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Abstract: The first part of this paper discusses general procedures for
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1. Introduction

Far-reaching existence theorems, exemplified by Yau’s solution of the Calabi
conjecture for Kahler-Einstein metrics, are a distinctive feature of Kahler ge-
ometry. There are many open problems—the extension of Yau’s results to the
“positive” case and to Kahler Ricci solitons; existence theory for constant scalar
curvature and extremal metrics; the study of the associated parabolic Ricci flow
and Calabi flow equations—making up a very active and challenging research
area today. Alongside this, little attention has been paid to the search for ex-
plicit numerical solutions: that is, good approximations to the metrics treated
by the theory. The only step in this direction seems to be the pioneering and
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recent work of Headrick and Wiseman [8]. In this article we discuss another
approach to this question, illustrated by some numerical results for a particular
K3 surface S; the double cover of the projective plane branched over the sextic
curve x6 +y6 +z6 = 0. The Kahler-Einstein metric ω on S is characterised by the
fact that, after suitable normalisation, the norm |θ|ω of the standard holomorphic
2-form θ is equal to 1 at each point. We find a metric ω′9 on S, given explicitly in
terms of 26 real parameters, such that the norm |θ|ω′9 differs from 1 by at most
about 1.5% and on average, over S, by about .11%. Thus there are good grounds
for thinking that ω′9 is a very reasonable approximation to the Kahler-Einstein
metric, which could be applied to investigate any specific geometric question.
The author has not yet attempted to investigate such applications in this case,
except for some discussion of the spectrum of the Laplacian which we which give
in Section 4. We will focus on this one example, although it should become
clear that the methods could be applied, in a practical fashion, to other cases.
The author has some other results for toric surfaces which he hopes to describe
elsewhere.

In Section 1 below we describe a general approach to these approximation
questions for projective algebraic manifolds. This approach is quite different
from that of Headrick and Wiseman. The distinctive features are

• The use of metrics furnished by projective embeddings of the manifold.
• The construction of approximations to the differential-geometric solutions

as limits of iterates of maps defined by integration over the manifold.

(It seems likely that these maps, which are dynamical systems on finite-dimensional
spaces, can be viewed as discrete approximations to the Ricci and Calabi flows.)

To expand on the the first item above, consider an ample line bundle L → X

over a compact complex manifold X, so for large enough integers k the sections of
Lk give a projective embedding of X. Suppose G is a positive definite Hermitian
form on the vector space H0(Lk) of sections. Then there is a metric h on the
line bundle Lk characterised by the fact that if (sα) is any orthonormal basis of
H0(Lk) then the function ∑

α

|sα|2h

is constant on X. The curvature of the unitary connection on Lk associated to
h has the form −ikωG where ωG is a Kahler metric on X in the class 2πc1(L).
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This metric can also be viewed as the restriction of the standard Fubini-Study
metric on the projective space P(H0(Lk)∗) (defined by the Hermitian form G)
to the image of X under the projective embedding. Thus we have a way to
generate Kahler metrics from simple algebraic data—Hermitian forms on finite
dimensional vector spaces.

The potential utility of this point of view has been advocated over many years
by Yau, and a fundamental result of Tian [16] shows that this scheme does yield
a way to approximate any metric. Tian proved that for any metric ω in the class
2πc1(L) there is a sequence Gk of Hermitian forms such that

‖ω − ωGk
‖ = O(k−2),

for any Cr norm on X. Now the dimension of H0(Lk) grows like kn where
n = dimX, so—from a practical point of view—one might think that good ap-
proximations by these “algebraic” metrics would require the use of unduly large
vector spaces (with a Hermitian metric depending on O(k2n) real parameters).
This point can be addressed by a refinement of Tian’s result. There is a sequence
G̃k such that

‖ω − ωG̃k
‖ = O(k−ν)

for any ν. This is explained in the Appendix below. In other words, any metric
can be very rapidly approximated by algebraic ones. (These approximations are
in some ways analogous to the approximations of a smooth function defined by
truncating the Fourier series.) Now suppose we are in a situation where we know
(or hope) that a special metric ω (Kahler-Einstein, constant scalar curvature,
extremal, Kahler-Ricci solution) exists. How can we generate a sequence of ap-
proximations to ω via Hermitian forms G̃k, and can we get useful approximations
with values of k which are small enough to be manageable in practice? These are
the questions we take up below.

The focus of this article is on the explicit numerical results. While there
is already in place a considerable quantity of rigorous theory to back up these
methods (and the authors interest in these questions grew out of work on abstract
existence questions), there are also many points where more theory needs to be
filled in; but we will not dwell on these here. It is also worth mentioning that
many of these constructions are closely related to ideas in Geometric Quantisation
Theory, and in particular the asymptotics of the classical limit, but we will not
say more about this.
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Lacking any background in numerical methods, the author is not really qual-
ified to comment on the comparison of the results here with those of Headrick
and Wiseman. In one direction, the end-products seem comparable: approxima-
tions to Kahler-Einstein metrics on very special K3 surfaces with large symmetry
groups using standard PC’s. The author has not been able to directly com-
pare the accuracy of the approximations in the two cases, but suspects that the
best approximation we present here is comparable to the middle range of those
achieved by Headrick and Wiseman and that by increasing k a bit we would
achieve something comparable to their best approximation. One fundamental
disadvantage of our approach is that it is limited to algebraic varieties, whereas
Headrick and Wiseman are able to vary the Kahler class continuously. One clear
advantage, at least in the case studied here, is that we only need a few real pa-
rameters to store the metrics, as opposed to thousands or millions of parameters
needed to record the values for a lattice approximation.

The author is grateful to Andrés Donaldson for instruction in programming.
He would also like to mention the crucial part played by Appendix A (“Ele-
mentary programming in QBasic”) of the text [1] in getting this project off the
ground. Since its first appearance in preprint form, the article has been improved
following comments from several people: two anonymous referees, Professors Liu
and Ma (who elucidate some of the theory in their paper [10]) and Dr. Julien
Keller (who also produced the figures in Section 2).The author thanks all of these
mathematicians for the care they have taken. (We also mention here that the
numerical results stated in this paper were obtained using programmes written
in Basic. Keller has since rewritten the programmes in C++, with an enormous
gain in speed and accuracy. Thus the comments in the preprint version on the
time required to perform the calculations have been deleted here, and the author
hopes that this issue may be addressed by Keller elsewhere, along with other
extensions of the ideas. All his programs relative to this work are available for
download on the Institute for Mathematical Sciences website.)

http://www3.imperial.ac.uk/mathsinstitute/programmes/research/geometryandstringtheory
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2. General theory

2.1. Constant scalar curvature. We return to the discussion of an ample line
bundle L → X, as in the previous section. Thus we consider the relations between
two different kinds of metric data:

•Hermitian metrics G on the finite-dimensional complex vector space H0(X;Lk);

• Hermitian metrics h on the line bundle Lk such that the compatible unitary
connection has curvature −ikωh, where ωh is a Kahler form on X. As a matter of
notation, we write G for the metric on H0(Lk) and G−1 for the induced metric on
the dual space. We also use the notation G = (Gαβ), G−1 = Gαβ when working
with a basis (sα) of H0(Lk).

We have two fundamental constructions. Given a metric h on Lk we let Hilb(h)
be the Hermitian metric on H0(Lk);

‖s‖2
Hilb(h) = R

∫

X
|s|2hdµh,

where dµh is the standard volume form ωn
h/n! and R is the ratio

R =
dimH0(Lk)
Vol(X, dµh)

(which does not depend on the choice of h). In the other direction, given a
Hermitian metric G on H0(Lk) there is a metric FS(G) on Lk characterised by
the fact that, for any orthonormal basis sα of H0(Lk), we have

∑
α

|sα|2FS(G) = 1,

pointwise on X. The Kahler form ωFS(G) is the restriction of the standard Fubini-
Study metric on projective space (defined by G) to X—regarded as a projective
variety. Now we say that a pair (G,h) is “balanced” if G = Hilb(h) and h =
FS(G). (This terminology was introduced in [6]: the notion had been considered
before by Zhang[17] and Luo [9].) Equally, since in this situation either of h

and G determine the other, we can speak of a metric h on Lk or a metric G on
H0(Lk) being “balanced”. Let M denote the set of hermitian metrics on H0(Lk)
and define T : M → M by

T (G) = Hilb(FS(G)).
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Thus, by definition, a balanced metric is a fixed point of T . Now we have, from
[7],

Proposition 1. Suppose that the automorphism group of the pair (X, L) is dis-
crete. If a balanced metric G in M exists then, for any point G0 ∈ M , the
sequence T r(G0) converges to G as r tends to infinity.

(In the original, preprint, version of [7] this convergence was raised as a ques-
tion. In the version submitted for publication the convergence property was
stated as a fact, but without a detailed proof. Meanwhile, independently, Y.
Sano [15] supplied the detailed argument, in reponse to the original version of
[7].)

We can spell out more explicitly the definition of the map T . Changing point
of view slightly, let zα be standard homogeneous co-ordinates on CPN and X ⊂
CPN be a projective variety. Start with a positive definite Hermitian matrix
Gαβ and form the inverse Gαβ . For z ∈ CN+1 set

D(z) =
∑

Gαβzαzβ.

Then the quotients

fγδ =
zγzδ

D(z)
,

are homogeneous of degree 0 and can be regarded as functions on CPN , and so
on X. Then the map T is

(T (G))γδ = R

∫

X
fγδdµ,

where dµ is the volume form induced by the Fubini-Study metric of G. Notice that
the constant R is chosen so that GγδT (G)γδ = N +1. The geometry is unaffected
by rescaling the metric G so in practise we work with metrics normalised up to
scale in some convenient but arbitrary way.

So far the parameter k has been fixed; we now consider the effect of increasing
k. The main result of [6] relates balanced metrics to constant scalar curvature
metrics on X.

Proposition 2. Suppose that the automorphism group of the pair (X, L) is dis-
crete. If X has a constant scalar curvature Kahler metric ω in the class 2πc1(L)
then for large enough k there is a unique balanced metric on Lk inducing a Kahler
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metric kωk on X, and ωk → ω as k →∞. Conversely, if there are balanced met-
rics on Lk for all large k and the sequence ωk converges then the limit has constant
scalar curvature.

Taken together, these two results give a procedure for finding numerical ap-
proximations to constant scalar curvature metrics. We choose a sufficiently large
value of k and then compute the iterate T r(G0) for some convenient initial metric
G0 on H0(Lk). If k is sufficiently large then the limit as r tends to infinity is a
good approximation to the differential geometric solution.

