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Quotients M = G/H of compact Lie groups provide many important examples
of Riemannian manifolds with non-negative sectional curvature. The primary
characteristic classes and numbers of these spaces have been computed by Borel
and Hirzebruch in [5].

The n-invariant has been introduced by Atiyah, Patodi and Singer in [I] as a
boundary contribution in an index theorem for manifolds with boundary. It can
be used to construct certain secondary invariants of compact manifolds M that
were originally defined using zero-bordisms. For example, the Eells-Kuiper and
Kreck-Stolz invariants distinguish homeomorphic homogeneous manifolds that
are not diffeomorphic. These invariants can be expressed in terms of n-invariants
and Chern-Simons numbers, see e.g. [6], [I5]. Although the diffeomorphism type
of many homogeneous manifolds G/H is well-known, in some cases the explicit
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values of certain n-invariants are needed to complete the diffeomorphism clas-
sification. It is therefore worthwhile to have a formula for the n-invariants of
equivariant Dirac operators on homogeneous spaces.

First steps in this direction have been made in [], [9], [10]. There, we computed
the equivariant n-invariant of a different operator, called “reductive” or “cubic”
Dirac operator, and explained how to recover the n-invariant of the classical
Dirac operator. However, one complicated local term remained, called “Bott
localisation defect” below. The central result of the present article is a formula for
this defect term that is similar to the formula for the equivariant n-invariant of the
reductive Dirac operator itself. Thus we get a tractable formula for equivariant
n-invariants of homogeneous spaces that is useful for explicit computations. This
formula has already been applied in a joint paper [I1] with N. Kitchloo and K.
Shankar to calculate the Eells-Kuiper invariant of the Berger space SO(5)/SO(3),
and to determine its diffeomorphism type. Our formula can be summarised as
follows; details and notation will be explained later in the article.

Theorem (see Theorem below). Let G D H be compact Lie groups, and
let D% be the equivariant Dirac operator on M = G/H twisted by the local
bundle VM associated to an irreducible h-representation with highest weight k.
Then n(D") is a sum of the following terms:

(1) a representation theoretic expression that vanishes if tk G # rk H+1, that
depends on the position of b in g and on k, and that takes the form

o) (A@(wX))e‘(“‘g)(wX) [ 4(3wx)

weW, 5(wX) +
G BEAL

_ o (o) (wX]o) H A(ﬁ(wX|5))> H ,8(_)1')

BeAg BeAg

X=0

iftkG=rkH+1,

(2) a local Chern-Simons theoretic contribution
2 / A(TM,V°,VEC) ch(V*M, V)
M

given by the integral of a constant multiple of the volume form of M, and
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(3) the integer

> dim(V7) (n ("D") = (n+h) (”f)“))

vel

arising as the spectral flow between two equivariant Dirac-type operators.

We also give a reformulation of this result for the n-invariant of the odd sig-
nature operator. More generally, we also obtain a formula for the infinitesimally
equivariant n-invariant ng(D") of [I0]; this invariant is the universal n-form for
all families with fibrewise Dirac operator D" and compact structure group G.
In fact, we will compute the classical n-invariant n(D") by evaluating ng(D")
at X = 0. Our main result is stated in Theorem for general equivariant
Dirac operators, and in Corollary [2:34] for the slightly different special case of the
odd signature operator. As an example, we compute the infinitesimally equivari-
ant p-invariants of the untwisted Dirac operator and the odd signature operator
for round spheres, and thus we obtain the corresponding n-forms of sphere bun-
dles with compact structure group.

Let us sketch our method. In [8], [9], we presented a formula for the clas-
sical equivariant n-invariant of Slebarski’s deformed Dirac operator Dr = D3
([16], [14]). This invariant is a function ng(D®): G — C that is continuous
on the subset Gy C G of elements that act freely on M, and its value at the
neutral element e € G is just n(D®). The singularity of ng(D*) near e has
implications on fixpoint sets of G-manifolds N with ON = M, see [10]. The
difference between 75 (D*) and ng(D") is comparatively easy to control on Gy,
but since ng(D*) and ng(D") are not continuous at e, we do not obtain the value
of n(D") by this method.

Instead, we will use the infinitesimally equivariant n-invariant ng(D*) of [10],
which is a power series on g with constant term n(D"). For X € g without zeros
on M, the infinitesimal n-invariant nx (D") differs from the classical equivariant
n-invariant 7,-x (D) by the integral of a certain differential form on M. This way,
one obtains a formula for the power series ng(D"), and the classical n-invariant

is just its constant term.

However, the integrand in the formula for the difference nx(D") — 7,-x (D")
stated in [10] is in general not invariant under the action of G, so that one cannot
reduce the problem to a calculation at a single point in M. The new contribution
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in the present article is an evaluation of this integral in terms of representation
theoretic data of the groups G and H and the relative position of their maximal
tori, up to an equivariant Chern-Simons term, see Theorem [2.30l This is an
improvement compared with respect to [8], [9], [10] for two reasons. First, our
formula for n(D") involves no more equivariant differential forms. Second, for
symmetric spaces, the operators D" and D" are equal, which means that there
will be no Chern-Simons term and no spectral flow.

This paper is organised as follows. In section |1} we recall the results of [8], [9],
[10] on equivariant n-invariants. We also calculate the infinitesimally equivariant
n-invariants of spheres. In section 2 we give a formula for the Bott localisation

defect on homogeneous spaces and present our main result.

We wish to thank W. Soergel for some helpful comments. We wish to thank
an anonymous referee whose comments helped to make the paper more read-
able. Also, we are indebted to K. Shankar and N. Kitchloo for their constant
encouragement, without which this paper would probably not have been written.

1. EQUIVARIANT 7)-INVARIANTS

We recall some facts about n-invariants and homogeneous spaces from [8], [9],
[10]. In section we compute the infinitesimally equivariant n-invariant for the
untwisted Dirac operator and the signature operator on round spheres.

