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Abstract: We study properties of rigid K-linear ®-categories A, where K
is a field of characteristic 0. When A is semi-simple, we introduce a notion
of multiplicities for an object of A: they are rational integers in important
cases including that of pure numerical motives over a field. This yields an
alternative proof of the rationality and functional equation of the zeta func-
tion of an endomorphism, and a simple proof that the number of rational
points modulo ¢ of a smooth projective variety over F, only depends on
its “birational motive”. The multiplicities of motives of abelian type over a
finite field are equal to £1. We also study motivic zeta functions, and an
abstracted version of the Tate conjecture over finite fields.
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This article consists of four independent but related parts, whose common
themes are motives and zeta functions. Another important theme is the Tate

conjecture.

In Part I, I introduce the notion of multiplicity of a numerical motive, or more
generally of an object in a semi-simple rigid K-linear tensor category where K is
a field of characteristic 0. In the case of motives, or more generally under a Schur-
finiteness assumption, these multiplicities are rational integers. One application

is a proof “without cohomology” of the rationality and functional equation for
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the zeta function of an endomorphism in such a category (see Theorem 3.2). The
main result of Part I, Theorem 6.3, is that the multiplicities of a motive of abelian
type over a finite field are all equal to +1 (recall that conjecturally all motives
over a finite field are of abelian type). This is a revised version of a preprint of
February 2007 [34].

In Part II, the zeta functions are in the background. The main result is that
the number of points modulo ¢ of a smooth projective variety X over F, only
depends on the birational motive of X in the sense of [36]. This is a revised
version of a 2002 preprint [31]; the main novelty is a simplified proof of the latter
fact, using the multiplicities of Part I (in fact, this application was my initial
motivation for studying multiplicities). I also point out in Remark 10.3 2) that,
thanks to Honda’s theorem, the Tate conjecture over a finite field implies the
generalised Tate conjecture, an observation which was only implicit in [31, proof
of Th. 2], ¢f. [2, p. 81 fn. 9]. (This has since been observed independently by
Milne and Ramachandran, see [49, §1]).

In Part III, T prove that the motivic zeta function of a (pure) motive over a
field k& which is finite-dimensional in the sense of Kimura-O’Sullivan satisfies a
functional equation. As in Part I, the result is more general and applies to zeta
functions associated to finite-dimensional objects of any rigid tensor category such
that the endomorphism ring of the unit object is a field of characteristic zero. This
is a slightly revised version of a preprint of June 2006 [33]: the main differences
are a more functorial theory of the determinant (see Proposition 11.3) which
leads to a (slightly) more conceptual understanding of the functional equation,
and an extra section relating motivic zeta functions with the zeta functions of

endomorphisms from § 3.

Part IV is extracted from the first version of Part I: I found more convenient to
put it separately. It shows that the arguments of Tate in [57], Geisser in [24] and
myself in [32] concerning the relationships between the conjectures of Tate and
Beilinson' and some of the standard conjectures for smooth projective varieties
over a finite field are in fact abstract in nature and may be formulated in a rather

n [48, §1], Milne points out that Beilinson’s conjecture that rational and numerical equivalence
coincide over a finite field was already mentioned by Tate in the Woods-Hole 1964 AMS Summer

Institute, where he introduced his conjecture.
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general semi-simple tensor category. The multiplicities of Part I are important
for the proof of Proposition 17.6.

I had planned to add a part concerning motivic zeta functions of Voevodsky
motives over a base, but this raised unexpected issues. I hope to come back to
this question later.

Each part has its own expanded introduction.
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Part I. On the multiplicities of a motive
INTRODUCTION

The aim of this part and Part IV, in the spirit of [4], is to study abstractly the
properties of categories of pure motives and to make clear(er) which of them are
formal and which are of a more arithmetic-geometric nature.

We work with a rigid additive tensor category A such that K = End(1) is a
field of characteristic 0. We shall be interested in the multiplicities of an object
M € A: when A is semi-simple, they are a collection of central scalars which
relates the categorical trace with the ring-theoretic trace (Proposition 1.2). It
turns out that the condition for these multiplicities to be integers or, better, to
be so after extending scalars from K to its algebraic closure, is well-behaved and
satisfied in many important cases.

Namely, the full subcategory Ajy of A formed by such objects is stable under
direct sums, direct summands and duals and contains the “Schur-finite” objects
(those which are killed by a nonzero Schur functor). As a consequence, Ajp; = A
if A is of “homological origin” (Theorem 5.6).

As a main motivational example, recall that the category of pure motives over
a field modulo numerical equivalence is semi-simple thanks to Jannsen’s theorem
[29], and of homological origin: thus, the multiplicities of any pure motive modulo

numerical equivalence are integers.

When the multiplicities of M € A are integers, we prove that the zeta function
of an endomorphism f of M is rational (with an explicit formula) and satisfies a
functional equation if f is invertible (Theorem 3.2): in the case of motives over
a finite field, this shows that these properties depend on less than the existence
of a Weil cohomology theory.
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In a general A, it is not necessarily true that the tensor product of two geomet-
rically integral objects M, N is geometrically integral (see Remark 2.5). However,
when this happens to be the case (e.g. when M and N are Schur-finite), there are
important explicit formulas allowing one to compute the multiplicities of M ® N
in terms of those of M and N (Theorem 2.4). We use this to get some elemen-
tary cases where homological equivalence equals numerical equivalence for formal
reasons in Proposition 5.10 c): of course, this remains far from leading to a proof

of this famous standard conjecture!

Finally, we compute the multiplicities of numerical motives of abelian type
over a finite field and show that they are all equal to £1 (Theorem 6.3).

Terminology and notation. For a category C and two objects X, Y € C, we
write indifferently Home(X,Y) or C(X,Y) for the set of morphisms from X to
Y (the latter notation is convenient when the name of C is large).

Let A be a rigid K-linear symmetric monoidal (=tensor) category, where K is
a field of characteristic 0; we also assume that End(1) = K. In the sequel of this
article, we shall abbreviate this by saying that A is a rigid K -category. Since we
shall refer to Deligne’s article [13] several times, it is worth stressing that we do
not assume A abelian, unlike in loc. cit. Recall that A is called pseudo-abelian (or
idempotent-closed) if any idempotent endomorphism has a kernel (equivalently,
an image). We write A" for the pseudo-abelian hull (idempotent completion) of
A [4, 1.2.2]. If L is an extension of K, we write Ay for the category with the
same objects and Hom groups tensored with L.

If M € A, we shall say (as has become common practice) that M is Schur-
finite if there exists a nonzero Schur functor S such that S(M) = 0 and finite-
dimensional (in the sense of Kimura-O’Sullivan) if M ~ M* & M~ where
M (resp. M™) is killed by some nonzero exterior (resp. symmetric) power
functor. We say that M is positive and M~ is negative. It is known that
finite-dimensional implies Schur-finite (¢f. [13, 1.13]). For properties of finite-
dimensional objects (resp. of Schur functors) we refer to [39] and [4, §9] (resp.
to [13]).
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1. MULTIPLICITIES IN SEMI-SIMPLE RIGID TENSOR CATEGORIES

Let M € A. The trace of an endomorphism f € End(M) is the element
tr(f) € End(1) = K defined by the composition

1T oM 2 e —B L MeM — 1

where R is the switch and 7, ¢ are the duality structures of M.

Special case. We shall denote the trace of 15, by x(M) and call it the Fuler
characteristic of M.

The trace is K-linear and has the following properties:
(L.1) tr(fg) =tr(gf), tr(f®g)=tr(f)tr(g), tr('f)=te(f).

We shall use several times the ideal A/ of morphisms universally of trace 0:

(1.2) N(M,N)={fe€ AM,N)|Vge AN,M),tr(gf) = 0}.

Suppose A is semi-simple: by [4, Th. A.2.10 (7)], this amounts to requiring
that End 4(M) is a semi-simple K-algebra for all M. Then End4(M) has its
own trace, and we want to compare it with the categorical trace. We normalise
conventions as follows:

1.1. Definition. a) Let A be a finite-dimensional simple K-algebra. We write:

e Z(A) for the centre of A;
e 6(4) =[2(A): KJ;
o d(A)=[A: Z(A)Y2

We define the reduced trace of A as
TI‘dA = Trz(A)/K OTrdA/Z(A) .

If A = []A; is semi-simple, with simple components A;, we define Trdy :=

> Trdy,.
b) If A =End4(M), we set

Zi(M) = Z(Ay);
0i(M) = 6(Ai);
di(M) = d(Ay);
Trdy = Trda.
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Note that, if L is an extension of K, then Trdag,r(a ® 1) = Trda(a) (viewed
in L) for any a € A.

1.2. Proposition. There exists a unique element pu(M) € End(M) such that

tr(f) = Trdar (n(M) f)

for any f € End(M). Moreover, (M) is central and invertible. Hence, if (e;)
denotes the set of central idempotents of A = End(M) corresponding to its simple

factors A;, we may write

n(M) = ZMi(M)ei
with /LZ(M) € ZZ(M)*

Proof. Since End(M) is semi-simple, (f, g) — Trdps(fg) is nondegenerate, which
proves the existence and uniqueness of u(M). Moreover,

Trdy (u(M)fg) = tr(fg) = tr(gf) = Trdp ((M)gf) = Trda (fru(M)g)

and the non-degeneracy also yields the centrality of p(M). This element is in-
vertible because the ideal N of (1.2) is 0, since A is semi-simple [4, 7.1.7]. The
last assertion is obvious. ([

1.3. Lemma. a) We have p(M*) = tu(M).
b) Suppose that K is algebraically closed and M is simple. Then u(M) = x(M).

Proof. a) follows easily from (1.1) and the fact that the transposition induces
an anti-isomorphism from End(M) onto End(M*). b) is obvious, since then
End(M) = K (recall that, by definition, x(M) = tr(1as)). O

1.4. Remark. If A is pseudo-abelian (hence abelian, [29, Lemma 2]), the idem-
potents e; of Proposition 1.2 yield the decomposition M = @ M; of M into its
isotypical components. In particular, u(M®") = u(M) for any n > 1.

On the other hand, it is difficult to relate p(My), u(Ms2) and p(M; ® M) in gen-
eral because it is difficult to say something of the map End(M;) ® x End(My) —
End(M; ® My): it need not even be true that such a homomorphism sends the
centre to the centre. For the same reason, it is difficult to state general facts on
the behaviour of the invariant p under tensor functors. We shall see that the sit-
uation improves considerably in the case of geometrically integral type, discussed

in the next section.
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2. INTEGRAL MULTIPLICITIES

In all this section, A is a semi-simple rigid K-category.

2.1. Definition. a) An object M € A is of integral type if the scalars p;(M) of
Proposition 1.2 belong to Z.

b) M is geometrically of integral type if Mgz € Ag is of integral type, where K
is an algebraic closure of K.

c) A is of integral type (resp. geometrically of integral type) if every M € A is of
integral type (resp. geometrically of integral type).

We denote by Ajy the full subcategory of A consisting of geometrically integral

objects.

2.2. Proposition. a) If M is of integral type, we have

tr(e;)

(2.1) pi(M) = 5:(M)d; (M)

for any i, where the notation is as in Definition 1.1 and Proposition 1.2.

b) Direct sums and direct summands of objects of integral type are of integral type.
Similarly for geometrically of integral type. In particular, A is of integral type
(resp. geometrically of integral type) if and only if its pseudo-abelian envelope is.
c) If M is geometrically of integral type, then it is of integral type. Moreover, if
this is the case, the invariants p;(M) are “geometric” in the sense that if L/ K
is any extension, then p;(M) = p; (M) for any simple factor A; o of Ai @k L.
d) M € A is geometrically of integral type if and only if, in Ahl—{, the Fuler
characteristic of every simple summand of Mg is an integer.

e) If M is Schur-finite, it is geometrically of integral type.

f) If M is (geometrically) of integral type, so is M*.

Proof. a) and b) are obvious. For ¢), we have the decomposition
e}

where o runs through the distinct K-embeddings of Z;(M) into K. Correspond-
ingly, A; ®x K decomposes as a direct product

A @k K ~ HAi,a
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with A; o simple over K. This gives a decomposition
€k 1= Z €
(0%

into central idempotents. But clearly, u(Myg) = u(M) ®x 1. By hypothesis, the
images of y;(M) in K under the embeddings « are rational integers, which implies
that p;(M) is itself a rational integer. The additional claim of c¢) immediately
follows from this proof.

d) follows immediately from Lemma 1.3 b).

For e), if M is Schur-finite, so is Mz € Ahl—{; all simple direct summands of
My are Schur-finite as well, hence their Euler characteristics are rational inte-
gers. This immediately follows from the main result of [13], but one can more
elementarily use Proposition 2.2.2 of del Padrone’s thesis [15], which generalises
the case of finite-dimensional objects [4, 7.2.4 and 9.1.7]. The conclusion now
follows from d).

Finally, f) follows from Lemma 1.3 a). O

2.3. Remark. C. Weibel asked whether the converse of e) is true. This holds if
Ajint is of homological origin in the sense of Definition 5.1 b) (see Theorem 5.6),
but is false in general as observed by A. del Padrone [16, (4)].

2.4. Theorem. Let M, N € A be geometrically of integral type and such that
M ® N is geometrically of integral type. Let (e;) be the central idempotents of
End(M) and (f;) the central idempotents of End(N). For a pair (i,7), let A;; be
the semi-simple algebra (e; ® f;) End(M ® N)(e; ® f;). Then one has formulas
of the type
pi(M)pj(N) = myer(M @ N)
k
where k indezxes the simple factors of A;; and the my, are integers > 0. Moreover,

for any k, there is such a formula with my > 0.