A crucial ingredient in the proof of Proposition 2 is the Tian-Yau-Zelditch-Lu
expansion for the “density of states” function. If sα is an orthonormal basis for
H0(Lk) with respect to the standard L2 metric we set ρk =

∑ |sα|2; a function
on X which does not depend on the choice of basis. Then if we take a fixed metric
on L and form the sequence of functions ρk with the induced metrics on Lk we
have

ρk ∼ (2π)−n(kn + a1k
n−1 + a2k

n−2 + . . . ),

where the ai are local invariants and a1 is 1/2π times the scalar curvature.

2.1.1. A toy example. We take X to be the Riemann sphere CP1, L to be the line
bundle O(1). (Strictly this example does not fit into the framework above, since
the pair has a continuous automorphism group SL(2,C). However, the theory
can undoubtedly be extended to relax the condition on the automorphisms, in
the manner of [11], so we will ignore this technicality here.) A basis of H0(Lk)
is given by 1, x, x2, . . . xk where x is a standard co-ordinate on C. We restrict
attention to S1-invariant metrics, for the S1 action x 7→ eiθx on the sphere. The
invariant metrics are represented by diagonal matrices in our basis, specified by
the k + 1 diagonal entries, thus

D =
k∑

p=0

ap|x|2p.

(Notice that the ap are really the entries of the metric G−1 on the dual space:
in practice it is easier to work with this rather than G.) The round metric on

the sphere is given by ap =

(
k

p

)
, when D = (1 + |x|2)k. Due to the symmetry

we know that for any k the balanced metric is a standard round metric on the
sphere.



578 S. K. Donaldson

To make things even simpler, we can consider metrics invariant under the
inversion x 7→ x−1, so ap = ak−p. Since the geometry is unaffected by a overall
scaling ap 7→ Cap we have just bk/2c + 1 essential real parameters. In the first
case, when k = 2, one can evaluate the integrals in the definition of T explicitly
using elementary calculus. If we normalise so that a0 = a2 = 1/2 and write
a1 = s the map is represented by the function

τ(s) =
s cosh−1(s) +

√
s2 − 1(s2 − 2)

2s
√

s2 − 1− 2 cosh−1(s)
.

The reader who plots this function will immediately see that the iterates τ r(s0)
do indeed converge rapidly to the fixed point s = 1. (The formula as written is
valid in the range s > 1 but has an obvious continuation to s ≤ 1.)

We now consider the case k = 6, and evaluate the integrals numerically. A
typical sequence of iterates is indicated in the next table.

r a0 a1 a2 a3

0 .018 .495 4.5 54
1 .02833 .8539 11.04 40.16
2 .03923 1.268 13.38 34.62
3 .05331 1.645 14.39 31.81
4 .07150 1.987 14.90 30.09
10 .2384 3.493 15.57 25.40
20 .7365 5.400 15.26 21.20
30 .9488 5.895 15.05 20.21
40 .991 5.983 15.01 20.03
∞ 1 6 15 20

This confirms the convergence that the theory predicts, and similar resuts are
obtained whatever initial values for a0, a1, a2, a3 are used. The choice of the
particular initial values here is made because in this case all the metrics in the
sequence can be represented as surfaces of revolution in R3, so one obtains a
vivid representation of the evolution of the geometry of the surface through the
sequence. The initial values give, roughly speaking, a connected sum of spheres
joined by a small neck. The first application of T stretches the surface into a long
“sausage”, which becomes convex after four more application of T , and thereafter
the sausage slowly shrinks in length to approach a round sphere. See Figures 1-4.
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Figure 1. r = 1 Figure 2. r = 5

Figure 3. r = 10 Figure 4. r = 40

In this example we see that the convergence to the limit is, while steady, quite
slow. Let εi(r) be the difference between ai(r) and the limiting value ai(∞). From
standard general theory we know that there is a constant σ ∈ (0, 1) associated to
the problem such that for almost all initial conditions

εi(r) ∼ ciσ
r

as r → ∞. This constant σ is just the largest eigenvalue of the derivative of T

at the fixed point, and the vector ci is an associated eigenvector. Analysing the
sequence, one can see that in this case σ is about .8. We also see numerically
that the corresponding eigenvector has entries approximately

(1,−2,−1,−4).
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The fact that one gets this eigenvector is easily explained by the SO(3) invariance
of the problem. The eigenvector corresponds to the second spherical harmonic
on the sphere. This is given by

f2 =
(

1− |x|2
1 + |x|2

)2

.

Thus

f2 =
(1− |x|2)2(1 + |x|2)4

(1 + |x|2)6 ,

and

(1− |x|2)2(1 + |x|2)4 = 1− 2|x|2 − |x|4 − 4|x|6 − |x|8 − 2|x|10 + |x|12.

A general point to make here is that while the convergence of the sequence T r

is slow (since .8 is not much less than 1) it is easy, using this standard analysis
of the linearisation, to define much more rapidly convergent sequences, and of
course the same remarks hold in more complicated examples.

This toy model is the only example of the T -iteration which we will consider
in this paper. The picture extends readily to the case of toric varieties in higher
dimensions which, as mentioned before, the author hopes to take up elsewhere.

2.1.2. Extremal metrics. As we stated above, the results of [6] and [7] are lim-
ited, strictly, to the case where the pair (X, L) does not have continuous auto-
morphisms, but we anticipate that the theory can be extended to remove this
condition. In this regard, we point out here that there is a straightforward modi-
fication which can be expected to produce numerical approximations to extremal
metrics in the sense of Calabi [4]. Suppose that (X, L) has a conected Lie group
of automorphisms and fix a maximal compact subgroup K. Then K acts on
H0(X, Lk) and we restrict to K-invariant metrics. Then it may happen that
the sequence T r(G0) does not converge but that there is a sequence gr in the
complexification of K such that gr(T r(G0)) does converge, as r → ∞. In this
case, taking the limits, we again get a sequence of preferred metrics ωk which
we expect to converge to an extremal metric on X as k →∞. While the theory
here needs to be filled in, the procedure works effectively in the examples that
the author has studied numerically.
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2.2. Calabi-Yau metrics. We now turn to the main topic of this paper: the
case when the metric one wants to approximate is Ricci-flat. While this case could
be treated within the constant scalar curvature theory outlined above, there is
a slightly different, and simpler approach. Let X, L be as before and suppose
given a fixed smooth volume form dν on X. A fundamental result of Yau asserts
that there is a unique Kahler metric ω on X in the class 2πc1(L) which realises
a constant multiple of dν as its volume form ωn/n!. We describe a method
for finding numerical approximations to this metric. The most interesting case
is when X is a Calabi-Yau manifold, so has a nowhere-vanishing holomorphic
n-form θ. Then the metric with volume form dν = in

2
θ ∧ θ is Ricci-flat.

In a nutshell, we modify the definitions of the previous section by using the
fixed volume form dν in place of the Fubini-Study volume dµ. Thus we say that
a Hermitian metric G on H0(X;Lk) is ν-balanced if G = Hilbν(FS(G)) where

‖s‖2
Hilbν(h) = R

∫
|s|2hdν.

The existence of balanced metrics in this context is due to Bourguignon, Li and
Yau [3], see also the recent paper [2]. It is closely related to well-known results
relating moment maps to Geometric Invariant theory, and similar extensions were
considered by Milson and Zombro [12]. In fact suppose that ν is any positive
Radon measure on CPn. We say that a metric Gαβ on CN+1 is ν--balanced if

Gγδ = R

∫

CPN

zγzδ

D(z)
dν.

When ν is derived from a smooth volume form supported on a projective
subvariety X ⊂ CPN this reproduces the previous definition. But we can also
consider other measures, in particular, sums of point masses (or, in other words,
the case when subvariety has dimension 0). Let us suppose that the measure ν

satisfies one of the following two conditions:

(1) For any non-trivial linear function λ on CN+1 the function log( |λ(z)|
|z| ) on

CPN is ν-integrable.
(2) ν is a sum of point masses supported on a finite set Z and for any pro-

jective subspace P ⊂ CPN we have

ν(Z ∩ P )
dim P + 1

<
ν(Z)
N + 1

.
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(The definition in the first item uses a metric on CN+1 but is clear that the
condition does not depend on this choice.) It is easy to see that if ν is a smooth
volume form on a subvariety X which does not lie in any proper projective sub-
space then the first hypothesis holds.

Now we have

Proposition 3. If ν is a positive Radon measure on CPN which satisfies either
condition (1) or (2) above then there is a ν-balanced metric on CN+1, and this
is unique up to scale.

We recall the proof briefly. Note that the space of metrics M is the symmetric
space GL(N + 1,C)/U(N) and there is a standard notion of geodesics in M ; the
images of analytic 1-parameter subgroups in GL(N + 1,C). For any non-zero
vector z ∈ CN+1 we let ψz be the function

ψz(G) = log |z|2G−1 +
1

N + 1
log det G

on M . The key point is that ψz is convex on all geodesics. Changing z by a scalar
multiple only changes ψz by the addition of a constant. Now given our Radon
measure ν we set, with some abuse of notation,

Ψν(G) =
∫

CPN
ψzdν(z).

This is defined up to the addition of a constant; for example we can define ψz

for z ∈ CPN by taking the lift to a vector in CN+1 of length 1 with respect
to some chosen reference metric. Now Ψν is also convex, being a positive linear
combination of convex functions. It is easy to check that a metric G is ν-balanced
if and only if it is a minimum of Ψν . Such a minimum will exist so long as Ψν is a
proper function on M , and the convexity yields uniqueness. In turn, Ψν is proper
on M if and only if it is proper on each geodesic. So what we have to verify is
that—under either of the hypotheses (1), (2)—for each geodesic ray Gt we have
Ψν(Gt) → ∞ as t → ∞. Using the GL(N + 1,C)-invariance of the problem it
suffices to consider a geodesic of the form

Gt = diag(eλαt),

where
∑

λα = 0 and λ0 ≥ · · · ≥ λN . Then

Ψν(Gt) =
∫

CPN
log

(∑
eλαt|xα|2

)
dνx.
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Consider first case (1). The first coefficient λ0 must be positive and we have

log(
∑

eλαt)|xα|2 ≥ log(eλ0t|x0|2) = λ0t + log |x0|2.
By the hypothesis the term on the right hand side is ν-integrable and so

Ψν(Gt) ≥ λ0tν(CPN ) + Const.

and we see that Ψν(Gt) →∞ as required. In case (2) we write ν =
∑

νiδx(i) , for
points x(i) in CPN . Let

α(i) = min{α|x(i)
α 6= 0}.