1.1. Equivariant n-invariants and their infinitesimal analogues.
Let (M, g™) be an oriented Riemannian manifold, and let G' be a compact group
that acts on M by isometries. Let £ — M be a G-equivariant Hermitian vector
bundle, equipped with a G-equivariant Clifford multiplication. Let V7™ denote
a metric connection on M, and let V€ be a G-equivariant unitary connection
on & that satisfies the Leibniz rule

VE(w-s)=VI™My.540v-VEs

for all vector fields v on M and all sections s € I'(£). Then & is a G-equivariant

Clifford module over M, and we have the G-equivariant Dirac operator

vg gl\l .
D:iTE) Yo T(T"M @ &) s T(TM © &) —— T(£) .

vTM

The most natural choice for is the Levi-Civita connection VC, however, on

o . . . 1 :
homogeneous spaces it is easier to work with the connection V3, see section
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Let g € G, assume Rs > sg > 0, and define

s—1

¢
Z&gn A% tr(gmy) :/0 F(s—il) tr(gDe*tDz) dt, (1.1)
2

cf. [7] and [I7], where E) denotes the Eigenspace of the Eigenvalue A. The
function ny (D, s) admits a meromorphic continuation to C that is finite at s = 0,
and the equivariant n-invariant of D at ¢ is given by

1g(D) = 14(D,0) . (1.2)

If we have chosen V7™ = V€| then the second representation of ?7(;<D s) ac-
tually converges at s = 0. The kernel of D does not contribute to , we
define

hg(D) = tr(glker D) -

To define the infinitesimal analogue of ny(D), let X € g be an element of the
Lie algebra of G, and define the Killing field X3; on M by

d _
Xulp= | e X (1.3)

Let £§( denote the infinitesimal action of X on sections of £. We take a Dirac

operator D associated with the Levi-Civita connection, and we construct defor-
mations of D and D? by

1
Dx=D- Xy and Hx =D* ¢ + L% ,

where Xjs acts by Clifford multiplication, see [2]. Then the infinitesimal g-
equivariant n-invariant ng(D) € Clg*] of D is defined as

<1

nx (D) = /0 \/ﬁ tr(Dx e T ) dt , (1.4)

see [10], cf. [3], [4]. Note that it is conjecturally possible to define ng(D) as a
function of rX for X € g and r € R sufficiently small, rather than as a formal
power series. It is also possible to define a mixed equivariant n-invariant 7, x (D),
where ¢ € G and X € g commute; this mixed invariant would then occur
in an equivariant index theorem for manifolds with boundary combining The-
orem - ) and (2), and in an equivariant index theorem for families with
compact structure group, cf. Remark However, this extra generality is not
required for the applications we have in mind.
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The equivariant n-invariant and its infinitesimal cousin are key ingredients in
theorem below, which is due to Atiyah, Patodi, Singer [1] and Donnelly [7],
and its infinitesimal analogue in [I0], which is related to the family index theorem
of Bismut and Cheeger in [4]. Suppose that M is the boundary of a compact
oriented manifold N, which has a collar isometric to M x [0,¢]. Suppose that
there exists a Clifford module € = €T @ €~ — N, such that E¥|y; = &€ with
compatible Clifford multiplications. Then the Dirac operator D is closely related

to the Dirac operator D acting on sections of &.

We also need equivariant characteristic differential forms. The equivariant
Riemannian curvature is defined as

Rx = (V"C = 2miux,,)” + 2mi L3M = R+ 2 p5°

where tx,, denotes interior multiplication of a differential form by X s, and MI;(C =
,C%M — V%SM is the Riemannian moment. Similarly, define

F§ = (V8 = 2miux,, ) +2mi L% = FE + 2mi i .

Following [2], the equivariant twisting curvature of £ is defined as

1

E/S
FX/ :F§_1Z<RXei’€j> €€, (15)
Z7j
where eq, ..., e, is a local orthonormal frame of 7'M, which acts on £ by Clifford

multiplication. Then we have the equivariant characteristic differential forms
- 1 Rx /4Ami
Ax (TM, V™) = det2 [ —F——
x( ) =de (sinh(RX /47ri)>
Fy/e
and chX(E/S,Vg) = tr(e_ 2mi > .
Recall that the equivariant exterior derivative is defined as

dX:d—QﬂiLXM,

such that d% 42mi Lx = 0. Then the forms Ay (TM, V*C) and chx (£/S, V) are
G-invariant, equivariantly closed, and independent of the choice of an equivariant
connection up to equivariantly exact forms. Note that in contrast to [2] and [10],
we use the classical convention of including powers of 27¢ in all definitions above.
Let N, denote the fixpoint set of g on N.
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Let indy(D) = str(glkerp) denote the equivariant index of D (regarded as
the character of a virtual G-representation at g € G) with respect to the APS
boundary conditions.

1.6. Theorem ([I], [7], [10]). Let oy denote the characteristic form on Ny given
=2

by the constant term in the asymptotic development of str(g e tP ) fort — 0,
then

T 1g(D) 4 hye(D)

indy(D) = [ (D) - BP0, 1)

Ng
Assume moreover that D is associated to the Levi-Civita connection, then so is D,
and
_ 1x(D) +he-x(D)
5 .

ind, x (D) = /N Ay (TM, V') chy (£/8, V) 2)

1.7. Remark. Theorem [1.6](2) is in fact a special case of the Bismut-Cheeger index
theorem for families of manifolds with boundary in [4]. Suppose that P — B is
a G-principal bundle with curvature form w and curvature 2. If we consider
the family P x¢ N — B with boundary P xg M — B, then Bismut-Cheeger’s
theorem is equivalent to (2) above by the Chern-Weil construction. In particular,

we can recover the n-form on B of the family of Dirac operators induced by D
on M from nx (D).

We now recall the relation between the two equivariant n-invariants introduced
in (1.2) and (1.4) above. From the dual of the Killing field X,;, we construct an

equivariant differential form

Ux = -— (X, +) - (1.8)

For X # 0, we have an Lj-current

Ux > tdxd
= [ wyetdxix g
dxVx /0 xe

on M by Proposition below. Note that 1971,’?}{ has a singularity at the zero set

dx
of X, but for a smooth compactly supported form « on M, the integral [ M dzif,fxa

Yx
xVx

is still well-defined, hence the term “current”. The current will be referred

to as the Bott localisation defect because of (2.1) below.
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1.9. Theorem ([I0], Theorem 0.5). If the Killing field Xnr has no zeros on M,
then

797"X 2

ex (D) = 1,-rx (D) + 2 / Apx (M) chux (£/S) € C[r] .

M erﬂrX

If there exists a G-manifold manifold N that bounds M equivariantly and if
there exists a Dirac operator D on N related to D as above, then Theorem can
be proved by comparing Theorem [1.6| (1) and (2) using Kalkman’s localisation
formula for manifolds with boundaries ([I3]). A general argument is given in [10].

We will give a formula for the Bott localisation defect in section [2]in the special

case that M is a homogeneous space of compact type.

1.2. Homogeneous spaces. We recall the formula for the equivariant 7-
invariants of reductive Dirac operators, and its relation to the n-invariants of

Riemannian Dirac operators.

