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Abstract: Let M be a compact flat spin Riemannian manifold, having cyclic
holonomy group of odd prime order p. If D is the Dirac operator acting on
spinor fields of M , we give explicit expressions for the eta series η(s) and
the eta invariant η = η(0). We prove that η(s) = e(s)L(s, χ) where e(s) is
a linear combination of exponentials and L(s, χ) is the Dirichlet L-function
attached to χ(k) = (k

p ), the Legendre symbol.
Furthermore, for p 6= 3, we show that η is an explicit integral multiple of the
class number h−p of the imaginary quadratic field Q(

√−p). We also provide
alternative expressions for η as finite cotangent or cosecant sums.
Keywords: Eta invariants and eta series, compact flat manifolds, spin
structures, Dirac operator, class numbers

Introduction

If A is a self-adjoint elliptic differential operator on a compact n-manifold
M , then A has a discrete spectrum, denoted by SpecA(M), consisting of real
eigenvalues λ with finite multiplicity dλ. The spectrum is said to be asymmetric
if for some λ ∈ SpecA(M) one has that dλ 6= d−λ. To study this phenomenon,
Atiyah, Patodi and Singer introduced ([2]) the eta series

(0.1) ηA(s) =
∑

0 6=λ∈SpecA

sign(λ) |λ|−s.
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This series converges for Re(s) > n
d , where d is the order of A, and defines a

holomorphic function ηA(s) which has a meromorphic continuation to C having
(possibly) simple poles at s = n − k, with k ∈ N0. It is a remarkable fact that
ηA(s) is finite at s = 0, i.e. its residue vanishes at the origin (see [2] for n odd,
[11] for n even). The number ηA(0) is a non-local spectral invariant, called the
η-invariant. It gives a measure of the spectral asymmetry of A.

In this paper we take A to be the Dirac operator D, which is a first order
elliptic essentially self-adjoint operator defined on sections of the spinor bundle
over a spin manifold M . It is known that if n 6≡ 3 (mod 4) then η(s) ≡ 0 (see
[9]), thus we shall only consider manifolds of odd dimension n = 4r + 3. The
determination of the associated eta function η(s) and of the eta invariant η(0)
is in general a difficult task and the explicit computation has been carried out
for a very small class of Riemannian manifolds. The aim of this paper is to
give explicit expressions of these spectral invariants for compact flat manifolds
with cyclic holonomy group Zp, p an odd prime, and to show connections with
classical number theory. Any compact flat manifold is isometric to a quotient
MΓ := Γ\Rn, with Γ a Bieberbach group. If Λ denotes the translation lattice of
Γ, then F = Λ\Γ is a finite group, the Riemannian holonomy group of MΓ. In
the terminology adopted by Charlap ([6]), a compact flat manifold having cyclic
holonomy group isomorphic to Zp will be called a Zp-manifold. Any Riemannian
manifold with holonomy group Zp is necessarily flat, hence of the form MΓ as
above.

We will explicitly compute the spectral invariants η(s) and η for an arbitrary
Zp-manifold, for every odd prime p and any dimension n. Our main tools are the
formulas in [17] giving the multiplicity of the eigenvalues of the Dirac operator
D (see (2.9) in Theorem 2.5), together with expressions for variations of classical
character Gauss sums (see the Appendix). We shall also make use of the known
classification of Zp-manifolds (due to Charlap ([6])) that will make it possible to
get a general result for eta invariants in the present case. The manifolds involved
will correspond exactly to those Bieberbach groups called exceptional in [7].

In one of the main results of this paper, we will compute the eta series η(s)
for an arbitrary Zp-manifold. For those Zp-manifolds that may possibly have
asymmetric Dirac spectrum, and for the two existing spin structures ε1, ε2, we
will prove that η(s) = e(s)L(s, χ), with e(s) a linear combination of exponentials,
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L(s, χ) a Dirichlet L-function and χ the quadratic character associated to the
Legendre symbol (see Theorem 3.3). Alternatively, they can be written as linear
combinations of differences of Hurwitz zeta functions, with coefficients given by
Legendre symbols (see Corollary 3.4). In particular, this implies that η(s) is
entire.

In Section 4, using the expressions of η(s), we compute the corresponding
η-invariants, expressing them in terms of class numbers of imaginary quadratic
fields. Indeed, let Q(ξp) be the cyclotomic field with ξp a primitive pth-root of
unity, with p an odd prime. One has that Q(ξp) contains the quadratic number
field Q(i

√
p) = Q(

√−p). Let h−p and ω−p denote respectively the class number
and the number of roots of unity in Q(

√−p). In Theorem 4.1 we show that, if
n = a(p− 1) + 1 with a odd and p = 4t + 3, then

ηε1 = (−1)r+t+1 4 p
a−1
2

h−p

ω−p
and ηε2 =





0 p ≡ 7 (mod 8)

−2ηε1 p ≡ 3 (mod 8).

where r = n−3
4 . We note that ω−p = 6 for p = 3 and ω−p = 2 for any p > 3.

In the case n = p = 3, this gives ηε1 = −2
3 and ηε2 = 4

3 , in coincidence with
the values obtained by Pfäffle ([18]).

We also give alternative expressions for ηε1 , ηε2 , as finite cotangent or cosecant
sums with coefficients involving Legendre symbols (see Proposition 4.3).

At the end of Section 4, we show how to get the formulas for the η-invariants
involving class numbers, directly from the expressions involving trigonometric
functions (4.4) and (4.5). This argument was pointed out to the first author by
Prof. F. Hirzebruch during a stay at the M.P.I.M. The authors wish to thank
Prof. Hirzebruch for his help.

1. Preliminaries

Compact flat manifolds. We first review some standard facts on compact flat
manifolds (see [6] or [23]). A Bieberbach group is a discrete, cocompact, torsion-
free subgroup Γ of I(Rn), the isometry group of Rn. Such Γ acts properly dis-
continuously on Rn, thus MΓ = Γ\Rn is a compact flat Riemannian manifold
with fundamental group Γ. Any such manifold arises in this way. Any element
γ ∈ I(Rn) = O(n) o Rn decomposes uniquely as γ = BLb, where B ∈ O(n) and
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Lb denotes translation by b ∈ Rn. The translations in Γ form a normal, maximal
abelian subgroup of finite index, LΛ, Λ a lattice in Rn that is B-stable for each
BLb ∈ Γ. The restriction to Γ of the canonical projection r : I(Rn) → O(n)
given by BLb 7→ B is a homomorphism with kernel LΛ and F := r(Γ) is a finite
subgroup of O(n). The group F ' Λ\Γ is called the holonomy group of Γ and
gives the linear holonomy group of the Riemannian manifold MΓ. We shall as-
sume throughout this paper that MΓ is orientable, i.e. F ⊂ SO(n). The action
by conjugation of Λ\Γ on Λ defines an integral representation of F , called the
integral holonomy representation.