Proof. We proceed in 3 steps:

1) End(M) and End(N) are split and M and N are simple. Then End(M) =
End(N) = K and A;; = End(M ® N). Using Formula (2.1) to compute tr(1y; ®
1x) in two different ways, we get the formula

(22) p(M)u(N) = 3 mip(M @ N)
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with my = 5k(M®N)dk(M & N)

2) End(M) and End(N) are split, which means that their centres are products
of copies of K and all their simple factors are matrix algebras over K. By

Proposition 2.2 b), we may assume that A is pseudo-abelian, and we are reduced
to 1) by Remark 1.4.

Note that, as a by-product, we get the formula

(AT (Ai)
"= TG ()

and 1) shows ungrievously that the right hand side is an integer.

3) The general case. Extending scalars to K and using Proposition 2.2 ¢), we
are reduced to 2) as follows: for any a : Z;(M) — K and any 3: Z;(M) — K,

we have a formula with obvious notation:

P (M) (Ng) =3 " mlpu (M @ N)g)
k ol

where, for each k, v runs through the embeddings of Z,(M ® N) into K. This

gives a formula as wanted.

It remains to prove that, given a simple factor Ay of A;;, one may find a
formula with my > 0. For this, it suffices to show that there is a pair («, 3) such
that

Hom g ((ef' ® f1)(Aij @k K)(ef ® f7), Ay @k K) # 0.

This is obvious, since Homg (A;;, A) # 0 and A;;@x K = Hayﬁ(ef‘@ff)(Aij@K
K)(ef  f}))- O

2.5. Remark. A. del Padrone gives in [16, (5)] an example of two objects M, N
of some A which are geometrically of integral type but such that M ® N is
not geometrically of integral type. As in Remark 2.3, it is based on Deligne’s
categories of “representations of the symmetric group with ¢ letters”, ¢ a complex
number [14].
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3. APPLICATION: THE ZETA FUNCTION OF AN ENDOMORPHISM

3.1. Definition. Let A be a rigid K-category, M € A and f € End(M). The

zeta function of f is

25,0 = [ Su()" | € K[

n>1

3.2. Theorem. Suppose that A is semi-simple and that M € A is of integral
type. Then,

a) For any f € End(M), Z(f,t) € K(t). More precisely, one has with the
notation of Definition 1.1

t) = [ [ Nrda, (e — eift) =)

where, for all i, Nrda,(e; — e;ft) := Nz ) x Nrda, 7z, (ei — eift) denotes the
inverse reduced characteristic polynomial of the element e;f in A;.

b) If f is invertible, one has the functional equation

Z(f71 7Y = (=M det(£)Z(f,1)
where x(M) = tr(1y) and det(f) =[], NrdAi(eif)“i(M).

Proof. (For another proof, see Proposition 15.5.) a) Applying the formula of
Proposition 1.2, we get

207,1) = exp | 32 T (u(a) )"

n>1

=exp | Y > Trdp(pi ezf”)

n>1 1

wi(M)

—Hexp ZTrdA (e;f)")—

n>1

and the conclusion follows from the well-known linear algebra identity

exp ZTrdAi((eif)”)% — Nrda, (e — esft)!

n>1
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For b), we write
Nrdg,(e; — eif_lt_l) = NrdAi(—eif_lt_l) Nrda, (e; — € ft)

hence

= [ Neda (—eaf =171 700 Ned g, (e — esft) 700

= [ Neda, (—eif e )0 Z(£,1)

7

and
H Nrd 4, (—eiffltfl)*“i(M) =

(—t)2i #s(M)ds (M) (M) HNTdAv(eif)“i(M) = (—=t)X(M) det(f).

3.3. Remark. The definition of det shows that
det(1 — ft) = Z(f,1)"

if the left hand side is computed in Ag ).

4. OBJECTS OF CONSTANT SIGN AND FINITE DIMENSIONALITY

4.1. Definition. Let A be semi-simple of integral type, and let M € A. We say
that M is of constant sign if, in the decomposition of Proposition 1.2, all p;(M)
have the same sign. This sign is, by definition, the sign of M.

4.2. Proposition. Assume that M and N are simple and that, in Theorem 2.4,
M ® N is of constant sign. Then we have |pup(M @ N)| < |u(M)u(N)| for all
k, and the sign of M ® N is the product of the signs of M and N. If |u(M)| =
|w(N)| =1, then M ® N is isotypical. Moreover, u(M @ N) = u(M)u(N).

Proof. This follows from the last statement of Theorem 2.4. In the case where
|(M)| = |u(N)| = 1, Formula (2.2) gives the conclusion. O
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As a variant of the previous proposition, we are going to give a criterion for
A to be a Kimura-O’Sullivan category, i.e. for every object of A to be finite-
dimensional. The following lemma has nothing to do with multiplicities, but is

quite useful:

4.3. Lemma. Let A be a pseudo-abelian rigid K -category. Let K be an algebraic
closure of K. If A is Kimura-O’Sullivan, so is .Auf(; the converse is true if Y0 =0
(see [4, déf. 7.4.1]), for example if A is semi-simple.

Proof. This is not proven in [4] but is easy to check: if A is Kimura-O’Sullivan, so
is Ai—{ since any direct summand of a finite-dimensional object is finite-dimensional
[4, prop. 9.1.12]. Conversely, suppose .Ai—( Kimura-O’Sullivan and let M € A.
Write Mz = M+ @ M~, with M* positive and M~ negative. Since Y0 = 0
in A, the same is true in Ag [4, 7.4.4] and the decomposition of Mg is unique
by [4, th. 9.2.1 a)] (or its proof). Therefore, the idempotent of End(My) which
defines it is Galois-invariant, and descends to an idempotent of End(M). O

4.4. Lemma. Let A be a semi-simple, pseudo-abelian rigid K -category and let
M € A be finite-dimensional. Then M is positive (resp. negative) if and only if
it is of constant positive (resp. negative) sign.

Proof. 1t is sufficient to prove that, if M is positive (resp. negative), it is of
constant positive (resp. negative) sign. For this, we may assume that K is
algebraically closed. Every direct summand N of M is positive (resp. negative),
and x(N) has the sign of N [4, Prop. 7.2.7 ii)]. Hence the result follows from
Lemma 1.3 b). O

4.5. Proposition. a) Let A be a semi-simple rigid K -category, pseudo-abelian

and geometrically of integral type. Then the following conditions are equivalent:

(i) A is Kimura-O’Sullivan.
(ii) If M and M’ are of constant sign, M @ M’ is of constant sign.

b) If K is algebraically closed and all multiplicities are equal to £1, these condi-
tions are also equivalent to

(i) If S and S’ are simple, then S ® S’ is simple.

(iv) Ewvery simple object is invertible.
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(Remark 2.3 gives an instance where Conditions (i) and (ii) of a) do not hold.)

Proof. a) (i) = (ii) follows from Lemma 4.4. For the converse, we may assume K
algebraically closed, thanks to Lemma 4.3. It is sufficient to prove that a simple
object S is either positive or negative. We have p(S) = x(5) (Lemma 1.3 b));
recall that this integer is # 0 by Proposition 1.2.

Suppose that x(S) > 0. By [4, 7.2.4], x(AX(5)+1(8)) = 0. Writing AX(S)*+1(S) =
@D, Sie with the S, simple and all distinct, we get

0= Znax(Sa).

By hypothesis, AX(9)*1(S) is of constant sign, hence all n,, are 0 and AX(S)+1(5) =
0. The case where x(S) < 0 is similar.

b) (i) = (iv): by hypothesis, simple objects are 1-dimensional (Definition 11.1),
hence invertible by Lemma 11.2 a) below.

(iv) = (iii): this is obvious.

(iii) = (ii): this follows from Proposition 4.2, which says that u(S ® S') =
p(S)p(S")- O

5. MULTIPLICITIES IN RIGID TENSOR CATEGORIES OF HOMOLOGICAL TYPE

5.1. Definition. a) A rigid K-category A is of homological type if there exists a
tensor functor
H:A— Vecj;E

where L is an extension of K and VechE is the tensor category of Z/2-graded finite-
dimensional L-vector spaces, provided with the Koszul rule for the commutativity
constraint. We say that H is a realisation of A.?

We say that A is neutrally of homological type if one may choose L = K.

b) A semi-simple rigid K-category A is of homological origin (resp. neutrally of
homological origin) if it is ®-equivalent to A/N, where A is a rigid K-category
of homological type (resp. neutrally of homological type) and N = N (A) is the
ideal of morphisms universally of trace 0 (see (1.2)).

2When A is abelian, this is what Deligne calls a super-fibre functor in [13], except that we do

not require any exactness or faithfulness property here.
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As this will be used throughout, we recall that the functor H is compatible
with (categorical) traces: for any M € A and any f € Enda(M), tr(f) = tr H(f)
via the injection K < L. This is the “Lefschetz trace formula” in this abstract

context.

5.2. Lemma. If A is of homological type, A/N is semi-simple. If moreover it is
neutrally of homological type and the corresponding realisation H is faithful, the
functor A — AJN has the idempotent lifting property.

Proof. The first statement follows from [5, Th. 1 a)]. For the second, let M € A
and M be its image in A. The hypothesis implies that End4(M) is a finite-
dimensional K-algebra. Let R be its radical: it is nilpotent and contained in
N (M, M) by [5, Th. 1 a)]. Thus End 4(M) is a quotient of the semi-simple alge-
bra End 4(M)/R. Therefore we may lift orthogonal idempotents of End 4(M) to
orthogonal idempotents of End 4(M), first in End 4(M)/R and then in End 4(M)

itself. O

5.3. Notation. Let .4 be of homological type. For M € A, we write 6;(M), d;(M),
wi(M) for &;(M),d;(M), pi;(M), where M is the image of M in A.

5.4. Lemma. Let E be an extension of K. If A is of homological origin, then
Ap := A®k E is also of homological origin.
Proof. Let A of homological type be such that A/N ~ A, and let H : A — Vecj:t
be a realisation of A. Consider the tensor functor

Hgp: Ag — Veci@KE

given by Hp(M) = H(M) ®k E. Here L ® F is not a field in general, but we
can map it to one of its residue fields L’. Then the composite functor

H : Ap — VeCf,

is a tensor functor. To conclude, it suffices to observe that Ag ~ Ag/N(Ag) by
[5, Lemme 1]. O

5.5. Lemma. Suppose that A is neutrally of homological origin. Then the pseudo-
abelian envelope of A is also neutrally of homological origin.

Proof. If A is neutrally of homological origin, one may find a faithful realisation
H:A— Vecli( This realisation extends to the pseudo-abelian envelope A% of
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A, since Vecf( is pseudo-abelian. On the other hand, Lemma 5.2 implies that
AP /N is pseudo-abelian, where A% is the ideal A" of A% but the obvious functor
A/N — A%/N¥ is clearly a pseudo-abelian envelope. O

5.6. Theorem. If A is of homological origin, any M € A is Schur-finite; in

particular, A is geometrically of integral type.

Proof. Choose (A, H : A — Vecf) as in the proof of Lemma 5.4. As before,
we may assume that H is faithful. Lift M to M € A. Then H(M) is finite-
dimensional, hence Schur-finite, which implies that M and therefore M is Schur-
finite. The conclusion now follows from Proposition 2.2 e). g

5.7. Remark. The converse of Theorem 5.6 holds. Namely, if every object of A
is Schur-finite, then the same is true in (Az)%. By [13, 0.6 and following remark],
(Ag)! is ®-equivalent to Rep(G,e), where (G, ¢) is a super-affine group scheme
over K; in particular, (A K)h and hence A admits a realisation into Vecli—(. This
shows that if A is of homological origin, then it is actually of homological type.
Another approach to this idea is the one in [3], using ®-sections.

However, in the case of pure motives, one wants of course to study the general
situation of Definition 5.1 b), using “natural” realisation functors! This is what
we do in the remainder of this section.

5.8. Definition. Let A be of homological type, and let H : A — VeciE be a
realisation functor. Given M € A, we say that M has the sign property (with
respect to H) if there exists p € End4(M) such that H(p) is the identity on
H*(M) and is 0 on H~(M).

5.9. Lemma (cf. [4, 9.2.1]). With the notation of Definition 5.8:

a) If M is finite-dimensional, it has the sign property.

b) The converse is true if H is faithful and N (M, M) is a nilideal (the latter is
automatic if L = K ). O

5.10. Proposition. Let A be of homological type, A :== A/N and let H : A —
VechE be a realisation functor. Then

a) For any simple object S € (Ar)%, d(S) | u(S).

b) Suppose H faithful. Let M € A have the sign property. Then the nilpotence
level r of N (M, M) verifies

<1 +)
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where d;(M) = d(S;), with S; a simple summand of My, € AHL corresponding to
its i-th isotypical component (see Remark 1.4).
c) If M is isotypical and (M) = +1, then N'(M, M) = 0.

Proof. a) Since A /N (AL) = Ar, Ay is neutrally of homological origin; up to
quotienting Ay and replacing K by L, we may assume L = K and H faithful.
Then N (M, M) is nilpotent for all M and, as in the proof of Lemma 5.5, we may
further assume that A and A are pseudo-abelian.

Let S € Abe mapping to S. By Lemma 5.2 and Wedderburn’s section theorem,

the map End4(S) — End 4(S) has a ring-theoretic section o. This makes H(S)

a module over the division ring End 4(S). Therefore dimg H(S) is divisible by
dimg End 4(S) = §(S)d(S)? for e = 1. On the other hand,

dimg HT(S) — dimg H™(S) = u(5)8(S)d(S)

by Proposition 2.2 a). Therefore, §(.5)d(S)? divides 1(S)5§(S)d(S), which means
that d(S) divides u(S), as claimed.

b) Assume first L = K. Without loss of generality, we may also assume A pseudo-
abelian. Let Ay = N(M, M) and consider the filtration ((Nas) H(M))o<i<r—1.
Note that (Ny) H(M) = (Ny) T H(M) <= (Nuy)' = 0 since Ny is a nilpo-
tent set of endomorphisms of H(M). The associated graded (grH (M))o<i<r—1
is a graded End 4(M)-module, and gr' H (M) # 0 for all i < r.