Let M = G/H be a quotient of compact Lie groups with Lie algebras h C g.
Recall that all G-equivariant vector bundles over M = G/H are of the form

VM =G x, V¥ — M,

where (k, V") is a representation of H. We identify sections s of V*M with
H-equivariant functions

5:G—- V" with 3(gh) = &}, " 5(g)
such that s(gH) = [g, 5(g)]-
We fix an Adg-invariant metric on g and let m = b+ C g. Let 7 = Ad|gxm

denote the isotropy representation of H on m. Then the tangent bundle T'M is

isomorphic to G X, m via

d U
lg,v] = —g¢’ (1.10)

and carries an induced normally homogeneous Riemannian metric.

On most bundles V*M , we will mainly use the reductive connection V0 = V0,
which can be written as

Vs =V(s) . (1.11)

If k is a unitary (orthogonal) representation, then V%* is a unitary (orthogonal)
connection. A subscript h or m will denote orthogonal projection to that subspace
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of g. One easily calculates the curvature of VO as

—

0, . A
Fyys = “Hvi] - (1.12)

We consider a family of connections on 7'M given by
VLW =V(W)+t[V, V] . (1.13)

For ¢t = 0, we obtain again the reductive connection. Note that because the Lie
bracket of vector fields on M is given by

VIW] = V(W) =W (V) + [V.W],,.

the Levi-Civita connection on TM with respect to a normal metric is V¢ =
VO 4+ 31, e

An equivariant Clifford module over M is a G-equivariant vector bundle & —
M together with a G-equivariant Clifford multiplication TM x &€ — £. We
can regard the isotropy representation as a homomorphism 7:  — spin(m),
where spin(m) denotes the spin group associated to the vector space m. Let n
be the dimension of M, and let & denote the pullback of the spin representation
of spin(m) to b, which acts on a complex 93] dimensional vector space S. If 7
integrates to an H-representation, then S = G x g S is the G-equivariant spinor
bundle (unique if H is connected), which is then the most elementary Clifford
bundle. In general, every equivariant Clifford module is of the form

S"M =G xy (SeoW") - M, (1.14)

where k is an h-representation such that 7 ® x integrates to an H-representation
([9], Lemma 3.4). For example, if M is even-dimensional, the complexified bundle
of exterior differential forms on M is precisely the G-equivariant Clifford module

NTM@C=8M=Gxyg(S®S)— M.

Let S"M — M be a G-equivariant Clifford module. Following Slebarski [16],
we define a family of Dirac operators on I'(S"M). For X € g, we define ad, x €
EndS by

éaP»X = Z Z<[X7 ei]7€j> €i €5,
7/7]
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where e;, e; run through an orthonormal base of m. Note that adp, x = 7.x
for X € h. Then we set

Dtrg = Z €; (62(§) + téap7ei) .
7
For t = %, the operator D = D32* is associated to the Levi-Civita connection
on SM and the reductive connection on V*M (but these two bundles are in

general only locally well defined).

The operator D = D35 has distinguished properties. It was shown in [16]
and [§], [9] that D* exhibits a very natural behaviour with respect to homogeneous
fibrations, hence it was called the “reductive” Dirac operator in [9] (although it
is not constructed from the reductive connection on S®M).

In order to state the formula for ng(D"), we need some more notation and
conventions. We choose maximal tori S C T of H C G with Lie algebras s C t,
and fix Weyl chambers Pz C it* and Py C is*. Let Azg and AE denote the
corresponding sets of positive roots, and let pg and pg be their half sums. The
choices of P and Py also determine orientations on g/t and h/s as follows.
If B1, ..., B; € it* are the positive roots of g with respect to Pg, we can choose
a complex structure on g/t and a complex basis z1, ..., z, such that ad [y (g
takes the form

A1(X)
ady = for all X € t. (1.15)

Bi(X)

Then we declare the basis z1, i 21, 22, ..., iz of g/t as a real vector space to be
positive oriented. The orientation of H/S is constructed similarly.

If we fix an orientation on m = g/h and choose orientations on g/t and /s as
above, there is a unique orientation on t/s such that the two induced orientations

on
g/s =m® (h/s) = (g/t) © (t/s) (1.16)
agree. We assume for the moment that tkG = tk H + 1, so s= C t is one-

dimensional. Let F € t/s = s— be the positive unit vector, and let € it* be the
unique weight such that

—i6(E)>0 and §(X)€2miZ «— X8 (1.17)
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for all X € t.

By abuse of notation, let x € is* denote the highest weight of the b-
representation k used to construct S®*M. Then there is a unique weight a € t*
of g such that

als =K+ py and —i(la—90)(F) <0< —ia(E) . (1.18)

Let Ag denote the alternating sum over the Weyl group of G acting on t, and
write Ag(pg) shorthand for Ag(e?(*)). Recall that for X € t, eX € T is regular
iff Aq(pa)(X) # 0. We can now compute the classical equivariant eta-invariant
of D*.

1.19. Theorem ([8], [9]). If rkG # rk H + 1, then ng(D") = 0 identically .
If tkG =1k H 4+ 1, then ng(ﬁ"‘) is continuous on the set Ty C T that acts freely
on M. Moreover, if a, § € is* and E € t are given as above, then for all X €t
such that eX € Ty and e is reqular,

(n+ h)ex (D) =

(X)

1.3. Round Spheres. As an example for our main result, we compute the in-
finitesimally equivariant n-invariant of the untwisted Dirac operator and the odd
signature operator for odd-dimensional spheres. Note that for a symmetric space,
the last two terms in Theorem [2.33] (1) and (2) vanish, so in particular, we do
not have to integrate equivariant Chern-Simons classes.

Fix n and embed G = Spin(2n) C Cl(2n). We let H = Spin(2n — 1) denote
the subgroup belonging to the Clifford subalgebra spanned by the vectors ey, ...,
ean—1 of an orthonormal base of R?”. Then we can write S2"~1 = G /H.

We choose the maximal tori S C H and T' C G with Lie algebras

t:{X:%6162+...+%negn_1egn‘(xl,...atn)E]R”}
and s={Xet|z,=0}.

We also choose Weyl chambers

PG:{i(’Yl$1+"'+'7nxn)"YlZ"‘Z’yn_12|’yn|}
and  Pp={i(mz'+ - +ym12" ) |[n> " >ma1>0}.
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Then we have
Ab={i(zjtap) |1<j<k<n}

and A;}:{z’(xj:l:xk)‘1§j<k§n—1}u{z’xj‘1§j§n—1}.
(1.20)

We fix §(X) = iz, in (1.17), so that S?"~! is now oriented by (1.15) and (1.16].

