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Quotients M = G/H of compact Lie groups provide many important examples
of Riemannian manifolds with non-negative sectional curvature. The primary
characteristic classes and numbers of these spaces have been computed by Borel
and Hirzebruch in [5].

The η-invariant has been introduced by Atiyah, Patodi and Singer in [1] as a
boundary contribution in an index theorem for manifolds with boundary. It can
be used to construct certain secondary invariants of compact manifolds M that
were originally defined using zero-bordisms. For example, the Eells-Kuiper and
Kreck-Stolz invariants distinguish homeomorphic homogeneous manifolds that
are not diffeomorphic. These invariants can be expressed in terms of η-invariants
and Chern-Simons numbers, see e.g. [6], [15]. Although the diffeomorphism type
of many homogeneous manifolds G/H is well-known, in some cases the explicit
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values of certain η-invariants are needed to complete the diffeomorphism clas-
sification. It is therefore worthwhile to have a formula for the η-invariants of
equivariant Dirac operators on homogeneous spaces.

First steps in this direction have been made in [8], [9], [10]. There, we computed
the equivariant η-invariant of a different operator, called “reductive” or “cubic”
Dirac operator, and explained how to recover the η-invariant of the classical
Dirac operator. However, one complicated local term remained, called “Bott
localisation defect” below. The central result of the present article is a formula for
this defect term that is similar to the formula for the equivariant η-invariant of the
reductive Dirac operator itself. Thus we get a tractable formula for equivariant
η-invariants of homogeneous spaces that is useful for explicit computations. This
formula has already been applied in a joint paper [11] with N. Kitchloo and K.
Shankar to calculate the Eells-Kuiper invariant of the Berger space SO(5)/SO(3),
and to determine its diffeomorphism type. Our formula can be summarised as
follows; details and notation will be explained later in the article.

Theorem (see Theorem 2.33 below). Let G ⊃ H be compact Lie groups, and
let Dκ be the equivariant Dirac operator on M = G/H twisted by the local
bundle V κM associated to an irreducible h-representation with highest weight κ.
Then η(Dκ) is a sum of the following terms:

(1) a representation theoretic expression that vanishes if rkG 6= rkH+1, that
depends on the position of h in g and on κ, and that takes the form

2
∑

w∈WG

sign(w)
δ(wX)

(
Â
(
δ(wX)

)
e−(α− δ

2)(wX)
∏

β∈∆+
G

Â
(
β(wX)

)

− e−(κ+ρH)(wX|s)
∏

β∈∆+
G

Â
(
β(wX|s)

)) ∏
β∈∆+

G

−1
β(X)

∣∣∣∣∣
X=0

if rkG = rkH + 1,
(2) a local Chern-Simons theoretic contribution

2
∫

M

˜̂
A
(
TM,∇0,∇LC

)
ch
(
V κM,∇κ

)
given by the integral of a constant multiple of the volume form of M , and
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(3) the integer ∑
γ∈Ĝ

dim
(
V γ
) (
η
(
γDκ

)
− (η + h)

(
γD̃κ

))
arising as the spectral flow between two equivariant Dirac-type operators.

We also give a reformulation of this result for the η-invariant of the odd sig-
nature operator. More generally, we also obtain a formula for the infinitesimally
equivariant η-invariant ηg(Dκ) of [10]; this invariant is the universal η-form for
all families with fibrewise Dirac operator Dκ and compact structure group G.
In fact, we will compute the classical η-invariant η(Dκ) by evaluating ηg(Dκ)
at X = 0. Our main result is stated in Theorem 2.33 for general equivariant
Dirac operators, and in Corollary 2.34 for the slightly different special case of the
odd signature operator. As an example, we compute the infinitesimally equivari-
ant η-invariants of the untwisted Dirac operator and the odd signature operator
for round spheres, and thus we obtain the corresponding η-forms of sphere bun-
dles with compact structure group.

Let us sketch our method. In [8], [9], we presented a formula for the clas-
sical equivariant η-invariant of Slebarski’s deformed Dirac operator D̃κ = D

1
3
,κ

([16], [14]). This invariant is a function ηG(D̃κ) : G → C that is continuous
on the subset G0 ⊂ G of elements that act freely on M , and its value at the
neutral element e ∈ G is just η(D̃κ). The singularity of ηG(D̃κ) near e has
implications on fixpoint sets of G-manifolds N with ∂N = M , see [10]. The
difference between ηG(Dκ) and ηG(D̃κ) is comparatively easy to control on G0,
but since ηG(Dκ) and ηG(D̃κ) are not continuous at e, we do not obtain the value
of η(Dκ) by this method.

Instead, we will use the infinitesimally equivariant η-invariant ηg(Dκ) of [10],
which is a power series on g with constant term η(Dκ). For X ∈ g without zeros
on M , the infinitesimal η-invariant ηX(Dκ) differs from the classical equivariant
η-invariant ηe−X (Dκ) by the integral of a certain differential form onM . This way,
one obtains a formula for the power series ηg(Dκ), and the classical η-invariant
is just its constant term.

However, the integrand in the formula for the difference ηX(Dκ) − ηe−X (Dκ)
stated in [10] is in general not invariant under the action of G, so that one cannot
reduce the problem to a calculation at a single point in M . The new contribution
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in the present article is an evaluation of this integral in terms of representation
theoretic data of the groups G and H and the relative position of their maximal
tori, up to an equivariant Chern-Simons term, see Theorem 2.30. This is an
improvement compared with respect to [8], [9], [10] for two reasons. First, our
formula for η(Dκ) involves no more equivariant differential forms. Second, for
symmetric spaces, the operators Dκ and D̃κ are equal, which means that there
will be no Chern-Simons term and no spectral flow.

This paper is organised as follows. In section 1, we recall the results of [8], [9],
[10] on equivariant η-invariants. We also calculate the infinitesimally equivariant
η-invariants of spheres. In section 2, we give a formula for the Bott localisation
defect on homogeneous spaces and present our main result.

We wish to thank W. Soergel for some helpful comments. We wish to thank
an anonymous referee whose comments helped to make the paper more read-
able. Also, we are indebted to K. Shankar and N. Kitchloo for their constant
encouragement, without which this paper would probably not have been written.

1. Equivariant η-invariants

We recall some facts about η-invariants and homogeneous spaces from [8], [9],
[10]. In section 1.3, we compute the infinitesimally equivariant η-invariant for the
untwisted Dirac operator and the signature operator on round spheres.

1.1. Equivariant η-invariants and their infinitesimal analogues.
Let (M, gM ) be an oriented Riemannian manifold, and let G be a compact group
that acts on M by isometries. Let E → M be a G-equivariant Hermitian vector
bundle, equipped with a G-equivariant Clifford multiplication. Let ∇TM denote
a metric connection on M , and let ∇E be a G-equivariant unitary connection
on E that satisfies the Leibniz rule

∇E(v · s) = ∇TMv · s+ v · ∇Es

for all vector fields v on M and all sections s ∈ Γ(E). Then E is a G-equivariant
Clifford module over M , and we have the G-equivariant Dirac operator

D : Γ(E) ∇E−−−−→ Γ(T ∗M ⊗ E)
gM

−−−−→ Γ(TM ⊗ E) ·−−−−→ Γ(E) .

The most natural choice for ∇TM is the Levi-Civita connection ∇LC, however, on
homogeneous spaces it is easier to work with the connection ∇

1
3 , see section 1.2.
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Let g ∈ G, assume <s ≥ s0 > 0, and define

ηg(D, s) =
∑

λ

sign(λ) |λ|−s tr
(
g|Eλ

)
=
∫ ∞

0

t
s−1
2

Γ
(
s+ 1

2

) tr
(
gD e−tD2)

dt , (1.1)

cf. [7] and [17], where Eλ denotes the Eigenspace of the Eigenvalue λ. The
function ηg(D, s) admits a meromorphic continuation to C that is finite at s = 0,
and the equivariant η-invariant of D at g is given by

ηg(D) = ηg(D, 0) . (1.2)

If we have chosen ∇TM = ∇LC, then the second representation of ηG(D, s) ac-
tually converges at s = 0. The kernel of D does not contribute to (1.1); we
define

hg(D) = tr(g|ker D) .

