
Y and (jn)!DUn , because the

direct image is compatible with external product.) Then GrG
m(jn)!D≥a

Y×Un
is the

direct sum of the external products of
⊕

|I|=i+1DYI
[i] and (j′m−i)!DU ′m−i

(n−m + i)[n−m + i] for i ≥ a.

3.3. Proposition. We have cycle maps

(3.3.1) cl : CHp(Y ≥a, n) → HD
2d+n(Y ≥a,Q(d))

which induce a morphism of the long exact sequence (3.1.2) to (3.2.1), where
d = dim Y − p, and we use (2.3.1) for CHp(Y [a], n). Furthermore (3.3.1) is
identified with (2.3.1) if a = 0.

Proof. Let ζ =
∑

i≥a ζi ∈ Z̃p(Y ≥a, n)′ with ζi ∈
⊕

|I|=i+1Zp−i(YI , n). Put
Z = supp ζ, Zi = supp ζi so that Z =

⋃
i≥a Zi. Let d, d′ be as in (2.3). Then ζ

defines
u′ζ ∈ Ext−2d′(QZ ,GrG

n (jn)!D≥a
Y×Un

(−d′))

by an argument similar to (2.3). If ζ is annihilated by the differential of Z̃p(Y ≥a, n)′,
then it is uniquely lifted to

u′ζ ∈ Ext−2d′(QZ , Gn(jn)!D≥a
Y×Un

(−d′)),

by using the compatibility of the cycle map with the pull-back by a closed im-
mersion of a principal divisor. Taking the composition with natural morphisms,
we get

vζ ∈ Ext−2d′(QY×∆n , (jn)!D≥a
Y×Un

(−d′))

= Ext−2d′(Q, (aY×∆n)∗(jn)!D≥a
Y×Un

(−d′)),

and it gives cl(ζ) ∈ HD
2d+n(Y ≥a,Q(d)).
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This defines a well-defined cycle map

cl : CHp(Y ≥a, n) → HD
2d+n(Y ≥a,Q(d)).

Indeed, if ζ belongs to the coboundary, then the image of u′ζ in

Ext−2d′(QY×∆n+1 , Gn+1(jn+1)!D≥a
Y×Un+1

(−d′))

vanishes by the long exact sequence associated with

0 → Gn → Gn+1 → GrG
n+1 → 0.

The remaining assertions follow from the construction easily. This finishes the
proof of Proposition (3.3).

4. Proof of Theorem (0.3)

In this section we prove Theorem (0.3) by showing Theorems (4.1) and (4.2)
below. Here the condition k = Q in Theorem (0.3) does not appear explicitly.
This is implicitly used in the assumption on the injectivity of (4.1.1).

4.1. Theorem. Let U be a smooth quasi-projective variety over k, and X a
smooth projective compactification of X such that the complement Y is a divisor
with normal crossings whose irreducible components Yi are smooth. Let YI be as
in (3.1), and put Y∅ = X for I = ∅. Let p, n be integers, and set d = dimX − p.
Assume that the cycle maps

(4.1.1) CHp−|I|(YI , n− |I|)Q → H
2p−n−|I|
D (YI ,Q(p− |I|))/F 2

τ

are injective and the M-Hodge conjecture for YI and YI ×YI∪{i} is true for any I

and i /∈ I (including the case I = ∅). Then the following cycle maps are surjective
for any a ≥ 0 in the notation of (3.1):

(4.1.2) CHp(U, n + 1)Q → Gr0Fτ
H2p−n−1
D (U,Q(p)),

(4.1.3) CHp−1(Y ≥a, n)Q → Gr0Fτ
HD

2d+n(Y ≥a,Q(d)).

Proof. We first show that the surjectivity of (4.1.2) assuming that for (4.1.3).
We may assume n ≥ 0 because the case n + 1 = 0 follows from the M-Hodge
conjecture for X, see Remark (1.5)(i). Note that the target of (4.1.2) vanishes
for n + 1 < 0 since H2p−n−1(U,Q(p)) has weights ≥ −n − 1, see also (1.2.5).
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Similarly the target of (4.1.3) vanishes for n < a using (3.2.2) together with a
spectral sequence.

Set q = 2d+n. By an argument similar to [31], we have a commutative diagram

−−−−→ CHp(U, n + 1)Q −−−−→ CHp−1(Y, n)Q −−−−→ CHp(X, n)Q −−−−→y
y

y
−−−−→ HD

q+1(U,Q(d)) −−−−→ HD
q (Y,Q(d)) −−−−→ HD

q (X,Q(d)) −−−−→
Let ξ ∈ HD

q+1(U,Q(d)), and ξ′ be its image in HD
q (Y,Q(d)). By the surjectivity

of (4.1.3) for a = 0, there exists ζ ′ ∈ CHp−1(Y, n)Q such that cl(ζ ′) − ξ′ ∈
F 1

τ HD
q (Y,Q(d)). Let ζ ′′ be the image of ζ ′ in CHp(X, n)Q. Then cl(ζ ′′) coincides

with the image of cl(ζ ′)− ξ′ and belongs to F 1
τ HD

q (X,Q(d)).