1.21. Theorem. For X = (z1,...,x,) € t as above, the infinitesimally equivari-
ant n-invariant of the untwisted Dirac operator D and the odd signature opera-

tor B = D™ of the odd spheres are given by

" " 2 . l‘j l‘%
(D) = Y 2wl L)

~ 2 lsinZl...sinip = ik Tk %
T T ) T 73
. 1 j k
nx (Bgzn-1) =" cot2-~cot2n<1 - Zx— tan?] H = _3:2) . (2)
j=1"7 k#j ok

Note that these formulas have been proved by Zhang for S* in [18] and for S® by
the author in [10]. For other symmetric spaces, one can similarly compute nx (D)
and nx (B) using the formulas for the equivariant n-invariants in [g], [9].

Proof. The classical equivariant n-invariants of B and D have been calculated
in [I] and [I2]. Let us start with the untwisted Dirac operator. We take X € t
as above. By [12], we have

i’rb

Te—X (DSanl) =

T oon—1 qin L1 .. .qin &n
2 sin 5 sin %

Let W denote the positive weights of the isotropy representation m, which are
all of multiplicity one in our case. With (1.20) and 6(X) = iz, we calculate

n—1

1 1 B(=X|s) 1 1 B zﬁ 2 i
. - 2 s :
6(=X) gens B(=X) sewt 2sinh(Z(~X|s))  @n 5 (27 —a3) 0 2sin B
Note that the sum Sg,g over Wg/Wpy of (2.29) contains n similar terms,
where x,, above is replaced by x; for j =1, ..., n. Because the last two terms in
Theorem (2) drop out for a symmetric space, we get (1). The proof of (2) is
similarly based on the formula for n,x (B) in [I] and Corollary O
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2. THE BOTT LOCALISATION DEFECT

The difference between the classical equivariant n-invariant of [7] and the in-
finitesimal equivariant n-invariant of [10] can be expressed in terms of the Bott
localisation defect as in Theorem see [10]. In this section, we prove a fibration
formula for the Bott localisation defect, which is then applied to homogeneous

spaces.

2.1. A fibration formula. Let NMX,M denote the normal bundle to the zero
set Mx of the Killing field X»; on M, and let ex (N My, M) denote its equivariant
Euler class. Bott’s localisation formula in equivariant cohomology in the local
version of [2] states that any equivariantly closed form ax € Qg(M) is equivari-
antly cohomologous to the current
19 My X
ex (Nary 1)

for small X € g. Here, dp7,, denotes the d-distribution at the fixpoint set of X.
It follows from Berline-Vergne’s proof in [2] that in fact

5MX ax < Ix )
ay — —Mxax g (UX o), 2.1
X ex (NMary,m) Naxox (1)

where ¥x = 5= X asin (1.8). The current UX_ also appears in a localisation

27 dxdx
formula for manifolds with boundary in [13]. In this section, we state some

properties of dgf,fx. In particular, we give a formula for fibre bundles. Let

us begin with the following observation, which holds for arbitrary Riemannian
manifolds M with an isometric action by a Lie group G.

2.2. Proposition. If we set dzziigX]MX = 0, then the current dﬁf,fx is locally of

class Li. In particular, if a € Q*(M) is continuous and compactly supported,

then p -
X tdxt
o= — Ux e XX o) dt.
/M dxVx /0 (/M * )

In particular, both integrals exist.

Proof. Because
1 2
dx¥x = — dX;3; — || X
xVx = 5 dXy — | Xull”

it is clear that dz§X is integrable on each compact subset of M \ Mx. Also, the

equation above holds for all o with compact support in M \ Mx.
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Because X, is a Killing field, the zero set Mx is a totally geodesic submanifold
of M. Let N — Mx denote the normal bundle, then the Levi-Civita connection
on M restricts to a connection V& on N, and the infinitesimal action p/)\([ of X
is parallel with respect to V. The normal exponential map expt: N — M is a
local diffeomorphism near the zero section in N, and

X expt V = expt (et"é\ffV)
for all vectors V € N.

Let R denote the vector field near My given by

1
Rlexptv = exp— tV ,

i
dt It=1
and set 7 = |R| near Mx. To estimate the behaviour of dX3, and || X[

near My, we need some facts.

Because X is a Killing field, it satisfies | X7||* > ¢r? near My for some ¢ > 0.

Cartan’s formula for the exterior derivative implies that
(dX}Q)(V, W) =2(VyX,W).

Now let V' be a vector field on M near Mx that is tangential to Mx and parallel
along all radial geodesics emanating from and perpendicular to Mx. Let Y, Z
be a vector fields normal to Mx with Vy Z = 0, then

<XM7V>‘MX =0, (Y<XM7V>)’MX = </[;\([V7Y> =0,

(2.3)
and  Y(Z(Xar, V) |y = (RywXar — (Vv ) (V), Z) ary =0
implies that
wdXy < Cr? and (X, V) < Cr
for some C' > 0.

We choose a local orthonormal frame eq, ..., e, near Mx that is parallel along
radial geodesics emanating from My, such that e, ..., eor are normal to My
and esk41, ..., ey are tangential. Then

Yx 1 Xz ] 1 X (dX3 ) 1—9%
iy = o o akg = - 2 @) e = 0t
XUX HXMH ~ om j=0 HXMH

(2.4)
near Mx, so the left hand side integral in Proposition exists.
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It also follows from (2.4) that we may write

*° Ux . Ix
— O et IxVx a> dt:/ a — lim / 2 etdxVx o (25
/0 (/M * M dxVUx t—oo Jpr dxVx (2:5)

Let U; be the tubular neighbourhood of Mx of radius =1 for t > 0. Be-

cause || Xaz||> > er?, one has

0
lim / X etdxVx g =, (2.6)
t—o0 M\Ut dX19X

so the rightmost term in (2.5)) localises near Mx.

We identify U; with the neighbourhood N; of radius ti by a rescaled normal
exponential map
v @(v) = expt (t_%v) . (2.7)
Using (2.3), one finds that if A = ,u/)\(f € I'(EndN), then as t — oo,
to; Xpy = (AR, -),  tyjdXy — (24, ),
and b | Xurl? - AR =

uniformly on N;, with respect to the canonical metric on the total space of N' —

Mx . Moreover,
lim pja =12
t—o00

is the pullback of o by the bundle projection 7: N' — My, because « is of
class C°. Using (2.6)), this allows us to compute

lim 719)( eldxVx o
t—oo [y dxVUx

* Yok * * \j+k
— * 2
e IN R (o 1 XnllI")" k!
i+k
=~ / Z(Qwi)_j_k_l (AR, ) <2A" i e IARIZ 12y (2.9)
100 Jpr = |AR|%*? k!

