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Abstract: This is an expository account of Katz’s middle convolution op-
eration on local systems over P! — {q1,-..,qn}. We describe the Betti and
de Rham versions, and point out that they give isomorphisms between dif-
ferent moduli spaces of local systems, following Volklein, Dettweiler-Reiter,
Haraoka-Yokoyama. Kostov’s program for applying the Katz algorithm is to
say that in the range where middle convolution no longer reduces the rank,
one should give a direct construction of local systems. This has been done by
Kostov and Crawley-Boevey. We describe here an alternative construction
using the notion of cyclotomic harmonic bundles: these are like variations
of Hodge structure except that the Hodge decomposition can go around in
a circle.
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1. INTRODUCTION

There is a growing body of literature about Katz’s “middle convolution” algo-
rithm on local systems on P! — {q1,...,¢,}. The purpose of the present paper
is expository: we would like to describe two versions of Katz’s construction in
complex geometry, the Betti version involving complex local systems, and the de
Rham version involving vector bundles with logarithmic connection. Katz’s book
[86] was written in the framework of ¢-adic sheaves, which at first made it difficult
to understand for complex geometers including myself. Subsequently, Volklein
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and Dettweiler-Reiter recast the construction in complex geometry and algebra.
In §8§2.7-2.9 of Katz’s book, the convolution was defined in a geometric way which
is applicable in any context where one has a Grothendieck formalism and a cat-
egory of perverse sheaves. Thus, the translation into complex geometry may be
viewed as coming directly from there [86, 5.9]. Katz then interpreted the con-
volution as conjugate to a tensor product, via Fourier transform, and used that
to obtain some of the main properties of his construction. The complex analogy
for this would a priori bring into play the notion of irregular connections on a
2-dimensional variety, a theory which remains poorly understood (see however
[15] and the recent preprint [3]). It is possible to do a full treatment of mid-
dle convolution staying within the realm of complex geometry but without using
Fourier transform, as has been shown and exploited by the works of Strambach,

Volklein, Dettweiler, Reiter, Kostov, Crawley-Boevey, Haraoka, Yokoyama.

Many applications of Katz’s theory concern the case of rigid local systems. For
example, Gleizer has studied explicit solutions [55], and Roberts’ preprint [123]
includes an extensive discussion of how to apply the algorithm to determine which
rigid local systems exist. Volklein, Dettweiler and Reiter have done extensive
work on using Katz’s existence results in the rigid case to construct motivic local
systems with interesting monodromy groups, obtaining results on the inverse

Galois problem.

The middle convolution transformation was first applied in the non-rigid case
by Kostov. An important invariant which we denote by 5(5) is the change in
rank induced by Katz’s transformation. As long as 5(5) < 0 we can apply
middle convolution to reduce the rank (or otherwise, conclude that the local
system couldn’t exist). Kostov made the fundamental observation that when we
get into the range ¢ (?) > 0, we should expect that the local system always exists
and look for a direct construction. Kostov applied this to solve the existence
problem in many cases [89]-[95], such as when 3 is simple i.e. the multiplicities
of eigenvalues are not all divisible by the same integer d > 1, or for generic
eigenvalues even if E is not simple [92]. Crawley-Boevey looked at the existence
question from a point of view of root systems in [34] where Katz’s algorithm
plays a role. In that language, the transformation on local monodromy data
is considered as a reflection in a root system, and a sequence of reflections is
used to move up to the positive chamber. Once we are in the positive chamber,
analogous to the condition § (g) > 0, Crawley-Boevey found a direct construction
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of indecomposable parabolic bundles, and applied a parabolic variant of Weil’s
theorem to construct flat connections.

At the end of the present paper, we propose a technique for constructing local
systems in the range § (;) > 0 by using the correspondence between Higgs bun-
dles and local systems in the parabolic case. This construction is heavily inspired
by Kostov’s program, and is obviously a variant on Crawley-Boevey’s indecom-
posable parabolic bundles. So, it is not really very new but might present some
advantages such as making clear the role played by the condition § (5) > 0. The
objects we introduce, cyclotomic harmonic bundles, might be interesting in their
own right such as for studying the behavior of everything near infinity in the
moduli spaces.

We will look at Katz’s operation as giving an isomorphism between moduli
spaces for different local monodromy data. Of course this applies to the rigid
case too, but as Katz pointed out long ago, for local systems on P! with specified
singularities, local rigidity implies the stronger rigidity statement that there is at
most one irreducible representation with the given local data. Thus, in the rigid
case the moduli spaces are single points so even the cardinality is not an interest-
ing invariant. Instead, we are motivated by looking for low-dimensional moduli
spaces, for which things like Hitchin’s hyperkahler structure, or the Riemann-
Hilbert correspondence, could be viewed explicitly. The phrase “toy example”
was coined by T. Hausel in [65] to refer to this kind of low-dimensional case aris-
ing from a punctured projective line. He looked at a space of parabolic Higgs
bundles of rank 2 on P! —{q1, ..., qs4}. Boalch looked at an example of the middle
convolution relating this space to a space of rank 3 representations in [14] [15],
and considered the Painlevé equations for these cases. It seems like a good idea to
pursue the philosophy of looking at low-dimensional cases, and to get started we
need to have a thorough understanding of how the classification based on Katz’s
algorithm works. That’s the motivation for this paper.

Conceptually, the middle convolution operation is pretty easy to understand.
Let Y and Z denote two copies of the projective line P!, with reduced effective
divisors Qy C Y and Qz C Z (which we will often denote just by @), both given
by the same finite collection of n points @ = {q1,...,q,}. Let D C Z xY denote
the “diagonal configuration” consisting of the diagonal A plus the vertical and
horizontal divisors given by preprojections of Q).
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A convoluter is a rank one local system on Z x Y with singularities along D.
In Katz’s original setup this would be a rank one f-adic sheaf. In the complex
geometric “Betti” and “de Rham” situations we consider here, the convolution
object is respectively a rank one representation of m1(Z x Y — D), or a logarithmic
connection on the trivial bundle given by a logarithmic one-form. In either case
we denote the convoluter by 3. Let

§:((ZxY)=D) —(Z-Qz), n:((£xY)-D) — (Y - Qy)

denote the two projections. Given an irreducible rank r local system L on Y — @,
we can form the “raw convolution” defined as the higher direct image

RC3(L) =R (0" (L) ® B),

a local system on Z — @) z. Unfortunately, the raw convolution will not in general
be an irreducible local system, because there are some contributions whenever the
tensor product n*(L)® [ has trivial eigenvalues along the “horizontal” piece H :=
7*(Qy) of the divisor D. This is remedied by defining the “middle convolution”
to be the middle direct image

MCp(L) := MR'&(n* (L) ® B),

heuristically defined as the kernel of the map to the quotient systems correspond-
ing to the unwanted local cohomolgy groups.

When studying local systems on P! with singularities, we are interested in fixing
the local type of the singularities. For the present paper, we will simplify things
considerably by making the convention that the local monodromy transformations
be semisimple (Convention 2.1) or the corresponding statement for the residues of
a logarithmic connection (Convention 2.2). This allows us to avoid complicated
discussions of Jordan normal forms. The reader who is interested may refer to

the original references for discussions of this aspect.

When we discuss moduli spaces we will consider the moduli spaces of local
systems with fixed conjugacy classes of local monodromy. The notion of rigidity
considered by Katz takes into account the fixing of the local conjugacy classes.
So, the first and in some sense main question about Katz’s construction is to
understand what is its effect on the local monodromy transformations.

We will try to explain the answer, and how to see why it works that way. This
will occupy most of the paper, and is the main subject of our exposition. Of
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course it has already been treated by Katz in the ¢-adic case, and by Strambach,
Volklein, Dettweiler, Reiter, Kostov, Crawley-Boevey, Haraoka, Yokoyama and
others in the complex case. Thus there is nothing new in our exposition. We
hope it will be useful as an explanation allowing readers more easily to consult

the original references.

At the end of the paper, we consider the question of how to construct local
systems in the range 6(5) > 0. We propose a construction which is based on
Donaldson-style Yang-Mills theory [49] [70], in which we construct a polystable
Higgs bundle with parabolic structure corresponding to the local monodromy.
This is similar to the construction of systems of Hodge bundles which was used
in [130]. Here we introduce a new notion which makes the problem much easier:
cyclotomic harmonic bundles. These are harmonic bundles which are fixed under
the action of a finite cyclic subgroup u,, C C*, for the usual action of C* on
the space of Higgs bundles. These are related to the Higgs bundles considered
by Hitchin in [72]. A cyclotomic harmonic bundle is very much like a variation
of Hodge structure, in that the bundle decomposes £ = @;";01 EP. The only
difference is that the indexation is really by p € u), = Z/mZ, and the Kodaira-
Spencer components of the Higgs field go between E? and EP~! ® QL. where p—1
is taken modulo m. Thus # is no longer necessarily nilpotent. Our construction
takes place in the maximal case when m = r is the rank of E, and 6 is not
nilpotent. This means that the EP are line bundles. Thus the description of
(E,0) is elementary. It turns out that incorporating parabolic structures into
the picture in order to obtain a required local monodromy type, the condition
(5(?) > 0 is exactly what is needed for the degrees of the line bundles to work
out correctly and enable the construction. Unfortunately it doesn’t work when
the dimension of the moduli space is 2.

In the last section we discuss some questions and directions for further study.

Acknowledgements: 1 would specially like to thank V. Kostov for many helpful
discussions, and for a particularly illuminating talk many years ago in which he
explained his utilisation of Katz’s algorithm. Also I would like to thank O. Gleizer
for some interesting discussions a while ago. At Princeton in 2005, Deligne and
Katz raised the question of how to understand what is going on, which prompted

the present write-up. Many aspects we consider here, such as moduli spaces with
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fixed conjugacy classes, and logarithmic connections, showed up in the course of
recent joint works with K. Corlette and J. Iyer.

2. CONNECTIONS AND LOCAL SYSTEMS

Denote by Y a smooth projective curve, with K C Y a reduced divisor. Write
K=k +...4+ky,, with points k; € Y. We consider local systems L over Y — K.
If x € Y — K is a choice of basepoint then a local system corresponds to the
monodromy representation

p:m (Y — K,x) — GL(Ly).

The local monodromy transformations are the p(«;) where «; is a loop in standard
form going from x to near k;, once around clockwise, then back to x. In this paper,
we will systematically make the convention :

Convention 2.1. The local monodromy transformations are semisimple, i.e. di-

agonalizable matrices.

A logarithmic connection on (Y, K) is a vector bundle E on Y, with a connec-
tion operator

V:E— E®Qy(log K).

The monodromy of (E,V) is a local system on Y — K, described for example as
the sheaf L = EV of analytic holomorphic sections e of E with V(e) = 0. Over
Y — K this is a locally constant sheaf or a local system, and corresponds to a

monodromy representation pg v.

The residue of (E, V) at a point k; € K is the pair (Ej,,res(V, k;)) consisting of
the fiber of E over k;, and the residue of the connection which is an endomorphism
of the fiber.

We say that “the residues of V are semisimple” if these endomorphisms are
semisimple i.e. diagonalizable. Furthermore, in order to insure that the mon-
odromy transformation satisfies Convention 2.1, it is convenient to ask that the
eigenvalues of the residues never differ by integers. Indeed, if there are pairs of
eigenvalues differing by integers even in a semisimple residue, this can typically
lead to Jordan blocks of size > 1 in the monodromy. This gives the analogous
convention for the de Rham case.
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Convention 2.2. The residues of V are semisimple and their eigenvalues don’t
differ by nonzero integers.

These conventions greatly reduce the complexity of the notation and arguments
required to understand Katz’s constructions. Of course Katz and subsequent
authors all considered the more general case of arbitrary Jordan normal forms,
and we refer the reader to those references for a more in-depth look at this aspect.

2.1. Middle cohomology. If the residues don’t have integer eigenvalues, then
Deligne’s theory gives an easy description of the cohomology of the monodromy
local system. We denote by DR(Y, E) the logarithmic de Rham complex

DR(Y,E) = [E Y E® QL (log K)|.

The connection V and the divisor K are missing and implicit in this notation.
This abuse allows us to shorten most displays below. Unless otherwise stated, all
de Rham complexes are supposed to be logarithmic with respect to the relevant

divisor.

Proposition 2.3. Suppose that the eigenvalues of the residues of (E,V) are
never integers. Let L, := EV be the monodromy local system on'Y — K. Then
hypercohomology of the logarithmic de Rham complex DR(Y, E) calculates the
cohomology of Y — K with coefficients in L,:

H DR(Y,E) ~ H(Y — K, L,).

In the case where some eigenvalues are integers, the situation is more com-
plicated. The same monodromy representation can come from several different
logarithmic connections, whose residual eigenvalues will differ by integers. The
cohomology which is calculated by the de Rham complex will in principle depend
on which lift we have chosen. A canonical choice, somewhat different from the
choices coming from lifts, is given by the notion of “middle cohomology” and
the “middle de Rham complex”. The reason for the word “middle” is that it
corresponds to the middle perversity in intersection cohomology. In the one-
dimensional case, as was well understood by Katz, the notion of intersection
cohomology corresponds to the more classical construction j., as opposed to the
derived Rj,. In this context the word “middle” is more notation than notion.
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The Betti version is as follows. Let j : Y — K — Y denote the inclusion.
Assume K is nonempty. If p is a representation of the fundamental group of
Y — K corresponding to a local system L, on Y — J, then we define the middle

cohomology
MH'(Y, Lp) := H'(Y, ju(L,))-

The non-derived j,(L,) is the degree zero part of the total derived Ryj.(L,); the
other piece is R'j.(L,)[—1]. Which gives an exact triangle in the derived category

j*(Lp) - Rj*(Lp) - le*(Lp)[_l] - J'*(Lp)m cees

Look at the long exact sequence of hypercohomology for this triangle. The hy-
percohomology of the total Rj, gives the cohomology of Y — K. Also R'j, (L,)
is concentrated at K, so it only contributes for global sections. In particular we

have
MH(Y,L,) = H'(Y - K, L,)

and there is a long exact sequence
(2.1)
0— MH'(Y,Ly) — H'(Y — K, L,) = @rex R ju(Lp)p — MH*(Y, L,) — 0.

Since K is nonempty, ¥ — K is homotopic to a one dimensional complex so its
H? with local coefficients vanishes.

An observation which is important for defining the middle convolution is the

following.

Proposition 2.4. Suppose that for at least one point k; € K, the local mon-
odromy has no fized vectors. Then the middle cohomology in degrees zero and

two vanishes.

Proof: Tt is clear that H°(Y,L,) = 0 because there are no flat sections near
the point k;, so there can be no global flat sections. This proves that M H? = 0.
There is a Poincaré-Verdier duality between M H(Y, L) and M H?~%(Y, L*), and
L* also has no fixed vectors at k;. This gives M H?(Y, L) = 0. One can also prove

the vanishing by a direct topological argument. (]

As a corollary we obtain the dimension of the middle cohomology group in this

case:
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Corollary 2.5. Suppose L, is a local system of rank r on'Y — K, and suppose
that for at least one point k; € K the local monodromy has no fized vectors. Then

we have
n

dimMHY(Y,L,) = r(n —2) — Z cofix(L,, kj).
j=1
where n is the number of points in K and cofix(L,, k;) is the dimension of the

space of cofized vectors of the local monodromy at k;.