By the weight spectral sequence [11], we see that the morphisms Yi → Y → X

induce an isomorphism

(4.1.4) Im(HBM
q+1(Y,Q) → HBM

q+1(X,Q)) = Im(
⊕

i H
BM
q+1(Yi,Q) → HBM

q+1(X,Q)),

and the projection

HBM
q+1(Y,Q) → Im(HBM

q+1(Y,Q) → HBM
q+1(X,Q))

splits by semisimplicity of HBM
q+1(Yi,Q) ∈M(k). So there exists ζ1 ∈ CHp−1(Y, n)Q

by Lemma (2.4) (applied to X and Yi) such that cl(ζ1) ∈ F 1
τ HD

q (Y,Q(d)) and
the images of cl(ζ ′) and cl(ζ1) in Gr1Fτ

HD
q (X,Q(d)) coincide. Thus, replacing ζ ′

with ζ ′ − ζ1, we may assume

cl(ζ ′′) ∈ F 2
τ HD

q (X,Q(d)).

But this implies ζ ′′ = 0 by the injectivity of (4.1.1), and ζ ′ comes from ζ ∈
CHp(U, n + 1)Q. So the surjectivity of (4.1.2) is reduced to the injectivity of

HomM(k)(Q,HBM
q+1(U,Q)) → HomM(k)(Q,HBM

q (Y,Q)).

Using the long exact sequence of Borel-Moore homology

→ HBM
q+1(X,Q) → HBM

q+1(U,Q) → HBM
q (Y,Q) →,

together with semisimplicity of HBM
q+1(X,Q), this injectivity follows from vanishing

of HomM(k)(Q,HBM
q+1(X,Q)(d)) (where the target is pure of weight −n− 1 < 0).

The proof of the surjectivity of (4.1.3) is by decreasing induction on a, and is
similar to the above argument. Here we use Proposition (3.3) instead of the above
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commutative diagram, and the isomorphism corresponding to (4.1.4) follows from
the morphisms

D[a+1]
Y → D≥a+1

Y → D[a]
Y [1].

Note that the surjectivity of (4.1.3) at the initial stage of the induction (where
Y ≥a = Y [a]) follows from the Hodge conjecture, because the target of (4.1.3)
vanishes if n− a 6= 0. This completes the proof of Theorem (4.1).

4.2. Theorem. With the notation and the assumptions of Theorem (4.1), the
following cycle maps are injective for any a ≥ 0 :

(4.2.1) CHp(U, n)Q → H2p−n
D (U,Q(p))/F 2

τ ,

(4.2.2) CHp−1(Y ≥a, n− 1)Q → HD
2d+n−1(Y

≥a,Q(d))/F 2
τ .

Proof. We first show the assertion for (4.2.1) assuming that for (4.2.2). Set
q = 2d + n. Consider the commutative diagram

CHp−1(Y, n)Q −−−−→ CHp(X, n)Q −−−−→ CHp(U, n)Q −−−−→ CHp−1(Y, n− 1)Qy
y

y
y

HD
q (Y,Q(d)) −−−−→ HD

q (X,Q(d)) −−−−→ HD
q (U,Q(d)) −−−−→ HD

q−1(Y,Q(d))

Let ζ ∈ CHp(U, n)Q, and assume cl(ζ) ∈ F 2
τ HD

q (U,Q(d)). Then the image of ζ

in CHp−1(Y, n− 1)Q vanishes by (4.2.2), and ζ comes from ζ ′ ∈ CHp(X, n)Q. Let
ξ′ = cl(ζ ′). Note that

Gr0Fτ
ξ′ ∈ Hom(Q,HBM

q (X,Q)(d)) = 0,

unless n = 0. Since the image of ξ′ in Gr0Fτ
HD

q (U,Q(d)) vanishes, it follows from
(4.1.4) that Gr0Fτ

ξ′ comes from

ξ′′ ∈ ⊕
i Gr0Fτ

HD
q (Yi,Q(d)).

Replacing ζ ′ if necessary, we may assume Gr0Fτ
ξ′ = 0 by the Hodge conjecture

for Yi. This implies that ξ′ belongs to Im cl ∩ F 1
τ HD

q (X,Q(d)), and hence Gr1Fτ
ξ′

comes from CHp−1(Y, n)Q by an argument similar to the proof of Theorem (4.2)
(using Lemma (2.4)). So we may assume ξ′ ∈ F 2

τ HD
q (X,Q(d)) (replacing ζ ′

if necessary), and the assertion for (4.2.1) follows from the hypothesis on the
injectivity of (4.1.1).
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The proof of the injectivity of (4.2.2) is similar by decreasing induction on a

using a morphism of (3.1.2) to (3.2.1) (see Proposition (3.3)) instead of the above
commutative diagram. This finishes the proof of Theorem (4.2).