For Λ a lattice and µ ≥ 0, we put Λµ = {λ ∈ Λ : ‖λ‖ = µ}. Also, if B ∈ O(n)
we set ΛB = {λ ∈ Λ : Bλ = λ}, (Λµ)B = Λµ ∩ ΛB, and

(1.1) nB := dim ker(B − Id) = dim(Rn)B.

If Γ is a Bieberbach group then the torsion-free condition implies that nB > 0
for any γ = BLb ∈ Γ.

Spin group. Let Cl(n) denote the Clifford algebra of Rn with respect to the
standard inner product. If e1, . . . , en is the canonical basis of Rn then Cl(n) has
basis {ei1 · · · eij : i1 < · · · < ij}, with eiej = −ejei for i 6= j and e2

i = −1 for
1 ≤ i ≤ n. Inside the group of units of Cl(n) we have the spin group given by
Spin(n) = {g = v1 · · · v2k : ‖vj‖ = 1, j = 1, . . . , 2k} which is a compact, simply
connected Lie group if n ≥ 3. There is a canonical epimorphism

(1.2) µ : Spin(n) → SO(n)

given by v 7→ (x 7→ vxv−1) with kernel {±1}. It is easy to check that, for
t1, . . . , tm ∈ R, m = bn

2 c, the elements

(1.3) x(t1, . . . , tm) :=
m∏

j=1

(cos tj + sin tj e2j−1e2j) ∈ Spin(n)

satisfy x(t1 + π, t2, . . . , tm) = −x(t1, t2, . . . , tm) and, for k ∈ Z, also

(1.4) x(t1, . . . , tm)k = x(kt1, . . . , ktm).

For convenience, if a ∈ N, we shall use the notation

(1.5) xa(t1, t2, . . . , ts) := x(t1, t2, . . . , ts︸ ︷︷ ︸
1

, t1, t2, . . . , ts︸ ︷︷ ︸
2

, . . . , t1, t2, . . . , ts︸ ︷︷ ︸
a

).
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Now, let B(t) =
[

cos t − sin t
sin t cos t

]
with t ∈ R. For t1, . . . , tm ∈ R, if n = 2m + 1, set

x0(t1, . . . , tm) := diag(B(t1), . . . , B(tm), 1), and omit the 1 if n = 2m. Maximal
tori in Spin(n) and SO(n) are respectively given by T = {x(t1, . . . , tm) : tj ∈ R}
and T0 = {x0(t1, . . . , tm) : tj ∈ R}. The restriction µ : T → T0 is a 2-fold cover
and we have

(1.6) µ(x(t1, . . . , tm)) = x0(2t1, . . . , 2tm).

Spin representations. Consider (Ln,Sn) an irreducible complex representation of
the complexified algebra Cl(n) ⊗ C, restricted to Spin(n). The complex vector
space Sn has dimension 2m with m = [n

2 ]. If n is odd, then (Ln,Sn) is irreducible
for Spin(n) and is called the spin representation. If n is even, then Sn = S+

n ⊕S−n
where each S±n is irreducible of dimension 2m−1. The representations L±n := Ln|S±n
are called the half-spin representations. If n = 2m, the values of the characters
χ

L±n
of the half-spin representations on the torus T are given by (see [17], Lemma

6.1)

(1.7) χ
L±n

(x(t1, . . . , tm)) = 2m−1
( m∏

j=1

cos tj ± im
m∏

j=1

sin tj

)
.

Spin structures on flat manifolds. It is a well known fact (see [9], [14] or [18])
that if M is a compact flat spin manifold, the spin structures on M are in a
one-to-one correspondence with group homomorphisms

(1.8) ε : Γ → Spin(n) such that µ◦ε = r,

where r(γ) = B if γ = BLb ∈ Γ and µ is as in (1.2). Throughout the paper
we shall denote by (MΓ, ε) a spin Bieberbach manifold endowed with the spin
structure induced by ε.

We recall that the n-torus admits 2n spin structures ([8]), while a general flat
manifold MΓ need not admit any ([3], [15], [13], [16]).

Spectrum of the Dirac operator. Consider the vector bundle S(MΓ, ε) := Γ\(Rn×
S) → Γ\Rn where the action of Γ is given by

γ · (x,w) = (γx, Ln(ε(γ))(w)), for γ ∈ Γ, w ∈ Sn.

Then S(MΓ, ε) is called the spinor bundle of MΓ. The space Γ∞(S(MΓ, ε)) of
smooth sections of S(MΓ, ε) can be identified with the space of smooth functions
f : Rn → S such that f(γx) = Ln(ε(γ))(f(x)).
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The Dirac operator D acts on smooth sections f of the spinor bundle S(MΓ, ε)
by Df(x) =

∑n
i=1 ei

∂f
∂xi

(x) where ei acts by Ln(ei) on Sn. One has that D is
an elliptic first-order differential operator, symmetric and essentially self-adjoint.
Furthermore, since M is compact, D has a discrete spectrum consisting of real
eigenvalues ±2πµ, of finite multiplicity d±µ . In [17], Theorem 2.5, we obtained
explicit expressions for the multiplicities d±µ for any compact flat spin manifold
(MΓ, ε) with translation lattice Λ and holonomy group F .

For n odd and µ > 0, we showed that the multiplicities are given by

d±µ (Γ, ε) = 1
|F |

( ∑

γ = BLb ∈ Λ\Γ
B 6∈ F1

∑

u∈(Λ∗ε,µ)B

e−2πiu·b χ
L±n−1

(xγ) +

∑

γ = BLb ∈ Λ\Γ
B ∈ F1

∑

u∈(Λ∗ε,µ)B

e−2πiu·b χ
L
±σ(u,xγ )
n−1

(xγ)
)

.

(1.9)

The terms in the formula are defined as follows. First, F1 = {B ∈ F : nB = 1}
and, for each γ = BLb ∈ Γ, (Λ∗ε,µ)B denotes the set of elements of norm µ fixed
by B in Λ∗ε = {u ∈ Λ∗ : ε(Lλ) = e2πiλ·u, λ ∈ Λ}. If λ1, . . . , λn is a Z-basis of Λ
denote by λ′1, . . . , λ

′
n the dual basis and put J±ε := {i ∈ {1, . . . , n} : ε(Lλi

) = ±1}.
We then have

(1.10) Λ∗ε =
⊕

j∈J+
ε

Zλ′j ⊕
⊕

j∈J−ε

(Z+ 1
2)λ′j .