Proof: Note that H*(Y — K, L,) = 0 as pointed out in the proof of 2.4, and
H*(Y — K,L,) = 0 because Y — K is homotopically a 1-dimensional complex.
Thus by calculating the Euler characteristic we have

dimH'(Y — K,L,) = r(n - 2).

On the other hand,
dimH ' (By,, L) = cofix(Ly, k;).

The exact sequence 2.1 gives the dimension of M H'. (|

2.2. Middle homology. The middle homology is obtained by duality with the
middle cohomology:

MH;(Y — K,L) := MHY(Y — K, L*)*.

This is interesting only if the monodromy of L has some eigenvalues equal to 1
around a point k;. The loop around that point, with the eigenvector as coefficient,
gives a cycle in H1(Y — K, L).

Let F; C L, denote the subspace of vectors fixed by the monodromy transfor-
mation pr,(c;). Since we are assuming that the local monodromy transformations
are unipotent, the dimension of F; is equal to the multiplicity of 1 as eigenvalue
of pr(a;). We get a map

k
¢:@PF — H(Y-K,L).
i=1
Lemma 2.6. Suppose that the monodromy around at least one of the points k;
has no fized vector. Then ¢ is injective and the first middle homology is the
cokernel of the map ¢:
H(Y - K,L)

MH; (T, L) := S
i=1"71
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Proof: This is dual to Proposition 2.4. O

2.3. Middle de Rham cohomology. For the de Rham version of middle co-
homology, if (E, V) is a vector bundle with logarithmic connection on (Y, K), we
define the middle de Rham complex

MDR(Y,E,V) = [MDR’(Y,E,V) - MDR'(Y,E,V)]
with
MDR'(Y,E,V):=E,
and
MDRY(E,V) :=ker (E® Qy (log K) — EY)
where E?( is the quotient of the fiber Fx over K, corresponding to the 0-

eigenspaces of res(V,k;) at the points k; € K. The differential is given by V
as for the usual de Rham complex.

We should stress here that this definition is the right one only under our
convention and assumption that the local monodromy, and the residues of V, are

semisimple.
Define the middle de Rham cohomology to be the hypercohomology H' M DR(Y, E, V).

By definition we have a short exact sequence of complexes of sheaves on Y,

0 — MDR(Y,E,V) — DR(Y,E,V) — E%[-1] — 0.

This gives the same kind of long exact sequence as before.
Lemma 2.7. Suppose that the residues of V have no nonzero integer eigenvalues.
Then the above short exact sequence for the middle de Rham cohomology coincides
after Riemann-Hilbert correspondence, with the previous exact triangle for the

middle Betti cohomology. In particular, if L, is the monodromy local system EV
then we have a natural isomorphism

H'MDR(Y,E,V) = MH (Y, L,).

O

If there are nonzero integer eigenvalues, on the other hand, then the corre-
sponding subspaces are fixed for the monodromy transformation but don’t ap-
pear in the quotient E%. In this case the middle de Rham cohomology will be
different from the middle Betti cohomology.
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Exercise 1. Describe what cohomology is calculated by DR(Y, E,V) and M DR
(Y, E,V) when the residues of V may have some nonzero integer eigenvalues.

Hint: It depends on the sign of the eigenvalues.

Proposition 2.4 above thus has the corresponding corollary in the de Rham

case.

Corollary 2.8. Suppose that the residues of V are semisimple and have no
nonzero integer eigenvalues, and suppose that for at least one point k; € K,
the residue res(V, k;) has all eigenvalues different from 0. Then the middle coho-
mology in degrees zero and two vanishes:

H°MDR(Y,E,V) =0, H:MDR(Y,E,V)=0.

The dimension of the middle cohomology in degree 1 is given by

dimMHY(Y, L,) = r(n—2) — > tk(EL).
=1

Proof: This is immediate from 2.4 and 2.7, and with Corollary 2.5 or its proof
we get the dimension count. O

2.4. The Betti moduli spaces. We are interested in the moduli of representa-
tions with fixed conjugacy classes at the singularities. The first version to look
at is the “Betti” moduli space. See [32].

Let qi,...,gn be n distinct points in Y := P! and fix a basepoint z different
from these. Put I' := m (Y — {q1,...,qn},2). Let 71,...,7, denote standard

loops based at z going around the points q1, ..., g, respectively.

Fix closed subsets C1,...,C, C GL(r) = GL(r,C) invariant under the conju-
gation action. In the present paper in keeping with Convention 2.1 these will be
semisimple conjugacy classes (see below). However the definition can be made
with more general closed subsets which would then have to contain many differ-
ent conjugacy classes including semisimple ones. In this case the structure of the
moduli space is more complicated, for example it can be nonempty even when
the moduli space for the semisimple conjugacy classes in the closure might be

empty.
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Let
Rep(I',GL(r); Cy ...Cy) C Rep(T', GL(r))

be the closed subset of representations p : I' — GL(r) such that

p(vi) € C.

Since it is a closed subset of an affine variety, it is also affine. The group GL(r)
acts on the representation variety and it preserves our closed subset because we
have assumed that the C; are conjugation-invariant. Thus we get an action of
GL(r) on the affine variety Rep(I', GL(r); C1 ... C},) so we can take the universal
categorical quotient

MB<01, e 7Cn) = Rep(I‘, GL(T), Cl ce Cn)/GL(T)

This has the following usual description on the level of points. Two points
p,p’ of the representation variety are S-equivalent if the closures of their or-
bits intersect. In the preimage of any point of Mp there is a unique closed
orbit, which shows that this relation is an equivalence relation and the points
of Mp(Cy,...,C,) are the S-equivalence classes. We have the same description
for the action of Gi(r) on Rep(I', GL(r)), and since Rep(I', GL(r); C; ... C},) is a
closed GL(r)-invariant subvariety, the closure of an orbit of p € Rep(I', GL(r);
Cy...Cy) is the same when taken in the bigger representation variety or the
closed subset. Therefore, the relation of S-equivalence when we restrict the con-
jugacy classes, is the restriction of this relation on the full variety.* The relation of
S-equivalence for the full representation variety is well-understood, see Lubotsky-
Magid [103] for example. In particular, two points p, p’ are S-equivalent if and
only if their semisimplifications are isomorphic. The semisimplification is again
a representation in Rep(I', GL(r); Cy ...Cy), and the points of Mp(Cy,...,C)

represent the isomorphism classes of semisimple representations.

Now restrict our attention to the case of semisimple conjugacy classes C, . .., Cy,
that is to say the conjugacy classes of diagonalizable matrices. The C; C GL(r)
are closed subsets, so the above discussion applies.

It is convenient to think of a semisimple class as being determined by a divisor

on Gy,. Write a divisor as g = > ¢ m(a)[a] where [a] is the point a considered

*Notice that for this statement, we have used the condition that the C; are closed subsets.
If we tried to do this with locally closed subsets, for example corresponding to nonsemisimple

conjugacy classes but not their closures, it wouldn’t work the same way.
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as a reduced effective divisor and the sum is finite. If r = deg(g) := >, m(a), then
the divisor g corresponds to the conjugacy class C(g) C GL(r) of diagonalizable
matrices having eigenvalues a with multiplicities m(a). A sequence of semisimple
conjugacy classes is then represented by a local monodromy vector of n divisors
g = (91,---,9n) € Div(Gy,)". We come to our main notation for the Betti
moduli spaces:

Mp(9) = Mp(C(g1), .., Clgn)),

where the collection of points QQ = ¢1 + ... + ¢, is implicit but not mentionned.

The vector or partition consisting of the m(a) is a partition of r. Kostov calls
this the multiplicity vector, and the vector of multiplicity vectors corresponding
to g1, ..., gn is called by Kostov the polymultiplicity vector or PMV. To obtain a
geographic understanding one should look only at the PMV, see Roberts [123].

2.5. Nitsure’s de Rham moduli space. We can define the following 2-functor
Mppr(r,d) of C-schemes of finite type T'. Put Mpr(r)[T] equal to the groupoid
of (E,V) where E is a vector bundle of rank r and degree d on P x T" and

V:iE— E®0p,r Q}DXT/T(IOgQ xT)

is a relative logarithmic connection. Standard moduli theory shows that it is an
Artin algebraic stack locally of finite type.

Say that a logarithmic connection (E,V) is semistable if for any subbundle
F C FE preserved by V, we have
deg(F) _ deg(E)
rk(F) — tk(E)

Define stability using a strict inequality for strict nonzero subbundles. Semista-

bility and stability are open conditions [116], and the open substack of semistable
objects

M%R(T, d) C MDR(T, d)
is an Artin stack of finite type (it follows from the boundedness in Nitsure’s

construction [116]).

Semistability of a logarithmic connection would be a consequence of semista-
bility of the underlying bundle, but doesn’t imply it in general. Esnault with
Viehweg [53] and Hertling [51], and also Bolibruch [17] have studied the prob-

lem of realization of monodromy representations as logarithmic connections on
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semistable bundles in the higher genus case, generalizing Bolibruch’s well-known
work on P!. Our present notion of semistability of the pair (E,V) is somehow

less subtle.

Nitsure constructs in [116] the moduli space which is a universal categorical

quotient
Dr(r,d) — Mpr(r,d).
The points represent S-equivalence classes of semistable logarithmic connections,

and there is a unique polystable object in each S-equivalence class.

Suppose cq, ..., ¢, C gl(r) are closed subsets invariant under the adjoint action
of GL(r) on its Lie algebra gl(r). Then, as before, we obtain a closed substack

MSDGR(T7 d7 C1y--- 7cn) C M%R(T, d)

consisting of logarithmic connections (E, V) such that up to choice of basis of
E,,, the residue res(V, ¢;) lies in c;.

Again, here we will concentrate on the case where each c; is the conjugacy class
of a semisimple matrix, which is closed and GL(r)-invariant. As above, such a
conjugacy class may be parametrized by an effective divisor g; € Div(Al), with
deg(g;) = .

We denote by 5 = (g1,-..,9n) a vector of divisors parametrizing semisimple
conjugacy classes, either C; = C(g;) C GL(r) in the “multiplicative case” g; €
Div(G,,) or ¢; = c(g;) C gl(r) in the "additive case” g; € Div(Al).

The rank r is recovered from g as the degree of any one of the divisors g;
(they all have to have the same degree). We can also define the trace of a divisor
g =>_m(a)[a] to be the sum

tr(g) == Zm(a)a eC.

If A € c(g) is a matrix in the corresponding conjugacy class then Tr(A) = tr(g).
The residue formula for the logarithmic connection on the determinant line bundle

of E provides the formula
d=deg(E) =Y tr(g).
i=1

This obviously has to be an integer, otherwise the moduli space will be empty.
The degree d of the bundle £ may be recovered from g. Thus, we are justified
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in writing
Mpr(9) := Mpg(r,d;c(g1),- - -, c(gn))-

2.6. Deformations and obstructions. Suppose (F, V) represents a point in
Mpr(9). We compare the deformation and obstruction theory of (E, V) as loga-
rithmic connection, with that of (E, V) as a point in the moduli stack Mpr(9).

The following result was pointed out by N. Katz in the late 1980’s.

Theorem 2.9. The deformation and obstruction theory for the moduli stack
MDR(?) at a point (E,V) is governed by the middle cohomology groups of the
endomorphism bundle HEMDR(Y, End(E)) for i = 0 (automorphisms), i = 1
(deformations) and i = 2 (obstructions).

Proof: We give an heuristic but ultramodern explanation. Definitions and
explicitations would need to be filled in, but this should convince the reader why

it is true.

The deformation and obstruction theory of (E, V) as a logarithmic connection,
that is as a point in Mpgr(r,d), is given by the L, algebra

Dpv(Mpr) :=H (Y, End(E) ® Qy (log Q)).

Let R := gl(r)//GL(r) denote the moduli stack of conjugacy classes of matrices.
It is a smooth Artin algebraic stack. At a point corresponding to a matrix A,
its deformation theory is controlled by the L,.-algebra concentrated in degrees 0
and 1

DA(R) = gl(r) =2 gi(r).

If A is in the semisimple conjugacy class c;, then the deformation theory of
(ci) :==¢;//GL(r) is controlled by
[77‘4]
Da((ci)) = [gl(r) — (Im(u — [u, A]))]

(2.2) = ker(D4(R) — gl(r)?)

where gl(r)? is the space of cofixed or vectors of the adjoint action of A, which
is isomorphic to the space of fixed vectors since A is semisimple. In practical
terms, if A is in diagonal form then the degree one piece of D 4({c;)) is the space
of off-block-diagonal matrices (for the blocks determined by the eigenvalues of A)
and gl(r)? is the space of block-diagonal matrices.
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For any point ¢; € @ the construction (E,V) — res(V,¢;) gives a morphism
of moduli stacks Mppgr(r,d) — R. Putting these together gives a morphism
Mpr(r,d) — R™. On the other hand, a vector of divisors g represents a collec-
tion of conjugacy classes c(g;) which gives the substack

n

R(9) := [ [(e(9:)) € R",
i=1
and by definition

N

MDR(E\) = Mpg(r,d) xgn R(9).

To get the deformation theory for this fiber product, we should take the ho-
motopy fiber product of the L.,-algebras. The one for R(9) is the kernel of a
map (2.2) on the one for R™.

Hinich explains how to go between a sheaf of L,-algebras, and a global L.-
algebra [68]. In our case, D v(Mpr) is the globalization of the sheaf of Lq-
algebras DR(Y, End(E)) (the logarithmic de Rham complex along @)). Going
back and forth a few times we see that the deformation theory for MDR(E) is
controlled by the globalization, or hypercohomology, of the kernel of the map
corresponding to (2.2) on the sheaf of L.-algebras, this map expressed in local
terms at the singularities as

(2.3) DR(Y, End(E)) — é End(E)).

where the superscript 0 means the trivial eigenspace for the action of res(V, ¢;).
The kernel is exactly the middle de Rham complex for End(E). Thus, the defor-
mation theory is controlled by an L..-algebra H M DR(Y, End(E)). O

Corollary 2.10. Suppose (E,V) € Mpgr(9) is a point corresponding to an
irreducible representation. Then it is a smooth point of the moduli stack, and has

only scalar automorphisms so it is also a smooth point of the moduli space where
the tangent space is H* MDR(Y, End(E)).

Proof: Decompose into the trace-free part and the scalars: End(E) = End' (E)®
O. The trace of the obstruction map is zero, and H' M DR(Y,O) = 0 since Y =
P!. Thus, the deformations and obstructions are given by H' M DR(Y, End'(E))
and H2M DR(Y, End' (E)) respectively. Poincaré duality for the middle coho-
mology, plus the fact that End'(E) is self-dual, gives HZM DR(Y, End' (E)) =
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HMDR(Y, End' (E)) = 0 since E has no trace-free endomorphisms because it
is irreducible. Thus the space of obstructions vanishes, and the tangent space is
given by H' M DR(Y, End(E)) = H* MDR(Y, End (E)). O

2.7. Dimension counting. From the previous discussion of deformations and
obstructions, we find the following boiled-down statement.