Since M has the sign property, for each isotypical component M; of M, with
lift M; in A (Lemma 5.2), one has either H*(M;) = 0 or H (M;) = 0. The proof
of a) then shows that grH (M;) is an End A(Mi)—mo_dule of length ‘Z%;‘ where S;
is the associated simple object. Note that End (M) = [[, End z(M;): it follows
that grH (M) is an End 4(M)-module of length H(% + 1) — 1.3 Hence the
inequality.

In general we extend scalars from K to L. Let s = Hi(%?((%g' +1) — 1.
Applying the result to the category AL with the same objects as A and such that
AL(M,N) = H(A(M,N))L C Homy(H(M),H(N)), we get (N(M,M)L)* =0,

hence N (M, M)* C (N (M,M)L)* = 0.

c¢) This follows immediately from b). U

31f A; are rings and M; are A;-modules of finite lengths [;, the [ As-length of [T M; is T], (li+1)—1.
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5.11. Remark. In case M is finite dimensional, we have another bound for the
nilpotence level of N'(M, M) (valid without assuming H faithful). For simplicity,
suppose that M is either positive or negative, and let n = |x(M)|. By [40, Corol-
lary 10.2], f* = 0 for all f € N'(M, M), which implies that A'(M, M)" =0 by a
theorem of Razmyslov improving the Nagata-Higman bound [51, 4.3]. T learned
of this improvement from Alessio del Padrone, who has generalised this bound to
any finite-dimensional M with n = |x(M™1)| + |[x(M™)] [15, 2.4.10].

These two bounds have completely different behaviours: in Proposition 5.10 ¢)
the former is optimal while the latter is not, but on the other hand if M is a
direct sum of n invertible objects pairwise non-isomorphic, the bound of Propo-
sition 5.10 b) is 2" — 1 while the other one is n?.

As del Padrone pointed out, a third unrelated nilpotency bound is the one pre-
dicted by the Bloch-Beilinson-Murre conjecture for the Chow motive of a smooth
projective variety X (namely, dim(X) + 1 [30, Strong conj. 2.1]).

5.12. Remark. Coming back to the zeta function of an endomorphism, suppose
that A is of homological type; let M € A and f € Enda(M). If H is a realisation
of A, we have by the usual computation

_y_ det(1— ft| H™(M))
det(1— ft | HH(M))"

Z(f,t) = det(1 — H(f)t)
Let M be the image of M in A = A/N and f be the image of f in End 4(M).
Since Z(f,t) = Z(f,t), we get from Theorem 5.6 and Theorem 3.2 a) the identity

det(1 — ft| H*(M
det(1— ft| H- (M

B = HNrdAi(ei — e ft)riM),

Suppose for example that M is simple; the identity reduces to

det(1 — ft| H*(M))

 Neda(1 — FyD)
dot(1— fi [ H-(ar)) ~ Nrdalt = o

where A = End 4(M).

Supposing further that p(M) > 0 to fix ideas, we find that the inverse character-
istic polynomial of f acting on H~ (M) (with coefficients in L) divides the one for
H™ (M), and the quotient has coefficients in K. This does not imply, however,
that H— (M) = 0.
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6. EXAMPLES

In our first example, let A be the rigid K-category of vector bundles over IP)}(.
It is of homological type, with realisation functor H : A — Vecy, for L = K(t)
given by the generic fibre. Its indecomposable objects are the O(n) for n € Z:
they are all of multiplicity 1 but A(O(p), O(q)) = N(O(p),O(q)) # 0 whenever
p < q. This shows that the condition “isotypical” is necessary in Proposition
5.10 ¢) (I am indebted to Yves André for pointing out this example). If one
extends scalars from K to L in the style of the proof of this proposition, one finds
AL(O(p),O(q)) = L whenever p < q.

Our main source of examples is, of course, the category Mpum(k) of pure
motives over a field £ modulo numerical equivalence. By Jannsen’s theorem [29]
and Theorem 5.6, My (k) is semi-simple and geometrically of integral type. We

shall compute the multiplicities in certain cases.

6.1. Remark. Let X be smooth projective and suppose that h(X) admits a
Kiinneth decomposition h(X) ~ @?io hi(X), relatively to a Weil cohomology
H. Using H, one sees that h*(X) is finite-dimensional, and positive or negative
according to the parity of i. By Lemma 4.4, this shows that h?(X) is of constant
sign (—1)%.

We leave it to the reader to check that the multiplicities of Artin (even Artin-
Tate) motives are always +1. The next case is that of abelian varieties.

Let A be an abelian variety of dimension g over k. Then we have the Kiinneth
decomposition

with hi(A) ~ S?(h!(A)) [55]. Moreover,

End h'(A) = End’(A) := End(A) ® Q.

Finally, x(h'(A)) = —2¢. From this and Proposition 2.2, we get for A simple:

P (A) = — S A O (A))

We recover the fact that the denominator divides the numerator.
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Like Milne [47], we shall say that A has many endomorphisms if

Z §(End®(4;))d(End®(4;)) = 2¢

where A; runs through the simple factors of A, or equivalently if
§(End®(4;))d(End®(A;)) = 2¢;

for all i, where g; = dim A;. This terminology is less ambiguous than “having

complex multiplication”.

6.2. Definition. Let M € Mum (k) be a pure motive modulo numerical equiva-
lence. Then M is of abelian type if it is isomorphic to a direct summand of the
tensor product of an Artin motive and the motive of an abelian variety.

Motives of abelian type are stable under direct sums, direct summands, tensor
products and duals. We then have:

6.3. Theorem. a) For A a simple abelian variety, u(h'(A)) = —1 if and only if

A has many endomorphisms.

—1 if A has complex multiplication

b IFg=1, then u(i(a) ={ 7 ples multip
—2  otherwise.

c) If A has many endomorphisms, all multiplicities of h'(A) are equal to (—1)°.

d) If k is a finite field, then the multiplicities of any motive of abelian type are

equal to 1.

Proof. a) and b) are clear; c) follows from a) and Proposition 4.2 (see Remark
6.1), and d) follows from c) since any abelian variety over a finite field has many
endomorphisms [56]. O

The next interesting case is that of ¢2(S) where S is a surface [35]. If k = C,
there are many examples where the Hodge realisation of ¢5(.S) is absolutely simple
[50, Ex. 5 and Cor. 18]. A fortiori t2(.5) is absolutely simple, and Proposition
2.2 a) shows that its multiplicity equals its Euler characteristic, i.e. b*> — p where
b? is the second Betti number and p is the Picard number.
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Part II. Number of points of function fields over finite fields
INTRODUCTION

Let k be a field; if ~ is an adequate equivalence relation on algebraic cycles, we
denote by M (k) or simply M., the category of motives modulo ~ with rational
coefficients, and by M its full subcategory consisting of effective motives [53].%
We use the convention that the functor X +— h(X) from smooth projective k-
varieties to M is covariant. Examples: rational equivalence (rat), numerical
equivalence (num) or homological equivalence with respect to a Weil cohomology
theory H.

Using the point of view of birational motives (developed jointly with Sujatha
[36]), we give a simple proof of a result of Esnault on the existence of rational
points for smooth projective varieties with “trivial” Chow group of zero-cycles
over a finite field Fy [19]. More generally, we prove in Corollary 9.6 that if two
smooth projective Fg-varieties X, Y mutually dominate each other up to varieties
with trivial CHy, they have the same number of rational points modulo ¢q. We
also recover the “constant” theorem of Fahkruddin and Rajan [22, Cor. 1.3] in
the projective case, but not their main theorem “in families” (ibid., Th. 1.1) or
Esnault’s most general theorem in this direction [20]. (It seems that a motivic
approach to these two results along the same lines should involve something like
one of Ayoub’s specialisation functors on Voevodsky’s triangulated categories of
motives [7].) We also show that if X is dominated by the product of a supersin-
gular abelian variety and a smooth projective variety with trivial CHg, then X
has a rational point over F, (Corollary 9.7). One could imagine other examples.

Some of these results were originally obtained via p-adic cohomology: in par-
ticular the proofs in [19] use the main properties of rigid cohomology of open
varieties (finite-dimensionality, Gysin exact sequences and the theory of slopes).
The proofs given here are very simple-minded; they use the existence of a Weil
cohomology theory (for smooth projective varieties) and de Jong’s alteration the-

orem.

The idea of considering effective motives and their divisibility by the Lefschetz
motive was anticipated by Serre [54]. The story of the birational invariance of

4With notation as in [63], an object of M. is effective if it is isomorphic to an triple (X, p,n)
with n < 0; one may then find such a triple with n = 0.
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the number of points modulo ¢ (a special case of Corollary 9.6) is amusing: this
question had initially been raised by Kollar and the 3-dimensional case was proven
by Lachaud and Perret in [45]. Then I independently found a proof in general
as an application of birational motives [31]. However, as was then pointed out
by Chambert-Loir, it in fact follows from much earlier work of Ekedahl [18]. See
Chambert-Loir’s Bourbaki talk [9] for details as well as nonabelian applications
of p-adic cohomology, not covered by the methods of this paper.

In Section 7 we review results on birational motives from [36] and add some
remarks. In Section 8 we show that the number of points of an effective motive,
as defined in [42], is an integer (it is a priori a rational number): see Theorem 8.1.
In Section 9 we prove the main result (Theorem 9.1) which says that the number
of points modulo ¢ of a numerical birational motive over F, is well-defined, and
draw the corollaries indicated above. Finally, in Section 10, we show that the Tate
conjecture is equivalent to the statement that a numerical birational motive is
determined by its number of points over F,» modulo ¢" for all n (Corollary 10.2),
and point out that the Tate conjecture implies the generalised Tate conjecture
over finite fields (Remark 10.3 2)).

7. BIRATIONAL MOTIVES

7.1. Definition. The category M¢, is the Karoubian envelope (or idempotent
completion) of the quotient of M by the ideal J consisting of morphisms fac-
toring through an object of the form M ® L, where L is the Lefschetz motive.
This is a tensor additive category. If M € M we denote by M its image in
M2,

7.2. Lemma ([36, Lemmas 5.3 and 5.4]). Let X,Y be two smooth projective

o

ot we have

irreducible k-varieties. Then, in M

Hom(h(X), h(Y)) = CHo(Yicx) ® Q.

Let us briefly recall the proof: for X,Y smooth projective, let I(X,Y’) be
the subgroup of CHY™Y (X x Y) ® Q formed of those correspondences which
vanish on U x Y for some dense open subset U of X. Then [ is an ideal in the
category of rational Chow correspondences: the proof [36, Lemma 5.3] is a slight

generalisation of the argument in [23, Ex. 16.1.11]. It is even monoidal, and

eff

extends to a monoidal ideal I in Mg,

which obviously contains J. Using de
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Jong’s theorem [28, Th. 4.1], one sees that I ® Q = J ® Q [36, Lemma 5.4]. In
characteristic 0, one may remove the coefficients Q by using Hironaka’s resolution
of singularities.’

7.3. Example. Let X be smooth and projective over k. Then h(X) ~ 1 in
M, if and only if CHo(Xp(x)) ® Q = Q (write h(X) = 1 & h(X)>1 in M),
In particular, h(X) ~ 1 if X is [geometrically] unirational, as expected in [54].
More generally, any separably rationally connected variety has this property.
The converse is not true: an Enriques surface X verifies h(X) ~ 1 by [8], but
is not rational, hence not unirational over a field of characteristic 0 because
Pic(X) contains a Z/2 summand (recall that any unirational surface is rational by
Liiroth’s theorem; I thank Colliot-Thélene for pointing out this counterexample).

7.4. Remark. If K is the function field of a smooth projective variety X, we
may define a motive h(K) € M?,, as follows. If Y is another smooth projective
model of K, then [the closure of] the graph of a birational isomorphism from X
to Y defines an isomorphism h(X) — h(Y). If there is a third model Z, then
the system of these isomorphisms is transitive, so defining h(K) as the direct
limit of the h(X) for this type of isomorphisms makes sense and is canonically
isomorphic to any of the h(X). This construction is functorial for inclusions of
fields. If char k = 0, it is even functorial for k-places by [36, Lemma 5.6], although
we won’t use this. (Extending it to arbitrary function fields in characteristic p

would demand more work.)

Note that if K C L, then h(K) is a direct summand of h(L): to see this,
write L as a finite extension of a purely transcendental extension E of K. Then
h(E) = h(K), hence we are reduced to the case where L/K is finite, and then

it follows from a transfer argument.

We can slightly generalise this remark as follows:

7.5. Lemma. Let E/F be an extension, where E and F are finitely generated
over k. Then, for any smooth projective k-variety X, the map CHy(Xr) ® Q —
CHy(XEg) ® Q has a retraction which is functorial in X.