To define the infinitesimal analogue of ηg(D), let X ∈ g be an element of the
Lie algebra of G, and define the Killing field XM on M by

XM |p =
d

dt

∣∣∣
t=0

e−tXp . (1.3)

Let LEX denote the infinitesimal action of X on sections of E . We take a Dirac
operator D associated with the Levi-Civita connection, and we construct defor-
mations of D and D2 by

DX = D − 1
4
XM · and HX = D2

−X + LEX ,

where XM acts by Clifford multiplication, see [2]. Then the infinitesimal g-
equivariant η-invariant ηg(D) ∈ C[[g∗]] of D is defined as

ηX(D) =
∫ ∞

0

1√
πt

tr
(
DX

t
e
−tH X

t

)
dt , (1.4)

see [10], cf. [3], [4]. Note that it is conjecturally possible to define ηg(D) as a
function of rX for X ∈ g and r ∈ R sufficiently small, rather than as a formal
power series. It is also possible to define a mixed equivariant η-invariant ηg,X(D),
where g ∈ G and X ∈ g commute; this mixed invariant would then occur
in an equivariant index theorem for manifolds with boundary combining The-
orem 1.6 (1) and (2), and in an equivariant index theorem for families with
compact structure group, cf. Remark 1.7. However, this extra generality is not
required for the applications we have in mind.
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The equivariant η-invariant and its infinitesimal cousin are key ingredients in
theorem 1.6 below, which is due to Atiyah, Patodi, Singer [1] and Donnelly [7],
and its infinitesimal analogue in [10], which is related to the family index theorem
of Bismut and Cheeger in [4]. Suppose that M is the boundary of a compact
oriented manifold N , which has a collar isometric to M × [0, ε]. Suppose that
there exists a Clifford module E = E+ ⊕ E− → N , such that E+|M ∼= E with
compatible Clifford multiplications. Then the Dirac operator D is closely related
to the Dirac operator D acting on sections of E .

We also need equivariant characteristic differential forms. The equivariant
Riemannian curvature is defined as

RX =
(
∇LC − 2πi ιXM

)2 + 2πiLTM
X = R+ 2πi µLC

X ,

where ιXM
denotes interior multiplication of a differential form byXM , and µLC

X =
LTM

X −∇LC
XM

is the Riemannian moment. Similarly, define

F EX =
(
∇E − 2πi ιXM

)2 + 2πiLEX = F E + 2πi µEX .

Following [2], the equivariant twisting curvature of E is defined as

F
E/S
X = F EX − 1

4

∑
i,j

〈RXei, ej〉 ei · ej · , (1.5)

where e1, . . . , en is a local orthonormal frame of TM , which acts on E by Clifford
multiplication. Then we have the equivariant characteristic differential forms

ÂX

(
TM,∇LC

)
= det

1
2

(
RX/4πi

sinh(RX/4πi)

)
and chX

(
E/S,∇E) = tr

(
e−

F
E/S
X
2πi

)
.

Recall that the equivariant exterior derivative is defined as

dX = d− 2πi ιXM
,

such that d2
X +2πiLX = 0. Then the forms ÂX(TM,∇LC) and chX(E/S,∇E) are

G-invariant, equivariantly closed, and independent of the choice of an equivariant
connection up to equivariantly exact forms. Note that in contrast to [2] and [10],
we use the classical convention of including powers of 2πi in all definitions above.
Let Ng denote the fixpoint set of g on N .
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Let indg(D) = str(g|ker D) denote the equivariant index of D (regarded as
the character of a virtual G-representation at g ∈ G) with respect to the APS
boundary conditions.

1.6. Theorem ([1], [7], [10]). Let αg denote the characteristic form on Ng given

by the constant term in the asymptotic development of str
(
g e−tD

2)
for t → 0,

then

indg

(
D
)

=
∫

Ng

αg(D)− ηg(D) + hg(D)
2

. (1)

Assume moreover that D is associated to the Levi-Civita connection, then so is D,
and

inde−X

(
D
)

=
∫

N
ÂX

(
TM,∇LC

)
chX

(
E/S,∇E)− ηX(D) + he−X (D)

2
. (2)

1.7. Remark. Theorem 1.6 (2) is in fact a special case of the Bismut-Cheeger index
theorem for families of manifolds with boundary in [4]. Suppose that P → B is
a G-principal bundle with curvature form ω and curvature Ω. If we consider
the family P ×G N → B with boundary P ×G M → B, then Bismut-Cheeger’s
theorem is equivalent to (2) above by the Chern-Weil construction. In particular,
we can recover the η-form on B of the family of Dirac operators induced by D

on M from ηX(D).

We now recall the relation between the two equivariant η-invariants introduced
in (1.2) and (1.4) above. From the dual of the Killing field XM , we construct an
equivariant differential form

ϑX =
1

2πi
〈XM , · 〉 . (1.8)

For X 6= 0, we have an L1-current

ϑX

dXϑX
= −

∫ ∞

0
ϑX et dXϑX dt

on M by Proposition 2.2 below. Note that ϑX
dXϑX

has a singularity at the zero set
of X, but for a smooth compactly supported form α on M , the integral

∫
M

ϑX
dXϑX

α

is still well-defined, hence the term “current”. The current ϑX
dXϑX

will be referred
to as the Bott localisation defect because of (2.1) below.
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1.9. Theorem ([10], Theorem 0.5). If the Killing field XM has no zeros on M ,
then

ηrX(D) = ηe−rX (D) + 2
∫

M

ϑrX

drXϑrX
ÂrX(M) chrX(E/S) ∈ C[[r]] .

If there exists a G-manifold manifold N that bounds M equivariantly and if
there exists a Dirac operator D on N related to D as above, then Theorem 1.9 can
be proved by comparing Theorem 1.6 (1) and (2) using Kalkman’s localisation
formula for manifolds with boundaries ([13]). A general argument is given in [10].

We will give a formula for the Bott localisation defect in section 2 in the special
case that M is a homogeneous space of compact type.

1.2. Homogeneous spaces. We recall the formula for the equivariant η-
invariants of reductive Dirac operators, and its relation to the η-invariants of
Riemannian Dirac operators.

Let M = G/H be a quotient of compact Lie groups with Lie algebras h ⊂ g.
Recall that all G-equivariant vector bundles over M = G/H are of the form

V κM = G×κ V
κ →M ,

where (κ, V κ) is a representation of H. We identify sections s of V κM with
H-equivariant functions

ŝ : G→ V κ with ŝ(gh) = κ−1
h ŝ(g)

such that s(gH) = [g, ŝ(g)].

We fix an AdG-invariant metric on g and let m = h⊥ ⊂ g. Let π = Ad |H×m

denote the isotropy representation of H on m. Then the tangent bundle TM is
isomorphic to G×π m via

[g, v] =
d

dt
getv (1.10)

and carries an induced normally homogeneous Riemannian metric.

On most bundles V κM , we will mainly use the reductive connection∇0 = ∇0,κ,
which can be written as

∇̂0
V s = V̂ (ŝ) . (1.11)

If κ is a unitary (orthogonal) representation, then ∇0,κ is a unitary (orthogonal)
connection. A subscript h or m will denote orthogonal projection to that subspace
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of g. One easily calculates the curvature of ∇0,κ as

F̂ 0,κ
V,W s = −κ∗[V̂ ,Ŵ ]

h

ŝ . (1.12)

We consider a family of connections on TM given by

∇̂t
VW = V̂ (Ŵ ) + t

[
V̂ , Ŵ

]
m
. (1.13)

For t = 0, we obtain again the reductive connection. Note that because the Lie
bracket of vector fields on M is given by

[̂V,W ] = V̂
(
Ŵ
)
− Ŵ

(
V̂
)

+
[
V̂ , Ŵ

]
m
,

the Levi-Civita connection on TM with respect to a normal metric is ∇LC =
∇0,π + 1

2 [ · , · ]m.