RN

Proposition 2.11. Suppose (E,V) is a stable point in M} p(9). Then the di-
mension of the moduli space at the given point (or any other stable point) is

obtained by a naive dimension count:

n
dim(Mpp(9)) =) _dim(c(g;)) — 2r° + 2.
i=1
The factor 2(r* — 1) corresponds to the fact that the conjugation action factors
through PGL(r) and the product identity lies in SL(r).

The same dimension count holds for the open subset of irreducible representa-
tions MY¥(g) if it is nonempty.

Proof: Apply Corollary 2.10. The tangent space is H' M DR(Y, End(E)) and
H°MDR(Y, End(E)) = H*MDR(Y, End(E)) = C

since F is irreducible. Obtain the dimension count by using the fact that M DR(Y,
End(E)) is the kernel of the map (2.3), noting

dim(c(g;)) = r* — dimEnd(E)}),

and calculating the Euler characteristic. The Riemann-Hilbert correspondence
gives the corresponding statement for MET(g). O

We introduce the defect. It may be seen as playing a role in the dimension
count, but is also foremost related to Katz’s algorithm as we shall explain later.
For each g;, let v(g;) be the maximal multiplicity of an eigenvalue. The centralizer
of a matrix A in the conjugacy class c(g;) is the set of block-diagonal matrices,
and the dimension of the conjugacy class is the number of positions which are
not in the block-diagonal pieces.

Think visually of shifting all of the diagonal blocks to the left of the matrix. In
other words, transpose each square diagonal block with the rectangle consisting
of all places to the left of it in the same rows. In the resulting picture, the square
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blocks are now arrayed from top to bottom flush with the left edge of the matrix.
The dimension of the conjugacy class is still the number of positions which are
not in these blocks. This leftover part can be divided into two regions: a big
rectangle of size r x (r — v(g;)) which is everything to the right of the biggest
block, plus a union of other rectangular regions corresponding in each row to the
positions to the right of the edge of the corresponding block for that row, but to
the left of the size of the biggest block. The second piece might be empty, indeed
it is empty exactly in the case when the blocks all have the same size. We obtain

the crude estimate
dim(c(gi)) > r(r —v(gi)),

leading to the crude estimate for the dimension of the moduli space as

n n
(03 2 0% <3 vta) <27 2 =24 (02 3ot
i=1 i=1
In view of this formula already, it seems reasonable to consider the quantity

n

59):=Mn—-2)r— Z v(g;)-
i=1
We call this the defect because it enters into Katz’s algorithm in a remarkably
elegant way: if 0 is a convolution object corresponding to a choice of maximal-
multiplicity eigenvalue for each g;, then the new rank of the Katz-transformed
local monodromy data is

r=r+ 5(?)

We will want to run Katz’s algorithm when §(9) is negative. We can do so until

we get to a vector whose defect is positive.

In terms of the defect, the crude dimension count says dim(Mpz(9)) > 2+
r9(9). In order to refine the dimension count, introduce the superdefect denoted
locally by

o(g:) := dim(c(g;)) — r(r —n(gs)),
and globally by

n

0(9) =" o(g)-

i=1
These quantities, which are always > 0, are just the differences between the crude
dimension counts and the actual dimensions. Thus we have, when the stable open
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set is nonempty,

dim(Myp(9)) = 2+76(9) +o(9).

In view of the possibility of applying Katz’s algorithm to decrease the rank
whenever § < 0, the remaining case to investigate is when 5(5) > 0. Under
this hypothesis, the dimension of the moduli space is always > 2. The cases of
dimension 0 were the subject of Katz’s original book: they arise when one ends up
with a rank one local system, at which point it will no longer be possible to find
a convoluter satisfying Convention 3.1. The case of dimension 2 is particularly
interesting, although unfortunately our construction of §6 (Corollary 6.10) will
not apply.

Lemma 2.12. The superdefect o(g;) vanishes if and only if all of the eigenvalues
of gi have the same multiplicity. In the domain 6(9) > 0, the dimension of the
moduli space will be exactly 2, if and only if 6 = 0 and the superdefects o(g;) all

vanish.

Proof: Note that o(g;) is the number of places left over in the complement of
the pushed-left diagonal blocks, after taking out the big rectangle. This vanishes
only if all of the blocks have the same size. The last statement follows from
o(9) > 0. 0

If ; is an example of the case § = o = 0 then any multiple (meaning to
multiply all of the divisors g; by the same amount) is also an example. Thus the
examples of this case come in families which are indexed by an integer d > 0.
Following Kostov, write the type of g; as a partition of r, for example (d,d)
indicates a divisor of the form d[a] + d[b] supported at two eigenvalues a and b
both with multiplicity d. Then 5 has type given by a “polymultiplicity vector”
PM V(?) which is a vector of partitions. Applying the definition of the defect
we immediately see the following, due to Kostov in the paper [90] where he

investigates explicitly the resulting list of cases:

N

Lemma 2.13. In the domain 5(5) > 0, the only cases where dim(M},,(9)) =2
are the following four:
—forn=4,d=r/2 and PMV(?)
—forn=3,d=r/3 and PMV(?\)
(9)
(9)

d,d), (d,d), (d,d), (d,d));
d,d,d),(d,d,d), (d,d,d));

2d,2d), (d,d,d,d), (d,d,d,d)); and
3d,3d), (2d, 2d, 2d), (d, d, d, d, d, d)).

—forn=3,d=r/4 and PMV
—forn=3,d=r/6 and PMV

o~ o~ o~ o~
~~ I~ I/~
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Proof: Apply Lemma 2.12. Vanishing of the superdefect means that g; is of
type (d;, ..., d;) for some d; = r/b;. Vanishing of the defect says ), (1/b;) = n—2,
and the only solutions with b; integers > 2 are

PJE U T - IR I
2 22 277 373 3 2 4 4 36
These give the cases of the lemma. U

Exercise 2. Classify the possible polymultiplicity vectors for g in the cases when
the moduli space has dimension 4 and 6.

3. THE DIAGONAL CONFIGURATION AND ITS BLOWING UP

The convolution operation comes from the diagonal configuration consisting
of vertical and horizontal lines plus the diagonal. This kind of configuration is a

recurring theme in Hirzebruch’s work [69].

In what follows, put Y := P! and Z := P!, and look at the product Z x Y. We
have the projections £ : Z xY - Zandn: ZxY — Y.

Fix a subset of distinct points Q := {q1,...,¢,} C P! and let Qy or Qz denote

this subset considered as a divisor in Y or Z respectively. Let
D=ZxQyvUZXxQzxYUACZXY.

be the divisor obtained by using the divisors )z and @)y in the vertical and
horizontal directions, and adding the diagonal. Denote also by n and £ the
projections

E:(ZxY)—-D—Z-Qz, n:(ZxY)—D—Y —Qy.

The pair (Z x Y, D) is the diagonal configuration.

The divisor D does not have normal crossings, indeed the diagonal meets the
other components in a series of triple points. In order to obtain a variety with
normal crossings compactification compatible with the projection maps, we have
to blow up the diagonal configuration at these triple crossing points . Let X be
the resulting variety, thus we have a birational map

X =Y xZ
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obtained by blowing up the points (¢1,41), ..., (qn,qn). Let J C X denote the
reduced inverse image of the divisor D. We have a decomposition

J=T+U1+ 4+ Up+ Hi+ -+ Hy+ Vit + W,

where:

—T is the strict transform of the diagonal A;

—H,; is the horizontal strict transform of Z x {¢;};
—V; is the vertical strict transform of {¢;} x Y’; and
—U, is the exceptional divisor lying over (g;, ;).

These intersect as follows: each U; meets T', H; and V; in three distinct points.
Also H; meets V; for i # j. These intersections are transverse, and there are no
other intersections.

Let £ : X — Z denote the first projection. It is seen as going in the vertical
direction, so it contracts U; + V; to the point ¢; and indeed §*l(qi) =U;+V,.
Let n: X — Y denote the second projection going in the horizontal direction, so
n Yq) = U; + H;.

The other divisor components are mapped isomorphically onto the bases of
these projections:

§:TE>Z, £:HiiZ
and
n:T = Y, n:V; =

These divisor components intersect transversally all fibers of £ or 7 respectively.

3.1. Convoluters—the Betti version. The basic setup of Katz’s convolution
operation is to take a local system on Y, pull it back to Y x Z or the blow-
up X, tensor with a rank one local system, and push forward to Z using R'¢,.
Obviously, the first step in understanding and calculating this, is to understand
the rank one objects [25] [56] over (X, J). We look at the “Betti” case of local
systems or representations of the fundamental group.

The birational blowing-up morphism is an isomorphism outside J and D, that
is
X-J35(ZxY)-D.
In particular, local systems on one or the other are the same thing. We denote
generically by [ our convoluter, in this case a local system. It is given by a
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representation of the fundamental group into C*, a representation which factors
through the abelianization as

3:Hy\(X — J,Z) — C*.

The loops vH,, yv, and yr going around the respectively denoted components of
J, generate the first homology of H;(X —J). For our calculations it is convenient

to include 7y, also as generators. These are subject to the following relations:
n n
A+ v =0, e+ Y Wi =0, i, =y +ym +w; ((=1,...,n),
i=1 i=1

coming respectively from a vertical P! intersecting T and the H;; from a horizontal
P! intersecting 7" and the V;; and for i = 1,...,n from a small C* deformation
of the exceptional U;, which meets T', H; and V; and intersects the undeformed
U; negatively. That these generate the module of relations, can be seen from a
Leray spectral sequence argument.

Denote by 8¢ the monodromy of 5 on the loop ~vm, and similarly for the other
generators. Thus, specifying a local system of rank one on X — J comes down to

specifying
pte, g%, g%, g7 e,

subject to the relations
n n
gt I8 =1, gt ]| =1, gYi=p"p".p"%
i=1 i=1

Of course the last relations mean that AY are redundant.

We will use our convoluters to define a convolution operation, in which the
diagonal A plays a primordial role. It will be important to have nontrivial mon-
odromy around the diagonal. To simplify notation set

x ="
and make the following convention.

Convention 3.1. The monodromy around the diagonal of our convoluter is non-
trivial, that is x # 1.
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3.2. Convoluters—the de Rham version. We will find it most convenient
to restrict to convolution with rank one logarithmic connections on the trivial
bundle, that is de Rham objects of the form (Ox,d + ) where (3 is a one form
on X with logarithmic poles along J. The more general case can be viewed as
being subsumed by the theory of parabolic logarithmic A-connections [112], see
87.

In the present case, then, a convoluter is just a section
B e H(X, Q% (log J)).

Given 3 we denote by g, 3Yi, gUi and 37 its residues along H;, V;, U; and T
respectively. Note that H'(X,Ox) = 0, so by Deligne’s mixed Hodge theory

/ L HO(X, O (log J)) = HY((X — J)*P,C)

and the integrals over vy, etc. are 2m/—1 times the residues i etc. In particu-
lar, the structure of Hy(X — J,Z) recalled in the previous subsection implies that
0 is determined by its residues, and these are subject to the equations

n n
gr+) s =0, gl +) g% =0, p%=p5"+p"+ 5"
i=1 i=1
The de Rham convolution object § gives rise to a local system, or Betti convoluter
 with

H;, __ 2my/—1 H;
@ =€ B yeeee

The analogue of Convention 3.1 is:

Convention 3.2. The residue 1 of 3 along the diagonal is not an integer.

4. MIDDLE CONVOLUTION—BETTI VERSION

In this section we will work with the divisor D C (Z x Y'), and do our com-
putations in braid-group style [113] [132] [45]. One could alternatively use the
blowing up (Z, J) and give a treatment similar to the one we will give in the de

Rham case later.

The discussion of this section is the complex geometric version of Katz’s con-
struction. Katz gave a geometric definition of middle convolution in [86, 2.7-2.9].
His formulae there, stated in the context of perverse f-adic sheaves, work uni-

versally in any geometric context. The complex geometric version was defined
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more explicitly, and first exploited by Dettweiler and Reiter [44] [45] [46], and
Volklein, Strambach, [139] [132]. They write down explicit matrices but the
motivation comes from braid-style computations. Kostov proposes an ingenious
version of the construction which doesn’t refer to the geometric picture, but in-
stead is based on the possibility of multiplying the connection matrix by a scalar
to get to the case of integer eigenvalues [91]. And, Crawley-Boevey views the
construction, again in algebraic terms, as something about root systems. Boalch
considered a particular example of middle convolution in a non-rigid case [15],
and the link with Katz’s construction was made in [47]. In [45] following [86,
Chap. 5.1] it is shown that the explicit matrix definition of MC has a geomet-
ric or cohomological interpretation as a higher direct image—this is the point of
view we adopt here. The braid-style calculations of group cohomology necessary
to get the local form of monodromy out of this geometric definition were done
in [45] but using the Pochammer basis for the group cohomology classes, rather
than a standard basis as we shall use here. In spite of the numerous references
on this subject, we go through the details, where possible keeping simplifying

assumptions for our expository purpose.

4.1. Definitions. Recall that
n:ZxY =Y, &€:ZxY —>Z

are the projections, and use the same name for the projections on the open subset
(Z xY)—D. A convoluter ( is a rank one local system on (Z x Y') — D.

Define the raw convolution RCg as follows. If L is a local system on Y — Qy

then put
RC3(L) == R'&.(B @ (n"L)).

It is a local system on Z — Az. The middle convolution MCg(L) will be a sub-
system of RC3(L) the kernel of the map to some natural essentially local systems
coming from triviality of certain pieces of the local monodromy transformations.
It corresponds to replacing the cohomology of the fibers in the R'&, construction,
by the middle cohomology discussed in §2.1 above.

In order to make explicit calculations, we will adopt the viewpoint of homology
rather than cohomology. Let RC’;(L) denote the local system obtained by taking
the homology of the fibers with coefficients in 8 ® n*L. Let M CE(L) denote
the quotient corresponding to “middle homology” defined by duality with middle
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cohomology (the precise definition will appear in our discussion below). If we let
B* and L* denote the dual local systems, then by the duality between homology
and cohomology we have

RC3(L) = (RCy- (L))"

and similarly for M C*. Thus it is equivalent if we look at homology, and it is
easier to visualize geometrically classes in homology with local coefficients.

4.2. Computations in group homology. We would like to calculate the local
monodromy transformations of the raw and then middle convolutions. In order
to do this, we transform the question into a computation of the action of the
fundamental group of the base, on the group homology of the fiber. See [139] [45]
[42] for example.

In order to speak of fundamental groups, we need to choose basepoints. Choose
a basepoint b € Y — Q. For z € Z — @z the fiber of X — J over zis Y — Q — {z}.
This has (z,b) as basepoint whenever z # b. In particular, in order to get a
fibration of based spaces we should additionally take the point b out of the base.
For this reason, put Q% := Q. U {b}.

On the other hand, we would like to consider the fundamental group of Z —QbZ
Choose another basepoint ¢ € Z — QbZ C P2 Y. In the fiber over ¢ € Z we have
the complement of Qy and should also take out the diagonal point (¢, c). Thus,

let Q5 = Qy U {c}.

The fiber Y. = {c} x (Y — Q%) of the projection ¢ : (X — J) — (Z — Q%) over
¢, is an open Riemann surface pointed by the basepoint (c, b).