4.3. Proof of Theorem (0.3). The first assertion follows from Theorems (4.1)
and (4.2) together with (1.3). Then the last assertion is clear by definition of the
refined cycle map using the spreading out of algebraic cycles ([6], [17], [34]).

4.4. Remark. Let X be a smooth projective variety over C. If (0.2) is surjective
for any open subvarieties of X with p = n = 2, then it would imply the injectivity
of the higher Abel-Jacobi map of the indecomposable higher Chow group to the
reduced Deligne cohomology

(4.4.1) CH2
ind(X, 1)Q → Ext1MHS(Q,H2(X,Q)(2))/Hdg1(X)Q ⊗Q C∗,

where Hdg1(X)Q = HomMHS(Q,H2(X,Q)(1)), see [3], [23], [26], [27], [31]. The
image of (4.4.1) is countable by a rigidity argument (see [2], [23]), and its injectiv-
ity would imply Voisin’s conjecture [35] on the countability of the indecomposable
higher Chow group. Note that this conjecture can also be reduced to the injec-
tivity of the refined cycle map (see [32]), and to the hypotheses of Theorem (0.3).

5. Complement of general hypersurfaces

5.1. Moderate singularities. Let Z be a complex algebraic variety. Assume
Z is purely d-dimensional and QZ [d] is a perverse sheaf (e.g. Z is a divisor on a
smooth variety). Let W be the weight filtration on QZ [d], see [5], [28]. We say
that Z has only moderate singularities in this paper, if

(5.1.1) dim supp GrW
i (QZ [d]) < i for i < d.

If Z is a k-variety, we say that Z has only moderate singularities if so is ZC :=
Z ⊗k C. Condition (5.1.1) is trivially satisfied if Z is smooth, or more generally,
if Z is a Q-homology manifold. By duality, (5.1.1) is equivalent to

(5.1.2) dim suppGrW
i−d(DZ [−d]) < d− i for i > 0,

and implies

(5.1.3) GrW
2i−2dH

BM
2d−i(Z,Q) = 0 for i > 0.
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If Z is a divisor on a smooth variety X with a local (reduced) defining equation
f , then (5.1.1) is equivalent to

(5.1.4) dim supp GrW
d+iϕf,1QX [d]) < d− i for i > 0.

using the short exact sequence

0 → QZ [d] → ψf,1QX [d] → ϕf,1QX [d] → 0

together with

QZ [d] = Ker N ⊂ ψf,1QX [d],

because the weight filtration W on ψf,1QX [d] is the monodromy filtration shifted
by d. Here ψf,1 and ϕf,1 denote the unipotent monodromy part of Deligne’s
nearby and vanishing cycle functors ψf and ϕf respectively, and N = log Tu with
T = TuTs the Jordan decomposition of the monodromy T . If furthermore Z has
only isolated singularities, then (5.1.1) is equivalent to that the Jordan blocks
of the Milnor monodromy T on the vanishing cohomology for the eigenvalue 1
have size < d. In the case d = 1, the condition is equivalent to the analytic local
irreducibility.

If Z is a divisor on a smooth proper variety X, and U is its complement, then
condition (5.1.1) implies

(5.1.5) GrW
2i+2H

i+1(U,Q) = 0 for i > 0.

Note that (5.1.5) holds also for i = 0 if Z is irreducible.

If Z is a quasi-projective variety, then condition (5.1.1) is stable by a generic
hypersurface section. Note that the irreducibility of Z is also stable by a generic
hypersurface section of positive dimension. (This follows for example from a
generalization of the weak Lefschetz theorem [5] applied to a smooth affine open
subvariety.)

5.2. Lemma. Let X be a connected smooth complex projective variety, and D a
divisor on X such that X ′ := X \ D is affine. Let Y be a smooth hypersurface
section of X which intersects transversely each stratum of a Whitney stratification
of X compatible with D. Put Y ′ = Y ∩X ′ with the inclusion i′ : Y ′ → X ′. Assume
that the cycle class of Y ′ vanishes in H2(X ′,Q)(1). Then the localization sequence
induces the exact sequences

(5.2.1) 0 → Hj(X ′,Q) → Hj(X \ Y ′,Q) → Hj−1(Y ′,Q)(−1) → 0.
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Proof. It is enough to show vanishing of the Gysin morphism

(5.2.2) i′∗ : Hj(Y ′,Q) → Hj+2(X ′,Q)(1)

for any j. Let d = dim X. Then Hj(X ′,Q) = 0 for j > d, and Hj(Y ′,Q) = 0 for
j > d− 1. The restriction morphism

(5.2.3) i′∗ : Hj(X ′,Q) → Hj(Y ′,Q)

is an isomorphism for j ≤ d−2 by a generalization of the weak Lefschetz theorem
for perverse sheaves [5] (applied to the perverse sheaf Rj′∗QX′ [d] where j′ : X ′ →
X denotes the inclusion). So it is enough to show vanishing of the composition of
(5.2.3) and (5.2.2). But this composition coincides with the cup product with the
cohomology class of Y ′, and it vanishes by hypothesis. So the assertion follows.