An equivariant Clifford module over M is a G-equivariant vector bundle E →
M together with a G-equivariant Clifford multiplication TM × E → E . We
can regard the isotropy representation as a homomorphism π : h → spin(m),
where spin(m) denotes the spin group associated to the vector space m. Let n
be the dimension of M , and let π̃ denote the pullback of the spin representation
of spin(m) to h, which acts on a complex 2[n

2 ]-dimensional vector space S. If π̃
integrates to an H-representation, then S = G×H S is the G-equivariant spinor
bundle (unique if H is connected), which is then the most elementary Clifford
bundle. In general, every equivariant Clifford module is of the form

SκM = G×H

(
S ⊗W κ

)
→M , (1.14)

where κ is an h-representation such that π̃⊗ κ integrates to an H-representation
([9], Lemma 3.4). For example, if M is even-dimensional, the complexified bundle
of exterior differential forms on M is precisely the G-equivariant Clifford module

Λ∗TM ⊗ C = S π̃M = G×H (S ⊗ S) →M .

Let SκM → M be a G-equivariant Clifford module. Following Slebarski [16],
we define a family of Dirac operators on Γ(SκM). For X ∈ g, we define ãdp,X ∈
EndS by

ãdp,X =
1
4

∑
i,j

〈[X, ei], ej〉 ei · ej · ,
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where ei, ej run through an orthonormal base of m. Note that ãdp,X = π̃∗X

for X ∈ h. Then we set

D̂t,κs =
∑

i

ei ·
(
ei(ŝ) + t ãdp,ei

)
.

For t = 1
2 , the operator Dκ = D

1
2
,κ is associated to the Levi-Civita connection

on SM and the reductive connection on V κM (but these two bundles are in
general only locally well defined).

The operator D̃κ = D
1
3
,κ has distinguished properties. It was shown in [16]

and [8], [9] that D̃κ exhibits a very natural behaviour with respect to homogeneous
fibrations, hence it was called the “reductive” Dirac operator in [9] (although it
is not constructed from the reductive connection on SκM).

In order to state the formula for ηG(D̃κ), we need some more notation and
conventions. We choose maximal tori S ⊂ T of H ⊂ G with Lie algebras s ⊂ t,
and fix Weyl chambers PG ⊂ it∗ and PH ⊂ is∗. Let ∆+

G and ∆+
H denote the

corresponding sets of positive roots, and let ρG and ρH be their half sums. The
choices of PG and PH also determine orientations on g/t and h/s as follows.
If β1, . . . , βl ∈ it∗ are the positive roots of g with respect to PG, we can choose
a complex structure on g/t and a complex basis z1, . . . , zn such that ad |t×(g/t)

takes the form

adX =


β1(X)

. . .
βl(X)

 for all X ∈ t. (1.15)

Then we declare the basis z1, i z1, z2, . . . , i zl of g/t as a real vector space to be
positive oriented. The orientation of H/S is constructed similarly.

If we fix an orientation on m = g/h and choose orientations on g/t and h/s as
above, there is a unique orientation on t/s such that the two induced orientations
on

g/s ∼= m⊕ (h/s) ∼= (g/t)⊕ (t/s) (1.16)

agree. We assume for the moment that rkG = rkH + 1, so s⊥ ⊂ t is one-
dimensional. Let E ∈ t/s ∼= s⊥ be the positive unit vector, and let δ ∈ it∗ be the
unique weight such that

− iδ(E) > 0 and δ(X) ∈ 2πiZ ⇐⇒ eX ∈ S (1.17)
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for all X ∈ t.

By abuse of notation, let κ ∈ is∗ denote the highest weight of the h-
representation κ used to construct SκM . Then there is a unique weight α ∈ it∗

of g such that

α|s = κ+ ρH and − i(α− δ)(E) < 0 ≤ −iα(E) . (1.18)

Let AG denote the alternating sum over the Weyl group of G acting on t, and
write AG(ρG) shorthand for AG(eρG( · )). Recall that for X ∈ t, eX ∈ T is regular
iff AG(ρG)(X) 6= 0. We can now compute the classical equivariant eta-invariant
of D̃κ.

1.19. Theorem ([8], [9]). If rkG 6= rkH + 1, then ηG(D̃κ) = 0 identically .
If rkG = rkH + 1, then ηG(D̃κ) is continuous on the set T0 ⊂ T that acts freely
on M . Moreover, if α, δ ∈ is∗ and E ∈ t are given as above, then for all X ∈ t

such that eX ∈ T0 and eX is regular,

(η + h)eX

(
D̃κ

M

)
=
AG

(
1

sinh( δ
2
( · )) e

(α− δ
2
)( · )
)

AG(ρG)
(X) .

1.3. Round Spheres. As an example for our main result, we compute the in-
finitesimally equivariant η-invariant of the untwisted Dirac operator and the odd
signature operator for odd-dimensional spheres. Note that for a symmetric space,
the last two terms in Theorem 2.33 (1) and (2) vanish, so in particular, we do
not have to integrate equivariant Chern-Simons classes.

Fix n and embed G = Spin(2n) ⊂ Cl(2n). We let H = Spin(2n − 1) denote
the subgroup belonging to the Clifford subalgebra spanned by the vectors e1, . . . ,
e2n−1 of an orthonormal base of R2n. Then we can write S2n−1 = G/H.

We choose the maximal tori S ⊂ H and T ⊂ G with Lie algebras

t =
{
X = x1

2 e1e2 + · · ·+ xn
2 e2n−1e2n

∣∣ (x1, . . . xn) ∈ Rn
}

and s = {X ∈ t | xn = 0 } .

We also choose Weyl chambers

PG =
{
i (γ1x

1 + · · ·+ γnx
n)
∣∣ γ1 ≥ · · · ≥ γn−1 ≥ |γn|

}
and PH =

{
i (γ1x

1 + · · ·+ γn−1x
n−1)

∣∣ γ1 ≥ · · · ≥ γn−1 ≥ 0
}
.
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Then we have

∆+
G =

{
i (xj ± xk)

∣∣ 1 ≤ j < k ≤ n
}

and ∆+
H =

{
i(xj ± xk)

∣∣ 1 ≤ j < k ≤ n− 1
}
∪
{
ixj

∣∣ 1 ≤ j ≤ n− 1
}
.

(1.20)

We fix δ(X) = ixn in (1.17), so that S2n−1 is now oriented by (1.15) and (1.16).

1.21. Theorem. For X = (x1, . . . , xn) ∈ t as above, the infinitesimally equivari-
ant η-invariant of the untwisted Dirac operator D and the odd signature opera-
tor B = Dπ̃ of the odd spheres are given by

ηX

(
DS2n−1

)
=

in

2n−1 sin x1
2 · · · sin

xn
2

(
1−

n∑
j=1

2
xj

sin
xj

2

∏
k 6=j

x2
k

x2
k − x2

j

)
, (1)

ηX

(
BS2n−1

)
= in cot

x1

2
· · · cot

xn

2

(
1−

n∑
j=1

2
xj

tan
xj

2

∏
k 6=j

x2
k

x2
k − x2

j

)
. (2)

Note that these formulas have been proved by Zhang for S1 in [18] and for S3 by
the author in [10]. For other symmetric spaces, one can similarly compute ηX(D)
and ηX(B) using the formulas for the equivariant η-invariants in [8], [9].

Proof. The classical equivariant η-invariants of B and D have been calculated
in [1] and [12]. Let us start with the untwisted Dirac operator. We take X ∈ t

as above. By [12], we have

ηe−X

(
DS2n−1

)
=

in

2n−1 sin x1
2 · · · sin

xn
2

.

Let W+
π denote the positive weights of the isotropy representation π, which are

all of multiplicity one in our case. With (1.20) and δ(X) = ixn, we calculate

1
δ(−X)

∏
β∈∆+

G

β(−X|s)
β(−X)

∏
β∈W+

π

1

2 sinh
(β

2 (−X|s)
) =

i

xn

n−1∏
k=1

x2
k

(x2
k − x2

n)

n−1∏
k=1

i

2 sin xk
2

.

Note that the sum SG/H over WG/WH of (2.29) contains n similar terms,
where xn above is replaced by xj for j = 1, . . . , n. Because the last two terms in
Theorem 2.33 (2) drop out for a symmetric space, we get (1). The proof of (2) is
similarly based on the formula for ηeX (B) in [1] and Corollary 2.34. �
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2. The Bott localisation defect

The difference between the classical equivariant η-invariant of [7] and the in-
finitesimal equivariant η-invariant of [10] can be expressed in terms of the Bott
localisation defect as in Theorem 1.9, see [10]. In this section, we prove a fibration
formula for the Bott localisation defect, which is then applied to homogeneous
spaces.