Let T' :=m1(Ye, (¢,0))) =2 m (Y — Q5,b). It is a free group. The fundamental

group of the base T := m(Z — Q%, ¢) acts on I'. We will describe the action in
greater detail below. Denote the action by u — (v — u(u,v)) forue Y,y €T

Make the convention for group composition that ab means b followed by a.
That way, a monodromy representation indicates transport of sections along the
path and satisfies p(ab) = p(a)p(b).

The local system RC}(L) restricted to Z — Q% can be described as follows.
The local system L corresponds to a representation p of I' on the vector space
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Ly, invariant with respect to the action of T in the sense that

p((w, 7)) = p(7)

for any v € I" and u € Y. Similarly, the local system § corresponds to a pair of
characters

g T —C* pBt:rT—C*
and the first of these is again invariant, 3 (u(u,vy)) = 8 (). Tensoring together

we obtain a representation denoted

B

P’y = B (y)p(),

again invariant with respect to the action of Y. The local system RC3(L) (resp.
RC}(L)) corresponds to the vector space HY(T, p%) (resp. Hy(T', p?)). The action
of T is obtained by the natural action, tensored with the character §°. This
tensorization is due to the fact that the local system ([ is not trivial on the
basepoint section z — (z,b) over Z — Q4.

Denote by V the vector space C” on which the representation p® is defined.
Denote by HY(T', V) the cohomology and Hi (T, V) the homology.

Fix generators for I' as follows: we have loops aj,...,q, going clockwise
around the points ¢1,...,¢q, in the standard way, and § going clockwise around
the point (¢,¢) € A in the fiber {c} x (Y — Q5,). The group I' has generators
a;, 6 subject to the single relation

daq - -y = 1.

Using this relation any one of the generators could be ignored but it will be more
convenient to keep all of them.

The character 3% acts on these generators as follows: % (o) = 8%+, 3%'(0) =
BT, Thus we have

10/6(5) :ﬁT'lra pﬁ(al) :ﬁ%p(al)v @ = 1,,7’L
The homology H;(T', V) is the homology at degree one of the sequence
Co(T, V) = C1(T,V) — Co(I, V) = V.

Furthermore, C1(T", V') is the C-vector space formally generated by the symbols
G(v,v) where v € I" and v € V, subject only to the relation of C-linearity in the
variable v. And Cy(T", V) is generated by symbols Q(v,&,v) where v,& € T' and
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v € V. Geometrically, G(,v) represents a cycle which starts with value v and
continues along the path 7. And Q(~,&,v) represents a simplex whose sides are
v, & and &y with coefficient v at the starting point.

The boundary operators for the complex are
0G(v,v) =v(v) —v, 9Q(v,§,v) = G(v,v) + G(§,7(v)) = G(§v,v), 900 =0.

We work with the vector space Ci(I', V))/0Cy(I", V') denoted just Cy/9C5 for
short. It is finite dimensional, and its elements are C-linear combinations of
classes denoted G|, v] which are now subject to the relations that this symbol is

C-linear in v, and that

G[§v,v] = Gy, v] + G[E, v(v)].

If we fix a basis {v;} for V' then from the set of generators of I' we obtain a basis
for C1/0Cy consisting of the G[oy,v;] and G[d,v;]. It will be useful in what
follows to have a formula for multiple products. For example

Gnéy,v] = Gly, v] + G[&,v(v)] + G[n, Ev(v)]

and more generally G[y1 -« Ym,v] = > ity GV, Yit1 - - - ¥m(v)]. Similarly for the
inverse, the equation

0=Ghy ol =Gy Lol + Gy, v ()]

gives Gly1,0] = —Gly, v~ (v)].

Now consider the action of Y. What we call the “natural action” is the one
coming from the action on the explicit generators written above. This corresponds
to tensoring to trivialize the restriction of the local system on the basepoint
section. In the end, since the local system is not trivial on the basepoint section,
we will have to take the natural action tensored with the character 3.

The generator u; of T corresponds to a path where the point ¢ goes around the
point ¢;. There is some choice about how to arrange this picture, with respect
to the picture of the standard generators of I'. Think of the points g¢1,..., ¢y
as lined up in a row, with the basepoint b off to one side so that the points are
arrayed from left to right when viewed from b. The paths «; go straight from b
to g;, once around clockwise, then back to b. On the other hand, let ¢ be on the
other side of the row of points ¢;. We obtain a number of paths 6 = §1,...,0d,
going from b to ¢, around clockwise, and back to b. These are defined by saying
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that the starting and ending path for §; goes just to the left of the point ¢;, for
1 < ¢ < n the path goes between ¢;_; and ¢;. We have the relation

-1
5i+1 = aiéiai .

In particular the §; are all conjugate to § = &1, which implies that p?(d;) are
always multiplication by §7.

Now, define u; as the path which sends c straight to ¢x, around clockwise, and
back to its starting point. This happens on the other side of our picture from the
paths starting at b.

With this picture, the action of u; doesn’t change the «; for j # k. On the
other hand, we have a Dehn twist between d;, and «.. Notice that the introduction
of the different conjugates d allows us to represent these Dehn twists uniformly
for each k; if we try to write down the formula with 6 = §; it becomes more
complicated.

A geometric look at the picture of ¢ going clockwise around g yields:
Proposition 4.1. The action of up on I is given by

(g, o) = 0 L,

and

(g, 61) = 0 o, Opou b

O

Exercise 3. Define conjugates (; where the point ¢ goes in between q;_1 and q;,
around b, and back. Describe the action of (;. We have the relations uy - - - u;_1
Gui---up =1 19n Y. Check that the action defined by the above formulae for the
u; plus the formulae for (;, satisfies these relations.

4.3. The local monodromy transformations. Now we would like to compute
the eigenvalues of the monodromy transformations. This computation is local
around one of the points g;. For our present purposes we only ask for the Jordan
normal form of the monodromy transformation. More precise information, in
fact the explicit monodromy matrices with respect to the Pochammer basis, are
obtained in [45], [42, Lemma 3.3.5, Proposition 3.3.6]. Our computation is along
these lines but we don’t need to consider the Pochammer elements.
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To reduce notation put
X = /BTv /81 = ﬁHl

The values of Y% don’t matter, as we are initially calculating the natural action
trivialized over the basepoint section. Our previous formulae become

PPk =x P (i) = Bip(eu).
For the action of ug, we have uy - Glas, vj] = Glas,v;], i # 1. On the other hand,
uy, - Glag, vj] = G[6, Lardk, v;] = G[6; b, adr(v))] + Gla, 6,(v))] + G[dk, v;]
= Glo, 0k (v))] + G0k, v5] — G[Ok, ;" ardi (v))]

and using the formula for the action of d; which is by multiplication by x (in
particular it commutes with the ay),

uy - Glog, v;] = xGlaw, vs] + G0k, (1 — ag) (v5)]-

Finally,

uy, - G[og, vj] = G[6; F o, S, ;]
= —G 6k, 0y "o, S0 (v5)] — Glau, o, 'opard(v)] + G[6k, ardk(v))]
+ Glag, 0k (v;)] + G0, vj]
= —xG[or, vj] — X*Gla, v;] + XG[6k, ar(v;)] + XGla, v;] + G0k, vj]
= (x = x*)Glak, vj] + G[bk, (x(ar, — 1) + L)vy].

Lemma 4.2. Suppose vj is an eigenvector of p(oy) with eigenvalue ry ;. Denote
x := BT. Then the two-dimensional subspace of C1/0Cs generated by Glay,v;]
and G0k, vj] is invariant under the transformation uy, and on this subspace (with
the two generators taken as basis vectors) the transformation uy has matriz
Ukl (Glag,0;].G ok 0s)) = ( : o) ) :
(1= Brrrg) 1+ x(Brre; — 1)

Proof: In the computations above, the action of ay, is by the representation p?,
and v; is an eigenvector of p®(ay) but this time with eigenvalue Brrk,j- Thus we
should take the previous formulae and replace pﬁ(ak)vj by Birk,jvj, which gives
the stated matrix. O

Corollary 4.3. In the situation of the previous lemma, the eigenvalues of u
acting on the two dimensional subspace (Gog,v;], G0k, v;]) are 1 and x By, ;-
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Proof: The determinant of the matrix in the lemma is
XX Bern—1) = (X=X*) (1=Brrrj) = XX BT =X = XHXBrk X=X Brrk.j

= XBkTk,j-
The trace is 1+ xBx7k ;. The eigenvalues satisfy two equations which clearly hold
for 1 and xfBri ;- O

Suppose xfGkr,; = 1, then the matrix in the above lemma is

X  (=x»)\ _ 1 —x
((1—X1) 2-x >_1+(X_1) <x1—1>’

that is 1 plus a rank one matrix whose square is zero. In this case the 2 x 2
matrix of Lemma 4.2 is not semisimple. Therefore, keep the following restriction

on our eigenvalues.

Convention 4.4. We assume that 3 has the property that xByr; # 1 for all
eigenvalues 1, ; of p(ay). In other words, the matrix xP%(ay) has only nontrivial

etgenvalues.

Lemma 4.5. Suppose Convention 2.1 so p(ay) is a semisimple matriz, and Con-
vention 4.4 so that xfxri,; # 1. Then the monodromy transformation of Cy/0C

around uy looks up to conjugacy like
xp’ (ag) & 17

where m is given by a dimension count.

Proof: The map
VeV —C1/0Cy, (u,v)— Glag,u] + G[o,v]

is injective. The action of u; € Y preserves the image and there it acts as
xP% () ®17. Thus the multiplicity of an eigenvalue in the action of uy, is at least
as big as its multiplicity in xp®(ay).

On the other hand, the images of the maps V' — H;(I", V') given by v — G[a;, v]
for i # k, span a subspace on which u; € T acts trivially, and with the subspace
of the previous paragraph, these two subspaces generate C/0C,. We obtain a
surjective ug-equivariant map from a representation of the form xp”(az) @ 1
to C1/0C5. Thus, the multiplicity of a nontrivial eigenvalue in uy is at most
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its multiplicity in xp”(az). This surjection also shows that the action of u on
C1/90C5 is semisimple.

The condition that the eigenvalues of yp”(ay) be all nontrivial means that the
multiplicities are the same as their multiplicities in u;. This gives the direct sum
decomposition of the lemma. O

Exercise 4. Calculate the action of (. After going to the action on the homology
which is the kernel of the boundary map

H, = Zl/an = ker(01/802 — Cy & V),

the operator (i, should act by multiplication by a scalar. After tensoring with 37°
it should give the identity since the local system RC’E(L) doesn’t depend on the

choice of basepoint and hence extends across {b}.

We now consider the action of T on H; := ker(Cy/9Cs — Cj).

Proposition 4.6. Suppose that p is an irreducible representation of rank r > 2.
Suppose that the monodromy transformations p(c;) are semisimple (Convention
2.1), suppose that x # 1 (Convention 3.1), and suppose that the eigenvalues Ty, ;
of p(ax) are different from X_lﬂk_l (Convention 4.4). The dimension of H1(T, p?)
is equal to (n — 1)r. The group Y acting on H(T',p%) by the raw convolution
representation has the following effect on the generators:

ug, — BV @ (x - pP (o) @172,

Proof: The conditions of Proposition 2.4 apply even to the dual local system,
therefore Hy = 0. In particular, the boundary map is surjective onto Cj. Recall
that Ho = 0 because we are looking at an open curve. The Euler characteristic
of the complement of n + 1 points is (n — 1) which gives dimH; = (n — 1)r.

On the other hand, the natural action of T on Cy = V is trivial. Thus, for
the monodromy transformations of the wg, the kernel Hy of the boundary map
contains all of the nontrivial part. For this action, using the dimension count and

n=2)r - As pointed out

Lemma 4.5, the matrix of the action of uy, is x - p% (o) @ 1(
at the start of the computation, we then have to tensor with the character 5

to get the representation corresponding to the raw convolution. O
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4.4. Middling. Suppose that p® has some eigenvalues equal to 1 around a point
¢;- The loop around that point, with the eigenvector as coefficient, gives a cycle
in Hy(T, p”) which will be covariant under Y. Going to the middle convolution,
replacing H; by the middle version, gets rid of these invariant cycles.

We are assuming that y # 1 so this behavior doesn’t occur at the point ¢, and
in particular the point ¢ serves as a point where there are no fixed vector so we
can apply Lemma 2.6 above.

Let F; C Ly denote the subspace of vectors fixed by the monodromy transfor-
mation p®(«;). Since we are assuming that the local monodromy transformations
are unipotent, the dimension of F; is equal to the multiplicity of 1 as eigenvalue
of p?. We get a map
These put together to give ¢ : @ | F; — Hy (T, p?). Recall that
Hl (F7 pﬂ)

—
¢ @i:l F;
The group Y acts on M H; (T, p®). As before, we can calculate with the natural

MH,\(T, p%) =

action trivialized on the basepoint section, which should then be tensored with
the character 3 to obtain the middle coconvolution M Cx(L).

Lemma 4.7. The map ¢ is equivariant for the natural action on the target, and
with uy acting trivially on F; for i # k, and by multiplication by x on Fj. Also,

¢ 1is injective.

Proof: From the previous subsection, the action of uy preserves GJa;, f] for
i # k. If fis a fixed vector for p®(ay) then it is an eigenvector with eigenvalue
Brrk,; = 1. In the matrix of Lemma 4.2, we get that the image of Glay, f] is
XGlag, f]. Injectivity of ¢ follows from Lemma 2.6. O

This lemma leads to the computation of the monodromy action of u; on the
middle homology. Write V = V' @ V" where p(a4) acts with eigenvalue 5, Lon
V', and with eigenvalues distinct from [, Lon V”. Thus, for p%(ay) the fixed
subspace is V'’ with its complement V”. Recall 4.6 that before tensoring with
b, the natural action of uj, on Hi (T, p?) decomposes as xp?(ay,) ® 17"~ The
underlying vector space decomposes as V' @ V” @& C"=27" and wu;, acts by x on

V', by eigenvalues different from y on V", and trivially on C"~2)r
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Convention 4.4 says that if ry ; is an eigenvalue of p(ay) then xByri; # 1.
The By ; are the eigenvalues of p% (). This condition therefore says that the
eigenvalues of uy on V" are different from 1. Convention 3.1 says that y #
1. Therefore the three subspaces in the above decomposition of Hy(T',p?) are
distinguished by the eigenvalues of uy.

Lemma 4.7 now implies that ¢ sends Fj into the part C=2)" and sends Fj,
into the part V/. On the other hand, V' is the space of fixed vectors of wuy,
isomorphic (and indeed, equal) to Fj. Therefore, in the middle homology there
is no remaining eigenspace for y, the term V” remains intact, and the trivial
eigenspace is reduced by an appropriate amount, to a size given by the dimension
count. We can state this as follows.

Proposition 4.8. Assume Conventions 2.1, 3.1, and 4.4. The action of up, € Y

on the middle homology is semisimple, and we have a decomposition
MH\(T,p%) =V"aC™,

where V' is the direct sum of all eigenspaces of p(ay) for eigenvalues different
from ﬂk_l, and m is given by a dimension count. The natural action of u on V"
is by xBrp(ar), and the natural action on C™ is trivial. The middle convolution
action is obtained by multiplying everything by V.

g

To put this another way, suppose a is an eigenvalue of p(ay) of multiplicity
mg(a). Then the corresponding eigenvalue of the action of u; on the middle
convolution is:

—BYexBHrq = BUrq with the same multiplicity my(a) when gH%a # 1; or
— @Y% with multiplicity my(a) + dimM H; — r when a = (7)1
This is seen by recalling that 3 := g+, x := g7 and pY = gVk g7 5Hx,

Exercise 5. The product of all the eigenvalues for all singular points must be 1.
As a reality-check, see that this remains true for the middle convolution with the
above formulae.