Then Ψν(Gt) ∼ ct as t →∞ where

c =
∑

λα(i)νi.

Elementary arguments, essentially the same as in usual Geometric Invariant The-
ory discussion in [14], [13], show that the condition that c > 0, for all geodesics,
is equivalent to the hypothesis (2).

Thus we know that, under the very mild hypotheses (1) or (2), ν-balanced
metrics exist. To find them, we make the obviuous modification to the algorithm
of the previous section. We define Tν : M → M in just the same way as T but
using the measure ν. That is, starting with a matrix G, we set

Tν(G)γδ = R

∫

CPN

zγzδ

D(z)
dν(z).

Notice that this is unaffected by rescaling ν.

Proposition 4. Suppose ν satisfies either hypothesis (1) or (2). Then for any
initial metric G0 the sequence T r

ν (G0) converges to the ν-balanced metric as r →
∞.

The proof is similar to that for the map T , but more elementary. We show that
Tν decreases the function Ψν ; then the conclusion follows from the properness of
Ψν . To make the notation simpler we will treat the case of point masses, the other
case being essentially the same. To prove the inequality Ψν(Tν(G)) ≤ Ψν(G)
we can without loss of generality suppose that G is the metric given by the
identity matrix. We can also suppose that the total mass

∑
νi is 1. We choose

representatives z(i) in CN+1 with |z(i)|G−1 = 1. Then

Ψν(G) =
∑

νi log |z(i)|2G−1 +
1

N + 1
log(1) = 0.
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We treat the two terms in the definition of Ψν :

Ψν(T (G)) =
∑

νi log |z(i)|2Tν(G)−1 +
1

N + 1
log det Tν(G),

separately. By the concavity of the logarithm function
∑

i

νi log |z(i)|2Tν(G)−1 ≤ log
(∑

νi|z(i)|2Tν(G)−1

)
.

Now ∑

i

νi|z(i)|2Tν(G)−1 =
∑

i,α,β

νiz
(i)
α z

(i)
β (Tν(G))αβ ,

but this is ∑

αβ

1
N + 1

Tν(G)αβTν(G)αβ

which is 1, since Tν(G)αβ , Tν(G)αβ are inverse matrices. So the first term in the
definition of Ψν is less than or equal to 0. For the second term, the arithmetic-
geometric mean inequality for the eigenvalues gives

1
N + 1

log det Tν(G) ≤ log
(

Tr(Tν(G))
N + 1

)

and the term on the right is zero, since

Tr(Tν(G)) =
∑

i

νi|zi|2G−1 =
∑

νi = 1.

Putting the two terms together we have Ψν(Tν(G)) ≤ 0, as required.

To sum up, given a volume form ν on our algebraic variety X we have, for each
k, an algorithm for finding the ν-balanced metric on H0(X;Lk). Moreover, this
is robust in the sense that if we approximate ν by another measure ν∗ which is a
sum of point masses—as we have to do in numerical integration—the numerical
algorithm defined by Tν∗ will converge to a ν∗-balanced metric provided only that
ν∗ satisfies the very mild condition (2) (which will happen for any reasonable
approximation). Taking the restriction of the Fubini-Study metric and scaling
by k−1 we get a ν-balanced Kahler metric ωk,ν on X. Now let k tend to infinity.
The same argument as used in the proof of Proposition 2, appealing to a variant
of the asymptotic expansion result for the density of states function furnished
by Dai, Liu and Ma [5], shows that the Kahler metrics k−1ωk,ν converge to the
metric with volume form ν. Thus we have another procedure for finding numerical
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approximations to Calabi-Yau metrics. Experimentally at least, this converges
more quickly than the more general “T -algorithm”, which is probably related
to the fact that the constant scalar curvature equation is of fourth order in the
Kahler potential while the Calabi-Yau equation is a second order Monge-Ampere
equation.

To give a toy example, consider again the S1 invariant metrics on CP1 and
the sections of O(6). Let ν be the volume form of the standard round metric.
Then, with the same starting point as before, we obtain the iterates of Tν shown
in the following table.

r a0 a1 a2 a3

0 .018 .5 4.5 54
1 .1395 2.599 15.20 28.12
2 .4200 4.420 15.54 23.23
3 .6920 5.297 15.30 21.41
4 .8568 5.697 15.14 20.61
10 .9992 5.998 15.00 20.00
13 .9999 6.000 15.00 20.00

The convergence is much faster. The parameter σ governing the asymptotic
behaviour is now about .42 (with the same eigenvector).

2.2.1. Refined approximations. In either variant of the theory, the balanced met-
rics or ν-balanced metrics cannot usually be expected to give very close approx-
imations to the desired differential-geometric solutions for practical values of k.
An analysis of the convergence, using the Zelditch expansion, would probably
show that the convergence is only O(k−1) or O(k−2). We now return to the issue
raised in the Introduction of finding rapidly convergent approximations. We re-
strict the discussion here to the Calabi-Yau case. Thus we suppose that we have
a metric G0 on H0(X;Lk) inducing a Fubini-Study metric ωG0 on X, and that
the volume form dµG0 = 1

n!ω
n
G0

is reasonably close, but not extremely close to
the given volume form ν (which we assume to be normalised so that the total
volumes are equal). We set η = dµG/ν; a function on X which is close to 1.
We would like to “refine” G0 to get a better approximation. This is essentially a
linear problem. In the standard differential geometric theory we would consider
a nearby Kahler metric of the form ωG0 + i∂∂φ. The linearisation of the volume
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form map is one half the Laplacian of (X, ωG0) so we would take

φ = −2∆−1(η − 1)

where ∆−1 is the Green’s operator. Then, provided that ωG0 is a good enough
approxiation for the linearisation to be valid, the metric ωG0 + i∂∂φ would be
a better approximation to the desired Calabi-Yau metric and, iterating the pro-
cedure, we would generate a sequence which converged to that limit. Thus the
question we address here is how to implement a procedure like this numerically,
staying within the class of the “algebraic” Kahler metrics.

Let G be any metric on H0(Lk) and sα be a basis of sections. Then we have
functions fαβ = (sα, sβ) on X, where ( , ) denotes the pointwise inner product
on Lk induced by G. Define “η- coefficients”

ηαβ = R

∫

X
fαβ(η − 1)dν.

(Notice here the diagonal terms ηαα have a particularly simple interpretation,
when G is the balanced metric and the basis is orthonormal. In that case the
integral of the positive function fαα is 1/R and the numbers ηαα can be viewed
as a collection of mean values of η−1, weighted by Rfαα.) A natural criterion to
define an “optimal” algebraic approximation to the differential-geometric solution
is that all the coefficients ηαβ vanish. Thus we say that a metric G near to
the balanced metric G0 is a “refined approximation” if this occurs. One could
hope to prove that, for large enough k, these refined approximations exist and
(with a suitable interpretation of “close”) are unique. Further, it is reasonable
to expect that the resulting sequence of refined approximations would be very
rapidly convergent, in the manner discussed in the Introduction.

In more invariant terms, we define a vector space H(Lk) to be the Hermitian
forms on H0(Lk). Then, given G0, we have maps

ι : H(Lk) → C∞(X) π : C∞(X) → H(Lk)

defined in terms of a basis by

ι((aαβ)) =
∑

aαβfαβ ,

and

(π(F ))αβ = R

∫

X
Ffα,βdν.



Some Numerical Results in Complex Differential Geometry 587

Then the condition we are considering is that π(η − 1) ∈ H(Lk) should vanish,
which is the same as saying that η − 1 is orthogonal in the L2 sense to the finite
dimensional subspace Im(ι) ⊂ C∞(X).

The practical question we now face is: how can we find the refined approxima-
tions numerically, starting from the ν-balanced metrics? As we have explained
above this is basically a linear problem. If we set G = G0 + h then we have a
map

V : h 7→ (ηαβ(G0 + h))

from hermitian matrices h to hermitian matrices ηαβ . We want to find a zero
of V and the standard procedure would be to invert the linearisation. This
linearisation is given by a 4-index tensor Sαβγδ with

Sαβγδ =
∫

X
fαβ(fγδ +

1
2
∆fγδ)dν.

If we compute S and invert the corresponding matrix we could define an iterative
procedure which ought to converge to the refined approximation. An obstacle
to carrying this through is that (even when reduced by symmetry) the tensor S

has very many components so is relatively hard to compute in practice. Thus
the author has not yet tried to implement this scheme but has used the following
simpler procedure instead. Starting with an approximation G0 we compute the
error matrix E = (ηαβ) and simply set

G1 = G0 − κE

where κ is a suitable positive constant. In fact we compute with the inverse
metrics G−1

0 and, since E will be small, use the approximation

G−1
1 = G−1

0 + κG−1
0 EG−1

0 .

Iterating this procedure yields a sequence which appears to converges reasonably
well, although slowly, to the refined approximation, see the examples and dis-
cussion in the next Section. In Section 4 we give some further discussion and
theoretical justification for this procedure.

Of course the whole theory sketched here needs to be developed properly, and
better methods found. But we hope it will yield systematic procedures for finding
improved numerical approximations, starting with the balanced metrics.
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2.2.2. Non-zero cosmological constant. We now consider the problem of finding
approximations to Kahler-Einstein metrics with non-zero scalar curvature. Of
course this can be fitted into the constant scalar curvature theory described above,
but there is also a natural variant of the Calabi-Yau construction above which
probably yields a simpler approach (although the author has neither attempted
to develop the theory of this nor studied substantial examples numerically).

We suppose that our positive line bundle L is either the canonical bundle K

of X or its dual K−1. Write p = ±k in the two cases, so our space of sections is
H0(X;Kp). Given a metric on H0(X;Kp), let sα be an orthornormal basis and
set

φ =
∑

sα ⊗ sβ.

This is a section of the bundle Kp ⊗K
p over X which does not depend on the

choice of orthonormal basis. Moreover if the sections of Kp generate the fibers,
which we can suppose is the case, φ does not vanish on X. Then φ1/p is a well-
defined volume form on X. Using this volume form in place of the Fubini-Study
form we get the notion of a canonically balanced metric on H0(X;Kp). Likewise,
using this volume form we define another variant TK of the map T . Of course
we hope that if a Kahler-Einstein metric exists then it is the limit of canonically
balanced metrics, and that the iterates of TK converge to the canonically balanced
metrics. Furthermore, we can combine this discussion with that in (2.1.2), in the
case when X has continuous automorphisms, and we can hope to find Kahler-
Ricci solitons in appropriate cases. But we leave all of this as a programme for
the future, except to give here another toy example. If we take invariant metrics
on CP1 and sections of O(6) = K−3 we get the sequence of iterates of TK :

r a0 a1 a2 a3

0 .018 .5 4.5 54
1 .0681 1.714 14.20 32.04
2 .1860 3.120 15.50 26.39
3 .3673 4.178 15.57 23.78
4 .5598 4.900 15.43 22.23
10 .9821 5.964 15.02 20.07
18 .9998 6.000 15.00 20.00
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The convergence is intermediate between the two previous cases, with the
parameter σ about .56.