Furthermore, for γ ∈ Γ, xγ is a fixed element in the maximal torus of Spin(n−
1), conjugate in Spin(n) to ε(γ). Finally, σ(u, xγ) is a sign, depending on u and
on the conjugacy class of xγ in Spin(n − 1) (see Definition 2.3, Remark 2.4 and
Lemma 6.2 in [17] for details).

2. Zp-manifolds

Our main goal in this paper will be to obtain several explicit expressions for the
eta series and eta invariants of an arbitrary Zp-manifold, p an odd prime. Using
the classification given by Charlap in [6], we shall first describe the Zp-manifolds
that may possibly have asymmetric Dirac spectrum. For such manifolds, we shall
compute the eta series η(s) explicitly, proving that, up to a multiple, it is given by
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a Dirichlet L-function L(s, χ), where χ is the Legendre symbol. As a consequence,
we show that η(s) can also be written as a linear combination of differences of
Hurwitz zeta functions, with Legendre symbols as coefficients. Such expressions
automatically imply that η(s) is everywhere holomorphic in C.

We shall first recall Charlap’s classification of Bieberbach groups with holo-
nomy group Zp, p an odd prime (see [6] or [7]). The Zp-modules of rank n were
classified by Reiner in [20], who showed that the integral representations of Zp

have the form

(2.1) Λ = a⊕ (a− 1)O ⊕ bZ[Zp]⊕ cId,

where a, b, c are non negative integers with n = a(p−1)+ bp+1, ξp is a primitive
pth-root of unity, O = Z[ξp] is the full ring of algebraic integers in the cyclotomic
field Q(ξp) and a is an ideal in O. If a is principal then one can change a by the
full ring O. As usual Z[Zp] denotes the group ring over Z, and Id is the trivial
Zp-module.

The Zp-actions on the modules are given by multiplication by ξp. In the bases
1, ξp, . . . , ξ

p−1
p of Z[Zp] and 1, ξp, . . . , ξ

p−2
p of O, the action of the generator is

represented, in matrix notation, respectively by

Jp =




0 1
1 0 0

1 0
. . .

...
0 0
1 0


 ∈ GLp(Z), Cp =




0 −1
1 0 −1

1 −1

. . .
...

0 −1
1 −1


 ∈ GLp−1(Z),

Clearly, we have that nJ = 1 and nC = 0 (see (1.1)).

It is known (see [6]) that any Zp-manifold is of the form M = Γ\Rn where
Γ = 〈BL en

p
,Λ〉 is torsion-free, B ∈ O(n) of order p, Ben = en and Λ as given

in (2.1), is B-stable. Furthermore, the torsion-free condition on Γ imposes the
restriction c > 0 on the holonomy action.

Recall that we are looking for n-dimensional Zp-manifolds having asymmetric
Dirac spectrum. By Corollary 2.6 in [17], we have that η(s) ≡ 0 unless nB = 1
for γ = BL en

p
, the generator of F . Hence, since nB = b + c and c > 0, we have

that nB = 1 if and only if b = 0 and c = 1. Thus, from now on, we will assume
that Λ is an orthogonal sum

(2.2) Λ̃a
p,a := a⊕O ⊕ · · · ⊕ O︸ ︷︷ ︸

a−1

⊕Zen.
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We set Λ1 := a⊕O ⊕ · · · ⊕ O︸ ︷︷ ︸
a−1

= (Zen)⊥.

We thus consider the torsion-free group

(2.3) Γ̃a
p,a = 〈CL en

p
, Λ̃a

p,a〉 ⊂ Aff(n), C = diag(Cp, . . . , Cp︸ ︷︷ ︸
a

, 1) ∈ GLn(Z).

The group Γ̃a
p,a is not contained in I(Rn), however it can be conjugated into a

Bieberbach group. Using that the eigenvalues in each block of Λ1 are exactly
the primitive roots of unity, one shows that there exists A ∈ GLn(R) such that
B = ACA−1 ∈ SO(n) with B = diag(Bp, . . . , Bp︸ ︷︷ ︸

a

, 1) and

Bp =




cos(2π
p ) sin(2π

p )

− sin(2π
p ) cos(2π

p )
...

cos((p−1
2 )2π

p ) sin((p−1
2 )2π

p )

− sin((p−1
2 )2π

p ) cos((p−1
2 )2π

p )




.

Now, if we set Γa
p,a := AΓ̃a

p,aA
−1, then Γa

p,a = 〈γ, Λa
p,a〉 ⊂ I(Rn), with γ = BL en

p

and Λa
p,a = AΛ̃a

p,a. In this way, we get an orientable Riemannian n-manifold

(2.4) Ma
p,a := Γa

p,a\Rn,

which is the most general Zp-manifold which may possibly have spectral asym-
metry for the Dirac operator D. These manifolds correspond to the so called
exceptional Bieberbach groups, in the terminology of [7].

Set p = 2q + 1. Since n = 2m + 1 = 4r + 3 and n = a(p− 1) + 1, we have that
m = qa is odd, hence a and q are both odd and p = 4t + 3.

We now deal with the spin structures. It is known that every F -manifold with
|F | odd is spin (see [22], Corollary 1.3). In [21], the case of Zp-manifolds with
p is odd (not necessarily prime) and n = p (i.e. a = 1) is considered, showing
the existence of two spin structures. In the next proposition we give the spin
structures on the manifolds Ma

p,a defined above.
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Proposition 2.1. Let p = 2q + 1 = 4t + 3 be prime. Then Ma
p,a (see (2.4)) has

exactly two spin structures εh, h = 1, 2, given by

εh(Lλ) = 1 for any λ ∈ (Zen)⊥, εh(Len) = (−1)h+1,

εh(γ) = (−1)t+h xa(π
p , 2π

p , . . . , qπ
p ),

in the notation of (1.3) and (1.5).

Proof. For simplicity, in the proof we will write Λ, Λ̃, Γ, Γ̃ instead of Λa
p,a, Λ̃a

p,a,
Γa

p,a, Γ̃a
p,a, respectively.

Assume ε is a group homomorphism Γ → Spin(n) as in (1.8) such that µ◦ε = r.
Then ε is determined by the action on Λ and on γ = BL en

p
. We have ε(Lλ) ∈

{±1}, for λ ∈ Λ and, in the notation of (1.5), ε(γ) = σ xa(π
p , 2π

p , . . . , qπ
p ) with

σ ∈ {±1}.
Now, since γp ∈ LΛ, the character ε|Λ satisfies the following conditions

(2.5)
(1) ε(γp) = (σxa(π

p , 2π
p , . . . , qπ

p ))p

(2) ε(L(B−Id)λ) = 1, for any λ ∈ Λ.