4.5. The Katz transformation on the level of local monodromy. We cre-
ate some notation for describing the effect of the middle convolution operation
on local monodromy. Let I denote an abelian group with the group law written
multiplicatively. Define Div(IL) to be the free abelian group generated by points
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of L. An element of Div(IL) is thus a finite linear combination g = 3 1 m(a)-[a]
with m(a) € Z and m(a) = 0 for almost all « € .. The divisor is effective if all
the coefficients are positive m(a) > 0.

The elements of I are thought of as representing possible eigenvalues, and
elements of Div(IL) represent conjugacy classes of semisimple matrices with these
eigenvalues. The cases of interest are . = G,,,, which applies to the Betti case of
the present chapter, and L. = A! which will apply for the de Rham case in the
next chapter.

Since we are restricting in this paper to the case of semisimple local mon-
odromy, we can use the simpler Div(L) rather than the set of all Jordan normal
forms [86] [91] [34] [35] [123] etc. The rank of the matrix is the degree of the
divisor, that is the sum of the coefficients m(«). Denote this by |g|. Define the
determinant to be det(g) = [],cp ™) ¢ L, well defined since almost all fac-
tors are the identity element 1p,. For obvious reasons when the operation of L is
conventionally denoted additively we write Tr(g) rather than det(g).

Fix n. A local monodromy vector is an n-tuple of elements of Div(L), denoted
9 =1(g91,-.,9n) € Div(L)",

such that the degrees are the same, |g1| = ... = |gn|. Denote this common degree
by 7(9) and call it the rank of g because it will correspond to the rank of the
local system. Define the total determinant to be the product

Det(;) = det(g1) - - - det(gn).

In order to be a candidate for the local monodromy vector of a local system, we
must have Det(9) = 1.

A convoluter is a function
G:H(X—-J7Z)—1L

which, in view of the generators and relations for Hy(X — J,Z), can be thought

of as a vector
g= (B, ..., g%, ... p", ... 4T et

subject to the relations

gt T =1, VgV g7 =1, U = pipgYipT (1<i<n).
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As pointed out above in the Betti (§3.1) and de Rham (§3.2) cases, a convoluter
contains the data necessary for defining a rank one object on X, which will also
be denoted by 8. The coefficients correspond to the local monodromy around
the divisors V;, H;, U; and the diagonal T respectively. In this picture the group
L is the group of possible local monodromy for rank one objects, which depends
on what kind of object we are considering.

The Katz operation on semisimple local monodromy assigns to a local mon-
odromy vector g and a convoluter § for the same number of points n, a new
local monodromy vector (3, 9). This is defined concretely as follows.

Define the defect 6(03, E), which is going to be the difference between the rank
of the original local system, and the rank of the new local system obtained by

middle convolution. Write out the coefficients
gi =Y _ mi(a)-[al,
(0%

where for clarity we denote by [a] the point a € L considered as a divisor. The
defect is defined as

n

5(8,9) = (n—2)r = 3 m(sH).

i=1

Corollary 2.5, applied to the divisor K := Q U {c} with n 4 1 points, says that
(4.1) dimMHY(T, p%) = r + 8(8, 9).

If no term 3 is specified, it means to choose any 3 such that 37+~ .= (pHi)~1 ¢ LL

is a point of maximal multiplicity for g;, the resulting §(9) obviously doesn’t
depend on which choice is made. This is the same formula as considered in §2.7.

Define the local Katz transformation at the point ¢; by

ri(B,9) = (mi(BT ) +6(8,9)) - B+ D ma(a) - [as”].
afHi#£1
The global Katz transformation is defined by

A8, 9) = (k1(8,9). . kn(5,9))
Scholium 4.9. Suppose p is a representation of rank r on 'Y — Qy satisfying
Convention 2.1 that the local monodromy transformations are semisimple. Sup-
pose 3 is a convoluter, a rank one local system on X —J. Assume that 3 satisfies
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Convention 3.1 that x # 1, and that Convention 4.4 holds: xp°(ay) have no
trivial etgenvectors.

Let E € Div(G,,)"™ denote the vector of local monodromy data for p, and define

the defect §(3, ?) as above.
Under these conditions, the middle coconvolution MC;(p) and the middle con-
volution MCg(p) are local systems on Z — Qz =Y — Qy of rank

¥ =71 +06(8,9),

whose local monodromy transformations are semisimple and have local mon-
odromy types given by the Katz transformation

£(5,9).

Proof: We have done the computations for the middle coconvolution in the
previous subsection. The same is true for the middle convolution by Poincaré-
Verdier duality. The change in ranks is formula (4.1) above, which makes the
defect appear in the multiplicity of the new eigenvalue as described after Propo-
sition 4.8. (]

4.6. The Katz morphism on Betti moduli spaces. This construction ex-
tends to giving a morphism on the level of moduli spaces:

Theorem 4.10. Let Mp(P!, Q; ?) denote the Betti moduli space of local systems
on P — Q having semisimple local monodromy transformations corresponding
to ; Suppose (B is a rank one local system on (Z xY) — D. Suppose that
(5, ;) satisfy Conventions 8.1 and 4.4. Then the middle convolution construction
L — MC3(L) gives a morphism of moduli spaces

RN

MCy: Mp(P,Q; 9) — Mp(P*,Q: (8, 9)).

This is sort of obvious, although technically speaking it requires some work:
we should carry out the middle convolution construction in the context of local
systems of modules over a ring. The fact that the H° and H? terms vanish, so
the dimension of H' never jumps, is the basic thing which makes it work. Notice
that our Conventions 3.1 and 4.4 are only conditions on (3, 5, in particular they
don’t require defining open subsets of the moduli spaces.



Middle Convolution 817

This type of morphism between moduli spaces was considered in [35] and other
places. It is clearly related to the theory of representations of the braid group
such as the Burau representation, see [98] [105].

4.7. Involutivity. One of the main properties of Katz’s construction is its in-
volutivity. This implies that it gives an isomorphism of moduli spaces. The
involutivity is basic to the constitution of an algorithm: one can go forward to
see if a local system with transformed local monodromy data should exist, and
if one is found then one can go backward to give back a local system with the
original local monodromy data.

Katz shows associativity of the convolution operator which allows him to de-
duce involutivity [86, 2.9.7]. Later proofs were also given in the algebraic setting
by Volklein, Dettweiler-Reiter, and Crawley-Boevey and Shaw.

Katz’s proof didn’t rely on the Fourier transform interpretation, which nev-
ertheless furnishes a conceptual reason for involutivity: convolution can be in-
terpreted as a composition of two Fourier transform operators using also tensor
products with rank one systems. The Fourier transform is involutive by analogy
with classical real analysis, so its composition two times and also with tensoring
by an invertible rank one system, is involutive with an appropriate change of
convoluter as described below.

It would be interesting to use connections with irregular singularities, and
“wild” harmonic theory, to make this argument precise in the complex geometric
setting. This would involve Bloch-Esnault [13], Sabbah [124] and Szabo [133]. See
also [15] and [67]. Very recently Aker and Szabo have contructed an involutive
Nahm transform for parabolic Higgs bundles [3] which should lead to a complex

analytic version of the Fourier transform construction.

For the middle convolution operation, involutivity can already be seen on the
level of local monodromy data.

Proposition 4.11. Let ¢: X — X be the automorphism which flips the factors
and let B* be the dual local system whose monodromy transformations are the
inverses. Then

N

KB R(B,9) =9,
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Proof: We will be making changes of variables in the sums, so it is con-
venient to have the following formula for the Katz transformation in terms of
gi = Y, mi(a)a] and the defect d := 6(5, 9):

k(8. 9) = (ma(B7Y) + d)[BY] — my (87 [8V 5T + Zmz )[oBY].

Put v :=c¢*6*. In particglar we have yHi = Vo=l AVi = gHi=1 AU — gUi—1
and v = g5t Write ¢ = (d},...,d,) = E\(ﬂ, 5) and let 7’ be the rank,
m’(«) the multiplicities and d’ the defect with respect to 7. One calculates that
d = —d S0 the defects cancel out and at least on the level of ranks we have

—/

k( (7,9 )) =r. We can write

—/

Ri(7, 9 ) = (mi(y" ™) + )] = (mi () [ AT + Z m; (o

= (BB (s + BB 4 B a1

The sum in the last term amounts to looking at g, but translated by AV»~1, in

Zm VeV~ =

(mi(ﬂH"’fl) + d) [IBVZ‘BUi,fl] mZ(BHZ,fl)[ﬂ\/ ﬁTBUZ,fl + Zml aBU 6U1,71]

other words

After some textual cancellation, our full expression becomes

—/

ki(v, 9) = ma(BH BT = my(BT BV BT AV > ma(a)[o] = gi.

This completes the proof. O

Katz has also shown by dlrect calculation that the virtual dimensions of the
moduli spaces for g and /i(ﬁ, ) are the same.

Finally, we state the involutivity of the middle convolution morphism itself.
We have seen the involutivity on the level of local monodromy data, so it makes

sense to look at the composition of the middle convolution morphisms.

Theorem 4.12. The composition

MDR(Pan 5) Mi(?) MDR(P7Qa (ﬁa )) MC(—C> ) MDR(P Qa )

is the identity, if we are in the situation of Theorem 4.10 for both of the mor-
phisms.
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We don’t describe the proof here but refer to Katz [86], Volklein [139], Dettweiler-
Reiter [44], and more recently Crawley-Boevey and Shaw [35].

4.8. Detecting emptiness of the moduli space. One of the main features of
Katz’s construction is that it permits us to detect whether a given moduli space
is empty or not in terms of the next moduli space in the algorithm. In other
words,

Mp(9) =0+ Mp(x(B,9)) =0

assuming Conventions 3.1 and 4.4.

This is specially the case when Mp(k (3, 5)) is not even defined because one of
the divisors in the vector ([, ?) is no longer effective. It is comforting to work
this case out explicitly. Let d = §(3, 5) denote the defect. The multiplicities in
the local divisors k;(8,d, g;) are either the same as in g;, or else they are changed
by adding d. In particular, if d > 0 then we will never get to a noneffective
divisor. Thus we may assume that d < 0. Suppose that r;(3,d, g;) becomes
noneffective. The only multiplicity which changes is m;(3#~1), which becomes

mi (81071 + d.
In particular, we are in the current situation, only if
mi(ﬁHi’_l) +d < 0.

Plugging in the formula for the defect, we have
mi(Byl) +r(n—2) =Y m;(p77) <o,
j=1

and adding r to both sides and simplifying we get

> —my(8h) <.

J#i
This says that the sum for j # i of the ranks of the matrices pﬁ(aj) —lis<r.
Since these matrices generate the action of the group algebra on the vector space
V, under this condition the action cannot be irreducible. So, p? and hence p is

not irreducible. Thus, we have the following lemma.

Lemma 4.13. Suppose that g consists of effective divisors, and at least one of
the divisors in k(3, 9) is not effective. In this case, the representation p cannot
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be irreducible. In the case where g is automatically irreducible, this means that

the moduli space Mp(9) is empty.

4.9. Running Katz’s algorithm (Kostov’s program). Kostov invented the
protocol of applying Katz’s algorithm to the nonrigid case. Suppose ; is a local
monodromy vector. Choose a convoluter ﬂ SO that ()~ is an eigenvalue
of maximal multiplicity for g;. Thus §(3, 9 ) 5(g ) If (9 ) < 0 and if the
pair (3, 9 4) satlsﬁes Conventions 3.1 and 4.4, then we obtaln an isomorphism of
moduli spaces for g and the Katz-transformed vector % (ﬁ, ) The rank strictly
decreases, so we can keep going on in the same way, until we get to r = 1 or
more generally to a case where all of the local monodromy matrices are diagonal;
to an impossibility result; to the problem discussed in the subsequent paragraph
below; or until we get into the range § > 0. If we hit an impossibility result
anywhere along the way, then the original moduli space was empty. If we hit
r = 1 then the original moduli space was a point. If we get into the range § > 0
then according to Kostov we expect that the moduli space should be nonempty,
with a direct construction of some points [91] [92]. Crawley-Boevey and Shaw
[35] gave a different construction covering cases not treated in [91] [92], and prove
in some cases that the moduli space is a complete intersection. We will discuss a

Higgs-bundle version of the direct construction in §6.3 below.

The problem with the previous paragraph is that somewhere along the way,
we might hit a vector E for which every choice of 3 corresponding to maximal
multiplicities, dissatisfies either Convention 3.1 or Convention 4.4. In this case
the algorithm no longer makes sense as we have described it. Apparently it can
be made to work anyway, but this goes beyond the scope of the present discussion
and we refer to the papers of Kostov and Crawley-Boevey. Instead, we will just
point out that it doesn’t happen if the original eigenvalues are sufficiently general.

In Kostov’s notation, a “nongenericity relation” is a subset of the eigenvalues
counted with multiplicities, of the same rank ' € 1,...,r — 1 at each point
@i, such that the product of them all is 1. Any nontrivial sub-local system has
monodromy sub-data which give a nongenericity relation.
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Kostov says that a monodromy data vector ¢ is I-generic if there is no non-
genericity relation of rank = 1. This is the same as saying that there is no
equation aj - --a, = 1 such that a; is an eigenvalue of g;.

Lemma 4.14. Suppose g is 1-generic, and suppose (3 is a convoluter such that
each (B7)~! is an eigenvalue of g;. Then the pair (3, 9) satisfies Conventions
3.1 and 4.4 and we get a middle convolution isomorphism between moduli spaces.

Proof: 1t is trivial that the pair satisfies the conditions. In order to get
an isomorphism we also need to have the same conditions for the inverse pair
(C*ﬂ*,;(ﬁ, 3)) Convention 3.1 for ¢** is equivalent to Convention 3.1 for 3.
For Convention 4.4 note that the eigenvalues of x;(/3, 5) are either p = Y% a for
eigenvalues a of g; with f%ia # 1, or else ¢ = 3%, Convention 4.4 for the inverse
pair thus requires for these ¢

() (s g # 1.
Recalling that (c*5*)T (c*p*)Hi = g1:=13Vi-=1 the condition becomes

gL glia £ 1, for Bia # 1,

FrigT gl A1
The first is verified by tautology and the second is Convention 3.1. U

In Katz’s original rigid case, a nongenericity relation among eigenvalues of
highest multiplicity automatically causes the local system to become reducible,
and meeting such a nongenericity relation anywhere along the way rules out
existence of any irreducible rigid local system. I would like to thank the referee
for pointing out the following very interesting example, which shows that there
can be a nongenericity relation among other eigenvalues, even for an irreducible
rigid local system. The example consists of a local system of rank 3 with 3 singular
points having local monodromy eigenvalues (a, b, ¢), (u,v,w), (g, h, h). It is rigid,
and exists even with a nongenericity relation of the form aug = 1. If there is
no other nongenericity relation then the local system cannot be reducible (by
looking at the block of size 2). One can construct this system by convolution of
a hypergeometric system (a’,b'), (u/,v'), (¢, ') with a convoluter having g =
BV = z,y,orz = ()71 (i = 1,2, 0r3). As an exercise in applying the Katz
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transformation, the convoluted system is

dzylz! wyztz! g2z ly!
Vaeytz=t |, | yz=tz7t |, z
x y z
Thus aug = d'zy 'z w/ye 27 g za7ly=™! = d'v'g’x~ 'y~ 127! can be equal to 1

by an appropriate choice of x,y, z.