2.1. A fibration formula. Let NMX ,M denote the normal bundle to the zero
set MX of the Killing field XM on M , and let eX

(
NMX ,M

)
denote its equivariant

Euler class. Bott’s localisation formula in equivariant cohomology in the local
version of [2] states that any equivariantly closed form αX ∈ Ωg(M) is equivari-
antly cohomologous to the current

δMX
αX

eX
(
NMX ,M

)
for small X ∈ g. Here, δMX

denotes the δ-distribution at the fixpoint set of X.
It follows from Berline-Vergne’s proof in [2] that in fact

αX − δMX
αX

eX
(
NMX ,M

) = dX

(
ϑX

dXϑX
αX

)
, (2.1)

where ϑX = 1
2πi X

∗
M as in (1.8). The current ϑX

dXϑX
also appears in a localisation

formula for manifolds with boundary in [13]. In this section, we state some
properties of ϑX

dXϑX
. In particular, we give a formula for fibre bundles. Let

us begin with the following observation, which holds for arbitrary Riemannian
manifolds M with an isometric action by a Lie group G.

2.2. Proposition. If we set ϑX
dXϑX

|MX
= 0, then the current ϑX

dXϑX
is locally of

class L1. In particular, if α ∈ Ω∗(M) is continuous and compactly supported,
then ∫

M

ϑX

dXϑX
α = −

∫ ∞

0

(∫
M
ϑX et dXϑX α

)
dt .

In particular, both integrals exist.

Proof. Because

dXϑX =
1

2πi
dX∗

M − ‖XM‖2 ,

it is clear that ϑX
dXϑX

is integrable on each compact subset of M \MX . Also, the
equation above holds for all α with compact support in M \MX .
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Because XM is a Killing field, the zero set MX is a totally geodesic submanifold
of M . Let N →MX denote the normal bundle, then the Levi-Civita connection
on M restricts to a connection ∇N on N , and the infinitesimal action µNX of X
is parallel with respect to ∇N . The normal exponential map exp⊥ : N →M is a
local diffeomorphism near the zero section in N , and

etX exp⊥ V = exp⊥
(
etµ

N
X V
)

for all vectors V ∈ N .

Let R denote the vector field near MX given by

R|exp⊥ V =
d

dt

∣∣∣
t=1

exp⊥ tV ,

and set r = |R| near MX . To estimate the behaviour of dX∗
M and ‖XM‖2

near MX , we need some facts.

Because XM is a Killing field, it satisfies ‖XM‖2 > cr2 near MX for some c > 0.
Cartan’s formula for the exterior derivative implies that(

dX∗
M

)
(V,W ) = 2 〈∇VX,W 〉 .

Now let V be a vector field on M near MX that is tangential to MX and parallel
along all radial geodesics emanating from and perpendicular to MX . Let Y , Z
be a vector fields normal to MX with ∇Y Z = 0, then

〈XM , V 〉|MX
= 0 ,

(
Y 〈XM , V 〉

)
|MX

= 〈µNXV, Y 〉 = 0 ,

and Y
(
Z〈XM , V 〉

)
|MX

=
〈
RY,VXM −

(
∇V µ

N
X

)
(Y ), Z

〉
|MX

= 0
(2.3)

implies that

ιV dX
∗
M ≤ Cr2 and 〈XM , V 〉 ≤ Cr3

for some C > 0.

We choose a local orthonormal frame e1, . . . , en near MX that is parallel along
radial geodesics emanating from MX , such that e1, . . . , e2k are normal to MX

and e2k+1, . . . , en are tangential. Then

ϑX

dXϑX
= − 1

2πi
X∗

M

‖XM‖2 −
dX∗

M
2πi

= −
[n−1

2 ]∑
j=0

(2πi)−j−1 X
∗
M (dX∗

M )j

‖XM‖2j+2
= O(r1−2k)

(2.4)
near MX , so the left hand side integral in Proposition 2.2 exists.
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It also follows from (2.4) that we may write

−
∫ ∞

0

(∫
M
ϑX et dXϑX α

)
dt =

∫
M

ϑX

dXϑX
α− lim

t→∞

∫
M

ϑX

dXϑX
etdXϑX α . (2.5)

Let Ut be the tubular neighbourhood of MX of radius t−
1
4 for t � 0. Be-

cause ‖XM‖2 ≥ cr2, one has

lim
t→∞

∫
M\Ut

ϑX

dXϑX
etdXϑX α = 0 , (2.6)

so the rightmost term in (2.5) localises near MX .

We identify Ut with the neighbourhood Nt of radius t
1
4 by a rescaled normal

exponential map

v 7→ ϕt(v) = exp⊥
(
t−

1
2 v
)
. (2.7)

Using (2.3), one finds that if A = µNX ∈ Γ(EndN ), then as t→∞,

t ϕ∗t X
∗
M → 〈AR, · 〉 , t ϕ∗t dX

∗
M → 〈2A · , · 〉 ,

and t ϕ∗t ‖XM‖2 → ‖AR‖2
(2.8)

uniformly on Nt, with respect to the canonical metric on the total space of N →
MX . Moreover,

lim
t→∞

ϕ∗tα = π∗α

is the pullback of α by the bundle projection π : N → MX , because α is of
class C0. Using (2.6), this allows us to compute

lim
t→∞

∫
M

ϑX

dXϑX
etdXϑX α

= − lim
t→∞

∫
Nt

∑
j,k

(2πi)−j−k−1 tϕ
∗
tX

∗
M (t ϕ∗tdX

∗
M )j+k(

t ϕ∗t ‖XM‖2
)j+1

k!
e−t ϕ∗t ‖XM‖2 ϕ∗tα

= − lim
t→∞

∫
N

∑
j,k

(2πi)−j−k−1 〈AR, · 〉 〈2A · , · 〉j+k

‖AR‖2j+2 k!
e−‖AR‖

2

π∗α

= 0 .

(2.9)

This proves the existence of the right hand side integral in Proposition 2.2. To-
gether with (2.5), we obtain the claimed equality. �
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2.10. Theorem. Let p : M → B be a proper Riemannian submersion, and let G
be a compact Lie group of isometries of M that map fibres to fibres. Then

ϑM
X

dM
X ϑ

M
X

= p∗
(

ϑB
X

dB
Xϑ

B
X

)
+ p∗

(
δBX

eX(NBX ,B)

)
ϑM

X

dM
X ϑ

M
X

as L1-currents for any X ∈ g modulo dX-exact currents.

The first term on the right hand side gives the horizontal part of the Bott
localisation defect. The second term is a localisation of the localisation defect to
the fibres over the zero set BX of XB on B. Note that the Killing vector field XM

on M is tangential to these fibres. We can rephrase Theorem 2.10 as follows. For
all compactly supported continuous forms α ∈ Ω∗(M), we have∫

M

ϑM
X

dM
X ϑ

M
X

α =
∫

B

ϑB
X

dB
Xϑ

B
X

∫
M/B

α+
∫

B

δBX

eX(NBX ,B)

∫
p−1(BX)/BX

ϑM
X

dM
X ϑ

M
X

α .

If XB is not identically zero, this reduces the computation of the left hand side
to the computation of integrals over manifolds of smaller dimension.

Proof. By Proposition 2.2,

ϑM
X

dM
X ϑ

M
X

αX = −
∫ ∞

0
ϑM

X et d
M
X ϑ

M
X αX dt .

Using the vertical tangent bundle TF and the equivariant horizontal distribu-
tion H = (TF )⊥ ⊂ TM , we decompose ϑX = ϑh

X + ϑv
X ∈ Γ(H∗)⊕ Γ(T ∗F ). If G

maps fibres to fibres, then clearly

ϑh
X =

1
2πi

〈p∗XM , p∗ · 〉 =
1

2πi
p∗〈XB, · 〉 = p∗ϑB

X ,

hence ϑM
X = p∗ϑB

X + ϑv
X .

Regard the manifold M = M × (0,∞)2, where the action of the Killing field X
is extended trivially to M . Then the form

βX = ed
M
X (s p∗ϑB

X + t ϑv
X) =

(
1− p∗ϑB

X ds
)(

1− ϑv
X dt

)
es p

∗dB
Xϑ

B
X + t dM

X ϑ
v
X

is closed on M . For 0 < T ≤ S consider the domain

Ω =
{

(s, t)
∣∣ 0 ≤ t ≤ T and t ≤ s ≤ S

}
,

and let Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 denote the contour ∂Ω, where s = t on Γ1, t = 0
on Γ2, s = S on Γ3, and t = T on Γ4. It follows from the equivariant Stokes
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theorem that integrating βX over Γ produces a dX -exact current on M . We will
consider the limits S →∞ and T →∞ in that order to prove Theorem 2.10.