3. Study of a K3 surface

3.1. Geometry. We now reach the heart of this article: the numerical study of
a particular K3 surface S. This is the double cover of the plane branched over the
sextic curve x6+y6+z6 = 0. Thus S is defined by the equation w2 = x6+y6+z6,
where w is a point in the total space of the line bundle O(3) over CP2. Most
of the time we work in the affine piece of S which is the subset of C3, with
co-ordinates (x, y, w), cut out by the equation w2 = x6 + y6 + 1. We fix the
nowhere-vanishing holomorphic 2-form θ on S given in this affine piece by

θ =
dxdy

w
=

dxdy√
x6 + y6 + 1

.

This determines a volume form ν = θθ.

The surface S has many symmetries. These are generated by

• The permutations of x, y, z

• Multiplication of x, y by sixth roots of unity.
• The covering involution w 7→ −w.
• The antiholomorphic involution given by complex conjugation of all co-

ordinates.

Thus we get a symmetry group Γ of order 6 × 62 × 2 × 2 = 864, preserving the
volume form ν.

We now wish to evaluate the total mass

Vol(S, ν) =
∫

S
ν.

This is not strictly necessary for our main purpose, but gives a valuable check on
the accuracy of our numerical calculations in the next section. We can evaluate
the integral by exploiting the fact that S is an an elliptic surface, of a very special
kind. To see the elliptic fibration we consider the map f : [x, y, z] 7→ [x3, y3, z3]
from P2 to P2. This maps the sextic branch curve to the conic X2+Y 2+Z2 = 0.
Thus the covering S → P2 is the pull back by f of the familiar covering of the
quadric Q over the plane, branched along the conic. Now Q = P1 ×P1 is fibred
by lines (in two different ways). These fibres are the preimages under the covering
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Q → P2 of the lines tangent to the conic. The preimages of these lines under f are
cubic curves in the plane tangent to the sextic branch curve at each intersection
point, and these are the elliptic curves whose lifts to the double cover yield an
elliptic fibration of S.

To see all of this more explicitly we work in affine coordinates. Let C be the
plane curve with equation p3 + q3 + 1 = 0. Recall that the conic λ2 + µ2 + 1 = 0
is parametrised by a rational variable τ with

(1) λ =
1
2i

(τ + τ−1) , µ =
1
2
(τ − τ−1).

Now for a point (p, q) in the curve C and a complex parameter τ set

(2) x =
p

λ1/3
y =

q

µ1/3
,

where λ = λ(τ), µ = µ(τ) are given by Equation 1. Of course we have to deal
with the cube roots in Equation 2 , so initially we just regard τ as varying in an
appropriate open set Ω in P1. A few lines of algebra show that if we set

w = i
p3 − λ2

λµ
,

then x, y, w satisfy the equation w2 = x6+y6+1. In other words, we have defined
a holomorphic isomorphism F from Ω×C ⊂ P1×C to an open set in S. Further
straightforward calculation shows that

F ∗(θ) =
22/3

3
φψ

where

φ =
dp

(1− p3)2/3
, ψ =

dτ

(τ(τ4 − 1))1/3
.

The form φ is just the standard holomorphic 1-form on the elliptic curve C.
The form ψ is initially defined only an open set Ω in P1. We could introduce a
covering Σ → P1 such that ψ lifts to a holomorphic form on Σ, but there is no
need to do this because the 2-form ψ ∧ψ is a well defined integrable form on P1.
Since we can cover a dense open set in S by taking Ω to be a cut plane, we see
that

Vol(S, ν) =
24/3

9
IJ,

where

I = i

∫

C
φ ∧ φ , J = i

∫

P1
ψ ∧ ψ.
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Now let W we the wedge-shaped region in C defined by 0 < arg(p) < π/3. A
dense open set in the curve C is covered by 18 copies of W (6 rotations in C each
of which has 3 lifts to C). So

I = 18
∫

W
φ ∧ φ.

Now it is easy to see that the indefinite integral of (1 − p3)−2/3 maps W to an
equilateral triangle in C with side length LI where

(3) LI =
∫ 1

0

dp

(1− p3)2/3
.

It follows that

I = 18
√

3
2

L2
I .

Similarly let Q be the domain in C defined by the conditions |τ | < 1, 0 < arg(τ) <

π/2. This is a fundamental domain for an action of a group of order 8 generated
by τ 7→ τ−1 and τ 7→ iτ which preserves the form ψ ∧ ψ. So

J = 8
∫

Q
ψ ∧ ψ.

The indefinite integral of ψ maps Q to another equilateral triangle with side
length LJ say, so

J = 8
√

3
2

L2
J ,

where

LJ =
∫ 1

0

dτ

(τ(1− τ4))1/3
.

Finally, the elementary substitution,

(4) p =
(

τ2 − 1
τ2 + 1

)2/3

shows that

LJ = 3
42/3

8
LI .

(We can also interpret the substitution of Equation 4 as defining a covering map
from Σ to C.) Putting everything together we obtain

Vol(S, ν) = 27L4
I ,



592 S. K. Donaldson

where LI is the one-dimensional integral in Equation 3. The author evaluating
this numerically to get LI = 1.76664, which yields

Vol(S, ν) = 263.00,

to 5 significant figures. Subsequently, Julien Keller pointed out that there is an
exact formula

Vol(S, ν) =
3

(2π)4
Γ(1/3)12,

which gives the volume as 262.99941, to 8 significant figures.

3.1.1. Linear systems on S. We will study the general procedures of Section (2.2)
for line bundles O(k) over S: powers of the lift of the hyperplane bundle O(1)
on P2. We will consider three cases, when k = 3, 6, 9. The symmetry group of
S acts on H0(S;O(k)) and we can restrict attention to invariant metrics. It is a
straightforward matter to describe these. There is a natural holomorphic section
w of O(3) over S and for k ≥ 3 we have

H0(S;O(k)) = H0(P2, O(k))⊕ wH0(P2;O(k − 3)).

The two summands are eigenspaces of the action of the covering involution, so
must be orthogonal for any invariant metric. The sections of O(j) over P2 are
represented, in our affine piece, by linear combinations of monomials xpyq for
p+ q ≤ j. So we have a standard basis of the space labelled by the integer points
in a triangle. We will draw this as a right angled triangle but it is better to think
of it as an equilateral triangle (with a hexagonal lattice) which makes the action
of the group of permutations of the projective coordinates x, y, z apparent. Now
considering the action of multiplication by sixth roots of unity we see that we can
only have a nontrivial inner product between monomials xpyq and xrys if p ≡ r

and q ≡ s modulo 6. These inner products must be real numbers, due to the
symmetry under the antiholomorphic involution of S.
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Now for k = 3 an invariant metric must be diagonal in our standard ba-
sis. The metric is specified by 4 real parameters aI , aII , aIII , bI as indicated.

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

aIII aII aII aIII

aII

aII

aIII

aI aII

aII

@
@

@

bI

In other words, the function D associated to the metric is given, in our affine
coordinates, by

D = aI |xy|2+aII(|x|2+|x|4+|y|2+|y|4+|x2y|2+|y2x|2)+aIII(|x|6+|y|6+1)+bI |w|2

For k = 6 we again have diagonal elements filling up two triangles, invariant
under the permutations of x, y, z. This gives us 10 parameters aI , aII , . . . aV II ,
bI , bII , bIII according to the scheme indicated:

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

aI

aV II aV I aV aIV aV aV I aV II

aV I

aV

aIV

aV

aV I

aV II

aV I

aV

aIV

aV

aV IaIII aIII

aIII

aII

aII

aII

aII

aII

aII

@
@

@
@

@
@

@
@

@
@

@
@

@@

bIII bII bII bIII

bII

bII

bIII

bI bII

bII



594 S. K. Donaldson

We also have three non-trivial off-diagonal terms corresponding to the inner
products between 1, x6, y6. These must all be equal, by symmetry, so we get
one further real parameter C. In other words the matrix of our inner product
contains a 3× 3 block 


aV II C C

C aV II C

C C aV II


 .

(We could diagonalise this by using a different basis, but to fit in with the
notation below we will not do so.)

In other words, the function D is given by

D =
∑

ap,q|x|2p|y|2q +C(x6y6 +x6y6 +x6 +x6 +y6 +y6)+ |w|2
∑

bp,q|x|2p|y|2q,

where the coefficients ap,q, bp,q are given by the parameters aI , . . . , aV II , bI , . . . , bIII

in the manner indicated above.

Finally we consider the case k = 9. The diagonal elements in the big triangle
are specified by twelve parameters aI , . . . , aXII in the manner indicated (here we
only draw a piece of the big triangle, the remainder follows by symmetry).

aXII aXI aX aIX aV III aV III

aI

aIIaIII

aIVaVaV IaV II

There are now more allowable off-diagonal elements, specified by 6 independent
parameters C1, . . . , C6. These fit into 3× 3 blocks in the matrix of the metric of
the following forms:




aV I C2 C1

C2 aX C3

C1 C3 aXI


 ,




aXII C4 C4

C4 aIX C5

C4 C5 aIX


 ,




aV II C6 C6

C6 aV II C6

C6 C6 aV II


 .
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The discussion of the small triangle repeats that in the k = 6 case above: we
have 8 parameters bI , . . . , bV II , C

′.

To sum up, we have now specified how invariant metrics on H0(S;O(k)) are
determined by 4,11 and 26 real parameters respectively in the three cases k =
3, 6, 9. Notice that these are vast reductions on the dimensions of the full spaces
of metrics dim H0(S;O(k))2, which are 121, 1444,6889 respectively.

3.2. Numerical results.

3.2.1. Numerical volume. The numerical implementation of the algorithm of (2.2)
for finding a balanced metric is completely specified by the choice of an approxi-
mation ν∗ =

∑
νiδzi for the given volume form ν on S. That is, what we compute

is the sequence T r
ν∗(H0). Our numerical results are obtained using a family of

such approximations which depend on four integer parameters nx, np, nu, nw: the
larger these parameters are the more points zi are used, which should give a bet-
ter approximation, at the expense of extra computation. More details are given
in the next section, suffice it to say here that nx, np determine the contribution
from one chart and nu, nw from another. We should also emphasise that our ap-
proximation exploits the invariance of the functions we need to integrate under
the group of symmetries of S.