For nonrigid local systems the situation is even less clear and we will be happy
with the following result.

Proposition 4.15. Fiz Kostov’s polymultiplicity vector (PMV) [89] etc. contain-
ing the multiplicities of eigenvalues in the divisors g;. The variety of all possible
5 with this polymultiplicity vector, is a disjoint union of d connected open subsets
of tori, where d is the pgcd of all the multiplicities in ; If 5 is a sufficiently
general point in any of these connected components, then we can run Katz’s algo-
rithm until we hit either an empty moduli space for the reason discussed in §4.8,
or the case of all diagonal local monodromy (i.e. rank one system tensored with
C"), or the case 6 > 0 which will be discussed in §6.3 below. The monodromy vec-
tors encountered along the way are always themselves general points, in particular

they are 1-generic.

Proof: Invertibility of the transformation on local monodromy data (Lemma
4.11) plus its continuity with respect to the eigenvalue parameters if the PMV is
fixed, imply that for ; general in its connected component, and 3 general in the
variety of possible choices given that the 3¢ come from 5 (that is, general among
the possible choices of 3"7), the resulting E(ﬁ , ;) is again general in its connected
component. Thus, formally applying a sequence of Katz transformations as for
the algorithm, we encounter only general local monodromy vectors.

If the PMYV is not simple, that is if the pged of all the multiplicities is d > 2,
then there can exist a nongenericity relation even for general ? However, the
nongenericity relation is always of rank at least r/d, and the case d = r is the
degenerate one with only diagonal matrices. Thus, a general 5 in any connected
component is always 1-generic, except in the degenerate diagonal case. ([

In case of a non-simple PMV, the variety in the previous proposition has some
components where there is a nongenericity relation. If the moduli space has
dimension 2, when we get to 6 = 0 and o = 0 Kostov shows in [90] that all local
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systems are reducible for the nongeneric components. The case of dimension 2 is
somewhat special and is not covered by our construction in §6.3.

Roberts studies the geographical implications of Katz’s algorithm in the rigid
case [123], and it would be good to extend his results to the nonrigid case.

5. MIDDLE CONVOLUTION—THE DE RHAM VERSION

The de Rham version involves replacing local systems by logarithmic connec-
tions [116] [13] [75]. Middle convolution in the “Fuchsian” case of connections
on the trivial bundle has been extensively considered [89] etc., [63] [64] [45] [46]
[55] [33]. In our treatment we don’t distinguish between trivial and nontrivial
underlying bundles, so in a certain sense we consider less information than these
references, on the other hand our approach places things in an abstract setting.

In order to use the logarithmic de Rham complex, it is essential to have a
morphism between smooth projective varieties with normal crossings divisors.
Thus we use the blowing-up X with its divisor J C X described in §3. The
second projection gives a map £ : (X,J) — (Z,Q) in good position, meaning
that the inverse image of @ is the divisor U + V C J which has normal crossings.

For a vector bundle with logarithmic connection (E,V) on (Y,Qy) and a de
Rham convoluter 3 € H°(X, Q% (log J)), define a vector bundle with logarithmic
connection on X:

(F,VFp):=n"(FE,V)® (Ox,d+ f).

The divisor HT := Hy + ...+ H, + T C J is transverse to the fibers of £. In
a relative version of the discussion of §, 2.3 we can define the middle relative de
Rham complex with respect to HT, by the exact sequence

(5.1) 0—- MDR(X/Z,F;HT) — DR(X/Y,F) — .7-"10{T/Z[—1] — 0.
For z € Z, denote by X, the fiber of £ over z, and let
MDR(X,,F;HT,) := MDR(X/Z,F;HT)|x,

with similar notation for the full de Rham complex. Over points z € Z — @ this
is the same thing as the middle de Rham complex for (X,, HT,) = (Y, Q + {z})
considered in §2.3. In order to have a good base-change theory, we impose the
following.
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Convention 5.1. For every z € Z, the degree 0 and 2 hypercohomology groups
of the restriction MDR(X, F; HT,) vanish.

This condition implies that R'&, M DR(X/Z, F; HT) is locally free over Z with
fiber over a point z equal to H'MDR(X,, F; HT,). It has a logarithmic Gauss-
Manin connection denoted by Vs mid, and we define the de Rham middle con-

volution as
MCy(E,V) = (RY.MDR(X/Z,F; HT),V G mid),
a vector bundle with logarithmic connection on (Z,Qz).

The restriction of the quotient term in (5.1) to a point z € Z is just a skyscraper
sheaf placed in cohomological degree 1, so it has no H? or H2. The long exact
sequence for the higher derived direct image of the exact sequence (5.1) therefore
gives the following.

Lemma 5.2. Suppose that Convention 5.1 holds. Then the same vanishing holds
for the full de Rham compler, the R'Y&,DR(X/Z,F) is again a vector bundle
compatible with base change, and we have a short exact sequence

(5.2) 0= R'f.MDR(X/Z, F; HT) — R' f.DR(X/Z, F) — R’ f.(Fpy7,7) — 0.

This short exact sequence is compatible with the Gauss-Manin connections V garmid
on the left and Vs in the middle.

O

The classical definition of the Gauss-Manin connection is as the connecting
map for the short exact sequence of complexes

(5.3) 0 — DR(X/Z,F)® Q% (logQ)[-1] — DR(X,F) — DR(X/Z,F) — 0.

When ¢ € @ is a singular point, the de Rham complex DR(X, F'), which by
convention means the logarithmic de Rham complex with respect to J, can be
restricted to a complex DR(X, F')|x, on the fiber X; C J. We obtain a restriction
of (5.3) to X,. Note that Q}(log @), = C and the residue of Vg at g is the

endomorphism
H!'DR(X,, F) — H*(DR(X,, F) ®c Qy(log Q),[-1]) = H* DR(X,, F)

induced by the connecting map for the restriction of (5.3).
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The expression as a connecting map is not very convenient for calculating the
eigenvalues. The calculation was done by Katz in [84] (thanks to H. Esnault for
pointing out this reference). Without going through all of the details, here is the
conclusion. In our case, ¢ = ¢; for some 7 = 1,...,n, and the singular fiber X,
consists of two components X, = U; U V; meeting in a point w; := U; N V;. We
have a short exact sequence

(54) 0 — DR(U;, Fy,(—w;)) — DR(X,, Fx,) — DR(Vi, Fy;) — 0,

Note that HT meets X in a collection of smooth points distinct from the crossing
point w;. Thus the exact sequence defining the middle de Rham complex is
compatible with (5.4), and we have the same short exact sequence for middle de
Rham complexes

(5.5)

0 — MDR(U;, Fy,(—w;), HTy,) — MDR(X,, Fx,, HTx,) — MDR(V;, Fy,, HTy,) — 0.

We refine Convention 5.1 to apply to each of the components:
Convention 5.3. For j = 0,2 we require that

H/ M DR(U;, Fy,(—w;), HTy,) = 0, H MDR(V;, Fy., HTy,) = 0.

Assuming Convention 3.2, this condition for all the ¢; implies Convention 5.1.
For points z € Z — ), Lemma 2.8 provides the required vanishing.

Proposition 5.4. Assuming Convention 5.3, we get a short exact sequence from
(5.5) on the level of H'. The residues of V along U; and V; give endomorphisms
of Fy, and Fy,. These fit into a diagram

0 —H'MDR(U;, Fy,(—w;)) — H'MDR(X,, Fx,)— H'MDR(V;, Fy,) — 0
| | !
0 —H'MDR(U;, Fy,(—w;)) - H'MDR(X,, Fx,) — H'MDR(V;, Fy,) — 0
where the endomorphism of HIDR(Xq, Fx,) is the residue of the middle Gauss-

Manin connection Vagnrmia ot ¢ = q;. For brevity the notations H1y, etc. have
been omitted.

In our case, the endomorphisms of the left and right terms will be semisimple.
This will imply that the residue of Vgasmiq is semisimple, as long as we know
that the endomorphisms on the left and right don’t have any common eigenvalues.
We can state this as the following lemma.
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Lemma 5.5. Let 1y, and )y, be the endomorphisms of H' M DR(U;, Fy, (—w;), HTy,)
and HIMDR(VZ-,FW,HTW) respectively, determined by the endomorphisms of
Fy, and Fy, given by the residues of V along U; and V;. Suppose that these en-
domorphisms are semisimple, and don’t have any common eigenvalues. Then the

residue of Vaym,mid ot ¢; s semisimple and isomorphic to Yy, © Vy;,.

O

On U; and V; we have a logarithmic structure also at the point w;. However,
this point is not included in the “middle” part which is just HTy, or HTy;.

We now turn to the fact that F' is the pullback of (E, V), tensored with (Ox, d+
(). From the above discussion, the main problem is to calculate the restrictions

77*(E7V)’Uia n*(E7v)|Vz’ ﬁ’Ui7 /B’X/L

We can define the restriction of a logarithmic one-form G to V; as follows. It
depends on the pullback of the coordinate function ¢ from Z (where t(g;) = 0).
Set b := res((3,V;), then g — b% is a logarithmic form having zero residue along
V;, thus it is in the kernel of the residue map on logarithmic forms which maps
by restriction to Q%,l (log). Define

d
A

It is a logarithmic form on V; whose residues along H; NV; are just pHi | for j # .
This determines the restriction, and it has residue at the intersection point

res(ly;,, wi) = =y 8.
J#i
The similarly-defined restriction (3 |§]z is a logarithmic form on U; whose residues
along H; N U; and T N U; are respectively i and 7, so
res(Bt,, wi) = =7 — 57

The relation g7 + Y, 8% = 0 gives ves(B[4,, Ui N Vi) + res(Bly,, Ui NVi) = 0,
characteristic of the fact that these restrictions correspond to a single logarithmic
form on X, =U; UV;.

Now restrict (F,Vg) to V;. Since n|y, is the identity, n*(E, V)|y, = (E, V).
The restriction of F' is therefore
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The residual endomorphism induced by V is just scalar multiplication by Y.

Next look at the restriction of (F,Vp) to U;. It clearly depends only on the
local form of (E,V) near the point g;. We may even localize in an analytic
neighborhood, and so assume that E has the form of a trivial bundle O" and the
connection is given by V = d+ A%. We use the notation y for our coordinate on
Y at the point ¢; (which should be the same as ¢t under Y 2 Z), also considered
as a function on Z x Y or X.

Now ¢ and y give coordinates on Z x Y. The ratio u = y/t is a coordinate
on X, in a neighborhood of the point H; N U; along U;. On U; it corresponds
to the linear coordinate which takes the values u(U; N H;) = 0, w(U; NT) =1,
uw(U; N'V;) = 0.

The relation %y = %“ + % allows us to calculate the restriction
dy. du
Dl =

The residue of the pullback of ‘Z—y along Uj; is equal to 1. Using (E,V) = (0", d+
Ad—;’) we get that the restriction of the pullback to U; is

. . du
(77 E.n V+ﬁ)|Uz = ( TUivd"i_A; +ﬁ|§11)7
and the residue of n*V + 3 along U; is A 4+ Vi which is an endomorphism of
this bundle preserving the logarithmic connection. Here, in canonical terms O"
corresponds to the fiber F,, and A corresponds to the residue of V at g;.

Apply Lemma 5.5 to calculate the residue of Vgasmia. By Convention 2.2,
A is semisimple with eigenvalues never differing by a nonzero integer. Invoking
either Corollary 2.8 using the fact that the residue of ﬁ\a at Ty, is a nonzero
scalar (Convention 3.2), or just by direct computation, we have

, du
H'DR(Op,(~U; N V)" ,d+ A— +6],) =0, i=0,2.
u K3

A direct computation using the fact that QlUl (log)(—w;) = Oy, gives

H' DR(Ou,(~Us N Vi)' d+ A 4 ) 2 HO(@, (log) (—wi) = Op)7 = €,

and the action of the residue of n*V + 3 is given by the matrix A 4+ Y.

The residue is nontrivial on the diagonal (Convention 3.2) so the middle condi-
tion at U;NT has no effect, and the middle condition at the point U; N H; removes
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the zero eigenspace of the residue there, that is to say the zero eigenspace of the
matrix A + g5, Introduce the following notation: if M is a semisimple matrix
then MT is the same endomorphism but only of the sum of eigenspaces different
from zero. Thus the contribution from U to the residue of Vs miq on the middle

direct image is
res(Vanrmia)v = (A + 7)1 4 (8% — ).
Recall that gV = g + g7 + Vi, giving
res(Vanmia)u = (A + 7)1+ g% + g7

The contribution from V is the cohomology of V 4 \’{/1, with middle condition
at the points H; N'V; for j # ¢ and no middle condition at w; = U; N'V;. This
contribution occurs with a single eigenvalue which is the residue of (3, in our
notation $Yi. Let d; denote the dimension of this cohomology group and 1% is
the identity matrix of rank d;. If Lemma 5.5 can be applied then we conclude
that the full residue of the Gauss-Manin connection on the middle convolution is

given by
(5.6) res(Vanrmia) = |(A+ 871+ 8% 4 87| @ [81%] .

In order to be able to apply Lemma 5.5 we need to know that the eigenvalues
of the two pieces don’t coincide. We also need something for the first sentence in
Corollary 2.8. The following condition is analogous to Convention 4.4 from the
Betti case.

Convention 5.6. For any eigenvalue v of the residue A =res(V,q;), we have

a+ T+ 80 ¢Z, a+p" ¢z {0}

The first condition is equivalent to saying o — ki i ¢ 7., and if each — 3
is an eigenvalue of the residue at g; then this condition would be a consequence
of 1-genericity as in 4.14. The second condition will hold whenever we need to
choose — B3 from among the eigenvalues of res(V, ¢;), by Convention 2.2.

Lemma 5.7. Suppose Conventions 2.2, 3.2 and 5.6 hold. Then the eigenvalues
of (A+ BN + 8ve 4 BT are distinct from 3%+, so Lemma 5.5 can be applied as
above (5.6) with
di = (n—2)r = > m;(—p").
J#i
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Proof: The eigenvalues of (A+37)1+3vi 4+ 87 are of the form a+pHi +37 +3%i
for a eigenvalues of A. Under Convention 5.6 these are different from 3%:. For
the dimension of the piece coming from V;, note that

res(V + B}, wi) = A+ res(Bl},,wi) = A=Y pHi = A+ pHi 4 g7
J#i
Convention 5.6 says that the eigenvalues here are never integers, also the residues
at points of Hy, are never nonzero integers. Thus Corollary 2.8 applies and we
can calculate the dimension d; by using the Euler characteristic which gives the
formula as stated. The terms in the sum over ¢ # j come from the middle
conditions at the points H; N V;; there is no middle condition at the remaining
point w;. O

As in §2.5 and §4.5 above, let ; = (g1,...,9n) denote the residual data for
(E,V) with g; € Div(A!) effective divisors representing the multiplicity vectors
of the eigenvalues. Asking that the residues lie in conjugacy classes c(g;) insures
Convention 2.2 automatically, and Conventions 3.2 and 5.6 are conditions only
on the pair (4, ?) The result of Lemma 5.5 applied as in £5.6) says exactly that

the vector of residual data for Vgasmiq is given by ;(ﬂ, 9). We can sum up as
follows.