Conversely, if δ ∈ Hom(Λ, {±1}) verifies conditions (1) and (2) then δ extends to
a spin structure ε on Γ ([19], Proposition 2.2, see also [16]).

To determine restrictions on ε acting on (Zen)⊥, we use condition (2) and the
integral matrix C. For this, define ε̃ : Γ̃ → Spin(n) by ε̃ = ε ◦ IA where IA is
conjugation by A. Since ε(L(B−Id)Λ) = ε(AL(C−Id)Λ̃A−1) = ε̃(L(C−Id)Λ̃) we have
that

ε(L(B−Id)Λ) = 1 if and only if ε̃(L(C−Id)Λ̃) = 1.

Now for any summand of type O in (2.2), there is a Z-basis of the form
{e, ξp e, . . . , ξp−2

p e}. Hence by condition (2) we must have

1 = ε̃(ξp e− e) = · · · = ε̃(ξp−2
p e− ξp−3

p e) = ε̃(ξp−1
p e− ξp−2

p e).

Thus

ε̃(e) = ε̃(ξp e) = · · · = ε̃(ξp−2
p e) =

p−2∏

j=0

ε̃(ξj
p e),

which implies ε̃(e)p−2 = 1, and hence ε̃(e) = 1 since p is odd. Therefore, ε̃(ξj
p e) =

1 for every 0 ≤ j ≤ p− 2 and thus ε̃(λ) = 1 for any λ ∈ O ⊕ · · · ⊕ O.
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Now, given a summand of type a, there exist e1, e2 ∈ a such that a = Oe1+Oe2.
By the same argument as in the case of O, we conclude that ε̃|Oe1

= ε̃|Oe2
= 1.

Hence ε̃|a = 1.

In this way, for any λ ∈ (Zen)⊥ we have

ε(Lλ) = ε(LAλ) = ε(ALλA−1) = ε̃(Lλ) = 1.

This implies the first claim in the proposition.

Relative to the second claim, since γp = Len , condition (1) implies that

ε(Len) = ε(γ)p = σxa(π
p , 2π

p , . . . , qπ
p )p = σxa(π, 2π, . . . , qπ) = σ(−1)t+1

where we have used (1.4) and the commutativity in Cl(n) of the elements e2i−1e2i

and e2j−1e2j for i 6= j.

Hence, MΓ has 2 spin structures given by

εσ =
(
1, . . . , 1, (−1)t+1σ;σxa(π

p , . . . , qπ
p )

)

with σ ∈ {±1} and the proposition now follows. ¤

3. Eta series

We now get into our main task, that is, to explicitly compute the eta series
of the manifolds Ma

p,a. We begin by giving two identities, possibly known, con-
cerning products of special values of sines which are necessary in the proof of
Theorem 3.3. We include the proofs, for completeness.

Lemma 3.1. For any d ∈ N one has

(3.1)
[ d
2
]∏

j=1

sin( jπ
d ) =

√
d

2
d−1
2

.

Proof. We make use of the wellknown identities:

(3.2) sin(πz) =
π

Γ(z)Γ(1− z)
, (2π)

d−1
2 Γ(z) = dz− 1

2

d−1∏

j=0

Γ( z+j
d ).

If d0 := [d
2 ], it follows that

d0∏

j=1

sin( jπ
d ) =

πd0

Γ(1
d)Γ(d−1

d ) · · ·Γ(d0
d )Γ(d−d0

d )
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and, since Γ(1) = 1, taking z = 1 in the second expression in (3.2) we get

d−1∏

j=1

Γ( j
d) =

(2π)
d−1
2√

d
.

Now, if d = 2d0+1, expression (3.1) readily follows. If d = 2d0, since Γ(d−d0
d ) =

Γ(d0
d ) and Γ(1

2) =
√

π, we have the expression

d0∏

j=1

Γ( j
d)Γ(d−j

d ) =
√

π

d−1∏

j=1

Γ( j
d)

from which the lemma follows. ¤

Next we consider a similar product as in the previous lemma, but now depend-
ing on an integer k, for p an odd prime.

Lemma 3.2. Let k, p ∈ N and suppose p is an odd prime. Then we have

(3.3)

p−1
2∏

j=1

sin( jkπ
p ) =





(−1)(k−1)
(p2−1)

8

(
k
p

) √
p

2
p−1
2

if (k, p) = 1

0 if (k, p) > 1

where
( ·

p

)
is the Legendre symbol.

Proof. If (k, p) = t > 1 then k = tm, p = tn with m,n ∈ Z, (m,n) = 1 and
1 < n < p−1

2 . Then, for j = n we have that jk
p = m ∈ Z and hence sin( jkπ

p ) = 0.

Thus, assume that (k, p) = 1. For each 1 ≤ j ≤ p − 1, there exist unique
qj , rj ∈ Z such that jk = qjp + rj with 0 < rj < p. Since (k, p) = 1 we have that
r1, r2, . . . , rp−1 is a complete system of residues modulo p. Furthermore, mod p,

{1, 2, . . . , p− 1} = {k, 2k, . . . , (p− 1)k} = {r1, r2, . . . , rp−1}.

Now, since sin( jkπ
p ) = (−1)qj sin( rjπ

p ) and qj = [ jk
p ] we get

p−1
2∏

j=1

sin( jkπ
p ) =

p−1
2∏

j=1

(−1)[
jk
p

]

p−1
2∏

j=1

sin( rjπ
p ) = (−1)sp(k)

p−1
2∏

j=1

π

Γ( rj

p )Γ(p−rj

p )
,

where sp(k) :=
∑ p−1

2
j=1 [ jk

p ] and in the last equality we have used (3.2).
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We now compare rj and rp−j for 1 ≤ j ≤ p−1
2 . We have

(p− j)k = (k − qj)p− rj = (k − qj − 1)p + (p− rj).

Thus rp−j = p−rj . This gives
∏ p−1

2
j=1 Γ( rj

p )Γ(p−rj

p ) =
∏ p−1

2
j=1 Γ( j

p)Γ(p−j
p ) and hence

∏ p−1
2

j=1 sin( rjπ
p ) =

∏ p−1
2

j=1 sin( jπ
p ). Now, using Lemma 3.1 we arrive at the expression

(3.4)

p−1
2∏

j=1

sin( jkπ
p ) = (−1)sp(k)

p−1
2∏

j=1

sin( jπ
p ) = (−1)sp(k)

√
p

2
p−1
2

.