Let I0
j =

∫
Γj
βX for j = 1, . . . , 4, then clearly

I0
1 =

∫
Γ1

βX =
∫ T

0
ϑM

X et d
M
X ϑ

M
X dt ,

I1
1 = lim

S→∞
I0
1 = I0

1 ,

and I2
1 = lim

T→∞
I1
1 = −

ϑM
X

dM
X ϑ

M
X

(2.11)

by Proposition 2.2. Similarly,

I0
2 =

∫
Γ2

βX = −
∫ S

0
p∗ϑB

X es p
∗dB

Xϑ
B
X ds ,

I1
2 = lim

S→∞
I0
2 = p∗

(
ϑB

X

dB
Xϑ

B
X

)
,

and I2
2 = lim

T→∞
I1
2 = I1

2 .

(2.12)

For the term I0
3 , we use that eS dB

XϑB
X forces localisation on the zero set BX

of XB in the limit S →∞, see [2]. This gives

I0
3 =

∫
Γ3

βX = −
∫ T

0
ϑv

X eS p
∗dB

Xϑ
B
X + t dMϑ

v
X dt ,

I1
3 = lim

S→∞
I0
3 = −p∗

(
δBX

eX (NBX ,B)

) ∫ T

0
ϑM

X et dMϑ
M
X dt ,

and I2
3 = lim

T→∞
I1
3 = p∗

(
δBX

eX (NBX ,B)

)
ϑM

X

dM
X ϑ

M
X

.

(2.13)

The remaining term and its limit as S →∞ are easily computed as

I0
4 =

∫
Γ4

βX = eT d
M
X ϑ

M
X

∫ S−T

0
p∗ϑB

X es p
∗dB

Xϑ
B
X ds ,

and I1
4 = lim

S→∞
I0
4 = −p∗

(
ϑB

X

dB
Xϑ

B
X

)
eT d

M
X ϑ

M
X .

(2.14)

Then as in (2.6) above, the current I1
4 localises near MX as T → ∞, and the

limit I2
4 of I1

4 as T →∞ can be computed using a rescaling argument.

Let N = NMX ,M denote the normal bundle to MX in M . We still identify
the tubular neighbourhood Ut of MX of radius t−

1
4 for t = T � 0 with the



932 S. Goette

neighbourhood Nt of radius t
1
4 by the rescaled normal exponential map ϕt : Nt →

Ut of (2.7). Define A ∈ Γ(EndN ) as above, then (2.8) holds unchanged. Similarly,

let A0 ∈ Γ(EndN ) denote the horizontal lift of the action of µ
NBX/B

X on NBX/B,
then the analogue of (2.8) implies that

t ϕ∗t p
∗X∗

B → 〈A0R, · 〉 , t ϕ∗t p
∗ dX∗

B → 〈2A0 · , · 〉 ,

and t ϕ∗t p
∗ ‖XB‖2 → ‖A0R‖2

uniformly on Nt.

In analogy with (2.9), we calculate for any continuous form α that

lim
t→∞

∫
M
p∗
(

ϑB
X

dB
Xϑ

B
X

)
et d

M
X ϑ

M
X α

= lim
t→∞

∫
Nt

∑
j,k

ϕ∗t p
∗
(

tX∗
B (t dX∗

B)j

(2πi t ‖XB‖2)j+1

)
(t ϕ∗tdX

∗
M )k

(2πi)kk!
e−t ϕ∗t ‖XM‖2 ϕ∗tα

= lim
t→∞

∫
N

∑
j,k

〈A0R, · 〉 〈2A0 · , · 〉j 〈2A · , · 〉k

(2πi)j+k+1 ‖A0R‖2j+2 k!
e−‖AR‖

2

π∗α

= 0 .

With (2.14), this implies that

I2
4 = lim

T→∞
I1
4 = 0 .

Theorem 2.10 follows from (2.11)–(2.13), because X2
1 +X2

2 +X2
3 +X2

4 is exact. �

2.2. The Bott localisation defect on G/H. Let G ⊃ K ⊃ S be compact Lie
groups, then

P = K/S −−−−→ E = G/Syp

Q = G/K

(2.15)

is a G-equivariant fibration. The left and the right hand triangle in the following
diagram represent two such equivariant fibrations with K = T and K = H,
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respectively.
G

� �
T

∣∣∣∣∣ H

� �
S

(2.16)

We apply Theorem 2.10 to these fibrations to compute∫
G/H

ϑX

dXϑX
ÂX

(
T (G/H),∇LC

)
chX

(
E/S,∇E) .

Together with the formula for ηe−X (D̃) + he−X (D̃) in [8], [9], we obtain a
formula for η(D) + h(D) up to a possible contribution in 2Z coming from the
spectral flow.

Recall the definition of XE for X ∈ g in (1.3). With the notation of (1.10), we
represent XE by X̂ : G→ e = s⊥ with

X̂E(g) = −
(
Ad−1

g X
)
e
.

The Lie derivative Lκ
X acts on V κE by

L̂κ
Xs =

d

dt

∣∣∣
t=0

ŝ
(
e−tXg

)
= −

(
Ad−1

g X
)(
ŝ
)
,

so the moment of X with respect to the reductive connection is simply

µ̂0,κ
X s = L̂κ

Xs− ∇̂
0,κ
XE
s = −

(
Ad−1

g X
)
h

(
ŝ
)

= κ∗(Ad−1
g X)

h

ŝ . (2.17)

The equivariant curvature of ∇0,κ is then given by

F 0,κ
X =

(
∇0,κ − 2πi ιXE

)2 + 2πiLκ
X

= F 0,κ + 2πi µ0,κ
X = κ∗(−[ · , · ]h+2πi (Ad−1

g X)h) .
(2.18)

We will assume that E = SκE → E is constructed as in (1.14). If we regard
the Dirac operator Dκ = D

1
2
,κ on SκE, then the equivariant twisting curvature

in (1.5) is just the equivariant curvature of the reductive connection on V κE

(even if this bundle does not exist globally), so formally

chX

(
E/S,∇E) = chX

(
V κE,∇0

)
= trV κ

(
e

κ∗[ · , · ]h
2πi −κ∗(Ad−1

g X)h

)
= χκ

H

(
e

[ · , · ]h
2πi −(Ad−1

g X)h

)
. (2.19)
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Let P ↪→ E → Q be an equivariant fibration as in (2.15) with K = H, so
the fibre P = H/S is a flag manifold. An AdG-invariant metric on g induces a
normal metric on E such that p is an equivariant Riemannian submersion. We
write p = s⊥ ∩ h and q = h⊥, so e = p ⊕ q. By AdG-invariance, the isotropy
representation of E splits as π = ϕ ⊕ ι∗ψ, where ϕ and ψ are the isotropy
representations of P and Q, and ι : S → H is the inclusion. Thus the tangent
bundle TE of the total space splits naturally as p∗TQ⊕TP with vertical tangent
bundle TP = G×S p and horizontal complement p∗TQ = G×S q.

We define ∇λ,P , ∇µ,Q as in (1.13) above, regarding ∇λ,P as a connection on
the vertical tangent bundle TP → E. Then

∇̂λ,P
U Y = Û(Ŷ ) + λ [Û , Ŷ ]p and ∇̂µ,Q

V W = V̂ (Ŵ ) + µ [V̂ , Ŵ ]q

for S-equivariant Û : G→ e, Ŷ : G→ p and H-equivariant V̂ , Ŵ : G→ q.

Let κ ∈ s be a weight of h, and consider the bundle V κ+ρHP → P associ-
ated to the S-representation with highest weight κ + ρH . Note that this bun-
dle lives on the universal cover of P = H/S. However, its equivariant Chern
form chX(V κ+ρHP,∇0

)
descends to P , even if P is not simply connected. Simi-

larly, the character χκ
H(eX) is well-defined in terms of X ∈ h even if χκ

H is maybe
not defined as a function on H. Bott’s localisation formula and the equivariant
index theorem imply that

χκ
H

(
e−X

)
=
∫

P
ÂX

(
TP,∇λ,P

)
chX

(
V κ+ρHP,∇0

)
, (2.20)

see [2], Section 8.2.