5.3. Hypersurface sections. Let X be a geometrically irreducible smooth
projective k-variety, where k is a subfield of C. For a line bundle L, we define

PL = Proj(SymkΓ(X, L)∨).

(It is the projective space associated with the symmetric algebra of the dual
vector space of Γ(X, L) over k.) Note that a k-valued point z of PL corresponds
to a divisor D on X such that OX(D) ' L.

For 0 ≤ i ≤ m, let Li be line bundles, and zi ∈ PLi(k). Then zi corresponds
to a divisor Di (which is also denoted by Dzi) on X as above. Consider the
canonical morphism

(5.3.1)
⊕

0≤i≤mQ[Di] → CH1(X)Q,

where the source is a Q-vector space with basis [Di]. Let u1, . . . , ur be a basis
of the kernel of (5.3.1) such that uj ∈

⊕
0≤i≤mZ[Di]. Then there is a rational

function fj on X such that div fj = uj (replacing uj if necessary). The rational
function fj is identified with an element of CH1(X ′, 1) for an open subvariety X ′

of X such that fj has no zeros nor poles on X ′. We will denote by dfj/fj the
image of fj by the cycle map

(5.3.2) CH1(X ′, 1) → HomM(k)(Q,H1(X ′,Q)(1)).

Indeed, the image is expressed by dfj/fj at the level of de Rham cohomology. Note
that in the case k = C and M(k) = MHS, the morphism (5.3.2) is surjective with
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kernel C∗, and an element in the target of (5.3.2) is called an integral logarithmic
1-form (i.e. of the form df/f for a rational function f) if it comes from integral
cohomology.

We define for I = {i1, . . . , ij}

dfI/fI = dfi1/fi1 ∧ · · · ∧ dfij/fij ∈ HomM(k)(Q,Hj(X ′,Q)(j)).

5.4. Generic condition. With the notation of (5.3) we assume Li are very
ample for i > 0. Let P ′ be the open subvariety of P :=

∏
1≤i≤m PLi such

that the divisors Dzi corresponding to z = (z1, . . . , zm) ∈ P ′(k) are smooth
and intersect each other and also D0 transversely (more precisely, there exists a
Whitney stratification of X compatible with D0 such that the restrictions of Dzi

to each stratum form a divisor with normal crossings). We consider further the
subset P ′

0 of P ′(k) consisting of z which satisfies the following condition (which
is closely related to Remark (1.5)(iv)):

(5.4.1) For any subset I of {0, . . . , m} such that |I| = n, the intersection DI,z :=⋂
i∈I Dzi consists of one point (i.e. the Galois group Gal(k/k) acts transitively

on the k-valued points in the intersection).

Let DI be the closed subvariety of X ×k P ′ with the projection π : DI → P ′
such that the fiber over z ∈ P ′(k) is DI,z. Then DI is irreducible by a monodromy
argument, and Hilbert’s irreducibility theorem asserts that P ′

0 is quite large in
the case k is finitely generated over Q, see [22], [33].

Let k0 be a subfield of k such that X, L, D0,P and P ′ are defined over k0. We
say that (D1, . . . , Dm) is k0-generic, if the corresponding z = (z1, . . . , zm) ∈ P(k)
is a generic point of P relative to k0. The condition means that z is not contained
in any proper subvariety of P defined over k0 (in particular it is not in the
complement of P ′).

In the sequel, we will assume:

(5.4.2) D0 (= Dz0) is irreducible, and has only moderate singularities (5.1).

(5.4.3) The functor (1.1.1) factors through MHM(X).
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5.5. Theorem. With the notation and assumptions of (5.3) and (5.4), assume
further that if j in (5.5.1) is equal to dimX, then k is a finitely generated subfield
of C and the point z = (z1, . . . , zm) corresponding to (D1, . . . , Dm) belongs to
P ′

0 in (5.4). If the image of (5.3.1) is not one-dimensional, we assume also
that (D1, . . . , Dm) is k0-generic for a subfield k0 of k as in (5.4). Let X ′ =
X \⋃

0≤i≤m Di. Then the cycle map

(5.5.1) CHj(X ′, j)Q → HomM(k)(Q,Hj(X ′,Q)(j))

is surjective. More precisely, the target of (5.5.1) is generated by dfI/fI for I ⊂
{1, . . . , r} with |I| = j. In particular, the target is zero if j > r.