Finally, by Gauss’ lemma (see [1], Theorems 9.6 and 9.7) we have

(3.5) (−1)sp(k) = (−1)
∑ p−1

2
j=1 [ jk

p
] = (−1)(k−1)( p2−1

8
)
(

k
p

)

which completes the proof. ¤

We are now in a position to compute the eta series and the eta invariants for
the Dirac operator D. By (0.1), we can write

(3.6) η(Γ,ε)(s) = 1
(2π)s

∑

µ∈ 1
2πA

d+
µ (Γ, ε)− d−µ (Γ, ε)

|µ|s

where d±µ (Γ, ε) are as given in (1.9) and A denotes the asymmetric spectrum,
that is A = {λ ∈ SpecD(M) : dλ 6= d−λ}.

We recall the L-function associated to the quadratic character χ = ( ·p) modulo
p:

(3.7) L(s, χ) =
∞∑

l=1

χ(l)
ls

=
∞∑

l=1

( l
p)

ls
.

We now state one of the main results in this paper.

Theorem 3.3. Let n = 2m + 1 = 4r + 3, p = 2q + 1 = 4t + 3 a prime and a ∈ N
odd such that n = a(p− 1) + 1. Let ε1 and ε2 be the two spin structures of Ma

p,a

(see (2.4)) as in Proposition 2.1. Then the corresponding eta series are given by

(3.8) ηε1(s) = (−1)r+t+1 2 p
a−1
2

(2π)s
L(s, χ),

(3.9) ηε2(s) = (−1)r+t 2 p
a−1
2

(2π)s

(
1 +

(
2
p

)
2s

)
L(s, χ) =

(
(−1)t+1 2s − 1

)
ηε1(s).
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In particular, ηε1(s) and ηε2(s) are everywhere holomorphic in C.

Proof. We need to compute the ingredients in the expression (3.6), so we shall
first write down the eigenvalue multiplicity formulas (1.9) in the case at hand.
We have that B,B2, . . . , Bp−1 ∈ F1. Hence, according to (1.9), if bk is defined by
γk = BkLbk

, we obtain

(3.10) d±µ (Γ, ε) = 1
p

(
2m−1 |Λ∗ε,µ|+

p−1∑

k=1

∑

u∈(Λ∗ε,µ)Bk

e−2πiu·bk χ
L
±σ(u,x

γk )

n−1

(xγk)
)

where 2m−1 |Λ∗ε,µ| is the contribution of the identity element.

Now, since Λ = Λ1 ⊕ Zen and (Rn)Bk
= Ren, 1 ≤ k ≤ n − 1, we have (see

(1.10)) that Λ∗ε = Zen if ε = ε1 and Λ∗ε = (Z+ 1
2)en if ε = ε2. Hence, we get

(Λ∗ε,µ)Bk
= {±µen}

with µ ∈ N for ε1 and µ ∈ N0 + 1
2 for ε2.

Furthermore, since ε(γk) = ε(γ)k ∈ T , taking

xγk = εh(γ)k = (−1)k(t+h)xa(πk
p , 2πk

p , . . . , qπk
p ), (h = 1, 2)

(see (1.5)) one has that σ(en, xγk) = 1 for every 1 ≤ k ≤ n− 1, by the definition
of σ (see [17]).

In this way, using that bk = ken
p , expression (3.10) reduces to

d±µ (Γp, εh) = 1
p

(
2m−1|Λ∗ε,µ|+

p−1∑

k=1

S±k (µ)
)

where we have put

(3.11) S±k (µ) := e
− 2πiµk

p χL±n−1
(xγk) + e

2πiµk
p χL∓n−1

(xγk).

Now, by (1.7) we have

χ
L±n−1

(xγk) = (−1)k(t+h) 2m−1




( q∏

j=1

cos( jkπ
p )

)a
± im

( q∏

j=1

sin( jkπ
p )

)a


 .

Thus, substituting in (3.11) and using that m = 2r + 1 we see that S±k (µ) equals

(−1)k(t+h) 2m
{

cos(2kπµ
p )

( q∏

j=1

cos( jkπ
p )

)a
± (−1)r sin(2kπµ

p )
( q∏

j=1

sin( jkπ
p )

)a}
.
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hence we obtain

d+
µ (εh)− d−µ (εh) = (−1)r 2m+1

p

p−1∑

k=1

(−1)k(t+h) sin(2kπµ
p )

( q∏

j=1

sin
( jkπ

p

))a
.

By Lemma 3.2, using that p2−1
8 ≡ t + 1 (mod 2) and aq = m, we arrive at

d+
µ (εh)− d−µ (εh) = 2 (−1)r+t+1 (

√
p)a

p

p−1∑

k=1

(−1)k(h+1)
(

k
p

)
sin(2kπµ

p ).

Thus, since

µ = l for h = 1 and µ = l + 1
2 for h = 2,

with l ∈ N, using Corollary 5.2 we get

(3.12) d+
µ (εh)− d−µ (εh) =





(−1)r+t+1 2 p
a−1
2

(
l
p

)
h = 1,

(−1)r+t 2 p
a−1
2

(
q−l
p

)
h = 2.

By substituting (3.12) into (3.6), we get

(3.13) ηε1(s) = (−1)r+t+1 2 p
a−1
2

(2π)s

∞∑

l=1

(
l
p

)

ls
,

so (3.8) holds, and furthermore

(3.14) ηε2(s) = (−1)r+t 2 p
a−1
2

(2π)s

∞∑

l=0

(
q−l
p

)

(l + 1
2)s

.

For the second eta series, note that fp(l) =
(

q−l
p

)
is a p-periodic function.

Thus, we have
(

q−l
p

)
=

(
4
p

)(
q−l
p

)
=

(
2
p

)(
2q−2l

p

)
=

(
2
p

)(
p−(2l+1)

p

)

=
(
−1
p

)(
2
p

)(
2l+1

p

)
= −

(
2
p

)(
2l+1

p

)

since
(−1

p

)
= −1 for p ≡ 3 (mod 4).

Now, splitting sums we have

L(s, χ) =
∞∑

l=1

( l
p)

ls
=

∑

l even

( l
p)

ls
+

∑

l odd

( l
p)

ls
=: Le(s, χ) + Lo(s, χ).
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In this way, we get

(3.15)
∞∑

l=0

(
q−l
p

)

(l + 1
2)s

= −(2
p) 2s

∞∑

l=0

(
2l+1

p

)

(2l + 1)s
= −(2

p) 2s Lo(s, χ).