=0.

This proves the existence of the right hand side integral in Proposition To-
gether with (2.5)), we obtain the claimed equality. O
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2.10. Theorem. Let p: M — B be a proper Riemannian submersion, and let G
be a compact Lie group of isometries of M that map fibres to fibres. Then

19M B 5 Q9M
X p* ( X ) +p* ( Bx > X
dM M dBo¥ ex(NBy,) /) di9o}!

as Li-currents for any X € g modulo dx-exact currents.

The first term on the right hand side gives the horizontal part of the Bott
localisation defect. The second term is a localisation of the localisation defect to
the fibres over the zero set Bx of Xp on B. Note that the Killing vector field Xy,
on M is tangential to these fibres. We can rephrase Theorem [2.10] as follows. For
all compactly supported continuous forms a € Q*(M), we have

Iy 5 OBy 0¥
o &= 55 a+ | ——F——— M aonr &
M dy Uy B dxV% Jm/B B eX(NBXB) p~1(Bx)/Bx dx VX

If Xp is not identically zero, this reduces the computation of the left hand side

to the computation of integrals over manifolds of smaller dimension.

Proof. By Proposition 2.2

dMgM aX:—/ ﬁ%ethﬁX ax dt .
X YX 0

Using the vertical tangent bundle T'F and the equivariant horizontal distribu-
tion H = (TF)* € TM, we decompose ¥x = 9% + 9% € T(H*) @ T(T*F). If G
maps fibres to fibres, then clearly

h

1 1, "
Ux = 5 (peXarpa) = 5= p"(Xp, -) =p %

i’ < 211

hence 19% = p*ﬂ’;} + %

Regard the manifold M = M x (0, 00)?, where the action of the Killing field X
is extended trivially to M. Then the form

By = BX P OX +19%) — (1 0B ds) (1 — 9% dt) P IXIX +tdX V%
is closed on M. For 0 < T < S consider the domain
Qz{(s,t)’OﬁtﬁTandtﬁsgS},

and let I' = 'y U, UT'3 UT'y denote the contour 02, where s =t onI'1,t =0
on Iy, s =S onTI's, and t =T on I'y. It follows from the equivariant Stokes
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theorem that integrating Bx over I' produces a dx-exact current on M. We will
consider the limits S — oo and 1" — oo in that order to prove Theorem [2.10

Let IO fF Bx for j =1, ..., 4, then clearly
I = / Bx = / oM AN ON gy
I'
Il = gin;ofl =19, (2.11)
oY

and I} = lim I{ =
-y

by Proposition Similarly,

S *x 1B
/BX — _/ *ﬂB Sp d ’19X dS
2 0

0% 2.12
Iy = lim I3 = p*( -5~ (212)
27 g2 p<d§q9§>’
and I3 = lim Ij =1, .
T—o0

Sdﬁ

For the term IJ, we use that e x forces localisation on the zero set Bx

of Xp in the limit S — oo, see [2]. This gives

T % 1B 9B v
5X__/ 9y SRR +tdyd gy
0

. 0B dad
I} = lim 19 = —p* x /ﬁMtMth 2.13
3= g Iy p<eXNBxB> (2.13)

1)
2 . 1 * B
R L ( Ny >>d§?ﬂ¥'

The remaining term and its limit as S — oo are easily computed as

M qM
0= ﬁ TdXz9X/ proB s AR g

95 (2.14)
M M
and I4lzslim I)=—p *( >erX19X .

dB9%

Then as in (2.6) above, the current I} localises near My as T — oo, and the
limit I of I} as T — oo can be computed using a rescaling argument.

Let N' = N v denote the normal bundle to Mx in M. We still identify
the tubular neighbourhood U; of Mx of radius t_% for t = T > 0 with the
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neighbourhood N; of radius ti by the rescaled normal exponential map ¢;: Ny —
Uy of (2.7). Define A € I'(End\) as above, then holds unchanged. Similarly,
let Ap € T'(End/N) denote the horizontal lift of the action of ,u/)\([BX/B on N, /B,
then the analogue of implies that

and o} p" || Xpl® — AR

uniformly on N;.

In analogy with (2.9)), we calculate for any continuous form « that

9B M qM
lim p*< BXB> LAY
t=o0 J dxvx

N (2mit|Xp|?)y+)  (2mi)Fk!

= lim/ > (AoR, ) (249, -)7 (24, ) e IIARIZ g,
N (2mi)I k1 || AR %2 k!

With (2.14)), this implies that
IZ=lim I} =0.
4 Tl 4 0

Theorem follows from (2.11))—(2.13), because X7+ X2+ X3+ X? is exact. [

2.2. The Bott localisation defect on G/H. Let G D K D S be compact Lie
groups, then

P=K/S —— E=G/S
lp (2.15)
Q=G/K

is a G-equivariant fibration. The left and the right hand triangle in the following
diagram represent two such equivariant fibrations with K = T and K = H,
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respectively.

T H (2.16)

We apply Theorem to these fibrations to compute

Ux 4 LC P
/G/H dxVx Ax (T(G/H), V™) chx (€/8,V7) .

Together with the formula for 7,-x (D) 4 h.-x(D) in [8], [9], we obtain a
formula for n(D) + h(D) up to a possible contribution in 2Z coming from the

spectral flow.

Recall the definition of Xg for X € g in (1.3). With the notation of (1.10), we
represent Xg by X:G — e =5t with

Xp(g) = —(Ad,' X), .

The Lie derivative L% acts on V*E by

rRoL d Al —tX -1 A
L s = —t‘tzos(e g) = —(Adg X) (s) )
so the moment of X with respect to the reductive connection is simply
s = s — Vs = —(Ad, ' X), (3) = Fu(ads1 x), 5 (2.17)

The equivariant curvature of V% is then given by

F)O(,n: (VO’”—ZWiLXE)2+27Ti£§( ( )
2.18
0, ;0K

= FO% 4 2mi py" = (=1, Jp+2mi (Ady 1 X)y) -

We will assume that £ = S*F — FE is constructed as in . If we regard
the Dirac operator D" = D2* on S°F , then the equivariant twisting curvature
in is just the equivariant curvature of the reductive connection on V*FE
(even if this bundle does not exist globally), so formally

chx (£/S,V¢) = chx (V*E,V°)

el ] ol ane
= try= (e o —“*<Adg‘lx”’> = X (e o ‘(Ad91X)h> . (2.19)
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Let P — E — (@ be an equivariant fibration as in with K = H, so
the fibre P = H/S is a flag manifold. An Adg-invariant metric on g induces a
normal metric on E such that p is an equivariant Riemannian submersion. We
write p = s Nh and q = b, so ¢ = p ® q. By Adg-invariance, the isotropy
representation of E splits as m = ¢ @ (", where ¢ and v are the isotropy
representations of P and @, and ¢: S — H is the inclusion. Thus the tangent
bundle T'E of the total space splits naturally as p*T'Q & T P with vertical tangent
bundle TP = G xg p and horizontal complement p*T'Q = G xg q.