Proof. We proceed by increasing induction on j and m. We first consider the
case where the image of (5.3.1) is one-dimensional. Then we may assume div fi =
a0[Di]− ai[D0]. Take ξ from the target of (5.5.1), and consider its residue along
Dm

ResDmξ ∈ HomM(k)(Q,Hj−1(Dm \⋃
0≤i≤m−1 Di,Q)(j − 1)).

This is defined by using the connecting morphism of the localization sequence,
and at the level of logarithmic forms it is given by residue. Then the inductive
hypothesis implies that ResDmξ is a linear combination of dfI/fI |Dm for I ⊂
{1, . . . , m− 1} such that |I| = j− 1. Note that the assertion for j− 1 = 0 follows
from (5.4.3) and the assumption that Dm is irreducible (by definition of P ′

0 if
dimX = 1). Indeed, (5.4.3) implies that the target of (5.5.1) is Q if j = 0 and
X ′ is irreducible.

Since dfI/fI |Dm is the residue of a−1
0 dfm/fm ∧ dfI/fI , we may assume that

ResDmξ vanishes modifying ξ by a linear combination of products of integral
logarithmic 1-forms as above if necessary. Then, using Lemma (5.2), the assertion
is reduced to the case where m is decreased by one, and we can proceed by
induction. In the case m = 0, we have ξ = 0 by (5.4.2) and (5.1.5). So the
assertion follows in the first case.

In the case where the image of (5.3.1) is not one-dimensional, the argument is
similar by using Lemma (5.6) below. We first show by induction on j that the
target of (5.5.1) vanishes if (5.3.1) is injective. For j = 1, set D̃ =

∐
i Di and

H0(D̃,Q)0 = Ker(H0(D̃,Q) → H2(X,Q)(1)).
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Here H0(D̃,Q)) =
⊕

iQ[Di] by Remark (1.5)(v). We have a short exact sequence

0 → H1(X,Q)(1) → H1(X ′,Q)(1) → H0(D̃,Q)0 → 0,

so that the target of (5.5.1) is identified with the kernel of

HomM(k)(Q,H0(D̃,Q)0) → Ext1M(k)(Q,H1(X,Q)),

which coincides with the kernel of the Abel-Jacobi map for divisors. So the
assertion follows from the injectivity of (5.3.1).

If j > 1, Lemma (5.6) implies the injectivity of (5.3.1) with X replaced by Di

(and k0 by the function field of the product of PLj for j 6= i over k0) for any
1 ≤ i ≤ m. Hence the target of (5.5.1) for Di and j − 1 vanishes by inductive
hypothesis. Let D =

⋃
0≤i≤m Di, D′ = D \ D0, Z = SingD′, and d = dim X.

Then the target of (5.5.1) vanishes by considering GrW
2j−2d of the exact sequences

HBM
2d−j(X \D0,Q) → HBM

2d−j(X \D,Q) → HBM
2d−j−1(D

′,Q),

HBM
2d−j−1(Z,Q) → HBM

2d−j−1(D
′,Q) → HBM

2d−j−1(D
′ \ Z,Q),

since (5.1.5) holds for

HBM
2d−j(X \D0,Q) = Hj(X \D0,Q)(d),

and GrW
n HBM

i (Z,Q) = 0 for n > 2 dim Z − 2i. (We can verify the last vanishing
by using the localization sequence, because the smooth case is well-known [11].)

If (5.3.1) is not injective, we may assume that a multiple of [Dm] is rationally
equivalent to a linear combination of [Di] for 0 ≤ i < m, and we can apply
the same argument as in the first case by using Lemma (5.6) and applying the
inductive hypothesis to Dm, where k0 is replaced by the function field of PLm

over k0. Thus the assertion is reduced to the case where m is decreased by one
(using Lemma (5.2)), and follows from the inductive hypothesis.

Thus the proof of Theorem (5.5) is reduced to the following:

5.6. Lemma. Let X be a smooth projective k-variety, and Di be divisors on X for
0 ≤ i ≤ m. Assume X and Di are defined over a subfield k0 of k, and Dm is a k0-
generic hyperplane section of X. Let ai ∈ Z, and assume

∑
0≤i<m ai[Di∩Dm] = 0

in CH1(Dm)Q. Then
∑

0≤i<m ai[Di] = 0 in CH1(X)Q.