Scholium 5.8. Suppose (E,V) is a logarithmic connection on (Y,Qy) with
semisimple residues (Convention 2.2) corresponding to a vector 5 € Div(AhHn,
and suppose [3 is a de Rham convoluter (§3.2). Suppose that Convention 3.2)
that BT & 7, and Convention 5.6 that o + i + 81 ¢ 7 and o+ pHi ¢ 7. — {0}
for any eigenvalue a of res(V, q;). These are conditions on (3, ;) only. Then the
de Rham middle convolution M Cg(E, V) is a logarithmic connection on (Z,Qz)
with semisimple residues whose vector of residual data is given by the Katz trans-
formation 2(6, 5)

Theorem 5.9. Suppose Q C P! is a set of n points, 9§ € Div(A')" is a vector of
semisimple residual data, and 3 is a de Rham convoluter. Suppose Conventions
3.2 and 5.6 hold. Then middle convolution induces an isomorphism

MCB : MDR(IP)I,Q; g) i MDR(P17Q;E\(ﬂ7 g)'

This isomorphism is involutive like in §4.7 (but with —c*[ instead of ¢*(3*) and
is compatible with the isomorphism of Theorem 4.10 via the Riemann-Hilbert

correspondence [45, Theorem 1.2].
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6. HARMONIC BUNDLES AND PARABOLIC STRUCTURES

There is a notion of parabolic bundle on Z with parabolic structures at the g;.
We don’t repeat the definition here. These will be called “parabolic bundles” for
short. If F is a parabolic bundle then for each ¢; and each a € R we have an asso-
ciated graded vector space Grq,q, (E) which is finite-dimensional. Multiplication
by a local coordinate at g; gives an isomorphism

Gra,qz‘(E) = GTaJrl,qz'(E)'
Define the residue of E at p; to be the associated-graded direct sum
res(Big) = @) Graa(B)
0<a<1
For a fixed A € C there is a notion of logarithmic A-connection V on a parabolic

bundle E. The logarithmic structure is with respect to the divisor Q@ = q1+...+
gn- For any ag, ..., ay, it induces a A-connection

V : EOq,...,Oén - EOq,...,Oén ® QlZ(log Q)

With the canonical isomorphism le(log Q)¢ = C, a A-connection on the para-
bolic bundle F induces an endomorphism called the residue

res(V;q;) : res(F; q;) — res(E; q;).

The residue of the pair (E, V) at a point g; is defined as the pair of an S'-graded
vector space with endomorphism

res(E, V; g;) := (res(E; ¢;),res(V; ;) -

When necessary, we introduce an index to denote the piece res(V; ¢;), acting on
Gra,q (E) C res(E; ;).

If FF C FE is a parabolic subbundle compatible with V then we can consider
its parabolic degree, and the parabolic slope is the parabolic degree divided by the
rank. We say that (F, V) is stable (resp. semistable) if for any strict parabolic
subbundle compatible with V, the parabolic slope of F' is strictly less than (resp.
less than or equal to) that of E.

Given a parabolic bundle F, define its parabolic type at q; to be the divisor on
Sl
type(E, q;) := Z (dim Graq(E)) - [a].

0<ax<1
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This follows the discussion in §4.5 with L. = S*.

Up to isomorphism, the residue at ¢; of a parabolic logarithmic A-connection
res(E, V; ¢;) is classified by specifying its type > go[a] and for each «, specifying
the Jordan normal form of an endomorphism of a vector space of dimension g,.

We say that the residues of (F, V) are semisimple if the Jordan normal forms
are diagonalizable. This means that on each Gr,gq the action of res(V;¢;)q is
semisimple or diagonalizable, so it corresponds to a divisor on A'. Altogether,
when the residues are semisimple, the isomorphism class of the residue of (E, V)
at ¢; is determined by a divisor of total degree r on S x Al

Recall that we have a notion of tame harmonic bundle on Z — (). A harmonic
bundle consists of a flat connection, and an equivariant harmonic map. The
tameness condition means that locally near the singularities, the the flat sections
of the connection on sectors have polynomial growth with respect to the harmonic
metric. Measuring the growth rate of sections leads to parabolic structures. The
flat connection decomposes as

D=D+D"=0+0)+(0+0)

where 0 + 0 is a unitary connection, § 4+ 6 antipreserves the metric, and @ is
holomorphic. Fix A € C which allows us to define a differential A-connection

Dy:=\D' +D".

The (0, 1) piece, which has contributions from both terms AD" and D", is a usual
holomorphic structure giving rise to a holomorphic vector bundle E. The (1,0)
piece is a holomorphic A-connection on FE.

Measuring the growth rate of sections in a holomorphic frame, leads to an
extension of E as a parabolic bundle over Z with parabolic structure along @),
again denoted E. The connection V = (Dy)%? is a logarithmic A-connection
on the parabolic bundle E. The parabolic logarithmic A-connection (E,V) is
polystable, in other words a direct sum of stable objects of the same slope.

Conversely, given a parabolic logarithmic A-connection (E, V), if it is polystable
then there exists an essentially unique structure of harmonic bundle given by a
harmonic metric on E over X — ) with the appropriate growth rates determined
by the parabolic structure. The metric connection is unique and the metric is
unique up to a positive real scalar on each stable piece. The Higgs case is A = 0.
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In keeping with Convention 2.1, we would like to insure that the monodromy
transformations are semisimple. We furthermore assume that the residues of
@ vanish. This amounts to restricting to representations where the local mon-
odromy eigenvalues are in S' C G,, together with trivial filtered local system

structures at the singularities.

Convention 6.1. The residue of the Higgs field 6 on the associated-graded of the
parabolic bundle Grq q,(E) at any point g; € Q is equal to zero.

Lemma 6.2. If (E,0) is a polystable parabolic Higgs bundle of degree zero satis-
fying Convention 6.1 then the monodromy transformations of the corresponding
local system are semisimple, with eigenvalues in S* corresponding to e*™< for a
the parabolic weights.

Proof: This follows from the local considerations shown in [129]. O

The moduli space of parabolic logarithmic A-connections can be constructed,
see many references on parabolic bundles included in the bibliography below.
This moduli space becomes isomorphic (as a real analytic space possibly with
singularities) to a space of harmonic bundles which can be constructed as in
Hitchin’s original case [70], see also Fujiki [54]. As A varies we get a family over the
affine line, which is the nonabelian Hodge filtration on the moduli space. Glueing
with the complex conjugate we get the twistor space for Hitchin’s hyperkahler
structure [70] [54]. In our case of an open curve, some further work is needed, see
[114] for example. We should deal with the transformation of residual types which
occurs when we change A\ [129], a situation which appears to reflect some kind
of weight-two phenomenon corresponding to the punctures. In the case of quasi-
unipotent monodromy we should be able to deal with the problem by looking at
local systems with unipotent monodromy on a DM-curve. This general moduli
problem will not be considered any more here, but constitutes a good source of
further questions: first and foremost we would like to have Katz isomorphisms
between these moduli spaces coming from a parabolic middle convolution.

6.1. Cyclotomic harmonic bundles. Our construction of Higgs bundles will
be based on a trick to insure stability. Recall that C* acts on the space of
parabolic Higgs bundles by t : (E,0) — (E,tf). If we assume that the residue
of 6 is unipotent (or even equal to zero if we want to keep with Convention 2.1)
then this action preserves the residue of the parabolic structure and 6, so by [129]
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it preserves the local type of monodromy transformations of the corresponding
local system.

Recall that a complex variation of Hodge structure is a harmonic bundle which
is a fixed point for the full action of C* or equivalently for the action of S™.
A variant is to look at the action of a finite cyclic subgroup of roots of unity
pm C C*. Recall [70] [30] that the action of S preserves the harmonic metric
structure. A harmonic bundle which is a fixed point of the action of p,, will
be called a cyclotomic harmonic bundle, where m > 2 is considered as fixed for

now—Ilater we can say “m-cyclotomic” if we need to specify m.

When we say that (F,0) is a fixed point this means that it is provided with
an additional structure of an action of u,, on E such that for any u € p,, and
e € E we have (uf)(ue) = u(fe).

The structure of a cyclotomic harmonic bundle is very similar to the structure
of a complex variation of Hodge structure. The group of characters of p,, is
canonically isomorphic to Z/mZ because we have defined p,, as coming from a
privileged embedding p,,, C C*. The action of p,, on E provides a decomposition

E= P

pEZ /ML

according to characters

and the formula (uf)(ue) = u(fe) then says
0: EP — EPT 20 (log Q).

The only difference with the case of variations of Hodge structure is that p+1 is
taken in the quotient group Z/mZ so 6 includes a piece of the form

6: E™ — E'®QL(logQ).

Thus, 6 is no longer required to be a nilpotent transformation. In the parabolic
case, the decomposition is compatible with the parabolic structure.

The action of j,, C S' preserves the differential operators of the harmonic
bundle, so by averaging we can always choose a p,,-invariant harmonic metric.
The decomposition of F is then orthogonal and the pieces EP are preserved by the
metric connection & + d. The complex conjugate 6 goes from EP to A%1(EP~1).
Thus, in all respects this looks like a complex variation of Hodge structure ex-
cept that the Hodge decomposition is viewed circularly and the Kodaira-Spencer
components can go all the way around the circle.
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Hitchin in [72] gave a construction of a subspace of Higgs bundles which corre-
sponded to an analogue of Teichmiiller space. In Hitchin’s construction, a basic
variation of Hodge structure is modified by adding a new term in the Higgs field.
In this sense, the notion of cyclotomic Higgs field is a variant on [72]. Hitchin’s
Teichmiiller Higgs bundles can sometimes be cyclotomic: in the notation of [72]
if ay, # 0 but a1 = ... = ae = 0 then the Higgs field written down there is
cyclotomic.

The correspondence between Higgs bundles and local systems is compatible
with the action of u,,, and this helps with the stability condition. Suppose
(E,0) is an m-cyclotomic Higgs bundle, that is a bundle with action of p,, (or
equivalently a decomposition as above) compatible with the action on 6. We say
that it is cyclotomically semistable (resp. cyclotomically stable) if for any fip,-
invariant sub-Higgs bundle, the slope is smaller (resp. strictly smaller) than the
slope of E.

Proposition 6.3. Suppose (E,0) is a cyclotomically stable parabolic cyclotomic
Higgs bundle of parabolic degree zero. Then (E,0) is polystable as a regular par-
abolic Higgs bundle, and it has a pm,-equivariant harmonic metric with growth
rates corresponding to the parabolic structure.

Proof: The (-subbundle is p,,-invariant, so cyclotomic semistability implies
semistability. The socle is p,-invariant, so cyclotomic polystability implies polysta-
bility. Then [128], Theorem 1 which took into account the possibility of having
the action of a group such as p,,, provides an invariant harmonic metric. The
growth rates are governed by the choice of initial metric, as discussed in [128] §10
and [129]. O

It is interesting to note that the cyclotomic Higgs bundles play a special role
in the compactification of the de Rham moduli space. Recall that the compact-
ification puts at infinity a divisor obtained by dividing Mp;g¢s — {6 nilpotent }
by the action of C*. If we take the quotient in the sense of stacks, then the
compactification becomes a DM stack and the stacky points with automorphism
group U, are exactly the cyclotomic Higgs bundles.

6.2. The maximal case. Traditionally one of the easiest cases is when the EP
are line bundles. For this, take m = r equal to the rank.
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Lemma 6.4. Suppose E = @ EP is an r-cyclotomic parabolic Higgs bundle of
rank v with 0 not nilpotent. This means that the EP are parabolic line bundles and
every component 6P : EP — EPtl le is nonzero. Then (E,0) is cyclotomically

stable, hence polystable as an ordinary parabolic Higgs bundle.

Proof: Non-nilpotence of 6 requires that all the components be nonzero, in
particular all of the bundles EP are nonzero. Since their number is equal to the
rank, they must be line bundles. Suppose F' C E is a p,-invariant saturated
subbundle. It decomposes as a direct sum of FP C EP. If any one of the FP is
nonzero then all of them are nonzero because every component 6” is nonzero and
they go around in a circle. If F' is saturated we get FP = EP. Thus, there are
no pr-invariant subbundles of rank strictly between 0 and r, so E is vacuously
cyclotomically stable. By Proposition 6.3, (E,0) is polystable in the ordinary
sense. O

The structure of a non-nilpotent r-cyclotomic parabolic Higgs bundle is par-
ticularly easy to understand. It consists of a collection of parabolic line bundles
E',... E", together with morphisms of parabolic bundles

or . B? — EPT @ QL (log Q).

Convention 6.1 says that we want res(6?,q;) to induce the zero map on the
associated-graded G7,4, for any o and any singular point ¢; € Q. In view of
the fact that we are dealing with parabolic line bundles, there is only one weight
on each side, and the residue map is automatically zero unless the two weights
are the same. This will appear in our criterion below.

6.3. Explicit construction. A parabolic line bundle on (Y, Q) is always of the
form

E = Oy(k)(a1q1 + ...+ anqn)
with k € Z and a; € [0,1). Written in this way, the vector [k;aq,...,a,] is
uniquely determined and uniquely determines E, and we may use it as notation.
Suppose we are given two parabolic line bundles E = [k;aq,...,a,] and E' =

[K'5dy,...,a)]. A map from E to E" will consist of a holomorphic map

f:0y(k) — Oy (K),

such that if a; > a} then f(g;) = 0. In this description we use the fact that
a;,a, € [0,1), in particular |a; — ai| < 1 always.
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In order to have a map which furthermore induces the zero map on associated
graded spaces at each ¢;,

Graq(f) =0:Graq(E) — Groyg, (E),

we should require that f(g;) = 0 also when a; = a,. Thus, the description of
these maps (which we call zero-residue maps) is that f(¢;) = 0 when a; > a}.

Finally, we get to a description of a map
f:FE—E o0 (logQ)

inducing zero on the residues as required by Convention 6.1. Recall that Q},(log Q) =
Oy (n —2). Thus, such a map f is the same thing as a holomorphic section

fel(Y,Op(K —k+n—2)
such that f(¢;) = 0 whenever a; > a}, or we can also say
fel(Y,0y(K —k+n—2—#{i, a; > al})).
We get the following lemma.

Lemma 6.5. Suppose E = [k;a1,...,a,] and E' = [K';a),...,a)] are parabolic

line bundles on (Y, Q). Then there exists a nontrivial zero-residue map
i E—E &0 (ogQ)
if and only if
#i,a;>a,} <k —k+n-—2.
If equality holds then the map f has no zeroes other than as required for the

residues, and is unique up to a scalar constant. If the inequality is strict then f
has other zeroes.