5A. Chambert-Loir and N. Fakhruddin independently pointed out that Chow’s moving lemma is
incorrectly applied in the proof of [36, Lemma 5.4]; however, Fakhruddin also pointed out that
one avoids Chow’s moving lemma by taking the subvariety Z minimal in this proof.
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Proof. It suffices to treat the cases where E/F is finite and where E = F(t).
In the first case, we may use a trace map. In the second case, CHy(Xpg) is a
quotient of CHy(Xp x AL) = CHy(XF), so the map is an isomorphism. O

7.6. Proposition. Let f: X --+» Y be a rational map between smooth projective
k-varieties, and let fi denote the correspondence defined by the graph of f. Sup-
pose that f, : CHy(Xg) ® Q — CHy(Yi) ® Q is an isomorphism for some field
K containing k(X) and k(Y). Then f. : h(X) — h(Y) is an isomorphism in

o)
rat-

Proof. For a general field F' containing k, let N(F') and C(F') denote respectively
the kernel and the cokernel of f, : CHy(Xr) ® Q — CHy(Yr) ® Q. If E/F is a
finitely generated extension, Lemma 7.5 implies that N(F) — N(E) and C(F) —
C(E) are split injective. Hence, if we relax the finite generation assumption, these
maps are still injective, because Chow groups commute with filtering direct limits
of field extensions. It follows that the hypothesis of the proposition is true for
F = k(X) and F = k(Y). Interpreting both sides are Hom groups in M2, we
get the conclusion by Yoneda’s lemma. O

For ~= num, the category M? is abelian semi-simple [29]. From [4, Prop.
2.1.7], we therefore get:

7.7. Proposition. a) The projection functor = : M~ — M?

. oum 48 essentially

surjective (i.e. taking the karoubian envelope is irrelevant in the definition of
M(r)lum)'

b) m has a section i which is also a left and right adjoint.

¢) The category ME is the coproduct of M ® L and i(M°

num num num) ’ t.e. a’ny

object of MR can be uniquely written as a direct sum of objects of these two
subcategories.

d) The sequence
L «
0— KO('M?IEI’H) - KO(MgfLEm) e KO(M?lum) —0

1s split exact. O

(In d), the injectivity on the left corresponds to the fact that the functor —®L
is fully faithful.)
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7.8. Remarks. 1) In M2 ., we can extend the end of Remark 7.4 as follows, using
semi-simplicity: let K, L be two function fields of smooth projective varieties such
that K < L(t1,...,tm) and L — K(t1,...,t,) for some m,n. Then h(K) ~

h(L). To get such a result in M2, one would need to have enough information

on the algebra End(h(K)).

2) Proposition 7.7 b) shows via Remark 7.4 that to a function field K /k one
may canonically associate an effective numerical motive h(K) € M which is
a direct summand of h(X) for any smooth projective model X of K.

3) One can use [27, Appendix| to show that, contrary to the case of numerical
equivalence, the projection functor M¢% — M2 does not have a right adjoint:
compare [35, Remark 14.8.7].

8. AN INTEGRALITY THEOREM

From now on, k = F, is a field with ¢ elements. Then, for all n > 1, the

assignment
X — | X(Fgn)| = deg(Ax - Fg)

for a smooth projective variety X, where Ay is the class of the diagonal and F'x
is the Frobenius endomorphism viewed as a correspondence, extends to a ring

homomorphism
(81) Hn KO(Mfgm) —Q
by the rule #,(X,p) = deg(p - F%) if p = p? € End(h(X)), cf. [42, p. 80].

8.1. Theorem. The homomorphisms #, take their values in Z.

Proof. 1t is enough to prove this for n = 1. More conceptually, we have deg(p -
Fx) = tr(p o Fx) in the rigid tensor category Myum. We offer two proofs: the
original one from [31] and a more elementary one which uses the multiplicities of
Part I.

First proof. Let H denote l-adic cohomology for a prime [t ¢: since by [29,
Cor. 1 and Remark 2)] p lifts as a projector p in My, we may compute this trace
after applying H to p (we then have to consider H(X) as a Z/2-graded vector
space and compute a super-trace.) Let H(X) =V @ W, with V = Ker(H(p) — 1)
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and W = Ker(H(p)). View Fy as a homological correspondence. Since it is
central, it commutes with p, hence H(Fx) respects V and W and

tr(pFx) = tr(H(pFx)) = tr(H((pFx)v) + tr(H ((pFx)w)
= tr(H(Fx)‘V).

Since the minimum polynomial of H(Fx) kills H((Fx)v), the eigenvalues of
the latter are algebraic integers [SGA7, Exp. XXI, Th. 5.2.2 p. 386]. Hence
tr(pFx) is an algebraic integer and therefore is in Z.

Second proof. Let A = End(h(X)): it is a semi-simple Q-algebra. By
Proposition 1.2, there exists a central invertible element p € A such that tr(f) =
Trda(pf) for any f € A, where Trdy is the reduced trace of A (see Definition
1.1). By Theorem 5.6, the existence of a Weil cohomology theory implies that
the components of y on the simple factors A; of A are integers. It is therefore
sufficient to show that, for any 4, the rational number Trdy, (e;pFx) is an integer,

where ¢; is the central idempotent projecting to A;.

Let Z; be the centre of A;. Since e;Fx € Z;, we have

Trda, (eipFx) = Trz, iq(eiF'x Trdy, 7, (p))-

Since p is an idempotent, Trd 4, /7 (p) is a positive integer (equal to the rank
of the corresponding projector after extending scalars from Z; to Q). Therefore
it suffices to prove that Try, /q(e;Fx) is an integer. But the minimal polynomial
P of e;Fx in A; divides the minimal polynomial @ of Fx in A (because the
projection A — A; is a homomorphism of unital rings). Since Fly is the graph of a
morphism, it lies in the subalgebra of integral correspondences modulo numerical
equivalence, which is a finitely generated Z-module. Thus @ is monic with integer
coefficients, and so is P. O

8.2. Remark. Note that the first proof of Theorem 8.1 uses [29, Remark 2 p.
451] which relies on Katz-Messing [38], hence ultimately on Deligne’s proof of the
Riemann hypothesis. This proof uses also Deligne’s integrality theorem of SGA7,
hence relies on two deep arithmetic results. The second proof uses Jannsen’s
semi-simplicity theorem [29, Th. 1] and the integrality result of Theorem 5.6;
both results only rely on the existence of a Weil cohomology theory.
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9. NUMBER OF RATIONAL POINTS MODULO ¢

9.1. Theorem. The homomorphism (8.1) induces a Ting homomorphism

#n : KO(M(r)lum) - Z/qn

This follows from Theorem 8.1 and Proposition 7.7 d) (note that #,(L) =
qa). O

From this we deduce:

9.2. Corollary. For X,Y, f as in Proposition 7.6, we have

[X(Fg)| = [Y(Fg)|  (mod g).

This corollary has the following special cases:

9.3. Corollary (Esnault [19]). Let X be a smooth projective variety over Fy such
that CHo(Xy,(x)) ® Q= Q. Then |X(F,)| =1 (mod q).

Proof. This is the case Y = SpecF,,. O

9.4. Corollary (Fakhruddin-Rajan [22, Th. 1.2]). Let f : X — Y be a dominant
morphism of smooth projective varieties over F . If the map fy : C’HO(XW) —
CHO(YW) is an isomorphism, then | X (Fy)| = |Y(F,)| (mod ¢).

9.5. Remark. Fahkruddin and Rajan actually prove this under the weaker hy-
pothesis that X and Y are smooth proper. One could “catch” this generality by
enlarging the category of pure motives.

Here is a variant. Let us say that two smooth projective varieties X and Y
are rationally connected-equivalent if there exist separably rationally connected
smooth projective varieties Z and T and dominant rational maps X x Z --» Y,
Y xT --» X. If X and Y are stably birationally equivalent, they are rationally
connected equivalent.

9.6. Corollary. The number of rational points modulo q is a rational connect-
ed-equivalence invariant of smooth projective Fy-varieties (in particular, a stable

birational invariant).
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Proof. Let X,Y,Z,T be as in the definition of rational connected equivalence,
and let f,g be the two dominant rational maps. By Remark 7.4, h(Y) is a
direct summand of h(X x Z) and h(X) is a direct summand of (Y x T). By
Example 7.3, h(Z) = h(T) = 1 € M2,. Since h(X x Z) = h(X) ® h(2)
and h(Y x T) = h(Y) ® h(T), h(X) and h(Y) are direct summands of each
other in M¢,;. By semi-simplicity, their images in M3, are isomorphic, hence

H#.(h(X)) = #,(h(Y)) for all n > 1. 0

The following corollary was inspired by a discussion with A. Chambert-Loir.

9.7. Corollary. Suppose that X is birationally dominated by a product Y x A,
where Y werifies the conditions of Corollary 9.3 and A is a supersingular abelian
variety. Then | X(Fy)| =1 (mod \/q). In particular, X (k) # 0.

Proof. The statement means that |X(F,)| — 1 is divisible by /g in the ring
of integers of Q(,/q) (in particular, in Z if ¢ is a square). In MSI . write
h(A) = @ hi(A) where multiplication by n acts on hi(A) as n’. By definition of
supersingular, A becomes isogenous to a power of a supersingular elliptic curve
E after a finite extension of scalars k/F,. Hence h(Ay) ~ h(E)®9 (g9 = dim A) in
M:EE (k). The eigenvalues of Frobenius for E are of the form ¢v/¢’ with ¢’ = |k
and ¢ a root of unity; by Tate’s (Deuring’s) theorem on the endomorphisms of
E, it follows that h'(E)®? ~ M ® L, where M is an Artin motive. It then follows
that h(Ax) = 1 @ h'(Ay) ® Ny @ L for some effective motive Nj, € M (k). By

taking traces, we also get h(A) = 1@ h'(A) ® N ® L for some effective motive
N € ME(F,). Therefore, h(Y x A) ~ h(A) ~ 1@ h'(A) in MS,,,. By Remark

rat

7.8 1), h(X) is a direct summand of this motive, and since it contains 1 it is of the
form 1@A'(B) for some other supersingular abelian variety B. But #(h'(B)) =0

(mod /q). O

9.8. Remarks. 1) Using Remark 7.8 2), we may canonically associate to any
function field K/F, of a smooth projective variety a series of integers (an)n>1
such that, for all n, #,(h(K)) = a,, (mod ¢") (see Remark 7.4 for the definition
of h(K)). Naturally a, need not be positive in general. More conceptually, we
may associate to K its zeta function, defined as the zeta function of the motive
2) Killing L* instead of L would yield congruences modulo ¢" rather than modulo
q, ¢f. [19, §3]; compare also [59]. But one would lose the fact that function fields
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have effective numerical motives as in the previous remarks.

3) Corollary 9.2 suggests the following question: let f : X --» Y be a rational
map between smooth projective varieties over k = ko(t), where kg is an alge-
braically closed field of characteristic 0. Suppose that f induces an isomorphism
X(K)/R = Y(K)/R for an algebraically closed field K containing k(X) and
k(Y), where R denotes R-equivalence [10]. Is it true that Y (k) # 0 = X (k) # (07
(The opposite implication, over any k and without R-equivalence hypothesis, is
a well-known theorem of Nishimura and Lang.)

Olivier Wittenberg has given a positive answer to this question, by reduction to
the theorem of Graber-Harris-Starr [25].

10. A CONJECTURAL CONVERSE

By Theorem 8.1, the functions #, of (8.1) extend to ring homomorphisms
Ko(Mpum) — Z[1/q], still denoted by #,.

10.1. Theorem. Assume that the Tate conjecture (for the order of the pole of the
zeta function) holds. Let M € Ko(Mnum) be such that #,(M) € Z for alln > 1.
Then M € Ko(MEE ).

Conversely, if this implication holds for any M € Ko(Mpum), then the Tate
conjecture holds.

Proof. Write M = > m;[S;], where m; € Z \ {0} and the S; are simple pairwise
non-isomorphic motives. For each i, let w; be a Weil number of S;, that is,
a root of the minimum polynomial of Fg;, and K; = Q(w;). Then #,(M) =
Yomitrg, iq(wf). It follows from the assumption and from [41, Lemma 2.8] that
w; is an algebraic integer for all i. (To apply loc. cit., compute in a Galois
extension of @ containing all K; and observe that the Tate conjecture implies

that no w; is equal to a conjugate of w; for i # j [46, proof of Prop. 2.6].)

By Honda’s theorem, for each i there is an abelian variety A; over F, and a
simple direct summand T; of h(A4;) whose Weil numbers are the Galois orbit of
wj (ibid.). Reapplying Tate’s conjecture, we get that S; ~ T;, hence S; is effective
for all 3.

To prove the converse, let M € My, be simple and such that F; = 1. Then
#n(M) = 1 for all n. Therefore M is effective. Writing M as (X, p) for some
smooth projective variety X, we have that M is a direct summand of h°(X) for
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weight reasons. It follows easily that M ~ 1. By [24, Th. 2.7] (see also Theorem
17.2), this implies the Tate conjecture. O

10.2. Corollary. The ring homomorphism

(%n)nzl : KO(Mgum) - H Z/qn

n=1

is injective if and only if the Tate conjecture is true.

Proof. 1t suffices to show that this injectivity is equivalent to the effectivity con-
dition of Theorem 10.1, which is easy by semi-simplicity. (|

10.3. Remarks. 1) Unfortunately we have to apply the Tate conjecture to S; QT
in the proof of Theorem 10.1, hence cannot provide a hypothesis only involving
M.

2) This argument may easily be modified to show that the Tate conjecture im-
plies the generalised Tate conjecture, which says that if M € My is such that
H;(M) is effective (in the sense that all Frobenius eigenvalues w; are algebraic
integers), then M is effective. Indeed, for such M, the Tate conjecture implies
that H;(M) is semi-simple. To every (conjugacy class of) w;, associate a pair
(Ai,T;) as in the proof of Theorem 10.1. Then H;(M) ~ & H;(T;) as Galois
modules, and M ~ @ T; by the Tate conjecture.

3) Fontaine asked if one could describe the image of the homomorphism in Corol-
eff

Cums bhe sequence

lary 10.2. Here is an easy partial answer: for any M € M
#,,(M) satisfies a recurrence relation, given by the minimal polynomial of Fj;.