As a first test of our approximations we compute the volume Vol(S, ν0) of S

in the measure ν. We obtain then a family of approximations V (nx, np, nu, nw)
with

V (nx, np, nu, nw) = V1(nx, np) + V2(nu, nw).

We find:

V1(10, 10) = 265.84 V2(10, 10) = 6.5557
V1(20, 20) = 256.61 V2(14, 10) = 6.3227
V1(30, 30) = 256.88 V2(20, 20) = 6.2575
V1(40, 40) = 256.70 V2(24, 20) = 6.2536

So, for example, V (40, 40, 24, 20) = 256.70 + 6.25 = 262.95 and
V (20, 20, 14, 10) = 262.93. Recall that the theoretical analysis gave Vol(S, ν) =
263.00. These figures suggest that, for values of the parameters similar to those
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above, we can integrate reasonably smooth functions on S with an accuracy of
about 3 or 4 significant figures.

3.2.2. The case k = 3. We now implement our “Tν-algorithm” to find the ν-
balanced metric for the line bundle O(3) on S. We choose, arbitrarily, the initial
metric specified by the four parameters (1, 1, 1, 1). Then we obtain, using the
approximating measure ν∗(20, 20, 14, 10):

r aI aII aIII bI

0 1 1 1 1
1 12.68 8.758 5.257 2.722
2 13.20 8.807 4.987 2.439
3 13.25 8.811 4.959 2.414
4 13.26 8.812 4.956 2.412
5 13.26 8.812 4.956 2.412

(Recall that everything is preserved by rescaling the metrics. Here, and in the
similar results to follow, we normalise the metrics for r ≥ 1, up to scale, in an
arbitrary way.) Rounding off to 4 SF, the iteration reaches a fixed point after four
steps. Taking a finer approximation ν∗(30, 30, 20, 14) makes hardly any change:
to 4SF, the fixed point is now 13.26,8.816,4.956,2.415. So we have some confidence
that these last values of the parameters give the balanced metric on H0(S;O(3))
to high accuracy.

We now examine the Fubini study volume form µ on S determined by this bal-
anced metric. (To fix constants, we take the Kahler form in the class 2πc1(O(3)).)
That is, for given parameters nx, np, nu, nw we compute the ratio µ/ν at each of
the points in the support of ν∗(nx, np, nu, nw) (see Section (3.4.2) for more de-
tails of the calculation). Now we have another test of our numerical methods by
integrating µ/ν with respect to the measure ν∗(nx, np, nu, nw). By Chern-Weil
theory ∫

S
dµ = 9.2.4.π2 = 710.61.

so the ratio of the total volumes with respect to µ and ν is 710.61/263 = 2.7019.
Taking parameters [28, 28, 20, 14] we get

∫

S

µ

ν
dν∗ = 2.7023

∫

S
dν∗
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which is again a fair agreement. Set η = (2.7019)−1µ/ν, so the mean value of η

with respect to ν is 1 and the deviation of η from the constant function 1 is a
measure of the difference between the balanced metric and the Calabi-Yau metric
on S, normalised by the appropriate scale factor. We compute

• The maximum value of η,
• The minimum value of η,
• The mean value of |η − 1| with respect to ν,
• The distribution function of η with respect to ν.

More precisely, of course, we compute the maximum and minimum values over
the support of a ν∗(nx, np, nu, nw), for appropriate parameter values, and we
compute the mean and distribution function with respect to ν∗. The result (with
parameters [28,28,20,14]) is

max η = 1.496, min η = .2501, Mean(|η − 1|) = .262

For the (approximate) distribution function we give in the first row of the table
a collection of ranges and in the second row the percentages of the ν-volume of
S where η takes values in the given range.

.25–.4 .4–.55 .55–.7 .7-.85 .85–1 1–1.15 1.15–1.3 1.3-1.45 1.45–
3.4 6.9 9.6 11.7 15.3 17.3 15.0 15.8 5.1

We see that µ is not really a good approximation to 2.7019ν, as we would
expect with this very low value of k. So we do not proceed to try to find a
“refined approximation” in this case.

3.2.3. The case k = 6. We carry through the same procedure as in the previ-
ous subsection. With parameters [20, 20, 14, 10] the following table shows the
convergence to the balanced metric.
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r aI aII aIII aIV aV aV I aV II bI bII bIII C

0 1 1 1 1 1 1 1 1 1 1 0
1 51.7 43.3 33.1 23.9 21.8 15.9 7.55 21.8 14.1 7.37 .915
2 56.4 45.9 33.6 23.2 20.8 14.3 5.85 20.3 12.2 5.66 .509
3 57.6 46.5 33.7 23.0 20.6 13.9 5.47 19.9 11.7 5.28 .432
4 57.6 46.6 33.7 23.0 20.6 13.9 5.46 19.9 11.7 5.27 .430
∞ 57.6 46.6 33.7 23.0 20.6 13.9 5.45 19.9 11.7 5.26 .429

Analysis of the convergence suggests that the parameter σ is about .22. In-
creasing the numerical integration parameters to [30, 30, 20, 16] gives a fixed point,
to 4 significant figures,

57.70 46.61 33.67 23.01 20.56 13.86 5.453 19.95 11.70 5.267 .4324

We take these parameters as our numerical balanced metric.

The volume form of the balanced metric yields a function η with:

max η = 1.065 , min η = .679 , Mean(|η − 1|) = .058.

The distribution function of η is given by the following table, in which again the
first row gives the range and the second gives the percentage of the total volume
lying within the range.

-.7 .7-.75 .75-.8 .8-.85 .85-.9 .9-.95 .95-1 1-1.05 1.05-
.07 1.2 2.2 3.3 4.9 7.9 14.0 35.0 31.4

This is a much better approximation to the Calabi-Yau metric. The function
η is close to 1 over most of the manifold; further exploration shows the set where
it deviates substantially from 1 is a neighbourhood of the branch curve of the
double cover, on which η is small.

We now move on to search for a refined approximation, using the algorithm
described in (2.2.1) above. Thus we compute the tensor π(η − 1) ∈ H(Lk) as a
measure of the size of the error term. If we work with an orthonormal basis of
sections then the individual matrix entries ηαβ can be interpreted as analogues of
Fourier coefficients of η. For simplicity we work instead with an approximately
orthonormal basis given by rescaling the standard monomials, which we justify
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by the fact that the off-diagonal term C is relatively small and we are working
close to the balanced metric. Thus for any metric we define

η(pq) = Rapq

∫

S
(η − 1)

|x|2p|y|2q

D
dν,

η(pq) = Rbp,q

∫

S
(η − 1)

|x|2p|y2p|w|2
D

and

ηC = Ra0,0

∫

S
(η − 1)

Re(x6)
D

dν0

where R = dimH0(Lk)/Vol(S, ν0) = 38/263. The terms η(pq), η(pq) have the
same symmetries as the coefficients so we can extract 11 different terms ηI , . . . , ηV II ,

ηI , . . . , ηIII , ηC corresponding to the coefficients aI . . . , bI , . . . , C. As described
in Section 2, the diagonal terms ηI , . . . , ηIII can be interpreted approximately as
weighted averages of the error η − 1. (The approximations we are making here
only involve the interpretetation of the data, not the actual algorithms.)

The next two tables display the first 5 steps of the refining procedure with the
parameter κ equal to 2.5. The sequence of metrics is:

r aI aII aIII aIV aV aV I aV II bI bII bIII C

0 57.70 46.61 33.67 23.01 20.56 13.86 5.452 19.95 11.70 5.267 .4326
1 53.63 44.15 33.47 23.92 21.62 15.08 6.380 21.73 13.19 6.124 .6059
2 51.62 43.72 33.51 24.18 21.88 15.26 6.394 22.52 13.55 6.136 .6100
3 51.01 43.50 33.59 24.34 22.03 15.34 6.347 23.17 13.74 6.096 .5949
4 50.57 43.35 33.62 24.44 22.13 15.39 6.310 23.61 13.87 6.066 .5785
5 50.22 43.24 33.74 24.51 22.19 15.43 6.284 24.03 13.95 6.047 .5621

The corresponding sequence of η-coefficients, multiplied by 103:

r ηI ηII ηIII ηIV ηV ηV I ηV II ηI ηII ηIII ηC

0 -56.1 -42.9 -25.2 -8.0 -3.6 10.1 32.0 10.7 25.1 38.3 3.0
1 -10.7 -6.9 -2.6 1.2 1.6 1.7 -4.8 11.2 7.6 -2.2 .3
2 -5.9 -3.3 -.4 1.3 1.4 .8 -5.1 9.3 4.4 -3.9 -.2
3 -4.4 -2.3 .03 .8 .9 .5 -3.3 7.7 2.8 -2.8 -.4
4 -3.4 -1.6 .2 .5 .6 .3 -1.8 6.4 1.7 -1.9 -.6
5 -2.8 -1.3 .4 .3 .3 .2 -.8 5.4 .9 -1.3 -.7
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The size of the error terms behaves as follows:

r Max. Min. Mean Error(%)
0 1.065 .679 5.80%
1 1.046 .804 2.61%
2 1.043 .830 2.21%
3 1.041 .843 1.94%
4 1.039 .853 1.79%
5 1.05 .860 1.75%

We see that for the first four steps the error term does decrease, according to
any of the measures above. The initial rate of decrease is large but this soon
slows down. At the fifth step the maximum value increases, although the mean
and minimum improve. The most obvious phenomenon is that the coefficient
aI is decreased, along with the “nearby” co-efficients in the big triangle, and the
co-efficient bI is increased, along with the nearby coefficients in the small triangle.
This has the effect of increasing the volume form µ near the branch curve, and
so compensating for the deviation in the balanced metric. We repeat the process
many times, with various values of κ. After a while the maximum value decreases
again, and for example we achieve at an intermediate stage the following metric,
which we call ω′6:

46.61 42.69 34.94 25.04 22.56 15.34 6.301 28.95 13.79 6.130 .2854

This has

Max η = 1.031 , Min η = .898 , Mean(|η − 1|) = .017,

and η-coefficients, multiplied by 103:

-.57 -.11 .1 .11 .04 -.3 .25 .9 -.2 .1 -.2

The distribution function is:

–.925 .925-.94 .94-.955 .955-.97 .97-.985 .985-1 1-1.015 1.015-1.03 1.03-
.32 .45 1.0 1.4 7.9 38.8 33.4 16.7 .004

We contine the process still further. The rate of change becomes extremely
slow, and we finally give up at a metric we will call ω′′6 defined by metric coeffi-
cients

43.34 42.77 35.84 25.31 22.86 14.88 6.362 30.19 13.78 6.207 .1341



Some Numerical Results in Complex Differential Geometry 601

Which has

Max η = 1.050 , Min η = .909 , Mean(|η − 1|) = .0111

and η-coefficients, multiplied by 103:

-.21 .011 .063 -.026 .020 -.070 -.004 -.063 .024 .005 -.047

We take this metric ω′′6 as our best estimate for a refined approximation. Now
there are several points to make. First, the η-coefficients for ω′′6 are much smaller
than those for the balanced metric ω6, by a factor of more than 100. However the
very slow movement under our primitive algorithm means that it is not completely
clear that there is a genuine, exact, refined approximation close to ω′′6 . Second,
the metric ω′′6 is probably not significantly better as an approximation to the
Calabi-Yau metric than the intermediate metric ω′6, and could well be worse.
So our overall conclusion is that the ideas we developed in (2.2.1) are effective,
in this case, in generating some much better approximations than the balanced
metric (such as ω′6 or even the fourth step in the process), although a more exact
and sophisticated analysis of the whole situation is required.