The curvature F λ,P and the moment µλ,P
X on E are given by

F̂ λ,P
V,WY = −ϕ∗[V̂ ,Ŵ ]s

Ŷ − λ
[
[V̂ , Ŵ ]p, Ŷ

]
p

+ λ2
[
V̂ , [Ŵ , Ŷ ]p

]
p
− λ2

[
Ŵ , [V̂ , Ŷ ]p

]
p

and µ̂λ,P
X Y = ϕ∗(Ad−1

h X)s
Ŷ + λ

[
(Ad−1

h X)p, ŷ
]
p
.

Using these equations, one checks that the equivariant curvature of the connec-
tion ∇λ,P and the Killing field X on E is formally the same as the equivariant
curvature of ∇λ,P and the Killing field −Adh

[ · q, · q]h
2πi +X, considered only on P .
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By (2.19) and (2.20), this gives

chX

(
V κQ,∇0

)
=
∫

P
Â−Adh

[ · q, · q]h
2πi +X

(
TP,∇λ,P

)
ch−Adh

[ · q, · q]h
2πi +X

(
V κ+ρHP,∇0

)
=
∫

E/Q
ÂX

(
TP,∇λ,P

)
chX

(
V κ+ρHE,∇0

)
, (2.21)

where we integrate over the fibres of E → Q in the last line.

Let p∗∇µ,Q ⊕∇λ,P denote the product connection on TE = p∗TQ ⊕ TF . By
multiplicativity of the Â-form, we have

ÂX

(
TE, p∗∇µ,Q ⊕∇λ,P

)
= p∗ÂX

(
TQ,∇µ,Q

)
ÂX

(
TP,∇λ,P

)
.

Now, Theorem 2.10 and equation (2.21) have the following implication.

2.22. Proposition. Let G ⊃ H be compact Lie groups, and let S ⊂ H be a
maximal torus. If the Killing field XQ has no zeros, then for any λ and µ,

ϑX

dXϑX
ÂX

(
TQ,∇µ,Q

)
chX

(
V κQ,∇0

)
=
∫

E/Q

ϑX

dXϑX
ÂX

(
TE, p∗∇µ,Q ⊕∇λ,P

)
chX

(
V κ+ρHE,∇0

)
. �

To evaluate the right hand side of Proposition 2.22, we now consider the left
triangle in (2.16). In particular, T ⊂ G is a maximal torus containing S. We
assume in addition that X is regular. Then the only fixed points of X on G/T

are the isolated fixpoints wT/T . In particular, the normal bundle to NG(T )/T
in G/T is just the tangent bundle T (G/T ), and its equivariant Euler form is
invertible near NG(T )/T . We find by Proposition 2.22 that

∫
Q

ϑX

dXϑX
ÂX

(
TQ,∇µ,Q

)
chX

(
V κQ,∇0

)
=
∫

E

˜̂
AX

(
TE,∇0, p∗∇µ,Q ⊕∇λ,P

)
chX

(
V κ+ρHE,∇0

)
+
∫

E

ϑX

dXϑX
ÂX

(
TE,∇0

)
chX

(
V κ+ρHE,∇0

)
.



936 S. Goette

Applying Theorem 2.10 once more gives∫
Q

ϑX

dXϑX
ÂX

(
TQ,∇µ,Q

)
chX

(
V κQ,∇0

)
=
∫

E

˜̂
AX

(
TE,∇0, p∗∇µ,Q ⊕∇λ,P

)
chX

(
V κ+ρHE,∇0

)
+
∫

G/T

ϑX

dXϑX

∫
E/(G/T )

ÂX

(
TE,∇0

)
chX

(
V κ+ρHE,∇0

)
+
∫

G/T

δNG(T )/T

eX
(
T (G/T )

) ∫
NG(T )/S

ϑX

dXϑX
ÂX

(
TE,∇0

)
chX

(
V κ+ρHE,∇0

)
(2.23)

We can still simplify this expression. First of all, the reductive connection
respects the splitting TE ∼= p∗TQ⊕ TP . We can thus fix λ = 0 and rewrite the
first term of the right hand side of (2.23) as∫

E

˜̂
AX

(
TE,∇0, p∗∇µ,Q ⊕∇0,P

)
chX

(
V κ+ρHE,∇0

)
=
∫

E

˜̂
AX

(
p∗TQ,∇0, p∗∇µ,Q

)
Â
(
TP,∇0,P

)
chX

(
V κ+ρHE,∇0

)
.

We want to show that for µ = 0, the expression above vanishes.

Note that the curvature of the reductive connection on an equivariant vector
bundle over E depends only on the (G ×H s)-valued two form [ · , · ]s by (1.12).
However, this form vanishes on g/h⊗ h/s, so we find that

ÂX

(
TP,∇0,P

)
chX

(
V κ+ρHE,∇0

)
∈ Γ
(
p∗ΛevenT ∗Q⊗ ΛevenT ∗P

)
. (2.24)

It remains to analyse the Chern-Simons class ˜̂
AX(p∗TQ,∇0, p∗∇0,Q). Once

again, let p = s⊥ ∩h and q = h⊥ ⊂ g. Note that a vector field V on Q is given by
an H-equivariant function V̂ : G→ q. This function also describes the horizontal
lift of V to p∗TQ ⊂ TE. Therefore, the pull-back connection p∗∇0,Q on the
horizontal tangent bundle p∗TQ ⊂ TE is given by

̂
p∗∇µ,Q

V W = V̂
(
Ŵ
)

+
[
V̂p, Ŵ

]
(2.25)

for S-equivariant functions V : G→ e and W : G→ q, since then

̂
p∗∇µ,Q

V W = V̂q

(
Ŵ
)

for an H-equivariant Ŵ .
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We fix a family of connections ∇0,λ on p∗TQ ⊂ TE by

∇̂0,λ
V W = V̂ (Ŵ ) + λ

[
V̂p, Ŵ

]
.

By (1.11) and (2.25), we have ∇0,0 = ∇0 and ∇0,1 = p∗∇0,Q. A straightforward
computation gives the differential and the curvature of this family of connections
as

∂

∂λ
∇̂0,λ

V =
[
V̂p, ·

]
∈ Λ1p⊗ Endq ,

and F̂ 0,λ
V,W = −ψ∗[V̂ ,Ŵ ]

s

− λ
[
[V̂ , Ŵ ]p, ·

]
+ λ2

[
V̂p, [Ŵp, · ]

]
− λ2

[
Ŵp, [V̂p, · ]

]
∈
(
Λ2p⊕ Λ2q

)
⊗ Endq ,

where we have used that [p, q] ⊂ q and q ∩ s = 0. This implies that

˜̂
AX

(
p∗TQ,∇0, p∗∇0,Q

)
∈ Γ
(
p∗ΛevenT ∗Q⊗ ΛoddT ∗P

)
. (2.26)

Combining (2.24) and (2.26) with the fact that dimQ is odd while dimP is even,
we see that∫

E

˜̂
AX

(
TE,∇0, p∗∇0 ⊕∇0

)
chX

(
V κ+ρHE,∇0

)
=
∫

E

˜̂
AX

(
p∗TQ,∇0, p∗∇0

)
ÂX

(
TP,∇0

)
chX

(
V κ+ρHE,∇0

)
= 0 .

Of course, this conclusion would fail for most other possible choices of connections.

The analogue of (2.24) for the left hand side of (2.16) is

ÂX

(
TE,∇0

)
chX

(
V κ+ρHE,∇0

)
∈ Γ
(
p∗ΛevenT ∗(G/T )⊗ ΛevenT ∗(T/S)

)
.

It implies that the middle term of the right hand side of (2.23) vanishes. Note
that this conclusion would also fail for many other possible choices of connections.