(In particular, the image definitely does not lie in the inverse limit of the Z/q¢".)

Part III. Motivic zeta functions of motives
INTRODUCTION

Let M be a tensor category with coefficients in a field K of characteristic 0,
that is, a K-linear pseudo-abelian symmetric monoidal category such that the
tensor product ® of M is bilinear. Then symmetric and exterior powers of an
object M € M make sense, by using appropriate projectors relative to the action
of the symmetric groups on tensor powers of M. One may therefore introduce
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the zeta function of M, a power series with coefficients in Ky(M) [2, §13.3.2]:

Zm(M,T) = [S™(M)]T".
n>0

Yves André showed that this zeta function is rational when M = M (k) is the
category of pure motives for some adequate equivalence relation over a field k and
M is finite-dimensional in the sense of Kimura-O’Sullivan (ibid., Prop. 13.3.3.1).
He raised the question of functional equations, in the light of Kapranov’s result
for curves [37]; this was achieved by Franziska Heinloth in [26] when M is the
motive of an abelian variety. Heinloth also proved in [26, Lemma 4.1] that André’s
rationality argument in fact applies to any finite-dimensional object in any K-

linear tensor category M.

In the same vein, we propose in Theorem 12.1 below a functional equation for
any finite-dimensional M € M in any rigid K-linear tensor category; this theorem
has a very simple proof. In particular, modulo homological equivalence we get a
functional equation for the motivic zeta function of any smooth projective variety
X for which the sign conjecture holds, that is, the sum of the even Kiinneth
projectors of X is algebraic (c¢f. Definition 5.8). For instance, this functional
equation holds for any X over a finite field, or for surfaces over any field.

The main difference with Heinloth’s formula is that ours involves the determi-
nant of M, an invertible object of M to be defined in Proposition 11.3. This idea
already appears in André’s book [2, Proof of 12.1.6.3]. For this, we use the theory
of 1-dimensional objects developed by Kimura in [40]. In the case of motives, we
conjecture that det(M) is always the tensor product of a power of the Lefschetz
motive and an Artin motive of square 1: we show that this conjecture implies the
conservativity of realisation functors on finite-dimensional motives, follows from
the Hodge or the Tate conjecture (see Proposition 14.2) and is true in important
special cases (see Corollary 14.5 and Remark 14.6 d)).

Theorem 12.1 almost provides a cycle-theoretic proof of the functional equa-
tion for the usual zeta functions of motives over finite fields, see Remark 15.6
3). The catch is the sign conjecture. Unfortunately, the only known proof of
this conjecture over a finite field is by Katz-Messing [38], who rely on Deligne’s
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proof of the Riemann hypothesis [11]... One could use Theorem 12.1 in the cat-
egory of [-adic sheaves, but this is not much more than the original approach of
Grothendieck et al.

Over general fields, the situation is even more open. Nevertheless the class
of smooth projective varieties for which the sign conjecture is known is quite
respectable: it contains varieties of dimension < 2, abelian varieties and complete
intersections in a projective space. It is also stable under products. This puts
the remark of [26, §6] in a broader context.

11. THE DETERMINANT

Let M be a K-linear tensor category, where K is a field of characteristic 0. We
assume that M is rigid and that Endy(1) = K. For any M, we write x(M) =
tr(1y7) € K; this is the Euler characteristic of M. Unifying the terminologies of
Kimura and O’Sullivan, we shall say that M is positive (resp. negative) if there
exists an integer N > 0 such that AN (M) = 0 (resp. SV (M) = 0), and finite-
dimensional if M ~ M* @& M~ where M7 is positive and M~ is negative. It can
then be shown that in the positive (resp. negative) case, x(M) is a nonnegative
(resp. nonpositive) integer and that the smallest N as above is x(M) + 1 (resp.
—x(M) +1) ([39], [4, 9.1.7]).

We denote by My, the full subcategory of finite-dimensional objects in M:
it is thick and rigid ([39], [4, 9.1.4 and 9.1.12]).

Recall that if M is finite-dimensional, a decomposition M ~ M+ & M~ is
unique up to isomorphism ([39], [4, 9.1.10]). This allows us to set

(11.1) XT(M) =x(MT),  x~(M)=x(M").
11.1. Definition ([40, 15.2.3 and 15.2.4]). An object L € M is
e invertible if there exists an object T" and an isomorphism L ® T ~ 1;

e 1-dimensional if it is either positive or negative, and x(M) =1 (M posi-
tive) or x(M) = —1 (M negative).

6 André pointed out that one could also use his category of motives for motivated cycles [1].
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We denote by Pic(M) the full subcategory of M consisting of invertible objects:
it is a symmetric monoidal subcategory of M. Similarly to [44], we also define

Pic*(M) = Pic(M) x {+1}
with
Pic(M)(L, L") ife=¢
0 ife #£¢.

This is a symmetric monoidal category for the rule

Pic*(M)((L,e), (L' ') =

(Lye) @ (L', e") = (L® L &)
with the commutativity constraint
(L, (1)) @ (I, (1)) = (I, (=1)*) @ (L, (=1)°)

given by (—l)eelRL, 1/, where R is the commutativity constraint of ® in M (re-
stricted to Pic(M)).

11.2. Lemma. a) An object L € M is invertible if and only if it is 1-dimensional.
Moreover, L is positive (resp. negative) if and only if the switch of L® L is trivial
(resp. equals —1).

b) If M is positive, AXXM) (M) is invertible.

¢) If M is negative, STXM) (M) is invertible.

Proof. a) is the contents of [40, 15.2.6 and 15.2.9] (for the last statement, see the
proof of 15.2.9 in loc. cit.). In b) and c), it then suffices to prove that these
objects are 1-dimensional. In case b), by [4, 7.2.4], x(A"(M)) = (X(T]LW)), and in
case ¢) x(S™(M)) = (X(M)+”_1) by the same reference. O

n

11.3. Proposition (compare [40, 15.4.3]). Let Myin be the full subcategory of
M formed of finite dimensional objects and M}fim the subcategory of Mygm with
the same objects but morphisms restricted to isomorphisms. We view /\/lifim as
a symmetric monoidal category with respect to the direct sum. Then there exist
monoidal functors

det : M, — Pic(M)

det : M — Pic*(M)

such that

det(M) = A OD(A+) @ §X (M) (=)
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if M ~M"@®& M~ (¢ (11.1)), and

det(M) = (det(M), (~1)X (D),

These functors are well-determined up to unique isomorphisms.

Proof. To define det correctly, we fix for each M € My a decomposition M ~
M™ @ M~ and use the formula in the proposition. Let N ~ NT & N~ and
f: M — N be an isomorphism. To define det(f) : det(M) — det(IN), we note
that M(L, L) = M(L,L') for L ~ L' € Pic(M), where M = M/N (here N
is the ideal of morphisms universally of trace 0 defined in (1.2)): indeed, this
set is then a 1-dimensional vector space over K = End(1) ~ Enda(L). By
[4, 9.2.1 a)], f : M — N may be written as f+ @ f~, and we define det(f)
as det(fT) ® det(f~)*, where det(f*) and det(f~) are defined via the exterior
and symmetric powers. This clearly defines a functor, which shows that det is
well-defined up to unique isomorphism. A monoidal structure on det is defined

by the composition

det(M) @ det(INV) =
N Aty @ §X M (A=) @ AXT(N(NT) @ =X (V) (=)
S AT (Y @ AXTIN(NTY @ §XT (MDY g g (N ()
-~ Ax*(M)JrX*(N)(MJr BN @ s X MW (- g N—)*
= det(M @& N)

where the first isomorphism is the switch and the second is the obvious one. A
monoidal structure on det is then defined by the composition

det(M) @ det(N) = (det(M) @ det(N), (=1} D (=1 ()
~ (det(M @ N), (~)X" M) = det(M @ N)
where the isomorphism comes from the monoidal structure on det. O

11.4. Remarks. 1) If L is invertible, an object T as in Definition 11.1 is unique
up to unique isomorphism, and is given by the dual L* of L.

2) If M is positive, det(M) is positive. If M is negative, det(M) has the sign
(—1)X(M): this follows from the proof of Lemma 11.2 c).
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3) There is a competing functor to det, which is more natural:

det! (M) = (det(M), (~1)XM).

If A admits a (symmetric) ®-functor to a category of Z/2-graded vector spaces,
then the computations of [44] imply that det’ is symmetric monoidal; I suppose
that this can be proven in general, but I haven’t found a good proof. In any case,
this shows that det is not symmetric in general. Nevertheless, this is the object
which will control the functional equation in the next section.

The following lemma slightly extends Proposition 11.3, and will be used in the
proof of Proposition 14.2.

11.5. Lemma. Let f : My — My be a morphism between finite-dimensional
objects such that x*(My) = xT (M) and x~ (My) = x~ (Mz). Then f induces a
canonical morphism det(f) : det(My) — det(Ma) in M/N. Moreover, f is an
isomorphism if and only if det(f) is.

Proof. The construction of det(f) is the same as in the proof of Proposition 11.3.
It remains to see that, if det(f) is an isomorphism, f is an isomorphism. For
this, we work in Mym. By [4, 9.2.2], Myim/N is abelian semi-simple. Let f
be the image of f in this category: we may write f as the direct sum of an
isomorphism f" : M{ — M} and a 0 morphism f” : M{ — M}. Then det(f) =
det(f’) @ det(f”). But if M{ and MY were nonzero, we would have det(f”) = 0,
hence det(f) = 0, contrary to the hypothesis. Thus f is an isomorphism, and by
the local nilpotency of N [4, 9.1.14], f is an isomorphism. ([

11.6. Lemma. a) If M is positive, we have isomorphisms
A (M*) ~ AXM) =7 (Af) @ det(M)*

for all n € [0, x(M)].
b) If M is negative, we have isomorphisms

S™(M*) ~ STXO=1 (A1) @ det (M)

for all n € [0, —x(M)].

Proof. a) Note that A™(M*) ~ A™(M)*. The obvious pairing
A (M) @ AXM= (A1) — det(M)
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and its dual applied with M* instead of M define morphisms

A™(M) @ (AX(M)*"(M) ® det(M)*) -1

1— (AOD=(0) @ det(M)*) @ A™(M)

and it is easy to check that they verify the duality axioms [17]. The proof for b)
is similar. O

12. THE FUNCTIONAL EQUATION

Define a multiplicative homomorphism
[ : Ko(Pic"(M)) — Ko(M)

by [(L,e)] = ¢[L]. We can now state our theorem:

12.1. Theorem. Let M ~ M+ @ M~ be finite dimensional, and M* be its dual.
Then we have:

Zp(M*, T7) = [det(M)|TXM Z( (M, T)
= (1) M [qet (M) TXM) Z (M, T).

Proof. Since the zeta function transforms direct sums into products, we may treat
separately the cases where M is positive and negative. Note that M™* has the
same sign as M.

1. If M is positive, we have (see [26, Lemma 4.1]):

x(M)
Zm(M*, T =Y (A (-T) ™™
n=0
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Applying Lemma 11.6 a), we may rewrite this sum as

x(M)
[det(M)*] Y [AXMD = (M)} (=T) ™"
n=0
x(M)
= [det(M)*] > [A"(M)](=T)" XM
n=0
X (M)
= [det(M)*)(=T) XM S [AM(M))(-T)"
n=0
= [det(M)*](=T) XM Zp (M, T) ™
2. If M is negative, we have
=X (M)
Zm(M* TN = Y S MHT™
n=0

Applying Lemma 11.6 b), we may rewrite this sum as

—x(M)
[det(M)*] > [T
n=0
—x(M)
= [det(M)*] > [S"(M)T XD

n=0
= [det(M)*]TXM) N " S (M)|T™"
n>0

= [det(M)*)TXM) 7, (M, T).
O

12.2. Remarks. a) Asremarked in [2, 13.2.1.1], the map Ko(Myim) — Ko(Myim/N)
is an isomorphism thanks to the local nilpotency of N: therefore it makes no dif-
ference to work in My, or in My, /N as long as the zeta function is concerned.
b) One may wonder if x~ (M) is always even: this would give a nicer formula in
Theorem 12.1. As Yves André pointed out, this is of course false if we take for
M the category of Z/2-graded Q-vector spaces. However, this turns out to be
true (most of the time, and conjecturally always) if M is the category of motives
with rational coefficients over a field: André gave us an argument for this in
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characteristic 0, and his argument inspired part of the proofs given in the next

section.

13. THE CASE OF MOTIVES

We now assume that M = M. (k) is the category of motives over a field k
with respect to a given adequate equivalence relation ~: we shall often abbreviate
M (k) into M(k). The two main examples for ~ are rational and homological
equivalence. We only work with finite-dimensional motives M relatively to ~. If
~ is homological equivalence, this hypothesis is equivalent to the sign conjecture
(algebraicity of the even Kiinneth projector), ¢f. Lemma 5.9.

Notice in any case that, in view of Remark 12.2 a), the motivic zeta func-
tion of M with respect to ~ is the same as its motivic zeta function with re-
spect to any coarser adequate equivalence relation. Similarly, if H is a clas-
sical Weil cohomology theory (in the sense of [2, 3.4]) and ~ is coarser than
H-equivalence, then Ko(Mpg(k)) — Ko(M(k)) — Ko(Muyum(k)) by the
nilpotence result of [3, Prop. 5], without even restricting to finite-dimensional
motives. Another such example is Voevodsky’s nilpotence theorem [58], which
implies that Ko(Myat(k)) — Ko(Mag(k)). Under the conjecture of Kimura-
O’Sullivan that every Chow motive is finite-dimensional, or under the Bloch-
Beilinson-Murre conjecture [30], N is locally nilpotent in My, (k), which would
imply that Ko(M.(k)) is independent of the given adequate equivalence relation

~,

Let L € M.(k) be an invertible motive. Let Lyu, be the image of L in
Muyum (k). By [3, Prop. 5], we may lift Ly, to an invertible motive Ly €
M (k) with respect to any classical Weil cohomology theory H, uniquely up to
isomorphism. Then there is a unique integer n € Z such that H™(Ly) # 0.