3.3. The case k = 9. The numerical results in this case follow very much the
same pattern as for k = 6 above, so we will be brief. The crucial difference, of
course, is that the error terms are smaller. Recall that we now have 26 parameters
which we display in four-row form as

aI aII aIII aIV aV aV I aV II

aV III aIX aX aXI aXII

bI bII bIII bIV bV bV I bV II

C1 C2 C3 C4 C5 C6 C ′

We find the balanced metric is:

992.0 858.9 682.7 572.8 525.7 401.8 227.6
200.8 176.9 130.3 69.46 19.60
460.1 346.2 218.2 147.8 123.8 68.75 19.57
18.45 19.26 17.82 7.275 8.245 33.21 .1903

The convergence parameter σ is about .33. The balanced metric has

Max η = 1.024 , Min η = .833 , Mean(|η − 1|) = .025.
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The largest modulus of the η-coefficients is about 34× 10−3.

The distribution function is

-.88 .88-.9 .9-.92 .92-.94 .94-.96 .96-.98 .98-1 1-1.02 1.02-
1.3 1.7 2.1 3.1 4.2 6.6 12.1 29.9 39.1

Thus over about 70% of the volume, η lies in the range 1 − 1.025. We carry
out the refining procedure as before. The process seems to work better than for
k = 6, in that the error decreases steadily and our best estimate for the refined
approximation yields the best approximation to the Calabi-Yau metric. This
approximation, ω′9 is

875.6 798.5 665.8 584.5 539.3 419.5 239.8
214.3 190.4 140.3 76.43 21.76
540.5 386.8 233.3 161.8 134.9 75.53 21.76
19.89 25.89 19.57 8.406 14.44 31.69 .5101

The η-coefficients (times 103) are

-.09 -.04 -.001 -.02 -.02 -.03 -.05
-.03 -.04 -.03 .005 -.06
.16 -.002 -.08 -.02 -.02 .01 -.04
-.01 .02 .03 .03 .04 -.02 .03

The error has

max η = 1.009 , min η = .972 , Mean(|η − 1|) = .0022,

and distribution function:

-.975 .975-.98 .98-.985 .985-.99 .99-.995 .995-1 1-1.005 1.005-
.01 .1 .3 .9 1.5 46.6 46.1 4.5

So over more than 90% of the manifold η is within .5% of 1. Notice that, in
passing from k = 6 to k = 9, we reduce the mean error in the balanced metrics
by a factor of about 2, which is roughly (9/6)2. On the other hand we reduce the
mean error in the refined approximations by a factor of about 5. This gives some
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small support for the idea that the refined approximations should yield rapid
convergence, in k, to Calabi-Yau metrics.

This concludes our account of the main numerical results of this article. Notice
that the function |θ|ω discussed in the Introduction is essentially η−1/2, so the
deviation from 1 will be about half that of η.

3.4. Computational details.

3.4.1. Charts. To integrate numerically over S we need an appropriate system
of coordinate charts, and the choice of good charts is an interesting geometrical
question. Suppose (ξ, η) are local holomorphic coordinates for some chart in
an atlas, i.e. with (ξ, η) lying in some bounded domain D ⊂ C2 and with the
holomorphic 2-form given by θ = F (ξ, η)dξdη. Then we want to realise three
desireable properties:

• The oscillation of the function F is not too large on D.
• It is easy to recognize if a point (ξ, η) lies in D.
• The overlaps of this chart with the other charts in the atlas are not too

small.

The last property is needed because our integration procedure will involve a
partition of unity subordinate to the cover, so we need a smooth cut-off function
ψD supported in D and equal to 1 outside the region corresponding to the other
charts. The contribution from D to the integral of a function f on S will have
the shape ∫

D
fψD|F |2dξdξdηdη.

If the overlaps are small the derivative of ψD will be large and the numerical
integration will not be accurate.

As a first step we restrict to the open set U in S defined by the conditions

|x| < 1.2|z| , |y| < 1.2|z|,
in terms of the homogeneous co-ordinates (x, y, z) on CP2. Clearly S is covered
by U and its two images under the permutation action, so to integrate a Γ-
invariant function it suffices to work in U . Then we can pass to affine coordinates,
where z = 1 and U is represented as the polydisc |x|, |y| < 1.2. Now let U1 be
the complement in U of the product of the disc |y| < 1.2 with suitable small
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neighbourhoods of the points where x6 = −1, chosen so that the roots of (1+x6)
can be defined on U1. Then

w2 = (1 + x6)

(
1 +

(
y

(1 + x6)1/6

)6
)

.

Set q = w√
1+x6

so that

q2 − 1 =
y6

1 + x6
.

Now let U2 ⊂ U1 be the region defined by the condition Re(q) > −1/2. Then U1

is covered by U2 and its image under the covering involution (which takes q to
−q). On U2 we write q = 1 + p6 so

(5) y = p(2 + p6)1/6(1 + x6)1/6,

where the root (2 + p6)1/6 is well-defined on U2 since we have cut out the zero
where q = −1 and 2+ p6 = 0. The upshot is that we have an open set U2 ⊂ S on
which we can take x and p as complex co-odinates, with y given by Equation 5
and

w = (1 + p6)
√

1 + x6.

This gives one chart, which we call the “big chart” in S. The holomorphic form
in these coordinates is

2
(2 + p6)5/6(1 + x6)1/3

dpdx.

Interchanging x and y takes U1 to another open set U ′
1 ⊂ U say. The union U1∪U ′

1

covers all of U save for small neighbourhoods of the points where x6 = −1 and
y6 = −1. We want to define coordinates on an open set V in S covering a
neighbourhood of the point x = y = eiπ/6. Then U will be covered by U1, U

′
1 and

the 36 images of V under the action of multiplication by sixth roots of unity. To
integrate a Γ-invariant function it will suffice to work in U2 and V , provided we
use suitable invariant cut-off functions and take due account of multiple counting
by the symmetry group.

On V we set u = x6 − y6 and take u and w as local coordinates so

x =
(

w2 + u− 1
2

)1/6

, y =
(

w2 − u− 1
2

)1/6

.
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This gives our other chart, the “small chart”, on S, in which the holomorphic
form is

dudw

36x5y5
.

The tension set up by the requirement discussed above for the two charts can
now be seen as follows. In the small chart we need |x| not to be too small and
in the large chart we need 1 + x6 not to be too small, but the two charts must
have substantial overlap. We balance these requirements by defining the domain
of the big chart to be the region where Re(x6) > −(.9)6 = −.531 and the domain
of the small chart to be where Re(x6) < −(.7)6 = −.117. Then in the big chart
|1+x6| > .47, and in the small chart |x| > .7. The cut-off function has derivative
(with respect to x) about 2(.9− .7)−1 = 10.

To integrate numerically in the big chart we use hexagonal lattices in the com-
plex x and p variables. These allow us to take exact account of the residual
Z/6 × Z/6 symmetry (that is the integrands are functions of x6 and p6) saving
a factor of nearly 36 in the calculation. We nearly double this factor using the
further symmetry under complex conjugation. The lattice spacings are propor-
tional to n−1

x , n−1
p where nx, np are integer parameters mentioned in (3.2.1). To

integrate numerically in the small chart we use square lattices in the u and w

variables, taking advantage of the residual symmetry under complex conjugation
and w 7→ −w. The lattice spacings are proportional to n−1

u , n−1
w . In both charts

the precise domains of integration are moderately complicated, and so the exact
number of points where the functions are evaluated to approximate the integrals
is not given by a simple formula. Writing N1(nx, np) for the number in the big
chart and N2(nu, nw) in the small chart, we have for example

N1(10, 10) = 746, N1(20, 20) = 9644, N1(30, 30) = 45481

N2(10, 10) = 9737, N2(20, 20) = 128149, N2(24, 20) = 180435.

3.4.2. The volume form. To evaluate the volume form of the Fubini-Study metric
defined by a given collection of co-efficients we work in the co-ordinates x, y.
Let V+ be the complex vector space of dimension (k + 1)(k + 2)/2 with a basis
labelled by the integer points in the “big triangle” and V− the space of dimension
(k − 2)(k − 1)/2 corresponding to the small triangle. Our data gives Hermitian
metrics 〈 , 〉± on V± and so a Hermitian metric 〈 , 〉 on V+ ⊕ V−. Let r(x, y) =
r+(x, y)⊕r−(x, y) be the vector valued function with the entries of r+(x, y) equal
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to xpyq and the entries of r−(x, y) equal to wxpyq, where w =
√

1 + x6 + y6. (Of
course w is only defined up to a sign, but we choose a branch of the square root
locally.) Write rx, ry for the derivatives of r with respect to x, y. Then away from
the branch curve w = 0 the ratio V = dµFS/dν0 of the Fubini-Study form and
the fixed volume form θ ∧ θ is given by the formula

(6) V =
|w|2
‖r‖6

det



〈r, r〉 〈r, rx〉 〈r, ry〉
〈rx, r〉 〈rx, rx〉 〈rx, ry〉
〈ry, r〉 〈ry, rx〉 〈ry, ry〉




Of course this is the same whichever branch of the square root we take and the
calculation is completely straightforward. The disadvantage is that we cannot
use this formula near the branch curve because the individual terms in the de-
terminant blow up (although in practice the formula seems to be accurate close
enough to the branch curve for most purposes). A better formula is as follows.
Let v± be the vector-valued functions, taking values in V± with entries xpyq.
Thus r+ = v+ and r− = wv−. Put

δx = (v+
x , wv−x ), δy = (v+

y , wv−y )

where subscripts denote differentiation. Set

δ̂x = δx − 〈δx, r〉
‖r‖2

, δ̂y = δy − 〈δy, r〉
‖r‖2

.