Finally, over WG = NG(T )/T ⊂ G/T , the Killing field XE becomes tangential
to the fibres. Let w = nT ∈ NG(T )/T = WG, then XE |nT is diffeomorphic to the
Killing field wXT/S on T/S. Let us summarise our computations so far.
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2.27. Proposition. Let G ⊃ H ⊃ S and G ⊃ T ⊃ S be as above, and assume
that X ∈ t is regular and that the Killing field XG/H has no zeros. Then∫

G/H

ϑX

dXϑX
ÂX

(
T (G/H),∇0

)
chX

(
V κ(G/H),∇0

)
=
∑

w∈WG

1
ewX

(
T (G/T )

)
∫

T/S

ϑwX

dwXϑwX
ÂwX

(
T (G/S),∇0

)
chwX

(
V κ+ρH (G/S),∇0

)
.

2.3. Evaluation of the Bott localisation defect. In the previous subsection,
we have reduced the Bott localisation defect to the quotient of the maximal tori.
We will now give two formulas in representation theoretic terms.

We start with a Lemma concerning the Weyl groups of G and H.

2.28. Lemma. Let H ⊂ G be a pair of compact Lie groups with maximal tori S ⊂
T , and let WG, WH be the corresponding Weyl groups. Then WH is a subgroup
of {

w|s
∣∣ w ∈WG and w(s) = s

}
⊂ Aut(S) .

Proof. Let w′ = n′S ∈ WH = NH(S)/S, then w′ acts on S by s 7→ n′sn′−1.
Clearly, n′Tn′−1 ⊂ ZG(S) is a maximal torus in the centraliser of S in G. In
particular, we find z ∈ ZG(S) such that zn′T (zn′)−1 = T , and zn′s(zn′)−1 =
w′(s) for all s ∈ S. Thus, w = zn′T ∈WG = NG(T )/T acts on the subset S ⊂ T

as w′. �

To state our main result, let δ ∈ it∗ be defined as in (1.17). Let
∏

β∈W+
π

denote the product over all positive weights of the isotropy representation π,
counted with multiplicity by abuse of notation. Let Â : z → z/2

sinh(z/2) denote the

Â-function. We will denote by X|s the orthogonal projection of X ∈ t onto s.
If f : t → C satisfies f(X) = f(wX) for all w ∈WG that map s to itself, then we
set

SG/H(f)(X) =
1

#WH

∑
w∈WG

sign(w) f(wX) . (2.29)

If WH can be identified with a subgroup of WG, this amounts to summing
over WG/WH .
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2.30. Theorem. Let M = G/H be a quotient of compact Lie groups. If rkG =
rkH + 1, then∫

M

ϑX

dXϑX
ÂX

(
TM,∇0

)
chX

(
V κM,∇0

)
= AG

(
e(κ+ρH)( · |s)

δ( · )
∏

β∈∆+
G

Â
(
β( · |s)

))
(−X)

∏
β∈∆+

g

−1
β(X)

(1)

= SG/H

(
χκ

H

(
e · |s
)

δ( · )
∏

β∈∆+
G

β( · |s)
β( · )

∏
β∈W+

π

1

2 sinh
(β

2 ( · |s)
))(−X) .

(2)

Otherwise, ∫
M

ϑX

dXϑX
ÂX

(
TM,∇0

)
chX

(
V κM,∇0

)
= 0 . (3)

Formula (2) gives an advantage for explicit computations if the subgroup H

has a large Weyl group and the character χκ
H is known, e.g., if Dκ = D is the

untwisted Dirac operator. We have used this formula in Section 1.3 when dealing
with spheres and odd Grassmannians. In some cases, one can even improve on (2).
Suppose that there exists another subgroup K ⊂ G, such that H ⊂ K and S is a
maximal torus of K. Then one obtains a similar formula where K replaces H, π
becomes the isotropy representation of G/K, and κ gets replaced by κ+ρH−ρK .

Proof. We evaluate the right hand side of Proposition 2.27 term by term. The
tangent bundle T (G/T ) is oriented by the choice of ∆+

G as in (1.15), so for w = nT ,

δnT/T

eX
(
T (G/T )

) =
∏

β∈∆+
G

−1
β(wX)

= sign(w)
∏

β∈∆+
G

−1
β(X)

,

independent of any connection on T (G/T ), since we evaluate at isolated fixpoints.

Because the vertical tangent bundle of G/S → G/T is trivial, G-invariant and
parallel with respect to ∇0, the equivariant Â-form of T (G/S) is given as

ÂwX

(
T (G/S),∇0

)
|T/S = ÂwX

(
p∗T (G/T ),∇0

)
|T/S =

∏
β∈∆+

G

Â
(
β(−wX|s)

)
by (2.17); because T/S is one-dimensional, only the moment µ0 of ∇0 enters.
Similarly, the equivariant Chern character form equals

chwX

(
V κ+ρH (G/S),∇0

)
|T/S = e(κ+ρH)(−wX|s) .
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Assume that rkG = rkH + 1. The expression
∫
T/S

ϑwX
dwXϑwX

is clearly indepen-
dent of the metric chosen, so we may assume that vol(T/S) = 2π. Then for a
positively oriented unit vector E, we have δ(E) = i and δ(X) = i〈X,E〉. Then

∫
T/S

ϑwX

dwXϑwX
= −

∫
T/S

wX∗
T/S

2πi
∥∥wXT/S

∥∥2 = − vol(T/S)
2πi 〈wX,E〉

=
1

δ(−wX)
.

This proves (1).

To prove (2), we use Lemma 2.28 to simplify (1). If we assume that rkG =
rkH + 1, there are two possibilities. Either, each element of WH corresponds to
precisely one element of WG; then these elements form a subgroup of WG that we
identify with WH . Or each element of WH corresponds to precisely two elements
ofWG which differ by the reflexion on S; then we can identifyWH with a subgroup
of W even

G , or with those elements that preserve the normal orientation of S in T .
We fix one of these identifications. Let signG(w) = det(w|t) and signH(w) =
det(w|s) denote the sign of an element w ∈WH ⊂WG as an element of the Weyl
groups WG and WH , respectively. These signs are related by

signG(w) δ(wX) = signH(w) δ(X) . (2.31)

As representations of s, g/t⊕RE is isomorphic to h/s⊕π. If we have chosen ∆+
G

and ∆+
H carefully, the restriction to s ⊂ t maps the positive roots ∆+

G bijectively
onto ∆+

H ∪̇ W+
π , where the positive weights of π are counted with multiplicity.

We assume that this is the case, even though our final formula does not depend
on this choice, only on the compatibility of orientations in (1.16). Recall the Weyl
formulas,

∏
β∈∆+

H

2 sinh
(
β

2
(X)

)
= AH

(
eρH
)
(X) and

AH

(
eκ+ρH

)
AH

(
eρH
) (X) = χκ

H

(
eX
)
,

(2.32)
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where AH denotes the alternating sum over the Weyl group of H. Regarding WH

as a subgroup of WG and using (2.31) and (2.32), we find that

AH

(
e(κ+ρH)( · |s)

δ( · )
∏

β∈∆+
G

Â
(
β( · |s)

))
(−X)

∏
β∈∆+

G

1
β(−X)

=
1

δ(−X)
AH

(
eκ+ρH )

AH

(
eρH )

(
−X|s

) ∏
β∈∆+

G

Â
(
β(X|s)

)
β(−X)

∏
β∈∆+

H

2 sinh
(
β

2
(X|s)

)

=
χκ

H

(
e−X|s

)
δ(−X)

∏
β∈∆+

G

β(−X|s)
β(−X)

∏
β∈W+

π

1

2 sinh
(β

2 (−X|s)
) .

Replacing X by wX and summing over wX for w ∈WG/WH , we obtain (2).

Finally, assume that rkG 6= rkH + 1. First of all, if rkG − rkH is even,
then so is dimM , and the integral in Theorem 2.30 vanishes for parity reasons.
Otherwise, rkG − rkH = dimT/S ≥ 3. Because T is abelian, the two-form
part of the equivariant curvature F 0,κ

wX vanishes on T/S by (2.18). This implies
that ÂwX(T (G/S),∇0) and chwX(V κ+ρH (G/S),∇0) have no components of non-
zero exterior degree. Also, the Killing vector field on T/S generated by wX ∈ t

is parallel, so ϑwX
dwXϑwX

∈ Ω1(T/S). Then

ϑwX

dwXϑwX
ÂwX

(
T (G/S),∇0

)
chwX

(
V κ+ρH (G/S),∇0

)
∈ Ω1(T/S) ,

and the integral over T/S vanishes, which proves (3). �

2.4. Evaluation of η-invariants. We combine Theorem 2.30 with Theorem 1.9
and Theorem 1.19 to establish our final formula for the infinitesimally equivariant
η-invariant of the Dirac operator Dκ on M = G/H.