13.1. Definition. The integer n is called the weight of L.

That the weight does not depend on the choice of the classical cohomology
theory follows from Artin’s comparison theorem in characteristic 0 and from
Deligne’s proof of the Riemann hypothesis in characteristic p [38].

13.2. Conjecture. Let k be a field. There is no invertible motive L € M(k) of
odd weight n.
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Equivalently: there is no negative invertible motive in M (k).

In fact, we can almost prove Conjecture 13.2:
13.3. Proposition. Conjecture 13.2 is true in the following cases:

(1) chark =0.
(2) k is a reqular extension of Fy, where q is not a square.
(3) n=1 and L is effective.

Moreover, the Tate conjecture over finite fields implies Conjecture 13.2 in the

remaining cases. (Can one avoid the recourse to the Tate conjecture???)

Proof. Clearly, we may work modulo homological equivalence.

(1) This is obvious via the Hodge realisation: in fact, any invertible pure Hodge
structure is of the form Q(r) since the Hodge numbers go by symmetric pairs.
(This was part of André’s argument alluded to in Remark 12.2.) Alternately, we
may use [-adic cohomology as follows: let kg C k be a finitely generated field over
which the invertible motive L is defined. Let S be a regular model of kg of finite
type over Z. Then one may find a closed point s € S with residue field F,, (p a
large enough prime number) such that L has good reduction at s.” This reduces
us to the case where & = F,,. Up to twisting L by a power of L., we may assume L
effective. Let F' be the Frobenius endomorphism of L. Since End(1) = Q, tr(F)
is a rational number, which is also the (unique) eigenvalue of the action of F' on
H;(L). But if n is the weight of L, H;(L) is a direct summand of H"(X,Q;) for
some smooth projective variety X; by the Weil conjecture, | tr(F)| = p™/2, hence

n is even.
(2) The same l-adic argument as in (1) works.

(3) Write L as a direct summand of h(X) for some smooth projective vari-
ety X. We may write L as a direct summand of h*(X). (Note that there is
always a canonical decomposition h(X) = h%(X) @ h'(X) ® h=23(X) and that
Hom(L, (X)) = Hom(L,h=%(X)) = 0 for weight reasons.) Replacing X by

its Albanese variety, we may assume that X is an abelian variety A. Now, by

7Indeed, a closed point of the generic fibre of S extends to a dominant 1-dimensional closed Z-
subscheme Z of S; a suitable open subset of Z is regular, hence has a closed point as requested,

by Cebotarev’s density theorem.



Zeta Functions and Motives 547

Poincaré’s complete irreducibility theorem, the full subcategory of motives mod-
ulo homological equivalence consisting of the h!(A) is abelian semi-simple; thus
L = h'(B) for some abelian variety B. But this is impossible, since L is 1-
dimensional and dim h!(B) has to be even.

Finally, if the Tate conjecture holds over F 2, then the generalised Tate con-

q?
jecture also holds thanks to Honda’s theorem (compare Remark 10.3 2)); hence,
up to twisting L by some power of the Lefschetz motive, we may assume that it

is effective of weight 1 and we are reduced to (3). O

13.4. Remark. Notice that Conjecture 13.2 becomes false over F . after ex-
tending scalars from Q to a suitable quadratic extension, as shown by h' of a
supersingular elliptic curve. Similarly, Conjecture 13.2 becomes (very) false over

any field after extending scalars from Q to Q.

13.5. Theorem. a) If conjecture 13.2 is true for k (compare Proposition 13.3),
X(M) is even for any negative M € M(k). Thus, in this case, the functional

equation of Theorem 12.1 simplifies as
Zp(M*, T7) = det (M) (=T)X™ Zg (M, T).

b) x~ (M) is even over any field k if M = h(X) for X a smooth projective variety

verifying the sign conjecture. We then have
(13.1) Zm(h(X), T7) = (=T)X) det(h(X) Zpa (h(X), [L]~T).

This formula holds modulo homological equivalence, and even modulo rational

equivalence if hyat(X) is finite-dimensional.

Proof. a) If there exists a negative motive M of odd Euler characteristic, then
det(M) is negative of Euler characteristic —1 (see Remark 11.4 2)). It remains
to justify b): this is true since the odd-dimensional [-adic Betti numbers of X
are even by Hard Lefschetz [11, (4.1.5)]. The functional equation for h(X) then
follows from the formula h(X)* = h(X) ® L™, where L is the Lefschetz motive,
and the obvious identity

Zm(MX) @ L™ T) = Zp(h(X), [L]79T).
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14. THE DETERMINANT OF A MOTIVE

When X is an abelian variety, (13.1) is Heinloth’s formula, with the difference
that the factor det(h(X)) is replaced by 1. We want to explain in this section why
this happens. This is a good opportunity to introduce the following strengthening
of Conjecture 13.2:

14.1. Conjecture. For any field k, Pic(M(k)) is generated by I and Artin

motives of square 1.

(Such Artin motives are in 1-to-1 correspondence with the elements of k*/k*2.)

Recall that a functor F' is conservative if, when F'(f) is an isomorphism, f
is already an isomorphism. We shall say that F' is essentially injective if it
is injective on isomorphism classes of objects. If F is fully faithful, it is both

conservative and essentially injective.

14.2. Proposition. a) Suppose that ~ is finer than homological equivalence with
respect to some Weil cohomology theory H. Then Conjecture 14.1 implies that
H is conservative on finite-dimensional motives.

b) If k verifies Conjecture 13.2, the essential injectivity of the Hodge realisation
(if char k = 0) or the l-adic realisation over finitely generated fields implies Con-
jecture 14.1 for any ~. In particular, Conjecture 14.1 follows from either the

Hodge or the Tate conjecture.

Proof. a) Let f : M; — My be a morphism between finite-dimensional motives
such that H(f) is an isomorphism. This implies that x*(M;) = x*(Ms), hence,
by Lemma 11.5, f induces a morphism det(f) : det(M) — det(M’). Obviously,
H(det(f)) = det H(f), hence H(det(f)) is an isomorphism, and in particular
det(f) # 0. But Conjecture 14.1 easily implies that M(L,L") = 0 if L # L',
hence det(f) is an isomorphism and f is an isomorphism by Lemma 11.5.

For b), we may reduce to the case where ~ is finer than Hodge or [l-adic
equivalence, thanks to [3, Prop. 5.

1) Let us assume that char k£ = 0 and that the Hodge realisation is conservative.
Let L be an invertible motive. We may assume that L is defined over a subfield
ko of C. As seen in the proof of Proposition 13.3, H(L) ~ H(L") for some
n € Z; by essential injectivity, Lc ~ L™, hence up to twisting we may assume
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that Lc = 1. There is a finitely generated extension kq of kg such that L, =1,
and after a suitable specialisation we may assume that kj/ko is finite. Taking
traces, we get that L ® h(Specky) ~ h(Specki) in M(kg); hence L ~ L ® 1 is a
direct summand of h(Speck;) and is an Artin motive. But Artin motives are in
1-to-1 correspondence with rational Galois representations of k, and any rational
character of a (pro)finite group has square 1.

2) Let us assume that k verifies Conjecture 13.2 and that the [-adic realisa-
tion is conservative on finitely generated subfields of k. Let L be an invertible
motive and let R;(L) be its l-adic realisation. Let n be the weight of L, which is
assumed to be even. As in the proof of Proposition 13.3 (1), we may assume k
finitely generated; using the same rationality argument as in this proof, we see
that the eigenvalue of Frobenius acting on the specialisation of R;(L) at any finite
place of good reduction and residue field F; is of the form +¢"/2. Thus Frobe-
nius automorphisms act trivially on the l-adic representation R;(L®? @ L—");
by Cebotarev’s density theorem, it follows that R;(L®? @ L~") is trivial, hence
Ry(L ® L="/2) is given by a quadratic character of k. Let A be the correspond-
ing Artin motive of square 1: by essential injectivity we have L ~ A ® L2, as
desired.

It remains to justify the last assertion of b). If the Hodge conjecture holds,
then the Hodge realisation functor is essentially injective on the level of motives
modulo homological equivalence. But let L, L' € Pic(M..(k)): since L and L’ are
finite-dimensional, Kimura’s nilpotence theorem implies that any isomorphism
between them modulo homological equivalence lifts to an isomorphism modulo
~. The argument is the same with the Tate conjecture. O

14.3. Remarks. 1) In [2, 12.1.6.3], André proves that the irreducibility of 1 im-
plies the conservativity of a Weil cohomology H with basically the same proof as
the proof of Prop. 14.2 a) given above. It would be nice to clarify the relationship
between this condition and Conjecture 14.1.

2) Conjecture 14.1 is obviously equivalent to the following: for any finite-dimensional
M € M(k), we have

(14.1) det(M) =L" ® A

for some r € Z, where A is a 1-dimensional Artin motive of square 1. If M is
pure of weight w, it is easy to compute r in terms of w and x(M): as a direct
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summand of MEXM) op (M*)®—X(M) according to the parity of w, det(M) is of
weight wx (M), hence we find r = wx(M)/2.

It is interesting to investigate the reformulation of Remark 14.3 2) in the light

of formal propreties of det, as follows:

14.4. Proposition. Let M be a rigid tensor Q-linear category. Then, for any
finite-dimensional M, N :

Proof. This follows readily from identities between Schur functors as in [26, §4].
O

14.5. Corollary. Let ~ be homological equivalence.

a) The subset K)(M(k)) of Ko(M(k)) consisting of differences of classes of finite-
dimensional motives that verify (14.1) is a sub-A-ring of Ko(M(k)).

b) Similarly, the subset Ki(M(k)) of Ko(M(k)) consisting of differences of clas-
ses of finite-dimensional motives such that A = 1 in (14.1) is a sub-A-ring of
Ko(M(k)).

¢) Suppose that M is weakly polarisable in the sense that M ~ M* QL™ for some
integer n. Then det(M)? = Lx(M),

d) Suppose that X/k verifies the standard conjecture B [43]. Then, for all i > 0,
det(h'(X))2 = LEV'®iX) where by(X) is the i-th Betti number of X. Moreover,
letting d = dim X :

det(h(X)) = LEXCO-CD0) @ det(h(X)).
e) Ki(M(k)) contains [RY(X)] for any smooth projective variety X. More pre-
cisely, det(h!(X)) ~ Lbr(X)/2
f) If C is a curve, det(h(C)) = LX(©)/2,
g) If A is an abelian variety, det(h(A)) = 1.

Proof. a), b) and ¢) follow directly from Proposition 14.4 (see also Remark 11.4
1) for c¢)). In d), note first that the standard conjecture B implies the algebraicity
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of the Kiinneth projectors [43], which justifies the introduction of the hi(X); it
also implies that all h*(X) verify the hypothesis of ¢). The first claim of d) then
follows from c) (note that y(h*(X)) = (—1)';(X)). We get the second one by
grouping the terms det(h*(X)) and det(h?*%(X)) together for i < d, and using
that h2?~4(X) ~ h'(X)* ® L? by Poincaré duality.

In e), note that h'(X) ~ h'(A), where A is the Albanese variety of X; the claim
then follows from the result of Shermenev [55] that hi(A) ~ S¢(h!(A)) (apply
this for ¢ = 2dim A). f) follows from e). Finally, in g), A verifies the standard
conjecture B by Lieberman-Kleiman [41]; applying e), b) and the formula in
Remark 14.3 2), we get det(h?(A)) = Lt (D)/2 for ¢ = dim A, and the claim
of g) follows from d) by noting that x(A4) = 0. O

14.6. Remarks. a) Theorem 13.5 and Corollary 14.5 f) give back Kapranov’s
functional equation for curves [37], with coefficients in Ko(M(k)) (a little infor-
mation is lost).

b) The reader familiar with Heinloth’s paper will recognize part of her arguments
in the proof of Corollary 14.5 g). This corollary was actually inspired by reading
her paper.

¢) In view of Corollary 14.5 f) and g), one might expect that the Artin motive A
appearing in (14.1) is always 1 for M of the form h(X). This is wrong: rational
surfaces give examples where (14.1) holds but A is nontrivial. Indeed, for such a
surface S, h?(S) = L ® NSg, where NSg is the Artin motive corresponding to
the Néron-Severi lattice of S. Hence det(h?(S)) = L ® det(N Ss), where p is the
Picard number. For examples where the action of the absolute Galois group of k
on N Sg has nontrivial determinant d € k*/k*2, we may take for S the blow-up of
P? at {(0:V/d),(0: —vd)} (I thank Colliot-Thélene for pointing this out): this
shows that all Artin motives of square 1 are caught thusly. This also incidentally
explains the sign (—1)* in [43, p. 9]. I expect that this is typical of how nontrivial
Artin motives may occur.

d) The class of varieties X such that h(X) € K{(M(k)) is closed under products;
it is also closed under projective bundles and blow-ups with smooth centres, in
the sense that of [h(X)] € K{(M(k)) and Z is a closed smooth subvariety of X
such that [h(Z)] € K)(M(k)), then [h(Blz(X))] € K{(M(k)). Thus surfaces S
such that h(S) verifies (14.1) include rational surfaces, ruled surfaces, products
of two curves and abelian surfaces. The first open case for (14.1) seems to be
that of the motive of a K3 surface.
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15. AN EXTENSION: ZETA FUNCTIONS OF ENDOMORPHISMS

15.1. Definition. Let M be as in § 11. The category End(M) of endomorphisms
of M has objects the pairs (M, f) where M € M and f € End(M); a morphism
from (M, f) to (N, g) is an element ¢ € M(M, N) such that ¢f = gp. This is a
tensor K-category for the rule (M, ) ® (N,g) = (M ® N, f ® g) and the various
constraints induced by those of M.