Since by definition, Lo(s, χ) = L(s, χ)− Le(s, χ), and

Le(s, χ) =
∞∑

l=1

(2l
p )

(2l)s
=

(2
p)

2s

∞∑

l=1

( l
p)

ls
= (2

p) 2−s L(s, χ)

we have that

(3.16) Lo(s, χ) =
(
1− (2

p) 2−s
)

L(s, χ).

By substituting (3.15) in (3.14) and using (3.16), and the fact that
(

2
p

)
=

(−1)
p2−1

8 = (−1)t+1, we finally obtain (3.9), and the theorem follows. ¤

Corollary 3.4. The eta series of Ma
a,p (see (2.4)) can be written in the following

way

ηε1(s) = (−1)r+t+1 2 p
a−1
2

(2πp)s

q∑

j=1

(
j
p

)(
ζ(s, j

p)− ζ(s, 1− j
p)

)
,

(3.17)

ηε2(s) = (−1)r+t 2 p
a−1
2

(2πp)s

q∑

j=0

(
q−j
p

)(
ζ(s, 2j+1

2p )− ζ(s, 1− 2j+1
2p )

)
,

where, if α ∈ (0, 1], ζ(s, α) =
∑∞

l=0
1

(l+α)s , the Hurwitz zeta function. The func-
tions ηε1(s) and ηε2(s) are entire.

Proof. Starting from expressions (3.13) and (3.14) and setting l = pt + j, with
0 ≤ j ≤ p− 1, we get

ηε1(s) = (−1)r+t+1 2 p
a−1
2

(2πp)s

p−1∑

j=1

(
j
p

) ∞∑

t=1

1
(t + j

p)s

= (−1)r+t+1 2 p
a−1
2

(2πp)s

p−1∑

j=1

(
j
p

)
ζ(s, j

p).

(3.18)

Proceeding similarly, we get

(3.19) ηε2(s) = (−1)r+t 2 p
a−1
2

(2πp)s

p−1∑

j=0

(
q−j
p

)
ζ(s, 2j+1

2p ).
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Now, since
(−1

p

)
= −1 for p ≡ 3 (mod 4), we have

(
p−l
p

)
=

(
−l
p

)
=

(
−1
p

)(
l
p

)
= −

(
l
p

)
.

Also, if l′ = p− (l + 1) with 0 ≤ l ≤ q then q − l′ = −(q − l). Thus
(

q−l′
p

)
=

(
−1
p

)(
q−l
p

)
= −

(
q−l
p

)
.

From these relations, together with (3.18) and (3.19), we obtain expressions (3.17)
in the statement. The last assertion follows from the fact that, for each α, ζ(s, α)
is a meromorphic function on C with a simple pole at s = 1, with residue 1. ¤

4. Eta invariants and class numbers

Here we compute the η-invariants of any Zp-manifold, p an odd prime. We
shall see, as a consequence of Theorem 3.3, that they admit simple expressions in
terms of the class number h−p of the quadratic field Q(

√−p) (see Introduction).

Theorem 4.1. Let n = a(p − 1) + 1 with a odd and p and odd prime. The η

invariants of Ma
p,a (see (2.4)) are given as follows. If p = 3,

ηε1 = (−1)r+1 2 · 3a−3
2 and ηε2 = (−1)r 4 · 3a−3

2 .

If p ≥ 7,

(4.1) ηε1 = (−1)r+t 2 p
a−3
2

p−1∑

k=1

k
(

k
p

)
= (−1)r+t+1 2 p

a−1
2 h−p

(4.2) ηε2 =
(
(−1)t+1 − 1

)
ηε1 =





0 p ≡ 7 (mod 8)

(−1)r+t 4 p
a−1
2 h−p p ≡ 3 (mod 8)

where h−p denotes the class number of the quadratic field Q(
√−p).

Proof. We shall use Theorem 3.3. By (3.8), since for a non-trivial character χ,
L(0, χ) = −1

p

∑p−1
l=0 lχ(l) (see [1], pp. 268), we get the first equality in (4.1). Now,

by (3.9), the first equality in (4.2) is obvious. (This also follows by evaluating
the expressions (3.18) and (3.19) at s = 0 and using that ζ(0, α) = 1

2 − α and∑p−1
l=1

(
l
p

)
= 0).
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To verify the remaining identities we will use the Dirichlet’s class number
formula for an odd prime p ≡ 3 (mod 4) (see for instance [4], pp. 377) given by

(4.3)
h−p

ω−p
= − 1

2p

p−1∑

l=0

l
(

l
p

)

where ω−p is the number of roots of unity in Q(
√−p). Note that ω−3 = 6 and

ω−p = 2 for p ≥ 7.

Thus, by (4.3) and the first equality in (4.1) we have

ηε1 = (−1)r+t 2 p
a−1
2

(
1
p

p−1∑

l=0

l
(

l
p

))
= (−1)r+t+1 4 p

a−1
2

h−p

ω−p

from which (4.1) follows directly for p ≥ 7 and, for p = 3, we see that ηε1 =
(−1)r+t 2 · 3a−3

2 since h−3 = 1.

Finally, introducing the second expression in (4.1) into (4.2) we get ηε2 =
(−1)r 4 · 3a−3

2 for p = 3, and

ηε2 =





0 p ≡ 7 (mod 8)

−2ηε1 p ≡ 3 (mod 8)

for p ≥ 7, and the theorem follows. ¤

Remark 4.2. (i) In [18], Pfäffle computes the eta invariants of all 3-dimensional
compact flat manifolds. In [21], the authors consider the case of a family of Zn-
manifolds of dimension n, arriving at an expression of the eta invariant in terms
of solutions of certain congruences. Also, in [16], Proposition 3.4, the eta series
and eta invariants are computed for all Zk

2-manifolds.

(ii) Note that, from the expressions in the theorem, we see that η ∈ 2Z except in
the case when p = 3 and a = 1. In this case, for the 3-dimensional Z3-manifold
we have ηε1 = −2

3 and ηε2 = 4
3 . These values coincide with those obtained in

[18] and [17]. We note that always ηε1 − ηε2 ∈ 2Z and, if p ≡ 3 (mod 8), then
ηε2 = −2ηε1 .

In [17], Theorem 5.1, we have derived an expression for the eta invariants ηε1

and ηε2 in the case n = p, involving cotangent or cosecant sums, together with
Legendre symbols. Here, for any n = a(p − 1) + 1, we will obtain, in a different
way, a generalization of such expressions.
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Proposition 4.3. The η-invariants of Ma
p,a can be written:

ηε1 = (−1)r+t+1 p
a−2
2

p−1∑

k=1

(
k
p

)
cot(πk

p ) = (−1)r+t+1 p
a−2
2

p−1∑

k=1

cot(πk2

p ),(4.4)

ηε2 = (−1)r+t+1 p
a−2
2

p−1∑

k=1

(−1)k
(

k
p

)
csc(πk

p ).(4.5)

Note. We point out that by (4.2), ηε2 can also be written in terms of cotangents.
On the other hand, ηε1 has an expression in terms of cosecants only for p ≡ 3 (8).