Proof. Let Xk0 , Di,k0 be k0-varieties with isomorphisms X = Xk0 ⊗k0 k, Di =
Di,k0 ⊗k0 k. Let L be a very ample line bundle of Xk0 such that Dm corresponds
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to a k-valued generic point of Sk0 := PL in the notation of (5.4). Let Y denote the
divisor on Xk0 ×k0 Sk0 whose fiber over z ∈ Sk0(k0) is the divisor corresponding
to z. By assumption, there exist a k0-variety S′k0

and a dominant morphism
ρ : S′k0

→ Sk0 such that

(5.6.1)
∑

0≤i<m ai[D′
i,k] = 0 in CH1(Y ′)Q,

where Y ′ is the base change of Y by ρ, and D′
i,k0

is the pull-back of Di,k0 to Y ′ by
the canonical morphism Y ′ → Xk0 . Replacing Sk0 with a locally closed subvariety
if necessary, we may assume that ρ isétale, and then it is an open embedding by
using the pushforward under ρ. Let Ck0 be a generic line in Sk0 which is not
contained in Sk0 \ S′k0

. Then the restriction of Y ⊗k0 k over C := Ck0 ⊗k0 k is
a Lefschetz pencil f : X̃ → C, and π : X̃ → X is a blow-up along a smooth
center Z ⊂ X such that codimZ = 2 and Di for i < m intersects Z properly
(in particular, π∗Di does not contain the exceptional divisor of the blow-up π).
Restricting (5.6.1) over a generic point of C, we get

∑
0≤i<m ai[π∗Di] = 0 in CH1(X̃)/f∗CH1(C),

because the fibers of f are irreducible. Since CH1(C) = Z, it implies

(5.6.2)
∑

0≤i<m ai[π∗Di] = c[X̃s] in CH1(X̃),

where X̃s is the fiber of f at a general k-valued point s of C. But this implies
c = 0 by applying π∗π∗ to (5.6.2), because π∗π∗X̃s is the sum of X̃s and the
exceptional divisor of π (and π∗π∗ = id). So the assertion follows by applying π∗
to (5.6.2). This completes the proofs of Lemma (5.6) and Theorem (5.5).

By a similar argument, we can prove the Tate-type conjecture corresponding
to Theorem (5.5).

5.7. Theorem. With the notation and the assumptions of Theorem (5.5), assume
that k is finitely generated. Then the l-adic cycle map

(5.7.1) CHj(X ′, j)⊗Ql → Hj(X ′ ⊗k k,Ql(j))Gal(k/k)

is surjective.

Proof. It is well known that the l-adic Abel-Jacobi map

PicY (k)0 ⊗Z Ql → H1(Gal(k/k),H1(Y ⊗k k,Ql)(1))
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for divisors on a smooth proper k-variety Y is expressed by using the exact
sequences associated with the Kummer sequence, and is injective. This can be
used to show vanishing of the target of (5.7.1) when (5.3.1) is injective and j = 1.
The other arguments are similar to the proof of Theorem (5.5).

5.8. Theorem. With the notation and the assumptions of (5.3) and (5.4), assume
(D1, . . . , Dm) is k0-generic, and if j in (5.8.1) is equal to dimX, DI is not a
rational curve for any I ⊂ {1, . . . , m} such that |I| = dimX − 1 (including the
case dimX = 1 and I = ∅). Let X ′ = X \⋃

0≤i≤m Di. Then the cycle map

(5.8.1) CHj(X ′, j)Q → HomM(k)(Q,Hj(X ′,Q)(j))

is surjective. More precisely, the target is generated by dfI/fI as in Theorem (5.5).

Proof. We may assume k = C andM(k) = MHS by (5.4.3), because the assertion
in the case k = C implies that we have a desired higher cycle over a finite extension
of k, and its cycle class in the de Rham cohomology is invariant under the action
of the Galois group if k is not algebraically closed. Then the assertion follows from
an argument similar to the proof of Theorem (5.5) by using the next Proposition
(where only one variable zi is free and the other zj are fixed) instead of Hilbert’s
irreducibility theorem in the case j = dimX. When j = 1, an element in the
target of (5.8.1) is written as df/f with f a rational function on X if it comes
from integral cohomology, and div f = Res df/f as well-known. Then we can
spread this function f out so that we get a rational function on X × S where S

isétale over P ′. Thus we get the spreading out of the given integral logarithmic 1-
form as a horizontal family of integral logarithmic 1-forms over S. The inductive
argument is similar to the proof of Theorem (5.5).