We define VM V4@ as in (T.13) above, regarding VM as a connection on
the vertical tangent bundle TP — E. Then

A~ A~ ~ ~

VY =U) +A[0,Y],  and VAW = V(W) + u[V, W],

for S-equivariant U:G—e,YV:G— p and H-equivariant V,W:G— g.

Let x € s be a weight of b, and consider the bundle V*TPH P — P associ-
ated to the S-representation with highest weight x + pr. Note that this bun-
dle lives on the universal cover of P = H/S. However, its equivariant Chern
form chy (VATPH P, VO) descends to P, even if P is not simply connected. Simi-
larly, the character x’; (eX) is well-defined in terms of X € b even if X is maybe
not defined as a function on H. Bott’s localisation formula and the equivariant

index theorem imply that

X5 (e™) = /P Ax (TP, VNP chy (VFrE p V0 | (2.20)

see [2], Section 8.2.
The curvature FMF and the moment uﬁ‘(’P on E are given by

—

AP > & 1 O
FowY = —=¢,000,Y — A [V, W1, Y]p

+ N[V W, Y], = A% W [V, Y]]

AP O — N
and  pY Y =@ a1, Y A [(Ad;? X)p,y]p .
Using these equations, one checks that the equivariant curvature of the connec-
tion VM and the Killing field X on E is formally the same as the equivariant
curvature of VM and the Killing field — Ady, Laaly + X, considered only on P.

‘9-°9
21
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By (2.19) and ([2.20)), this gives

chx (V*Q,V?)

/A Ad,, [q, q]h (TP VAP) ch_ aq, M+X(VH+pHPaVO)
P

:/ Ax (TP, VM) chy (VFrrrE, V), (2.21)
E/Q

where we integrate over the fibres of £ — @) in the last line.

Let p*V*? @ VM denote the product connection on TE = p*T'Q & TF. By
multiplicativity of the A-form, we have

Ax (TE,p*V*? @ VM) = p* Ay (TQ, VM) Ax (TP, VM) .
Now, Theorem and equation (2.21)) have the following implication.

2.22. Proposition. Let G D H be compact Lie groups, and let S C H be a
maximal torus. If the Killing field X¢g has no zeros, then for any A\ and p,

Ux

paeT Ax (TQ, VM) chy (VEQ,V?)

Ox -
= Ax (TE,p*V*®@ & VM) chy (VFEtPEE VO . O
[ iy Ax B 90 e T e )

To evaluate the right hand side of Proposition we now consider the left
triangle in . In particular, T" C G is a maximal torus containing S. We
assume in addition that X is regular. Then the only fixed points of X on G/T
are the isolated fixpoints wT'/T. In particular, the normal bundle to Ng(T')/T
in G/T is just the tangent bundle T(G/T), and its equivariant Euler form is
invertible near Ng(T')/T. We find by Proposition that

Ox
/ " Ax(TQ, VM) chy (VEQ,V?)

= / Ax (TE,V°,p*V*Q @ VM) chy (Vo8 B, 70)
E

0 K
+/ T ox Ax(TE,V°) chy (VFHrnp, V).
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Applying Theorem [2.10] once more gives

Ux 1@ K 0
/deﬁx Ax (TQ,V*?) chx (V*Q,V?)

_ / Ax (TE,V°,p" V@ & VVPY chy (Ve+en B, 70)
E

Ux / A 0 K+ 0
+ Ax (TE,V°) chy (VP B,V
/G/T dxVx Je/a/T) x( ) chx( )

ONg (T)/T / Ox .
+ ST —= Ax(TE,V°) chx(Vrtra g VO
/G/T ex (T(G/T)) Jne(rys dxOx x( ) chx ( )

(2.23)

We can still simplify this expression. First of all, the reductive connection
respects the splitting TE = p*T'QQ ® TP. We can thus fix A = 0 and rewrite the
first term of the right hand side of (2.23]) as

/ Ax (TE,V°, V@ & VOF) chy (VFH01 B, V°)
E

= / Ax (p*7TQ,V°,p*VHQ) A(TP, V") chy (V*Hrr E,VY) .
E
We want to show that for u = 0, the expression above vanishes.

Note that the curvature of the reductive connection on an equivariant vector
bundle over E depends only on the (G x g s)-valued two form [-, -]s by (1.12).
However, this form vanishes on g/h ® h/s, so we find that

Ax (TP, V) chx (VFTPHE, V) € T (p*A™"T*Q @ A" T*P) . (2.24)

It remains to analyse the Chern-Simons class Ax (p*TQ,V°, p*V%?). Once
again, let p = s Nh and q = h- C g. Note that a vector field V on Q is given by
an H-equivariant function V: G — g. This function also describes the horizontal
lift of V to p*TQ C TE. Therefore, the pull-back connection p*V%? on the
horizontal tangent bundle p*T'Q) C T'E is given by

P VAW = V(W) + [V, W] (2.25)

for S-equivariant functions V: G — ¢ and W: G — q, since then

PVEIW =V, (W)

for an H-equivariant W.
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We fix a family of connections V% on p*T'Q C TE by

VAW = V(W) + A[Vp, W] .

By (L.11) and (2.25), we have V?0 = V% and V%! = p*VOQ. A straightforward
computation gives the differential and the curvature of this family of connections

as

5V = [V ] € Alp@Endy,

—

and Py = —t, 0], — AV, W, -]
+ >\2 [‘7)37 [Wpa H - AQ [Wpa [‘A/}Jv H € (A2]J D A2q) & Endq s

where we have used that [p,q] C q and qNs = 0. This implies that

AX (p*TQ, VO’p*VO,Q) c P(p*AevenT*Q ® AoddT*P) . (2.26)

Combining ([2.24) and (2.26)) with the fact that dim @ is odd while dim P is even,
we see that

/ Ax(TE,V°,p"V° @ V°) chy (V"1 ,7°)
E
- / Ax (F"TQ, V°,p"V°) Ax (TP, V°) chx (V<4 E,V°) = 0.
E

Of course, this conclusion would fail for most other possible choices of connections.