Proof. From (3.18), by using that ζ(0, α) = 1
2 −α (see [1], pp. 268), we have that

ηε1 = (−1)r+t+1 2 p
a−1
2

∑p−1
j=1(

j
p)(1

2 − j
p). Now, consider the sawtooth function

defined by

((x)) =





x− bxc − 1
2 if x ∈ Rr Z,

0 if x ∈ Z.

Note that since 0 < j
p < 1 and j

p 6∈ Z we have (( j
p)) = j

p − 1
2 and thus

(4.6) ηε1 = (−1)r+t 2 p
a−1
2

p−1∑

j=1

( j
p)(( j

p)).

Also, ((x)) is odd and 1-periodic. Thus, as a function of k, ((k
p )) has a finite

Fourier expansion given by (see [12], pp. 98-99)

(4.7) (( j
p)) = − 1

2p

p−1∑

k=1

sin(2πkj
p ) cot(πk

p ).

Substituting (4.7) into (4.6) we get

ηε1 = (−1)r+t+1 p
a−3
2

p−1∑

k=1




p−1∑

j=1

( j
p

)
sin(2πkj

p )


 cot(πk

p )

and, by Corollary 5.2, the first identity in (4.4) follows.

Now, using the identity
∑p−1

k=1 cot(πk2

p ) = − 2√
p

∑p−1
k=1 k

(
k
p

)
(see [4], pp. 42) and

(4.1) we get the second identity in (4.4).

On the other hand, from (3.19) we have that

(4.8) ηε2(0) = (−1)r+t 2 p
a−1
2

p−1∑

j=0

( q−j
p

)
(1
2−2j+1

2p ) = (−1)r+t+1 2 p
a−3
2

p−1∑

j=0

j
( q−j

p

)
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where we have used that
∑p−1

j=0

( q−j
p

)
=

∑p−1
j=0

( j
p

)
= 0. Using Corollary 5.2 again,

we have

( q−j
p

)
= − 1√

p

p−1∑

k=1

(−1)k
(

k
p

)
sin

(
(2j+1)πk

p

)
.

Thus, substituting this expression in (4.8) we obtain

ηε2 = (−1)r+t 2 p
a−4
2

p−1∑

k=1

(−1)k
(

k
p

) p−1∑

j=0

j sin
(

(2j+1)πk
p

)
.

Now, using the identity

p−1∑

j=0

j sin
(

(2j+1)πk
p

)
= −p

2 csc(πk
p )

(see [17], pp. 33) we finally obtain (4.5), and thus the proposition follows. ¤

An alternative approach. In this subsection, we will show how to get ex-
pressions for ηε1 , ηε2 in Theorem 4.1, involving class numbers, directly from the
trigonometric expressions in Proposition 4.3. In particular, this gives an alterna-
tive way to obtain (4.1) and (4.2).

Let D be a negative discriminant. If χD is the Kronecker symbol, the Dirichlet
L-function

(4.9) L(s, χD) :=
∞∑

n=1

χD(n)
ns

, Re(s) > 1,

can be analytically continued to the whole complex plane to an entire function.
We will use the class number formula (see [24], Satz 5, pp. 72)

(4.10) 2π hD = wD

√
|D|L(1, χD)

where wD denote the number of roots of unity lying in the quadratic imaginary
field Q(

√
D). We note that wD = 6, 4 for D = −3,−4 respectively and wD = 2

for D < −4.

We will make use of the following classical class number formulas. We include
a proof for completeness (see also [5]).
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Theorem 4.4. (cotangent and cosecant formulas) Suppose that D is odd and
χD(−1) = −1. Then we have

(4.11) 1√
|D|

∑

k modD

χD(k) cot
(

πk
|D|

)
=

4hD

wD

.

(4.12) 1√
|D|

∑

k mod D

(−1)k χD(k) csc
(

πk
|D|

)
=




−8h

D
w

D
if χD(2) = −1

0 if χD(2) = 1.

If χD(−1) = 1 the cotangent expression in (4.11) is obviously 0.

Proof. We will use the well-known expansion π cot(πz) =
∑′

n∈Z
1

z−n , where the
summation collects the summands for n,−n, with n 6= 0. This convention is used
throughout and makes the following calculation rigorous. We have

π
∑

k mod D

χD(k) cot
(

πk
|D|

)
=

∑

m∈Z

′ ∑

k mod D

|D|
k−m|D| χD(k)

= |D|
∑

n∈Z

′ χD(n)
n

= 4π
√
|D|h

D
w

D
,

where we have used (4.9), (4.10) and χD(−1) = −1, from which (4.11) follows.

By the expansion π csc(πz) =
∑′

n∈Z
(−1)n

z−n , the expression

π
∑

k mod D

(−1)k χD(k) csc
(

πk
|D|

)

equals
∑

m∈Z

′ ∑

k mod D

|D|
k−2m|D| χD(k)−

∑

m∈Z

′ ∑

k mod D

|D|
k−(2m+1)|D| χD(k) =

2
∑

m∈Z

′ ∑

k mod D

|D|
k−2m|D| χD(k)−

∑

n∈Z

′ ∑

k mod D

|D|
k−n|D| χD(k).

The expression (−1)kχD(k) csc
(

πk
|D|

)
depends only on the residue class of k

mod D. Since even numbers represent all residue classes we can replace k by 2k

in the above expression, hence by (4.9) we have

∑

m∈Z

′ ∑

k mod D

|D|
2k−2m|D| χD(2k) = |D|χD(2)L(1, χD).



Eta Invariants and Class Numbers 749

Thus, the previous calculations together with (4.10) imply

π
∑

k mod D

(−1)k χD(k) csc
(

πk
|D|

)
= 4 π (χD(2)− 1)

√
|D| hD

wD

and thus (4.12) follows. ¤

We thus see that, starting from expressions (4.4) and (4.5), and using (4.11)
and (4.12) with D = −p, we arrive at an alternative proof of formulas (4.1) and
(4.2) for the η-invariants in terms of class numbers.

Remark 4.5. The main approach in this paper applies to flat manifolds with
more general holonomy groups. On the other hand, since there is no known
classification of such manifolds even in the case of cyclic holonomy groups (except
when the order is p or p2, p prime) a general result for the eta invariant seems
out of reach. We plan to deal with the computation of eta invariants in a more
general setting in a continuation of this paper.