O

Suppose we are given a vector of divisors 5 = (g1,...,9n) € Div(S')n, with
deg(g;) = r. Choose the standard section of R — R/Z to identify S' =2 [0,1).
Write

gi= Y mi(a)al.

a€l0,1)

A sequence a;1,a;2,...,a;, € [0,1) is called an arrangement of g; if each «
occurs in the sequence with multiplicity m;(«). This is to say that the sequence
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of exponentials of the a; ; is a possible sequence of eigenvalues along the diagonal,
for a matrix in the conjugacy class C(g;).

An arrangement is called good if the number of indices t with a;; > a; 41 is
minimal. Let T'(g;) be the minimal number of such indices, thus the arrangement
is good if

#t, aie > aig1} = T(g:)-
Here, and always below, the indices are taken modulo 7, for example if ¢ = r then
ai¢+1 = a;,1. Enumerate the indices ¢ as above, in increasing order t; < ... < t,,.
We can thus write our arrangement as a “sawtooth”:

ai1 < aj2 <...<at
Wity = Aty +1
Aiti4+1 < oo < gty

Aty 2 Ajgotl

Qit, = Qit,+1
Qi1 < o oo < Qi

with a;, < a;1 unless t, happens to be r. Now let
Gij = [az’,th] + [ai,tj+2] + ...+ [ai,tﬁlfﬂ + [ai,tHl],

with ¢;41 := t; when j = p and the terms in g;, adapted appropriately. These
are reduced effective divisors, that is each eigenvalue occurs with multiplicity at
most 1, because the sequences are strictly increasing in between the ¢;. And we
have a decomposition

9 = gig1+ ...+ Gip-
Notice that

tj+1 = deg(gi;) +t; (modulor).

Conversely, given a pair of p-uples written (t1,...,%p;6i1,--.,0ip) With ¢; an
increasing sequence in 1,...,r and the g;; giving a decomposition of g; into
reduced effective divisors, we get an arrangement. The arrangement is good if
p is minimal and equal to the maximal multiplicity in g;. There is a one-to-one
correspondence between such notations and arrangements for g;.

Lemma 6.6. The minimal number of t’s is equal to the mazimum multiplicity
in the divisor g;,
T(gi) = mgxmi(oz).
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Proof: It is easy to see that for any a we have T'(g;) > m;(a). On the other
hand, we can clearly choose a decomposition into reduced effective divisors g; =
gi1+...+gip with p = max, m;(«). Thus the minimal p is equal to the maximum
of the m;(«). O

Now suppose that for each ¢ = 1,...,g we have chosen a good arrangement
a;; for g;. Let
iy s tipi3 Gists -+ Gigp;)
be the notation established above with p; = T'(g;). For any sequence ki, ..., k,
define parabolic line bundles

Ej = [k}j; Al,5y- -, an,j].

In order to construct a cyclotomic Higgs bundle £ = @;:1 EJ, we investigate
the possible choice of k1, ..., k, such that there are nontrivial zero-residue maps

6 B — B @0l (log Q)
including the case j = 7,5 +1 = 1. Let 7; denote the cardinality
= #{i, aij > aij}.
For any sequence of k; put
zj i=kjp1 — (15 +k;j +2—n).

Lemma 6.7. With the above notations, there exist zero-residue maps 09 if and

only if zj >0 for j =1,...,r. In this case, z; is the number of extra zeros of 67
beyond what are required by the zero-residue condition. The z; are subject to the
relation

(6.1) 214+ ...+ 2 =0(9),

so there exists a possible choice of z; or equivalently of k; if and only if 6(9) > 0.

Proof: The first statements come from Lemma 6.5. From the definition of
T'(gi) and 7; we get

ZTJ = ZT(Qi)-
j=1 i=1
Thus
Atz =rn-2) =Y T(g) = 5(9).
=1
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O

Given z; > 0 subject to the relation 2 + ...+ 2, = 5(?), and given ki, we
obtain the remaining ks, ...k, from the formula for z;. Construct the parabolic
bundles E7 and nontrivial zero-residue maps 6. This yields an r-cyclotomic
Higgs bundle (E,0).

6.4. The degree. As pointed out in Lemma 6.4, the (F,0) constructed this
way is cyclotomically stable, hence polystable as a Higgs bundle. To finish the
construction of a local system we need to insure that its parabolic degree vanishes.

The parabolic degree of EJ = [kj; a1 ,...,an ] is
degP(E9) =k +ay;+ ...+ an;.

Adding up gives the parabolic degree of E:

r r
degpar(E) = Z k‘j + Z Qi 5 = Z kj + Z mi(a)a.
Jj=1 %,J Jj=1 1,0
By induction,
kj-‘rl :]{71—I—Zl—i—...—l—Zj—I—Tl—i-...—i-Tj—i-j(Q—n).
We have

deg™ (E) = P+ kir + Y (r—j)(z +7;)
j=1

where
P .= Zmi(a)oﬁ— Zj(r —7)(2—n)
1,0 J=1

represents the piece which doesn’t depend on the choice of arrangements or of
k;. The condition Det(9) =1 says that P € Z.

Recall that 7; is the number of ¢ such that a;; > a; ;1. This is the same
as the number of i such that j € {t;1,...,tp,}. The terms involving 7; can be
recast as a sum over the elements ¢; ;. We conclude the following formula for the

parabolic degree of the Higgs bundle we have constructed:

(6.2) degP® (E) = P + kir + Z ZZ:(T —tij)+ Z(T‘ —J)zj.
j=1

i=1 j=1
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Theorem 6.8. Suppose given a vector of divisors 9 € Div(SY)™ such that
Det(9) = 1. Suppose that the defect is strictly positive,

rin—2) =3 T(g) = 5(9) > 0.

Fiz any collection of good arrangements a; j for 9. Then it is possible to choose

the k; subject to the constraint
kj—i—l Z’Tj-l-kj—f—Q—n,

such that degP®(E) = 0.

Proof: Fixing the collection of good arrangements, the terms in (6.2) involving
t;; are fixed. Because of the strictly positive defect, there is a nontrivial choice
of z1,...,%j. Geometrically this means that we have a choice as to how many
zeros 0; can have.

Put z. := (5(3) — 1 and z; = 0 for all but one value of j = j” in which case
zy = 1. Make the convention here that if ;' = r then z, := §(9) instead. With
this choice we get

T

S r—jz=r—j,

j=1

and by choosing 7' appropriately this can take on any value between 0 and r — 1.
In particular, modulo 7 it can take on all values. By adjusting ki appropriately,

degP®(F) can take on any integer value. O

Theorem 6.9. Suppose given a vector of divisors § € Div(S)™ such that
Det(9) = 1. Suppose that the defect is zero,

r(n—2) = > T(g) = 6(9) =0,

but the superdefect is strictly positive o(9) > 0. Then it is possible to choose a
good arrangement {a; ;} for 9 and ki, which determines the remaining kj in the
zero-defect case by the constraint

k‘j+1=Tj+k'j+2—n,

such that degP*(E) = 0.
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Proof: In the case where the defect is zero, we are constrained to have z; = 0. In
particular, once we fix k1 then the others are determined. We have the simplified
formula

n o Pi
degP*(E) = P+ kyr + Z Z(r —tij)-
i=1 j=1
On the other hand, the fact that the superdefect is nonzero means that for some ¢
there is at least one eigenvalue o which appears with multiplicity m;(a/) < p; =
max, m;i(a). In particular, for any arrangement which we denote now generically
by A, we have at least one interval not containing the eigenvalue o/. Define the
following operation on arrangements: find an interval ¢; j+1,...,¢; j41 containing
o' but such that the preceding interval ¢; ;_1+1,...,t; j doesn’t contain o/. Move
o/ from the one to the other. We get a new arrangement 0A with the property
that all ¢y j;(0A) are the same as for A, except

ti,j(ﬁA) = tiyj(A) + 1.

Note that A will always be a good arrangement whenever A is good. From this
and the above formula we find

degP* (E(0A)) = degP™(E(A)) — 1.

In particular, iterating the operation A — JA and modifying ky we find that
degP*(FE(A)) can take on all integer values as A runs through all the good ar-
rangements. U

Putting together these two theorems we get:

Corollary 6.10. Suppose 5 € Div(SH)™ is a vector of local monodromy data
with eigenvalues in S C G,,. Suppose the defect is positive 5(;) >0. If6§=0
then suppose that the superdefect is strictly positive; this is equivalent to supposing
that the virtual dimension of the moduli space is at least 4. Then there exists a
parabolic r-cyclotomic Higgs bundle (E,0) of parabolic degree 0, cyclotomically
stable and polystaﬂe i the usual sense, corresponding to a local system with local

monodromy data 9.

The only cases left to be treated are when the moduli space has dimension 2.
There are four families as listed in Lemma 2.13. These cases are considered by
Kostov in [90]. As he notes there, the determinant of the vector & is a d-th root
of unity. For d > 1 and primitive root of unity, it looks like there cannot be an
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r-cyclotomic Higgs bundle; however a solution exists [92] and one might hope to
construct an m-cyclotomic Higgs bundle for smaller m and with some component
bundles E7 of rank 2. When the root of unity is not primitive, Kostov shows that

there are no irreducible solutions.

7. FURTHER QUESTIONS

It would be good to have the full middle-convolution theory for the general
setup of parabolic logarithmic A-connections [110] [111] [112] [125]. This raises
some nontrivial questions such as defining the middle higher direct image in the
parabolic setting, obtaining a base-change result analogous to Convention 5.3,
and showing polystability of the middle convolution. It was my original goal to
treat these questions here but that turned out to be very difficult.

Aker and Szabo have communicated to me their recent preprint [3] in which
they do the Nahm transform (essentially the same as Fourier transform) for par-
abolic Higgs bundles with irregular singularities having poles of order < 2 at
infinity. This should allow one to obtain the middle convolution for parabolic
Higgs bundles by following Katz’s original method.

If the weights of a parabolic structure are rational, i.e. for every point ¢; the
parabolic type is a divisor concentrated over roots of unity in S', then as discussed
in [19] [27] [108] [77], the parabolic bundle may also be viewed as a bundle on a
Deligne-Mumford stack Z [%] obtained by assigning an integer m to the points ¢;.
Here m should be chosen to be divisible by all the denominators of the rational
weights which occur. In this case, a logarithmic A-connection on the parabolic
bundle may also be viewed as a logarithmic connection on the corresponding DM-
bundle. An intermediate case between the non-parabolic case we have discussed in
65 and the general case of parabolic logarithmic A-connections, would be the case
of parabolic logarithmic A-connections with rational weights. Also assuming that
the residue of the connection on G744, (E) is the scalar «, these objects would be
equivalent to local systems on the DM-stacks Z [%] It should be possible to have
a theory of Katz’s middle convolution for these objects. The blown-up surface
(X, J) would be provided with a stack structure and the singular fibers would be
twisted curves [1] [2].

The moduli spaces have numerous additional structures.
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Conjecture 7.1. The isomorphisms between different moduli spaces given by the
middle convolution map, preserve the Hodge filtration, the C* action, and the
Hitchin hyperkdhler structure when this is defined, that is when the eigenvalues

of the local monodromy transformations are in S'.

This conjecture can probably be proven by Aker and Szabo with their method
[3], indeed they show that the Nahm transform preserves the hyperkéahler struc-
ture of the moduli spaces.

Volklein points out in [139] that the Katz isomorphisms between various Betti
moduli spaces are compatible with the action of the braid group of the points
qs--.,qn € P Similarly, the cohomological formulation immediately implies
that for n > 4 the Katz isomorphisms between different de Rham moduli spaces
are compatible with the nonabelian Gauss-Manin connection, i.e. the isomon-
odromic deformation equations. This was used by Boalch to get information
about finite Painlevé orbits in [14] [15]. It would be interesting to look further at
the dynamics of the braid action and the isomonodromy equations.

Question 7.2. Which Hodge types can occur at variations of Hodge structure in
the moduli spaces? How does the Hodge type change under middle convolution?

To what extent do we get unexpected or exceptional automorphisms of moduli
spaces, due to the possibility of running Katz’s algorithm in several different
ways? In particular, one could start in the range § > 0, do a series of middle
convolutions which go out of this range, then another series to go back. In
some cases this should change the local monodromy vector, so we should obtain
isomorphisms MB(gl) = MB(EQ) for g1 # g2 in the range § > 0. Say that these
two local monodromy vectors are middle-convolution equivalent in this case.

Question 7.3. What is the quotient of the set of local monodromy vectors with
0 > 0, by the relation of middle-convolution equivalence? In each middle convo-
lution equivalence class, does the operation of going out and back again provide

any nontrivial automorphisms of Mp?

Question 7.4. Is there a Torelli theorem saying that the isomorphism class of
MB(E) and/or MDR(E) possibly with additional structures such as the Hodge
filtration, the hyperkdhler metric, etc., determines the middle convolution equiv-
alence class of 5 (and maybe the collection of points Q@ depending on how much
structure we are considering)?
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Problem 7.5. Generalize Roberts’ observations on the geography of the Katz
algorithm [123] to the nonrigid case.

It would be good to compare explicitly what is happening in our presentation,
which basically follows Kostov’s notation and setup, with the notation and setup
used by Crawley-Boevey. Note that in Crawley-Boevey’s point of view, the Katz
operations are root reflections, and he uses several reflections in a row to get into
a positive Weyl chamber before giving an explicit construction. This is obviously
basically the same procedure as what we are doing here. It would be good to
compare the numbers, and also to recover Roberts’ results and observations [123]
in the Crawley-Boevey formulation.

What is the exact relationship between our de Rham version of the middle
convolution, and the algebraic operations on Fuchsian systems considered by
Kostov, Haraoka-Yokoyama, Crawley-Boevey?

Theorem 2.9 says that the middle cohomology of End(FE) gives the deforma-
tion and obstruction theory for the moduli space of representations with fixed
conjugacy classes on a curve. Remembering that the middle cohomology is really
intersection cohomology, this suggests that we should ask for the geometric in-
terpretation of the intersection cohomology of End(E) in the higher dimensional
case. More precisely, is there a natural derived moduli stack of local systems
generalizing Kapranov [80] based on the intersection cohomology? And, what
kind of geometric objects does this derived moduli stack parametrize?

7.1. Low-dimensional cases. One of the main reasons for looking at moduli
spaces of representations on the punctured Riemann sphere is that these give
many more examples with small dimension, than are obtained from Hitchin’s
original case of compact Riemann surfaces. This was first pointed out by Hausel
[65] with his “toy example”. We have constructed local systems whenever the
virtual dimension is > 4. In some sense the first case to look at is dimension
2, which has to be one of the cases listed in Lemma 2.13. Unfortunately, our
technique of construction broke down in this case, but we can hope to have a

variant.

The explicit techniques applied by Gleizer in the rigid case [55] should be
applicable to low-dimensional cases.
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It would be interesting to compute as explicitly as possible all of the various

structures and properties for some concrete low-dimensional cases. For example,

what does the C* action on the moduli space look like? Some things to study in

low-dimensional cases would be: compactifications [65] and their the dynamics
[37] [38] [39] [12], the Hitchin system [70] [66], the relationship with Painlevé
equations [71] [14] [15] [47], jumps and wall-crossing phenomena such as in [134]
[114], real structures and Toledo invariants [24] [26] [106] [140].
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