Now write

fx = 3x5, fy = 3y5.

Define

Qx =
1

‖r‖2

(〈‖v+‖2
+〈v−x , v−〉− − ‖v−‖2

−〈v+
x , v+〉+

)
,

and Qy symmetrically. Then

V =
1

‖r‖4
(V1 + V2 − V3 + 2V4 − 2V5),
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where

V1 = |w|2
(
‖δ̂x‖2‖δ̂y‖2 − |〈δ̂x, δ̂y〉|2

)
;

V2 =
‖v+‖2

+‖v−‖2−
‖r‖2

‖fxδ̂y − fy δ̂x‖2;

V3 = |w|2|fxQy − fyQx|2;
V4 = Re

(
‖δ̂y‖2Qxw2fx + ‖δ̂x‖2Qyw

2fy

)
;

V5 = Re
(
〈δ̂x, δ̂y〉(fxQyw

2 + fyQxw2)
)

.

While it appears more complicated, this expression has advantages over Equa-
tion 6 even away from the branch curve.

4. The Bergman kernel

Return to the general picture where L → X is an ample line bundle with a
Hermitian metric and dν is a fixed volume form on X. Then the space of sections
H0(Lk) has an L2 Hermitian inner product. For a point x ∈ X we have an
evaluation map

ex : H0(L) → Lx,

which is represented by the inner product, so there is an element σx ∈ H0(L)⊗Lx

such that
s(x) = 〈s, σx〉,

for any section s ∈ H0(L). For x, y ∈ X we define

K(x, y) = |σx(y)|2,
and the associated integral operator

QK(f)(x) = R

∫

X
K(x, y)f(y)dνy,

where R = dim(H0(Lk)/Vol(X, ν). (This factor is included to make QK inde-
pendent of scalings of ν, and when the metric is balanced QK(1) = 1.) Let sα be
an orthonormal basis of H0(Lk) with respect to the L2 inner product. Then

σx(y) =
∑
α

sα(y)⊗ sα(x)

and if we write
fαβ = (sα, sβ)
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(the pointwise inner product over X), we have

K(x, y) =
∑

α,β

fαβ(x)fβα(y).

Thus QK is a finite-rank operator whose image lies in the finite-dimensional space
V ⊂ C∞(X) spanned by the fαβ ,i.e. the image ι(H(Lk) in the notation of Section
2.2.1. The restriction of QK to V gives an endomorphism of V with

QK(
∑

aγδfγδ) = R
∑

aγδ〈fγδ, fαβ〉fαβ

where 〈, 〉 denotes the L2 inner product on functions. In other words we can
define an endomorphism Q : H(Lk) → H(Lk) with matrix

Qαβ,γδ = R〈fγδ, fαβ〉,

and ι ◦Q = QK ◦ ι. One interpretation of Q is that it compares the two natural
inner products on V . If we have a given metric on H0(Lk) then we can identify
H(Lk) with the self-adjoint endomorphisms of H0(Lk) and as such we have a
standard Hilbert-Schmidt norm on H(Lk) given by

‖(aαβ)‖2
HS =

∑
|aαβ |2.

On V we have the restriction of the L2 norm and these are related by

‖ι(a)‖2
L2 = R〈a,Q(a)〉HS .

Notice that, if we regard H(Lk) as the self-adjoint endomorphisms of H0(Lk)
then Q has been normalised so that, when the metric is balanced, Q(1) = 1.

To illustrate these ideas, take L → X to be the line bundle O(1) over CP1

with the standard metric, and standard area form. As in Section (2.1.1) we take
the usual S1 action on CP1 and restrict attention to the invariant part of V ,
which corresponds to the diagonal matrices in H(Lk). With this restriction Q is
represented by a (k + 1)× (k + 1) matrix with entries

(7) Qij =
k + 1
2k + 1

(
k

i

)(
k

j

)

(
2k

i + j

) 0 ≤ i, j ≤ k

(see the discussion in (4.3) below).
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4.1. The linearisation of the algorithm. One way in which the discussion
above enters into our theory is in the analysis of the linearisation about a balanced
metric. Fix an orthornormal basis sα of H0(Lk) for the balanced metric. Suppose
Gαβ = δαβ + εαβ is another metric. Then, to first order in ε,

Tν(G) = R

∫

X

(sα, sβ)
1−∑

εαβ(sα, sβ)
dν,

so we have

Tν(G) = δαβ + ε̃αβ + O(ε2),

where

ε̃αβ = R

∫

X

∑

γδ

(sα, sβ)(sγ , sδ)εγδdν,

so ε̃ = Q(ε). In other words, the linearisation of the map T at the balanced
metric is given by Q. In particular, the largest eigenvalue of Q on the trace-free
matrices is the quantity σ which determines the asymptotic rate of convergence
of a sequence T r(G0), for almost all initial conditions G0. Thus we can estimate
this largest eigenvalue, in the examples discussed above, by analysing this conver-
gence. For example, on the K3 surface S we estimate, by analysing the sequences,
that the eigenvalue is approximately .22 when k = 6 and .33 when k = 9.

4.2. Refined approximations and the heat kernel. Another way in which
the operator Q enters our theory is in the algorithm we have used for finding “re-
fined approximations” as discussed in (2.2.1) above. Recall that the linearisation
of the map which assigns the volume form µω = ωn/n! to a Kahler metric ω is
given by one half the Riemannian Laplacian, i.e.

µ
ω+i∂∂φ

= µω(1 +
1
2
∆φ) + O(φ2).

Suppose given any metric G on H0(Lk), defining a metric ω on X, and let sα

be an orthonormal basis of sections. Consider a small perturbation of G to a
metric with matrix δαβ + εαβ in this basis. Then to first order in ε the induced
Fubini-Study metric changes by i∂∂φ where

φ =
∑

εαβ(sα, sβ).

So, to first order, the change in the volume form is

1
2
∆(

∑
εαβ(sα, sβ)).



610 S. K. Donaldson

Now given a fixed volume form ν on X, write µω = ην, where we suppose η is
close to 1. As in (2.2.1) define

ηαβ = R

∫

X
(η − 1)(sα, sβ)dν,

and consider the variation
εαβ = −κηαβ .

Then the change in the volume form is, to first order,

−κ

2
∆QK(η).

Thus the algorithm of (2.2.1) will replace an initial error term η − 1 by a new
term which is approximately

W (η − 1) = η − 1− κ

2
∆QK(η),

so we would like to argue that, for appropriate values of the parameter κ and
with respect to a suitable norm, the linear map W is a contraction.

To give evidence for this, we argue that the operator QK should be related,
asymptotically as k → ∞, to the heat kernel on X. Consider the model case of
a line bundle over Cn with curvature −iω, where ω is the standard Kahler form
(corresponding to the Euclidean metric). Fix a trivialisation of the line bundle
in which the connection form is −i

2

∑
(xadya − yadxa) where za = xa + iya are

standard co-ordinates on Cn. Then, in this trivialisation, the section σ0 which
represents evaluation at 0 is

σ0 =
1

(2π)n
e−|z|

2/4,

so our kernel is
K(0, z) =

1
(2π)2n

e−|z|
2/2.

The Euclidean heat kernel is

H(0, z, t) = (
1

4πt
)ne−|z|

2/4t,

so K(0, z) = (2π)−nH(0, z, 1/2). Thus it is reasonable to expect that, on a general
manifold X the operator QK will be approximately e−∆/2 when k is large; so the
manifold has very large volume and the local geometry approaches the Euclidean
case. (Notice that the factor of (2π)n is accounted for by the scaling built into
the definition of QK , since when k is large, by Riemann-Roch dimH0(Lk) is
approximately (2π)−n times the volume, in the metric defined by the curvature
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form of Lk.) Results very close to this appear in [5]. After this article was posted
in preprint form, Liu and Ma proved in [10] a precise result, spelling out the
relation between the operators QK and e−∆/2. . Thus, while our present purpose
is merely to give a plausible justification for the method rather than a rigorous
proof, it seems likely that the results of [10] could be used as a basis for a rigorous
analysis.

With this discussion in place, we argue that near to the Calabi-Yau metric,
the operator W is approximately

W̃ = 1− κ
∆
2

e−∆/2.

Now W̃ is easy to analyse in terms of the spectrum of the Laplacian. On an
eigenspace belonging to eigenvalue µ, W̃ acts as (1−κµ

2 e−µ/2). Since the function
xe−x has maximum value e−1 for positive x, the operator W̃ is a contraction
provided that 0 < κ < 2e. This is consistent with the values of the parameter
κ found to be effective empirically. These ideas also explain why the “refining
algorithm” takes a long time to get very close to the refined approximation, since
the contraction factor for large eigenvalues µ is extremely close to 1.

As a byproduct of these ideas, we can hope to get information about the
spectrum of the Laplacian of the Calabi-Yau metric from our theory. Let ∆0 be
the Laplacian of the metric scaled to have total volume (2π)n and write

k′ = (dim H0(Lk))1/n.

Then we expect that the spectrum of Q approximates that of e−∆0/2k′ . Thus
if λ is the first eigenvalue of ∆0 we expect that the convergence parameter σk

associated to our algorithm is approximately e−λ/2k′ . If, as in this paper, we
work with Γ-invariant metrics then we should take λ to be the first eigenvalue on
Γ-invariant functions. Our estimates σ6 = .22, σ9 = .33 are reasonably consistent
with this since

−2 log(.22)(38)1/2 = 18.7

and

−2 log(.33)(83)1/2 = 20.2.

So we expect that λ is about 20. (We can also hope to get approximations to the
eigenfunctions of the Laplacian from the eigenvectors of Q.)
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4.3. Algebraic approximation to the heat kernel. We have now explained
the importance of the finite-dimensional linear operator Q in our theory, and its
relation to the Laplace operator on the manifold. Recall that the matrix entries
of Q, in terms of an orthonormal basis sα of H0(Lk), are

Qαβ,γδ = R

∫

X
(sβ , sα)(sγ , sδ)dν.