The following lemma is easily proven using [52, Ch. I, (3.2.3.5) and (3.2.3.6)]:

15.2. Lemma. An object (M, f) € End(M) is dualisable if and only if M is
dualisable and f is invertible; then (M, f)* = (M*, f*) where f* =tf~1. O

15.3. Definition. We denote by Aut(M) the full subcategory of End(M) con-
sisting of dualisable objects.

15.4. Lemma. (M, f) € End(M) is finite dimensional if and only if M € M is

finite dimensional.

Proof. “Only if’ is obvious. For “if’, let ¢ : MT & M~ =5 M be a decom-
position of M into a sum of a positive and a negative object. Modulo N, we
may write f = @(fT @ f7)@~': in other words, ¢ defines an isomorphism
(Mt fHe(M—,f7) = (M, f) in End(M/N) = End(M)/N. Since N' (M, M)
is nilpotent, so is its subgroup N ((M, f), (M, f)); thus this isomorphism lifts as a
decomposition ¢’ : (M, f) — (M™*, fT)@® (M, f~) for suitable ¢, f*, f=. O

The definitions and results on motivic zeta functions specialise to the cases of
End(M) and Aut(M). We have a ring homomorphism
Ko(End(M)) 5 K
[M, f] = tra(f)

where trp4 is the trace in M.

15.5. Proposition. For any (M, f) € End(M), the motivic zeta function Zp(M, f,T) €
Ko(End(M))[[T]] specialises via tr to the ordinary zeta function of f (see §3):

2(5:1) =exp [ (T

n>1
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In particular, Z(f,T) is rational if M is finite dimensional, and if f is moreover
invertible it satisfies the functional equation

Z( T = det(f) (=T M Z(M, f;T)

where det(f) is defined in Proposition 11.3 and its proof.

Proof. By [4, Prop. 7.2.4], we have

e §(7) = S0 [T raa(s4)
T oe6, k

where [1(0),...,l,(0) are the lengths of the disjoint cycles constituting o. The
first formula then follows from the power series identity

This formula should be classical and goes presumably back to Euler [21]; here
is a simple proof by Marc Hindry, following a hint of Georges Skandalis:

Let k = (k1,...,kp) be such that ki + 2k + --- + pk, = m. Let Hy be the
subset of &,, made of those permutations decomposing into kj cycles of length
1, ko cycles of length 2, etc. This is a conjugacy class and the centraliser of such
a permutation has cardinal kq!... kp!2k2 ...p", so that

m!
kil . kpl2k2 o pke”

|Hy| =
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Thus
(e e} tn (e e} tn
exp (S et ) = [Jexp <x>
n=1 n=1
S ()
— - .
I
n=1k,=0 " kn
k1 kN N
_ aal
> (L)
k1,...kN n=1

_ Z x’fl...:ﬁ’;}\’ thit2ke++Nky
- k... ky! 2k .. Nkn

ki, kN
oo k1 kn
Yy it
ki!.. .kZN!Zkl ... Nk~
m=0 k1+2ko+--+Nkny=m
2 ym
_ L kl kn g
= m! Z s Ty ‘ k’

m=0 k1+2ko+-- +NkN m

= Z 5 > Hower

a€6m k

Note that x (M, f) = x(M) (e.g. use the ®@-functor (M, f) — M from Aut(M)
to M). In view of Theorem 12.1, to see the second formula, it therefore suffices
to check tr[det(M, f)] = (—=1)X M) det(f). But since End(det(M)) = K, we
have

tr[det(M, f)] = x(det(M)) det(f) = (—1)X7(M) det(f).
O

15.6. Remarks. 1) For n > 1, let U™ be the n-th Adams operation. A suggestive
form of the identity in Proposition 15.5 is

tr U™ ([M, f]) = tra(f");  trfdet(M, f)] = (—1)XM) det(f)

(compare Formula (1) in [6, §5]).

2) This gives another proof of Theorem 3.2 in the special case of finite dimensional
objects (recall that, with the terminology of Part I, a finite dimensional object
is of integral type by Proposition 2.2 e)). In particular, the det(f) appearing in
that theorem and in Proposition 15.5 coincide.
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3) Let F' be a ®-endomorphism (hence isomorphism) of the identity functor of
M. This defines a tensor functor

M = Aut(M)
M (M, Fay).

In the case where k = F, this is a way to explain how one recovers the classical
zeta function from the motivic one. (See also Part IV.)
4) For (M, f),(N,g) € End(M), let

Z((M,f),(N,g)) ={¢: M — N | gp = ¢f = 0}.

This defines a ®-ideal; note that End(M)/Z is used to construct the pseudo-
abelian envelope of M. The homomorphism tr factors through Ky(End(M) /7).

Part IV. An abstract version of the Tate(-Beilinson) conjecture
INTRODUCTION

In this part, I formulate a version of the Tate conjecture for motives over a
finite field in an abstract set-up. My initial motivation was to see what the
multiplicities of Part I had to say on this conjecture; they are actually essential
in the proof of Proposition 17.6. It turns out that most of the known equivalent
versions of the Tate conjecture carry out in this abstract context: see Theorem
17.2 and Corollary 18.2. The proof of [32] that under the Tate conjecture and
a nilpotence hypothesis, rational and numerical equivalences agree over a finite
field also carries out abstractly: see Theorem 19.1.

Terminology and notation are the same as in Part L.

16. AUTOMORPHISMS OF THE IDENTITY FUNCTOR

Let A be a rigid K-category, and let F' be an ®-endomorphism of the identity
functor of A. By [52, 1.5.2.2], F is then an isomorphism. Concretely, F' is given
by an automorphism Fj; € End(M) for every object M € A; F)s is natural in
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M (in particular, it is central in End(M)), and further:
Fyen = Fvu © Fy
Fuyen = Fvu @ Fy
Far ="Fyt (cf. [52, 1, (3.2.3.6)]).
16.1. Definition. The zeta function (relative to F) of an object M € A is
Zp(M,t) = Z(Fr,t).
16.2. Lemma. The zeta function is additive in M :
Zp(M @® N,t) = Zp(M,t)Zp(N,t).
It is multiplicative in M in the following sense:
Zp(M & N,t) = Zp(M,t) *« Zp(N,t)

where * is the unique law on 1+tK[[t]] such that, identically, f*(gh) = (f*g)(f*h)

and

(1—at) tsx(1-0t) =1 —abt)" L
(Explicitly: if f(t) = exp (Zn21 an%) and g(t) = exp (Zn21 bn%), then (f *
9)(t) = exp (X,21 anbns ).)

If moreover A is semi-simple of integral type, then

(1) Zp(M,t) € K(t) for any M € A;
(2) Zp(M*,t71) = (=) det(Fyr) Zp (M, 1);
(3) for S simple,
Zp (S, t) = Pg(t)~X(5)/ dea(Fs)

where Pg(t) is the inverse minimum polynomial of Fs over K and deg(Fyg) =
deg(Ps) = [K[Fs] : K].

Proof. Additivity is obvious; multiplicativity follows from the identities
tr(Fyen) = tr(Fyy @ Fy) = tr(Fyy) tr(Fy).

(1), (2) and (3) follow from Theorem 3.2: (1) from part a), (2) from part b)
by noting that Z(*Fg',t71) = Z(Fg',t71), and (3) from part a) again by noting
that Fs is in the centre of End 4(S) (use Proposition 2.2 a)). O
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17. THE SEMI-SIMPLE CASE

17.1. Definition. In the above, suppose A semi-simple of integral type. We say
that (A, F') verifies the Tate conjecture if, for any M € A, K[F);] is the centre
of End 4(M).

17.2. Theorem (cf. [24, Th. 2.7]). Let A be a semi-simple rigid pseudo-abelian
K -category of integral type (see Definition 2.1), and let F € Aut®(Idy). Then

the following conditions are equivalent:

) Given a simple object S € A, Fs = 1g implies S = 1.

) Forany M € A, ord;=1 Zp(M,t) = — dimg A(1, M).

(iii) For S,T € A simple, Ps = Pr = S ~T (see Lemma 16.2 (3)).
) For M\N € A, Zp(M,t)=Zp(N,t) = M ~ N.

) (A, F) verifies the Tate conjecture.

Moreover, these conditions imply (cf. Theorem 6.3 d)):

(vi) For any simple S, |u(S)| = 1 and K[Fs| is the centre of the algebra
End4(S).

Proof. We shall prove the following implications:
(i) = (i) = (iii) = (iv) = (i)

(i)

(iii)

(i) = (ii): both sides are additive in M so we may assume M simple. If M =1,

Zp(M,t) =1/(1 —t) and the formula is true. If M # 1, Lemma 16.2 (3) and the
hypothesis show that ord;—1 Zp(M,t) = 0 and the formula is also true.

= (vi)
+

(vi) = (v) = (iii).

(ii) = (iii): Comnsider f(t) = Zp(S* ®T,t). By Lemma 16.2, Formulas (2), (3)
and the multiplicativity rule, we see that

f& =T]0 - asa; )™
i

XS D)
where m = — X35 X0

Ps = Pr in a suitable extension of K. Note that x(S)x(T") # 0: this follows from
Propositions 1.2 and 2.2 a). The above formula then shows that ord;—1 Zp(M,t) #

and the a; are the roots of the irreducible polynomial



558 Bruno Kahn

0. Hence (by (ii)) 0 # A(1,5* @ T) ~ A(S,T), and S ~ T by Schur’s lemma
(recall that A is abelian, cf. Remark 1.4).
(iii) = (iv): write M = @,;c; S;"" and N = @,; S;", where S; runs through

a set of representatives of the isomorphism classes of simple objects of A. We
then have, by Lemma 16.2 (3):

H PS _sz /deg(FS )
el

H PS an /deg(FS )
el

By hypothesis, the Pg,(t) are pairwise distinct irreducible polynomials with
constant term 1; then Zp(M,t) = Zp(N,t) implies m; = n; for all ¢, hence
M ~ N.

(iv) = (i): by hypothesis and Lemma 16.2 (3), Zp(S,t) = (1 —t)~X(5). Thus
Zp(S,t) = Zp(1,t)X5). If x(S) < 0, this gives S~X(%) ~ 1, which implies
x(S) = —1 and S ~ 1, which is absurd since x(1) = 1. Thus x(S) > 0, hence
S ~ 1X(5) hence S ~ 1 since S is simple.

(ii) = (vi): the same computation as in the proof of (ii) = (iii) gives

§(5)d(S)* = dimEnd 4(S) = —ord;—1 Z(5* @ S, t)

[ x(S) B x(5)?
(deg( > ord;— 1H1 oo ] deg(Fs)'

Using the identity x(S5) = p(S)d(S)0(S) (cf. Proposition 2.2 a)), we get
deg(Fs) = 6(S)u(S)*

But deg(Fs) | 6(5), hence 6(S) = deg(Fs) and u(S)? = 1.
(iii) + (vi) = (v): Let M = @, S;" with m; > 0 and the S; simple and

pairwise nonisomorphic. Then

End 4(M HMmZ (End4(S;))

hence the centre of End (M) is the product of the centres of the End4(S;).
By (vi), each of these centres is generated by Fy,; by (iii), the Pg, are pairwise
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distinct irreducible polynomials, hence the inverse minimum polynomial of Fj;
must be divisible by their product.

(v) = (ili) (compare [24]): if P = Pr but S # T, then End4(S & T) =
End4(S) x End 4(7T), with centre containing L x L for L = K[Fs] = K[Fr]. But
Fsgr is killed by Ps = Pr, a contradiction. O

17.3. Remark. Condition (vi) is really weaker than the others: take F' =1 in A
the category of linear representations of a nontrivial finite abelian group over K
algebraically closed.

17.4. Proposition. Let A be semi-simple of integral type and let F € Aut®(Idy).
a) The Tate conjecture is true for (A, F) if and only if it is true for (A%, F), where
A is the pseudo-abelian envelope of A and F is extended to A% naturally.

b) If A is geometrically of integral type, the Tate conjecture is invariant under
extension of scalars: if L is an extension of K, then (A, F) verifies the Tate
conjecture if and only if (Ar, F') verifies the Tate conjecture.

Proof. a) “If’ is obvious. For “only if’, let M = (N,e) € A% where N € A and e
is an idempotent of N. Write M = @,.; S;" and N = @,.; S;" as in the proof
of Theorem 17.2, (iii) = (iv). We have

End(M HMml (End(S;)), End(N HMm (End(S;)).

Letting Z; denote the centre of End(S;), we get

Z(End(M)) = [[ Z, zEnd(NV)) =[] 2.

m; >0 n; >0

By hypothesis, Z(End(N)) is generated by Fy as a K-algebra; this implies
that Z; is generated by Fg, for all ¢ and that the Pg, are pairwise distinct. Hence
Fr generates Z(End(M)) as well.

b) This is obvious since the centre of a semi-simple algebra commutes with
extension of scalars in characteristic 0. O

17.5. Corollary. If (A, F) verifies the Tate conjecture, then the conditions of
Theorem 17.2 hold in A even if A is not pseudo-abelian.
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Proof. This is obvious (by passing to A") except for (ii) and (iv); but by Proposi-
tion 17.4 a), (A!, F) verifies the Tate conjecture; by Theorem 17.2, A" also verifies
conditions (ii) and (iv), which a fortiori hold in its full subcategory .A. O

17.6. Proposition. Suppose that A is pseudo-abelian and that (A, F') verifies the
Tate conjecture. Then

a) A is Kimura-O’Sullivan (any M € A is finite-dimensional). More precisely,
there exists a unique ®-7Z/2-grading of A such that S simple is positive (resp.
negative) if and only if x(S) > 0 (resp. <0).

b) A is super-tannakian (tannakian if we change the commutativity constraint as
in [4, Th. 9.2.1 b)]).