5.9. Proposition. With the notation and the assumptions of Theorem (5.8),
assume further k = C, m = 1 and dimX = 1 or 2. Let I = {1} if dimX = 1,
and I = {0, 1} if dimX = 2. Let ξ be a multivalued section of the local system
π∗ZDI

, where π : DI → P ′ is as in (5.4). Let ξz denote the 0-cycle on DI,z defined
by the stalk of ξ at z ∈ P ′(C) (which is also multivalued). Assume the image of ξz

in CH1(X) is locally constant for z if dimX = 1, and that in CH1(D1,z) vanishes
(where D1,z = Dz1) if dimX = 2. Then ξz is a multiple of the canonical 0-cycle
[DI,z] (i.e. the coefficient of ξz at every point of DI,z is same) if dimX = 1, and
ξ = 0 if dimX = 2.
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Proof. We first show the case dim X = 1. Let n = dimP. This coincides with
the dimension of the projective space in which X is embedded by L1. We may
assume n ≥ 2 because the assertion is clear if n = 1. Since a hyperplane section is
determined generically by n points, there exists anétale morphism of a non empty
Zariski-open subset W of Xn to P ′. Here we may assume that W is stable by
the action of the permutation group on Xn. Furthermore, there is a nonempty
Zariski-open subset U of P ′ such that any ordered n points of DI,z belongs to
W for z ∈ U(C). This is verified by using a finite étale morphism σ : S → P ′
trivializing the monodromy group in Aut(DI,z). Indeed, for any subset Σ ⊂ DI,z

with |Σ| = n, let BΣ(C) consist of points s ∈ S such that the parallel translate
of Σ over s does not belong to W . Then U(C) = P ′(C) \⋃

Σ σ(BΣ(C)).

Since W is connected, this implies that the action of π1(P ′(C), z) on DI,z is
n-transitive for any z ∈ U(C), and this holds for any z ∈ P ′(C) since U is dense.
Then, for any two points of DI,z, the image of π1(P ′(C), z) in Aut(DI,z) contains
a permutation of DI,z which exchanges the given two points and keeps the other
points unchanged. Indeed, this is easy for some two points using a Lefschetz
pencil. For any two points, we have a conjugate of it using the n-transitivity
since n ≥ 2.

Assume the coefficients of ξz at some two points of DI,z are not same for
z ∈ P ′(C). Then there exists ρ ∈ π1(P ′(C), z) such that the coefficients of
ξ′z := ξz − ρ∗ξz are zero except for two points of DI,z and ξ′z is a nonzero cycle of
degree 0. Furthermore the image of ξ′z in CH1(X) is also locally constant. This
implies that the map X2 → Jac(X) defined by (x, y) 7→ [x]−[y] is locally constant
(using the above morphism of W to P ′). But this is clearly a contradiction (fixing
y for example). So the assertion in the case dim X = 1 follows.

The argument is similar in the case dim X = 2. Let n = dim Γ(D0, L1|D0)− 1.
We may assume n ≥ 2, because D0 = P1 and DI,z is one point if n = 1. We
can show the n-transitivity of the action of π1(P ′(C), z) on Aut(DI,z) by the
same argument as above. To construct a permutation of two points which keeps
the other points fixed, we consider a generic projection of X to P2, which is
defined by choosing a generic three-dimensional subspace of Γ(X, L1). Let C0

be the image of D0 in P2, and C1 the discriminant of X → P2. Then there is a
hyperplane which is tangent to C0 at a sufficiently general smooth point (i.e. not
at an inflection point) of C0 and the other intersections with C = C0 ∪ C1 are
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transversal. Take the pull-back D1 of the hyperplane to X, and consider a pencil
containing D1. (Note that D1 is smooth because the above hyperplane intersects
C1 transversely.)

Let ∆ be a sufficiently small open disk in the base space P1 of the pencil (which
is viewed as a subset of P ′(C)) such that the fiber at the origin is D1. There
is a connected component ∆′ of

⋃
z∈∆ D0 ∩D1,z which is a ramified covering of

degree 2 over ∆, and the other connected components are biholomorphic to ∆.
If the coefficients of ξz at some two points of D0 ∩ D1,z are not same, we may
assume that these two points are ∆′∩D1,z by the n-transitivity. Then, using the
local monodromy around 0 ∈ ∆, we get a nonzero cycle ξ′z which is supported on
∆′ ∩D1,z, and has degree 0, and whose image in Jac(D1,z) vanishes. Taking the
base change by ∆′ → ∆, we get a family of smooth proper curves D1,z′ (z′ ∈ ∆′)
which has two sections s and s′ such that Im s ∪ Im s′ = ∆′ ×∆ ∆′. This gives
a univalent family of nonzero cycles ξ′z′ supported on ∆′ ×∆ {z′} for z′ ∈ ∆′

such that the image of ξ′z′ in Jac(D1,z′) vanishes. This induces a contradiction
by considering the embedding D1,z′ → Jac(D1,z′) determined by sz′ . So we get
ξ = 0 because ξz has degree zero. This finishes the proofs of Proposition (5.9)
and Theorem (5.8).