Let Ĝ denote the set of equivalence classes of irreducible unitary representa-
tions of G. Because G is compact, all these representations are finite dimensional.
Recall that by Frobenius reciprocity and the Peter-Weyl theorem,

Γ(SκM) =
⊕
γ∈Ĝ

V γ ⊕HomH

(
V γ , S ⊗ V κ

)
.
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Because Dκ and D̃κ are G-equivariant, they respect this decomposition, and we
have

Dκ =
⊕
γ∈Ĝ

idV γ ⊗γDκ ,

and similarly for D̃κ. Let η(γDκ) ∈ Z and h(γDκ) ∈ Z denote the η-invariant
and the dimension of the kernel of γDκ acting on HomH(V γ , S ⊗ V κ). We also
recall the definitions of δ and α ∈ t∗ in (1.17), (1.18), and the definition of W+

π

and SG/H in section 2.3.

2.33. Theorem. Assume that rkG = rkH + 1, then

ηX

(
Dκ
)

= 2
∑

w∈WG

sign(w)
δ(wX)

( ∏
β∈∆+

G

Â
(
β(wX)

)
Â
(
δ(wX)

)
e−(α− δ

2)(wX)

−
∏

β∈∆+
G

Â
(
β(wX|s)

)
e−(κ+ρH)(wX|s)

) ∏
β∈∆+

G

−1
β(X)

(1)

+ 2
∫

M

˜̂
AX

(
TM,∇0,∇LC

)
chX

(
V κM,∇κ

)
+
∑
γ∈Ĝ

χγ
G

(
e−X

)(
η
(
γDκ

)
− (η + h)

(
γD̃κ

))
.

Equivalently,

ηX

(
Dκ
)

=
AG

(
1

sinh( δ
2
( · )) e

(α− δ
2
)( · )
)

AG(ρG)
(−X)

+ 2SG/H

(
χκ

H

(
e · |s
)

δ( · )
∏

β∈∆+
G

β( · |s)
β( · )

∏
β∈W+

π

1

2 sinh
(β

2 ( · |s)
))(−X) (2)

+ 2
∫

M

˜̂
AX

(
TM,∇0,∇LC

)
chX

(
V κM,∇κ

)
+
∑
γ∈Ĝ

χγ
G

(
e−X

)(
η
(
γDκ

)
− (η + h)

(
γD̃κ

))
.
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If rkG 6= rkH + 1, then

ηX

(
Dκ
)

= 2
∫

M

˜̂
AX

(
TM,∇0,∇LC

)
chX

(
V κM,∇κ

)
+
∑
γ∈Ĝ

χγ
G

(
e−X

)(
η
(
γDκ

)
− (η + h)

(
γD̃κ

))
. (3)

The classical η-invariant η(Dκ) is attained at X = 0 in (1)–(3).

It is easy to see that the singularities within the parentheses of the first term
on the right hand side of (1) cancel, so that we are left with the alternating
Weyl sum of a power series in X divided by the linearised Weyl denomina-
tor

∏
β∈∆+

G
(−iβ)(X). The result will then be a WG-invariant power series repre-

senting a modified infinitesimal equivariant ξ-invariant of G/H. Note also that
the last sum in (1)–(3) is finite because only finitely many eigenvalues change
sign when one passes from Dκ to D̃κ.

Proof. Assume that e−X acts freely on M . Then by [8], [9],

(η+h)e−X

(
Dκ
)
− (η+h)e−X

(
D̃κ
)

=
∑
γ∈Ĝ

χγ
G

(
e−X

)(
(η+h)

(
γDκ

)
− (η+h)

(
γD̃κ

))
is the equivariant spectral flow from D̃κ to Dκ. This fits with Theorem 1.6,
applied to the cylinderM×[0, 1], such that the induced operators on the endsM×
{0} and M × {1} are precisely D̃κ to Dκ. Thus by Theorem 1.9, we have

ηX

(
Dκ
)

= ηe−X

(
Dκ
)

+ 2
∫

M

ϑX

dXϑX
ÂX

(
TM,∇LC

)
chX

(
V κM,∇0

)
= (η + h)e−X

(
D̃κ
)

+ 2
∫

M

ϑX

dXϑX
ÂX

(
TM,∇LC

)
chX

(
V κM,∇0

)
+
∑
γ∈Ĝ

χγ
G

(
e−X

)(
η
(
γDκ

)
− (η + h)

(
γD̃κ

))
.

We still assume that X acts freely on M . Then clearly

ϑX

dXϑX

(
ÂX

(
TM,∇LC

)
− ÂX

(
TM,∇0

))
=

ϑX

dXϑX
dX

˜̂
AX

(
TM,∇0,∇LC

)
= ˜̂
AX

(
TM,∇0,∇LC

)
− dX

(
ϑX

dXϑX

˜̂
AX

(
TM,∇0,∇LC

))
,
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so we get

ηX

(
Dκ
)

= (η + h)e−X

(
D̃κ
)

+ 2
∫

M

ϑX

dXϑX
ÂX

(
TM,∇0

)
chX

(
V κM,∇0

)
+ 2

∫
M

˜̂
AX

(
TM,∇0,∇LC

)
chX

(
V κM,∇κ

)
+
∑
γ∈Ĝ

χγ
G

(
e−X

)(
η
(
γDκ

)
− (η + h)

(
γD̃κ

))
.

Theorem 1.19 and Theorem 2.30 (2) give (2) if rkG = rkH+1, and (3) otherwise.

To obtain (1), we use Theorem 2.30 (1), and we rewrite the result of Theo-
rem 1.19 using the Weyl denominator formula (2.32). �

Because the odd signature operator B = D often comes up in topological
applications, we want to state formula (2) for this special case. Therefore, let π̃ =
κ1⊕· · ·⊕κl be the decomposition of π̃ into h-irreducible components, and let α1,
. . . , αl be the corresponding weights of g as in (1.18). Let

L̂X(TM,∇) = ÂX(TM,∇) ∧ chX(S,∇)

= det
1
2

(
RTM

X coth
RTM

X

2

)
denote a rescaled version of Hirzebruch’s L-genus, and let ˜̂

LX denote the corre-
sponding equivariant Chern-Simons class.

2.34. Corollary. Assume that rkG = rkH + 1. Then the infinitesimally equi-
variant η-invariant of the odd signature operator B on M is given by

ηX(B) =
∑

l

AG

(
1

sinh( δ
2
( · )) e

(αl− δ
2
)( · )
)

AG(ρG)
(−X)

+ 2SG/H

(
1

δ( · )
∏

β∈∆+
G

β( · |s)
β( · )

∏
β∈W+

π

coth
(
β( · |s)

2

))
(−X) (1)

+ 2
∫

M

˜̂
LX

(
TM,∇0,∇LC

)
+
∑
γ∈Ĝ

χγ
G

(
e−X

)(
η
(
γB
)
− (η + h)

(
γB̃
))

.

If rkG 6= rkH + 1, then

ηX(B) = 2
∫

M

˜̂
LX

(
TM,∇0,∇LC

)
+
∑
γ∈Ĝ

χγ
G

(
e−X

)(
η
(
γB
)
− (η + h)

(
γB̃
))

. (2)
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The classical η-invariant η(B) is attained at X = 0 in both cases.

Proof. Let β1, . . . , βr denote the positive weights of π, counted with the right
multiplicity. If rkG = rkH +1, then the weights of π̃ take the form

(
±β1

2 ±· · ·±
βr

2

)
|s, each with multiplicity one [8], [9]. Therefore,

χπ̃
H

(
e−X|s) =

∏
β∈W+

β

2 cosh
(
β

2
(−X|s)

)
.

Note also that for the odd signature operator B, we need the Levi-Civita
connection on the twist bundle instead of the reductive connection. This is
why the correct Chern-Simons contribution is given by ˜̂

LX(TM,∇0,∇LC), not

by ˜̂
AX(TM,∇0,∇LC) chX(S,∇0). The Corollary now follows easily from Theo-

rem 2.33 (2) and (3). �
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