The analogue of (2.24) for the left hand side of (2.16]) is
Ax (TE,V°) chy (VP B, V) € D(p* AT (G/T) @ A T*(T/S)) .

It implies that the middle term of the right hand side of (2.23|) vanishes. Note
that this conclusion would also fail for many other possible choices of connections.

Finally, over W = Ng(T)/T C G/T, the Killing field X5 becomes tangential
to the fibres. Let w = nT € Ng(T)/T = W, then Xg|,r is diffeomorphic to the
Killing field wX7/g on T'//S. Let us summarise our computations so far.
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2.27. Proposition. Let G D H D S and G DT D S be as above, and assume
that X € t is reqular and that the Killing field Xg i has no zeros. Then

Ix - )
/G/H dx¥x Ax (T(G/H),VO) chy (VF(G/H),V°)

=2 ewx G/T))

weWg

Jux 0 + 0
_YeX G (T(G)S), VO chyx (VT (G/S), V)
/T/dexﬁwx x(T(G/8), V7 chax( (G/8),V7)

2.3. Evaluation of the Bott localisation defect. In the previous subsection,
we have reduced the Bott localisation defect to the quotient of the maximal tori.
We will now give two formulas in representation theoretic terms.

We start with a Lemma concerning the Weyl groups of G and H.

2.28. Lemma. Let H C G be a pair of compact Lie groups with mazximal tori S C
T, and let Wg, Wy be the corresponding Weyl groups. Then Wy is a subgroup
of

{w\s‘wEWG and w(s) = s } C Aut(9) .

Proof. Let w' = n'S € Wy = Ny (S)/S, then w' acts on S by s — n/sn’~L.
Clearly, n'Tn'~! C Zg(S) is a maximal torus in the centraliser of S in G. In
particular, we find z € Zg(S) such that zn/T(zn/)~! = T, and zn's(zn/)"! =
w'(s) for all s € S. Thus, w = 2n'T € W = Ng(T')/T acts on the subset S C T

as w'. O

To state our main result, let § € it* be defined as in (1.17). Let [pew=+
denote the product over all positive weights of the isotropy representation ,
counted with multiplicity by abuse of notation. Let Az — W denote the
A-function. We will denote by X|s the orthogonal projection of X € t onto s.
If f: t — C satisfies f(X) = f(wX) for all w € W that map s to itself, then we

set
1

Sayu(f)(X) = W

> sign(w) f(wX) . (2.29)

weWa
If Wy can be identified with a subgroup of Wy, this amounts to summing
over Wg /Wy
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2.30. Theorem. Let M = G/H be a quotient of compact Lie groups. If tkG =
rk H + 1, then

/ 9% Ay (TM,V°) chy (V*M,V°)

v dxVx
=A eleremCl) || A X ! 1
G(é(,) (5("5)))(— ) G| | 73( X) (1)

Otherwise,

/M dii;X Ax(TM, V") chx (V"M, V") =0. (3)

Formula (2) gives an advantage for explicit computations if the subgroup H
has a large Weyl group and the character x’%; is known, e.g., if D" = D is the
untwisted Dirac operator. We have used this formula in Section [1.3| when dealing
with spheres and odd Grassmannians. In some cases, one can even improve on (2).
Suppose that there exists another subgroup K C G, such that H C K and S is a
maximal torus of K. Then one obtains a similar formula where K replaces H, m
becomes the isotropy representation of G/K, and k gets replaced by k+ pg — px.

Proof. We evaluate the right hand side of Proposition term by term. The
tangent bundle 7'(G/T) is oriented by the choice of A}, as in 1D so for w = nT,

5nT/T
gy — sign(u) ]
) H
ex (T(G/T) ﬁ sent 5
independent of any connection on T(G /T), since we evaluate at isolated fixpoints.

Because the vertical tangent bundle of G/S — G/T is trivial, G-invariant and
parallel with respect to V°, the equivariant A-form of T (G/S) is given as

Apx (T(G/S),V°)|rss = Aux (p"T(G/T),V°)|rys = [] A(B(—wX]s))
BeAL

by (2.17); because T/S is one-dimensional, only the moment u® of VY enters.
Similarly, the equivariant Chern character form equals

chuyx (VETPH(G/S), VO) g = ettpm(-uXle)
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Assume that tk G = rk H + 1. The expression fT /s Yux g clearly indepen-

deﬂwX
dent of the metric chosen, so we may assume that vol(7'/S) = 27. Then for a

positively oriented unit vector E, we have 6(F) =i and §(X) = i(X, E). Then

/ Jux / wXiys _ wvol(T/S) 1
T/S dwxVwx T/S 271 HwXT/SH2 2mi <’U)X,E> (5(—’U)X) ‘

This proves (1).

To prove (2), we use Lemma to simplify (1). If we assume that tkG =
rk H + 1, there are two possibilities. Either, each element of W corresponds to
precisely one element of W; then these elements form a subgroup of W that we
identify with Wp. Or each element of Wy corresponds to precisely two elements
of W which differ by the reflexion on S; then we can identify Wy with a subgroup
of WEY", or with those elements that preserve the normal orientation of S in T'.
We fix one of these identifications. Let signg(w) = det(wl) and signgy(w) =
det(w|s) denote the sign of an element w € Wy C W as an element of the Weyl
groups Wg and Wy, respectively. These signs are related by

signg(w) 0(wX) = signy (w) 6(X) . (2.31)

As representations of s, g/t®R E is isomorphic to h/s@w. If we have chosen Ag
and AJI_} carefully, the restriction to s C t maps the positive roots Ag bijectively
onto A;EI U W, where the positive weights of 7 are counted with multiplicity.
We assume that this is the case, even though our final formula does not depend
on this choice, only on the compatibility of orientations in ((1.16)). Recall the Weyl

formulas,

11 2sinh<§(X)> = Ap(e’)(X)  and

+
N
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where A denotes the alternating sum over the Weyl group of H. Regarding Wx
as a subgroup of Wg and using ([2.31)) and (2.32)), we find that

(5 L AveJex HW

geAf, genf,
1 AH(GKJFPH) _ sin
X Ao | X‘ﬁ)ﬁg o ﬂgf h(5000)
X|5 B( X| 1
ﬁl_AL X) Benmzsmh(g(—)(|5)) '

Replacing X by wX and summing over wX for w € W¢g /Wy, we obtain (2).