By an argument similar to the proofs of Theorem (5.8) and Proposition (5.9),
we can show the following (which is compatible with Voisin’s conjecture [35], see
(4.4)):

5.10. Proposition. With the notation and the assumptions of Theorem (5.5) or
(5.8), let D =

⋃
0≤i≤m Di, and D̃ be the normalization of D. Then the morphism

(5.10.1) CH2(X ′, 2)Q ⊕ CH1(D̃, 1)Q → CH1(D, 1)Q

is surjective. More precisely, we have the surjection with CH2(X ′, 2) replaced by
the second Milnor K-group of Γ(X ′,O∗X′), and the morphism to the target is given
by the tame symbol. In particular, there is no nontrivial indecomposable higher
cycle in CH2

ind(X, 1)Q which is supported on D.

Proof. This follows from Theorem (5.5) or (5.8) by increasing induction on m.
Indeed, let D′

i = Di \
⋃

j 6=iDj . The kernel of the cycle map (5.5.1) or (5.8.1)
for D′

m with j = 1 comes from CH1(Dm, 1) (= Γ(Dm,O∗Dm
)), because div f = 0

on Dm if f ∈ Γ(D′
m,O∗D′m) belongs to the kernel. The assertion is then reduced
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to the case with m decreased by one (using Theorem (5.5) or (5.8)), because
the logarithmic differential of the tame symbol {f, g} is given by the residue of
df/f ∧ dg/g up to a sign. In the case m = 0, we have CH1(D0, 1) = CH1(D̃0, 1)
because D0 is analytic-locally irreducible. So the assertion follows.

5.11. Theorem. Let X be a smooth projective k-variety with an ample line bun-
dle L, and X ′ be the complement of a union of smooth hypersurfaces D0, . . . , Dm

with respect to L such that D :=
⋃

0≤i≤mDi is a divisor with normal crossings.
Let p, n be positive integers such that p > n and 2p − n < dimX. Assume that
the M-Hodge conjecture is true for codimension p − n cycles on X. Then the
cycle map

(5.11.1) CHp(X ′, n)Q → HomM(k)(Q,H2p−n(X ′,Q)(p))

is surjective. More precisely, the target is generated by dfI/fI ∧ cl(ζ) in the nota-
tion of (5.3) where I is a subset of {1, . . . , r} with |I| = n, and ζ ∈ CHp−n(X).

Proof. This follows from an argument similar to the proofs of Theorems (5.5)
and (5.8) by increasing induction on m and j. Indeed, the condition 2p − n <

dimX implies that 2p − 2n < dimDI , and the restriction morphism induces an
isomorphism

H2p−2n(X,Q) → H2p−2n(DI ,Q)

by the weak Lefschetz theorem. Furthermore, the condition implies in the case
m = 0 that H2p−n(X ′,Q) is pure of weight 2p− n by an argument similar to the
proof of Lemma (5.2) (using the hard Lefschetz theorem). This finishes the proof
of Theorem (5.11).

5.12. Remarks. (i) The last assertion of (5.12) does not hold unless the Di

are hypersurface sections of the same ample line bundle. For example consider
X = P1 × P2 with Di a general hyperplane section of OP1(ai) ⊗ OP2(bi) for
i = 0, 1, where ai, bi are positive integers such that a0b1− a1b0 6= 0. Then (5.3.1)
is injective, i.e. r = 0. But the target of (5.1.1) does not vanish for p = 2, n = 1.
Indeed, dimH4(X,Q) = 2, and the Gysin morphism H2(Di,Q) → H4(X,Q)(1)
is an isomorphism, because the restriction morphism H2(X,Q) → H2(Di,Q)
and its composition with the Gysin morphism are isomorphisms by the hard and
weak Lefschetz theorems. Using the weight spectral sequence, this implies that
GrW

4 H3(X ′,Q) = Q(−2), and the assertion follows because GrW
3 H3(X ′,Q) = 0.
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(ii) The converse of Theorem (4.1) is not true in general even if (4.1.1) is
restricted to higher cycles supported on the complement of U for which the sur-
jectivity of (4.1.2) holds. Indeed, let X be a smooth complex projective variety
such that Γ(X, Ω1

X) 6= 0. Take very ample line bundles L0, L1 such that L0⊗L∨1 is
a non-torsion point of the Picard variety of X. Let D0, D1 be general hyperplane
sections of L0, L1 which intersect transversely. Let X ′ = X \ (D0 ∪D1). Then,
by an argument similar to the proof of Proposition (5.9), we get

HomMHS(Q,H2(X ′,Q)(2)) = 0.

In particular, (4.1.2) is surjective for n = 1, p = 2, and the surjectivity of (4.1.3) is
easy, see [20]. Consider now a decomposable higher cycle ζ := ([D0]− [D1])⊗α ∈
CH2(X, 1)Q. It is nonzero if α ∈ C is not algebraic over a subfield k on which X

and Di are defined (see [32]). But cl(ζ) always vanishes because [D0] − [D1] is
homologically equivalent to zero.
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