5. Appendix: Modified Gauss sums.

In this section we prove some identities involving sums of special values of
sines, which are slight modifications of Gauss sums and which have been used in
the development of the formulas for the eta series and eta invariants in Sections
3 and 4.

Consider the character Gauss sum G(l, p) associated to the quadratic Dirichlet
character given by the Legendre symbol modulo p, and the quadratic Gauss sum
g(l, p) modulo p, where l, p ∈ N. As it is known, in the case when p is odd
and squarefree, and furthermore l and p are coprime, these two sums coincide.
Namely,

(5.1) G(l, p) :=
p−1∑

k=0

(
k
p

)
e

2πilk
p =

p−1∑

k=0

e
2πilk2

p =: g(l, p).

However, if (l, p) > 1 these two sums differ since G(l, p) = 0 while g(l, p) = p. We
will need the identities:

(5.2) g(l, p) =
(

l
p

)
g(1, p) =





√
p

(
l
p

)
p ≡ 1 (mod 4)

i
√

p
(

l
p

)
p ≡ 3 (mod 4).
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We now introduce some variants of G(l, p). Let l, p ∈ N with p odd. The
alternating Gauss sum, shifted Gauss sum and alternating shifted Gauss sum are
respectively defined by

G̃(l, p) :=
p−1∑

k=0

(−1)k
(

k
p

)
e

2πilk
p ,

H(l, p) :=
p−1∑

k=0

(
k
p

)
e

(2l+1)πik
p ,(5.3)

H̃(l, p) :=
p−1∑

k=0

(−1)k
(

k
p

)
e

(2l+1)πik
p .

In the next result we give alternative expressions for these sums.

Theorem 5.1. Let l ∈ N and p = 2q + 1 be an odd prime. If p 6 | l, then

G̃(l, p) = −i
G(1,p)

p−1∑

k=1

(
k
p

)
tan

( (k+l)π
p

)
(5.4)

H(l, p) = i
G(1,p)

p−1∑

k=1

(
k
p

)
cot

( (2(k+l)+1)π
2p

)
(5.5)

H̃(l, p) = 1
G(1,p)

(
q−l
p

)
(5.6)

On the other hand, if p | l, all the sums above vanish.

Proof. We use the same method for all three identities, which is simply to multiply
by G(1, p) the modified Gauss sum to be computed.

First, consider the product G(1, p) G̃(l, p). Since for each k fixed, with 1 ≤ k ≤
p− 1, there is a unique t = tp(j, k) such that j ≡ tk (mod p), we have

G(1, p) G̃(l, p) =
p−1∑

j,k=0

(−1)k
(

j
p

)(
k
p

)
e

2πij
p e

2πilk
p =

p−1∑

t=0

(
t
p

) p−1∑

k=0

(−1)k zk
t,l

where zt,l := e
2πi(t+l)

p . Since zp
t,l = 1 and zt,l 6= −1 for any t, l, by geometric

summation we get
∑p−1

k=0 (−1)k zk
t,l = 1−zt,l

1+zt,l
+1. Thus, by using that

∑p−1
t=0

(
t
p

)
=

0 and 1−eis

1+eis = −i tan( s
2), we finally obtain

G(1, p) G̃(l, p) =
p−1∑

t=0

(
t
p

) 1− zt,l

1 + zt,l
= −i

p−1∑

t=0

(
t
p

)
tan

(
π(t+l)

p

)
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from which the first identity in the theorem follows.

Now, consider the product G(1, p) H(l, p). Proceeding as before, we have

G(1, p) H(l, p) =
p−1∑

t=0

(
t
p

) p−1∑

t=0

xk
t,l =

p−1∑

t=0

(
t
p

) 1 + xt,l

1− xt,l

where xt,l = e
(2(t+l)+1)πi

p and where we have used that xp
t,l = −1 and xt,l 6= 1, for

any t, l. In this way, we get

G(1, p) H(l, p) = i

p−1∑

t=0

(
t
p

)
cot

(
(2(t+l)+1)π

2p

)

from which the second equality follows.

Finally, we consider the product G(1, p) H̃(l, p). As before we have

G(1, p) H̃(l, p) =
p−1∑

t=1

(
t
p

) p−1∑

k=1

(−1)k xk
t,l.

Note that xk
t,l = −1 if and only if p | 2(t+ l)+1, that is, if and only if 2(t+ l)+1 =

αp, with α odd. In this case, α = 1 or α = 3. Thus, t+ l = q or t+ l = 3q +1 and
hence t = q − l for l < q and t = 3q − l + 1 = p + (q − l) for q < l < p− 1 = 2q.

Suppose that l < q. Since xp
t,l = −1 and xt,l 6= 1, we have that

∑p−1
k=0 (−1)k xk

t,l =
0. In this way, we get

G(1, p) H̃(l, p) =
(

q−l
p

) p−1∑

k=0

(−1)k(−1)k = p
(

q−l
p

)

from which the last equality follows.

In the remaining case, q < l < p − 1, the computations give the same result
since

(p+(q−l)
p

)
=

( q−l
p

)
, thus Theorem 5.1 follows. ¤
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Corollary 5.2. Let l ∈ N and p an odd prime. If p 6 | l, then

p−1∑

k=1

(
k
p

)
sin(2lπk

p ) =





0
√

p
(

l
p

) p ≡ 1 (mod 4)

p ≡ 3 (mod 4)

p−1∑

k=1

(−1)k
(

k
p

)
sin

(
2lπk

p

)
=





−1√
p

∑p−1
k=1

(
k
p

)
tan

( (k+l)π
p

)

0

p ≡ 1 (mod 4)

p ≡ 3 (mod 4)

p−1∑

k=1

(
k
p

)
sin

( (2l+1)πk
p

)
=





1√
p

∑p−1
k=1

(
k
p

)
cot

( (2(k+l)+1)π
2p

)

0

p ≡ 1 (mod 4)

p ≡ 3 (mod 4)

p−1∑

k=1

(−1)k
(

k
p

)
sin

( (2l+1)πk
p

)
=





0

−√p
(

q−l
p

) p ≡ 1 (mod 4)

p ≡ 3 (mod 4)

On the other hand, if p | l, all these sums vanish.

Proof. Simply note that the left hand side of the expressions in the statement
are the imaginary part of different types of Gauss sums, namely they are equal,
respectively, to Im G(l, p), Im G̃(l, p), Im H̃(l, p) and Im H̃(l, p). The result readily
follows by using (5.1) and (5.2). ¤
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