Proof. a) By Lemma 4.3 and Proposition 17.4, we may assume K algebraically
closed. In view of Condition (vi) of Theorem 17.2 and Proposition 4.5, it suffices
to prove that the tensor product of two simple objects S, S’ is of constant sign in

the sense of Definition 4.1.

Since K is algebraically closed, End(S) = End(S’) = K and Fg, Fs/ are scalars
A, N, Hence Fsgg = Fs ® Fgr is the scalar AN'. Let T be a simple summand of
S® S, corresponding to the idempotent e of End(S ® S’). Then Fr = eFggg =
ANe. Hence Pr =1 — ANt is independent of T', which implies by Condition (iii)
of Theorem 17.2 that S ® S’ is isotypical; in particular, it is of constant sign.

“More precisely” follows from [4, th. 9.2.1 a)].

b) Since every object of A is finite-dimensional, it is Schur-finite [13, 1.13]):
the first assertion then follows from the main theorem of ¢bid. The second one
follows from [4, Th. 9.2.1 ¢)] (or [12, th. 7.1]). O

17.7. Example. Suppose K algebraically closed: then every simple object S of
A is invertible (see Condition (iv) in Proposition 4.5). The endomorphism F is
a scalar A\g € K*, and S is characterised by Ag. The set of A\g forms a subgroup
A of the multiplicative group K*, and is provided with a canonical homomor-
phism A — Z/2 sending Ag to the sign of S. There exists a unique super-fibre
functor w : A — Veck (realisation in the sense of Definition 5.1), characterised
by w(S) = K9 where £(S) is the sign of S (Definition 4.1). The corresponding
“super-tannakian group” is the affine group scheme of multiplicative type T" with
character group A, provided with the canonical homomorphism pe — T dual
to the sign homomorphism. This makes it easy to compute the object in the
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ind-category ind(.A) representing the internal (super-)fundamental group G of A
in the sense of [12, §8]: it is given by M* ® M, where M is the direct sum of a
set of representatives of simple objects, with multiplicity 1. It follows that G is
represented by the same object if K is no longer algebraically closed. The auto-
morphism F' defines a canonical “rational point” of G, which generates a dense
“subgroup”.

18. THE HOMOLOGICAL CASE

Let A be of homological type, provided with a faithful realisation functor
H: A— VechE. Let F € Aut®(Idy), and let us still denote by F its image
in Aut®(Id ), where A = A/N (N is as in (1.2)). Note that F acts on H by
functoriality.

18.1. Theorem. Consider the following conditions on an object M € A:

(i) M € A verifies Condition (i) of Theorem 17.2.
(ii) The map A(1,M) @k L — H(M)¥ is surjective and the composition
H(M)Y — H(M) — H(M)r is an isomorphism (semi-simplicity at 1).

(iii) The map A(1, M) @k L — H(M)F is surjective and N'(1, M) = 0.
(iv) The sign property (Definition 5.8) holds for M.
(v) H-(M)F =o0.
(vi) The polynomials det(1 — Fyt | H(M)) and det(1 — Fyt | H-(M)) are
coprime.
Then
(1) (1) + (v) <= (ii) + (iii).
(2) (@) + (v) = (v).
(3) (vi) = (iv) and (vi) + (i) = (v)
(4) (ii) for M and M* < (iii) for M and M*.

Proof. These are classical arguments that only need to be put straight in this
abstract context.

Note that H~(1) = 0, so that A(1, M) ®x L — H(M)¥ actually lands into
H*(M)¥; denote its image by A(1, M)L. By definition of A" and [5, Lemma 1],
the projection A(1, M) @k L — A(1, M) ® L factors through A(1, M)L. The
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diagram
A1, M)L —H*(M)F

surjl

A1, M) ®k L

gives the inequalities

dimy, HT(M)F > dimp, A(1, M)L > dimg A(1, M).
On the other hand,

Ol“dt:1ZF(M, t) =
ords—y det(1 — Fyst | H™ (M)) — ordy—y det(1 — Fyst | HT(M))
= dim;, H~(M)"™" — dim;, HT(M)*™
where H*(M)"™ denotes the characteristic subspace of H* (M) for the eigen-

value 1 under the action of F'.

(1) Suppose that H~(M)¥ = 0. Then H=(M)¥™ = 0 and, under (i), we have

dimy; HY(M)¥ > dimy, A(1, M)L > dimg A(1, M)
= dim;, HY(M)¥™ > dim;, HY(M)¥
hence we have equality everywhere, and (ii) and (iii) are true. Conversely, (ii)
+ (iii) gives isomorphisms A(1, M), — H(M)¥ = H(M)¥™. In particular,
H~(M)¥ =0 and we have dimg A(1, M) = dim; H*(M)F™, hence (i) and (v).
Thus, (i) + (v) <= (ii) + (iii).

(2) Under (iv), using Lemma 5.9 we may write M = M+ @ M~ with M pos-
itive and M~ negative. To prove that H~ (M) = 0, we may therefore consider
separately the cases where M is positive or negative.

If M is positive, this is obvious. If M is negative, we get, under (i):
HY (M) = AQ,M) = A(1,M) =0
since A(1, M) — H*(M)¥, and
—dim H=(M)F™ = dim A(1, M) =0

which shows that (i) + (iv) = (v).
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(3) For (vi) = (iv), we reason as in [38, Proof of Th. 2]: there exists a
polynomial IT € K[t] such that I is divisible by P~ and II — 1 is divisible by P*,
where P¢(t) = det(t — F' | H(M)); then II(F) € End(M) is such that H(II(F'))
is the identity on HT (M) and is 0 on H~(M).

Suppose that (i) and (vi) hold and that H—(M)¥ # 0. Then H+(M)F =
H*Y(M)F™ = 0. This implies that ordy—y Zp(M,t) > 0, which contradicts (i).

(4) The counit map M ® M* — 1 gives compatible pairings
A1, M) x A1, M*) — K
A(1L,M)L x A(1,M*)L — L
H(M)x H(M*) — L.

The first and last are perfect pairings: for the first, this follows from the
definition of the ideal N, and for the last, this follows from the structure of the
tensor category Vecf Consider now the commutative diagram

A, M), —2—  AQ,ML —2—  HOF

! | ‘|
(A(1, 07)p)* T (A(L, M*)L)* <Z—J (H(M*)F)y*~ H(M)p.

Notice that the right vertical map coincides with the one of (ii).

Now assume that b and b* are isomorphisms. The diagram shows immediately
that (a,a* isomorphisms) = (d isomorphism). Conversely, if d is an isomorphism,
so is ¢; but then, a and a* must be isomorphisms. Finally, a is an isomorphism

= A(1, M) — A(1,M) ®k L is injective = N(1, M) = 0, as desired. O

18.2. Corollary (cf. [57, 2.9]). Let A, H, F be as before, and suppose that A is
pseudo-abelian. Consider the following conditions:

(i) The Tate conjecture holds for (A, F).

(i) A — A is an equivalence of categories and H induces a fully faithful
functor

H: Ay — Rep,(F)%



564 Bruno Kahn

where the right hand side denotes the ®-category of Z/2-graded finite-
dimensional L-vector spaces provided with the action of an automorphism
F', this action being semi-simple.
) Any M € A has the sign property.
) A is a Kimura-O’Sullivan category.
(iv) For any M € A, H-(M)F = 0.
) Forany M € A, the polynomials det(1—Fyt | HT(M)) and det(1— Fyt |
H~(M)) are coprime, and do not depend on the choice of the realisation
H.

Then (i) < (ii) = (v) = (i) < (ii’) and (i) <= (i) = (iv).
If all these conditions are verified, then for any simple object S € AhL, End(S) is

commutative.

Proof. We shall prove the following implications:

(1) This is part of Point 3 of Theorem 18.1.

(2) If (ii) holds, then Conditions (ii) and (iii) of Theorem 18.1 hold for any M,
hence so do its conditions (i) and (v) by Point 1 of this theorem. We conclude
by Theorem 17.2.

(3) By Proposition 17.6, we have the implication (i) = (iii’), and (iii’) <=
(iii) by Lemma 5.9, since H is faithful.

(4) Suppose that (i) holds. Then Condition (ii) of Theorem 17.2 holds for any
M € A. If moreover H~ (M) = 0 for any M € A, Conditions (ii) and (iii) of
Theorem 18.1 are verified for any M € A by Point 1 of this theorem. Applying
this to M = P* ® Q for some P,Q € A, the adjunction isomorphism

AP, Q) ~ A1, P*© Q)
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shows that N (P, Q) = 0, hence a bijection

A(P,Q) @k L = Homp(H(P), H(Q)).

Moreover, since A is semi-simple, H(Fy;) is a semi-simple endomorphism of
H(M) for any M € A.

(5) This is Point 2 of Theorem 18.1.

(6) Let M € A: writing M = M @& M~ with M positive and M~ negative,
we have HT (M) = H(M™) and H= (M) = H(M ™). Any simple direct summand
of M™* (resp. of M™) is positive (resp. negative), hence M+ and M~ have no
common simple summand. By Condition (iii) of Theorem 17.2, Py;+ and Py/-
are coprime, hence so are the polynomials Z(M¢,t)~! = det(1 — Fys- | H(M?)),
by Lemma 16.2 (see Formula (3)). This lemma also shows that they do not
depend on the choice of H.

It remains to justify the last claim: it follows from Proposition 5.10 a) and
Condition (vi) of Theorem 17.2. O

18.3. Remark. In the classical case of motives over a finite field, Katz-Messing
deduce Condition (iii) of Corollary 18.2 from (v) (= Deligne’s affirmation of
the Weil conjecture) in [38]: the above argument (1) is an abstraction of this.
Amusingly, the argument of (6) shows that the Tate conjecture implies part of
the Weil conjecture. Here is a partial strengthening in the case of a Z-graded

realisation functor:

18.4. Proposition. Suppose that the functor H is obtained from a ®-functor
H* : A — Vec}, to Z-graded finite-dimensional L-vector spaces via the functor
Vec} — VeciE induced by the homomorphism Z — {+1}. Then, if the conditions
of Corollary 18.2 are satisfied, the following properties hold for any M € A:

(i) The “Kiinneth projectors” defining the decomposition
H*(M) = P H'(M)
i€Z
are in the image of H.

(i) The polynomials det(1 — Fyt | HY(M)) are pairwise coprime (we don’t
claim that they are independent of the choice of H*).
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Proof. (i) By Condition (ii) of Corollary 18.2, the homomorphism
H : A(M, M) — Rep(F)"(H"(M), H*(M))

is bijective. Since the “Kiinneth projectors” are central in the ring

Vect (H*(M),H*(M)), they belong to Repy (F)*(H*(M), H*(M)).

(ii) By (i), we may write M = @ M;, with H*(M;) = H'(M). If S;,S; are
simple summands of M; and M; for ¢ # j, then S; and S; are not isomorphic
because H*(S;) and H*(S;) are not isomorphic. We conclude as in the proof of
Corollary 18.2. 0

Suppose that L = K in Proposition 18.4. Then a Z-graded realisation H*
corresponds to a Galois-invariant homomorphism ¢ : A — Z, where A C K* is
the group of eigenvalues of F' as in Example 17.7, lifting the sign homomorphism
A — Z/2. In general there can be many such homomorphisms: for example,
one may take for A the full subcategory of Repq(Z) given by direct sums of
1-dimensional representations. Here A = Q*, and we may choose ¢ = 2uv,, for any
p-adic valuation v, (the factor 2 is to ensure that there are no odd-dimensional
H*, since every object of A is positive here). In the classical case of numerical
motives over a finite field F,, Deligne’s proof of the Riemann hypothesis and
Honda’s theorem imply that A is the set of all Weil g-numbers. We have a
canonical homomorphism ¢ : A — Z assigning to a Weil number its weight, and
the kernel of ¢ is divisible, which implies that ¢ is unique up to scaling.

A fully satisfactory account of the situation in the abstract setting should
include a treatment of the theory of weights along something like Grothendieck’s
standard conjectures: for this, one would have to consider polarisations and do
positivity hypotheses. Since the present development is already exceedingly long,
I leave this to the interested reader (see also Saavedra [52]).

19. THE TATE-BEILINSON CONJECTURE

We conclude by transposing the argument of [32] to this abstract context.

19.1. Theorem (cf. [32, Th. 1]). Let A be a rigid K -category provided with a ®-
automorphism F of the identity functor. Suppose that N is locally nilpotent (e.g.
that A is a Kimura-O’Sullivan category), and that A = A/N is semi-simple, of
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integral type and verifies the Tate conjecture relatively to F. Then N = 0, i.e.
A=A

Proof. We note that the hypothesis on N implies that the functor A — A is
conservative. The argument is the same as in [32]: by rigidity it is sufficient to
show that A(1, M) ~~ A(1, M) for any M € A. By the nilpotence of N'(M, M),
we may lift to End 4 (M) an orthogonal system of idempotents of M corresponding
to a decomposition in simple summands. This reduces us to M simple. There

are two cases:

(1) M ~ 1. Then M ~ 1 by conservativity, and both Hom groups are
isomorphic to K.

(2) M # 1. Then A(1,M) = 0 and we have to show that A(1, M) = 0.
By Theorem 17.2 (i), Fy; # 1, hence by conservativity, 1 — Fjs is an
isomorphism. If now f € A(1, M), we have f = Fj;f, hence f = 0.

O
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