Finally, assume that kG # rk H + 1. First of all, if rkG — rk H is even,
then so is dim M, and the integral in Theorem [2.30] vanishes for parity reasons.
Otherwise, tkG — rk H = dim7/S > 3. Because T is abelian, the two-form
part of the equivariant curvature Fg’; vanishes on T'/S by . This implies
that A,x(T(G/S),V°) and chy,x (V71 (G/S), V) have no components of non-
zero exterior degree Also, the Killing vector field on 7'/S generated by wX € t
is parallel, so wX < € QYT/S). Then

d;,,;;ui;juxf‘iwx (T(G/S), V) chyx (ViHP1(G/S),V°) € Q1(T/9),

and the integral over T'/S vanishes, which proves (3). O

2.4. Evaluation of 7-invariants. We combine Theorem [2.30| with Theorem [I.9]
and Theorem to establish our final formula for the infinitesimally equivariant
n-invariant of the Dirac operator D" on M = G/H.

Let G denote the set of equivalence classes of irreducible unitary representa-
tions of GG. Because G is compact, all these representations are finite dimensional.

Recall that by Frobenius reciprocity and the Peter-Weyl theorem,

I(S*M) = V7 & Homy (V7,S @ V*) .
ve@



942 S. Goette

Because D and D are G-equivariant, they respect this decomposition, and we
have

DF = @ idy~ @YD" |
~eG

and similarly for D*. Let n("D*) € Z and h('D") € Z denote the 7-invariant
and the dimension of the kernel of D" acting on Hompg (V7,5 ® V*). We also
recall the definitions of § and a € t* in (1.17)), (1.18)), and the definition of W

and S¢/p in section

2.33. Theorem. Assume that tkG =rk H + 1, then

Dn -9 Z 51gn <H A ((5('IUX)) ( —g)(wX)

weWG Be A*

_ H A wX| —(k+pm) WX|5>

BeAS

I 5

BeA,
(1)

/ Ax (TM,V°, V) chy (VEM, V%)

+ 33 (n(D%) = (n+ m) (D))

WGG
Equivalently,
o= 1§ ela=5)()
o= oo o
T (e lJ) B(-ls) 1
25, (XH 11 11 (-X) ()
FEL0) BeAg, A) ﬁeW;*Qsmh(g( s))

/ Ax (TM,V°,VC) chy V<M, V%)

+ 3G (nOD7) =+ 1) (DY) -

VGG
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IftkG # vk H + 1, then
nx (D) =2 / Ax (TM,V°,VC) chy (VEM, V")

+ 3 (e ( ('DF) = (n + h)(VD"‘)) . (3)

WGG

The classical n-invariant n(D") is attained at X =0 in (1)-(3).

It is easy to see that the singularities within the parentheses of the first term
on the right hand side of (1) cancel, so that we are left with the alternating
Weyl sum of a power series in X divided by the linearised Weyl denomina-
tor []5c AE (—i6)(X). The result will then be a Wg-invariant power series repre-
senting a modified infinitesimal equivariant &-invariant of G/H. Note also that
the last sum in (1)—(3) is finite because only finitely many eigenvalues change

sign when one passes from D" to D*.

Proof. Assume that e=% acts freely on M. Then by [§], [0,

(1 W)e-x (D7) = (1 h)e-x (D7) = 32 3@ (e™) (9+ 1) (D) = (n+ ) (D7) )
weG

is the equivariant spectral flow from D* to D*. This fits with Theorem
applied to the cylinder M x[0, 1], such that the induced operators on the ends M x
{0} and M x {1} are precisely D to D®. Thus by Theorem we have

K\ _ K 19X 1 LC K 0
x(D%) = e (D) +2 | <2 A (M, 91) chx (V21 V)

Ax (TM, V™) chy (VFM, V)

P (D)) .

= (n+ h)—x (D) +2/ dﬁﬁ

M ¢XVX
(n+

+ > xg(e ( ("D") -

'yGG
We still assume that X acts freely on M. Then clearly

Ux
dx9x

Ux
dx9x

(Ax (1M, V1) = Ax (TM, V")) = dx Ax (TM,V°, V-C)

= Ax(TM,V°,V-C) — dy <d1919
XVX

Ax (TM, V", VLC)>
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So we get

nx (D) = (n+ h)-x (D7) +2 /M digx Ax (TM,V°) chx (V"M,V°)

+2/ Ax (TM,V°,VC) chy (V% M, V")
M

+ () (n0D") = 0+ 1) (D))
veG
Theorem and Theorem [2.30] (2) give (2) if tk G = rk H+1, and (3) otherwise.

To obtain (1), we use Theorem m (1), and we rewrite the result of Theo-
rem using the Weyl denominator formula (2.32)). O

Because the odd signature operator B = D often comes up in topological
applications, we want to state formula (2) for this special case. Therefore, let 7 =
K16 - - ® Ky be the decomposition of 7 into h-irreducible components, and let oy,
..., ag be the corresponding weights of g as in . Let

Ex(TM, V) = Ax<TM, V) /\ChX(S,V)

1 RTM
= det?2 <R§M coth )2( )

denote a rescaled version of Hirzebruch’s L-genus, and let Lx denote the corre-
sponding equivariant Chern-Simons class.

2.34. Corollary. Assume that tkG = rk H + 1. Then the infinitesimally equi-

variant n-invariant of the odd signature operator B on M is given by

AG(smh(lg(.» oler—=5)( ))
x(B) = zl: Ac(pa) (=%
Lo B0 1 o (PO ),
2 /M Lx(TM,V°,¥"C) + % () (n0B) — (0 + W) (B))
=

IftkG # vk H + 1, then

nx(B) =2 /M Ly (TM, V0, 99) + 3" 33 (e ) (n(vB) —(n+h) (VB)) . (2)
76@



Eta Invariants of Homogeneous Spaces 945

The classical n-invariant n(B) is attained at X = 0 in both cases.

Proof. Let B1, ..., B, denote the positive weights of 7, counted with the right
multiplicity. If rk G = rk H + 1, then the weights of 7 take the form (:I:% +-.-+
%)| s, each with multiplicity one [8], [9]. Therefore,

Yir(e X = ] 2cosh<§(—X\s)> :

—+
BeW}

Note also that for the odd signature operator B, we need the Levi-Civita

connection on the twist bundle instead of the reductive connection. This is

why the correct Chern-Simons contribution is given by Lx (TM,V°, VC), not
by Ax(TM,V° VEC) chx(S,VY). The Corollary now follows easily from Theo-

rem [2.33] (2) and (3). O
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