On the face of it, this requires us to evaluate the large number dimH0(Lk)4 of
integrals over X to find the matrix. However we can write

Qαβ,γδ = R

∫

X
(sβsγ , sαsδ)dν,

where the products are sections of L2k and ( , ) denotes the fibre metric on L2k.
Let τi be a basis of H0(L2k). If we know the integrals

Iij =
∫

X
(τi, τj)dν,

then we can compute the matrix entries in terms of purely algebro-geometric data:
the product map

(8) H0(Lk)⊗H0(Lk) → H0(L2k).

Explicitly, if

sαsβ =
∑

Pαβiτi

then

Qαβ,γδ =
∑

ij

Pαδi¶βγjIij .

This means that we only need to evaluate approximately 2n(N + 1)2 integrals to
find the matrix. Moreover these integrals are precisely the integrals which define
the map T for the line bundle L2k. In geometric terms, for any vector space V

we have the Veronese embedding

P(V ) → P(s2V ).

A hermitian metric on V defines a standard induced metric on s2V and, up to a
scale factor, the Veronese embedding is isometric with respect to the Fubini-Study
metrics. Thus for X in P(V ) we get the same induced metric by embedding in
P(s2(V )). Starting with the canonical embedding in V = H0(Lk)∗ we get the
canonical embedding in P(H0(L2k)∗), which is contained as a linear subspace in
P(s2V ). Thus, starting with a metric G on H0(Lk) we take the standard induced
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metric G′ on H0(L2k), regarded as a quotient of the symmetric product. Then
the calculation of T (G′) is equivalent to the calculation of the matrix entries Iij .

Now suppose it happens that G is the balanced metric for Lk and G′ is also the
balanced metric for L2k. This will only be the case in rather special circumstances,
but for example it holds when X = CP1 with ν equal to the standard area form.
In this case we have T (G′) = G′ and we can find the matrix entries purely
algebraically, in terms of the product map Equation 8 and the original hermitian
metric G. For example for the line bundle O(k) over CP1, restricting to the
S1-invariant metrics, we get the matrix entries Qij in Equation 7 above. But in
any case we can define another endomorphism Q̃ of H(Lk) by this procedure.
That is, we take the matrix enties

Q̃αβ,γδ =
∑

ij

PαδiPβγj Ĩij ,

where Ĩij are the inner products in H0(L2k) given by the induced hermitian
metric, regarded as a quotient of the symmetric square. It is reasonable to expect
that, when k is sufficiently large, the metric G′ is close to the balanced metric
and hence that Q̃ is a good approximation to Q. To sum up, starting with a
hermitian metric G on H0(Lk) we have a purely algebraic procedure for defining
a self-adjoint endomorphism Q̃ on H(Lk), and when G is the balanced metric (or
close to the balanced metric) we can expect that Q̃ is an approximation to the
heat kernel e−∆0/2k′ .

To illustrate these ideas consider first the case of S1-invariant metrics on S2.
The SU(2) invariance of the problem implies that the eigenspaces of QK corre-
spond to spherical harmonics. Let z ∈ [−1, 1] be the standard height co-ordinate
on the sphere and p ∈ S2 be the pole where z = 1. The kernel function K(p, )
associated to O(k) is proportional to (1 + z)k and so the eigenvalue χm,k of Q

associated to the spherical harmonics of degreee m is

χm,k =
k + 1
2k+1

∫ 1

−1
(1 + z)kPm(z)dz,

where Pm is the Legendre polynomial. It is an exercise in Legendre polynomials
to show that

χm,k =
(k′ − 1) . . . (k′ −m)
(k′ + 1) . . . (k′ + m)

,
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where we write k′ = k + 1 = dim H0(O(k)), as above. Now set λm,k =
−2k′ log(χm,k), so

λm,k = −2k′
m∑

r=1

(
log(1− r

k′
)− log(1 +

r

k′
)
)

.

From the Taylor expansion of the logarithm we see that

λm,k = 2m(m + 1) + O(k−2),

and the limits 2m(m + 1) are the eigenvalues of the Laplacian on the sphere of
area 2π. For example, we have

λ1,4 = 4 + .055, λ2,10 = 12 + .15, λ4,30 = 40 + .14.

This also ties in with observed value of σ in Section (2.2), since χ2,6 = 5/12 =
.41666 . . . .

Finally we consider the balanced metric on the K3 surface S, with k = 6. We
restrict to the Γ-invariant part of H(Lk). We work using an orthonormal basis of
H0(Lk) given by rescaling the standard monomials, apart from the triple 1, x6, y6.
Here we choose scalars A,B such that A + Bx6 + By6 and the two similar terms
given by permutations are orthonormal. Then we find that the endomorphism Q̃

on the 11-dimensional Γ-invariant part of H(Lk) has matrix

10−2 ×




.61−.33−.81−.38−.84−.91−.10 .96 .36 1.19 1.45
3.68 8.38 5.43 4.09 5.71 5.15 2.30 3.13 5.44 2.39

19.6 13.0 10.6 14.8 13.5 6.46 7.50 13.9 6.56
8.96 7.63 10.7 10.2 5.63 5.27 10.5 5.72

9.21 12.7 11.5 6.32 4.34 10.8 6.04
17.7 16.3 9.62 6.23 15.7 9.35

16.9 12.5 6.38 16.9 12.4
∗ 14.4 4.01 12.9 14.4

3.47 7.29 4.35
19.0 13.7

14.7




The matrix is symmetric so we omit the entries below the diagonal. Here the first
basis element corresponds to the off-diagonal term, the next seven to the entries
in the big triangle and the last three to the small triangle.
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We find the first six eigenvalues (ordered by absolute value) of this matrix
numerically. They are

1.002, .1956, .05857, .02395,−.002669, .002388.

The first eigenvalue, 1.002, is a substitute for the exact eigenvalue 1 of the matrix
Q, and the close agreement is encouraging. The fact that the fifth eigenvalue
is negative, whereas Q is a positive operator, shows that we cannot take the
approximation this far down the spectrum. For each positive eigenvalue χ we
compute λ = −2

√
38 log χ and for the second, third and fourth eigenvalues we

obtain the λ-values

20.12, 34.98, 46.00

respectively. The eigenvalue χ = .1956 is in reasonable agreement with our
previous numerical estimate .22 for the first eigenvalue of Q and the corresponding
estimate 20.12 for the lowest eigenvalue of the Laplacian is very close to our
previous estimate 20.2 from the observed value of σ when case k = 9. It is
perhaps reasonable to predict, based on this discussion, that the next eigenvalue
of the Laplacian ∆0 (on invariant functions) is about 35. It would be interesting
to test this by repeating the work for k = 9, but the author has not yet had time
to do so.

5. Appendix

Here we discuss the fact stated in the intoduction, that given any Kahler metric
ω in the class c1(L) there is a sequence of “algebraic ” metrics ωk arising from
Hermitian forms on H0(Lk), with ωk − ω = o(kν) for all ν.

The proof uses the Tian-Zelditch-Lu expansion and is similar to the argument
in [6]. We start with Tian’s approximation which, in the notation of Section 2, is
to take FS ◦Hilb(ω). (Here we are regarding k as a parameter which is supressed
in the notation.) Then

FS ◦Hilb(ω) = ω + k−1i∂∂ log(ρω)

where ρω is the density of states function
∑ |sα|2 for an orthonormal basis sα.

We know that ρω has an asymptotic expansion

ρω = 1 + k−1a1(ω) + k−2a2(ω) + . . . ,
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for certain local invariants ai of the Kahler metric ω. Thus ω̃ − ω = O(k−2) and
the order k−2 term is i∂∂a1(ω). Now let ω∗ = ω − k−2i∂∂a1(ω) and consider
the metric FS ◦Hilb(ω∗). Applying the expansion, with smooth dependence on
parameters, we see that

FS ◦Hilb(ω∗) = ω + O(k−3).

We can repeat this process to kill of successively as many terms as we please in
the asymptotic expansion. The correction terms will become progressively more
complicated, involving contributions from the derivatives of ai(ω) with respect
to ω, just as in [6]. In this way we obtain, for any given ν, a seqence of approxi-
mations ωk with ωk = ω + o(kν). A standard “diagonal’ argument gives a single
sequence with difference o(kν) for any ν.

There is an elementary argument to prove a somewhat weaker result. The con-
struction of a Fubini-Study metric ωH from a Hermitian form H can be extended
to allow indefinite forms H, so long as H is positive on the vectors in H0(Lk)∗

corresponding to points of X. It is easy to prove that any Kahler metric can
be rapidly approximated by algebraic metrics in this larger class. It is conve-
nient to assume that L is a very ample line bundle over X, so the sections of L

give an embedding of X in CPN . (The argument can be extended to avoid this
assumption.) For k ≥ 1 consider the standard Veronese embedding

CPN → CPNk .

Let ZA denote standard homogeneous co-ordinates on CPNk and let Vk⊂C∞(CPN)
be the vector space of complex-valued functions on CPN given by linear combi-
nations of

ZAZB

|z|2k

Of course the ZA are just the monomials of degree k in the homogeneous co-
ordinates zα on CPN .

Lemma 1. The space Vk is the direct sum of the first k eigenspaces of the Laplace
operator ∆CPN for the standard Fubini-Study metric on CPN .

To prove this we take as known the analogous and well-known fact for the
Laplacians on spheres. The sum of the first k eigenspaces for the Laplacian on
Sm−1 ⊂ Rm is exactly the space of functions given by restrictions of polynomials
of degree k on Rm. Now consider the Hopf fibration S2N+1 → CPN . This is a
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Riemannian submersion so eigenfunctions of the Laplacian on CPN lift to S1-
invariant eigenfunctions on the sphere. So the sum of the first k eigenspaces on
CPN can be identified with the polyomials in zα, zα which are S1-invariant. But
it is clear that these are just polynomials in the products zαzβ. Separating out
the holomorphic and antiholomorphic terms, we see that these are exactly the
linear combinations of the products ZAZB, as required.

Now it is a standard fact that if f is a smooth function on a compact Riemann-
ian manifold and fk is the L2 projection of f to the sum of the first k eigenspaces
of the Laplacian then fk − f = o(kν) for any ν. Let ω0 be the metric on X given
by the restriction of the standard Fubini-Study metric on CPN so

ω = ω0 + i∂∂φ,

for some smooth function φ on X. Extend φ arbitrarily to a smooth function on
CPN and take f = eφ. Then f is a positive real valued function on CPN and
there is no loss in generality in supposing that the projections fk are also positive
on CPN . By the Lemma the function fk is a sum

∑
hABZAZB

|z|2k
.

and the Fubini-Study metric ωk associated to the form with matrix δAB + hAB

is ω + i∂∂(log fk − log f). So ωk − ω is o(kν) for all ν.
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