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Abstract: In the case of local fields of positive characteristic we introduce
an analogue of Fontaine’s concept of Galois modules with crystalline height
h € N. If h = 1 these modules appear as geometric points of Faltings’s
strict modules. We obtain upper estimates for the largest upper ramification
numbers of these modules and prove (under an additional assumption) that
these estimates are sharp.
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0. Introduction.

Let p be a prime number. Let K be a complete discrete valuation field with
perfect residue field £ of characteristic p. Choose a separable closure K, of K
and set I'x = Gal(Ksep/K). Denote by R the valuation ring of K and for any
v >0, by F(Kv) the ramification subgroup of I'x with the upper number v.

Suppose, first, that K is of characteristic 0, i.e. K contains Q,, and consider
e = e(K) — the ramification index of K over Q,. In this situation for h € N,
Fontaine [Fo3] introduced the category MG of finite Z, [T f]-modules with crys-
talline height h. Examples of such modules are given by subquotients of crys-
talline representations of I'jr with the Hodge-Tate filtration of length h or, more
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specifically, of Galois modules of h-th etale cohomology of projective schemes over
K with good reduction. If A = 1 then the corresponding Galois modules appear
as points G(Ksep) of finite flat p-group schemes (i.e. group schemes killed by a
power of the endomorphism pidg) G over R. In this case Fontaine [Fol] proved

a very important ramification estimate:

(@) if G € MGk, pG =0 and v > e (N—l— 1%) — 1 then the ramification
subgroup F%) acts trivially on G.

This result was generalised in [Ab2] (cf. also [Fo2], [Abl,3]):

(8) if G is a subquotient of crystalline representation of Ik with the Hodge-Tate
filtration of length h < p —1, pNG =0 and e = 1 then for v > (N + 1%) -1,

I‘%) acts trivially on H.

Now suppose that K is of characteristic p and k D F,, where ¢ is a power of
p. Introduce an analogue of Z,. This will be a subring O = F,[[r]] of R, where
m € R is not invertible in R. If Ky is the fraction field of O in K then denote by
e = e(K/Kp) the ramification index of K over K. In this situation an analogue
of the category of finite flat p-group schemes over R is the category of O-strict
modules over R with etale generic fibre. (The concept of O-strict module was
introduced in [Fa].) This category was studied in details in [Ab6], where the
following ramification estimate? was obtained:

(v) if G = G(Ksep), where G is an O-strict module over R and NG = 0 then
forv>e (N + q_%) -1, I‘(Kv) acts trivially on G.

This estimate is a complete analogue of the above Fontaine’s estimate for p-
group schemes in the mixed characteristic case. Notice that all O-strict modules
appear as kernels of isogenies of Drinfeld modules, cf. [Ab6]. The above re-
sult gives another evidence that Galois modules arising from torsion points of
Drinfeld modules give a perfect analogue of first etale cohomology in the mixed
characteristic case. If we try to think about equicharacteristic interpretation of

2the statement of this result in the Introduction to [Ab6] contains a misprint
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higher etale cohomology it looks natural to consider the Galois modules arising
from Anderson’s motives, cf. eg. [An] for their definition. This idea perfectly
matches with Fontaine’s definition of Galois modules of finite crystalline height
h in the mixed characteristic case. Let MG"(O) be the corresponding category
of O[I'k]-modules of “finite crystalline height” h € N (it is defined in Section 1).
Notice that if G € MG'(O)k then G appears in the form G(Ksep), where G is
O-strict module over R. In section 3 we apply methods from [Ab6] to prove the

following ramification estimate:

(6) if G € MGMO)x and 7NG = 0 then for v > e <N -1+ qh_—ql> -1, F%) acts
trivially on G.

In section 4 it is shown that this ramification estimate can not be improved
under the sufficiently general assumption ( N_—hl) # Omodp. In particular, the
estimate (0) does not match with the above mentioned estimate for subquotients
of crystalline representations in the mixed characteristic case. One can say that
in the case of local fields of positive characteristic the Galois modules with finite
crystalline height do not give a precise analogue of crystalline representations.
Notice that the above ramification estimates () and () constitute an essen-
tial ingredient of the proof of the Shafarevich Conjecture and its generalizations,
[Fol,2], [Ab1,3], [Sc|. In the equicharacteristic case there are no such interesting
applications of the corresponding estimates () and (§). But anyway these es-
timates give a non-trivial information about torsion points of Anderson motives
and also some ideas what one can expect when studying crystalline representa-

tions in the mixed characteristic case.

The proof of estimate (0) uses essentially the existence of embedding of any G €
MG"(O)g in a m-divisible group consisting of objects of the category MG"(O) .
This statement is parallel to the corresponding statement for A = 1 from [ADb6]
and is proved in section 2. Due to this result we can assume that G is a free
O/7rN -module, this allows us to have much better control on equations of the
K-scheme G such that G(Kep) = G.

The method of proving the ramification estimates from sections 3 and 4 can
be used only in the characteristic p case. It was applied earlier by the author, cf.
eg. [Ab4,5]. The basic idea of this method can be explained as follows.
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Suppose a > 0, a € Q and its p-adic valuation is zero. Then there is a
finite totally ramified extension K, of K such that its Herbrand function has a
unique edge point (a, ), cf. eg. [Ab4, n.1.5]. Consider a natural embedding
v I'g, = Gal(Kgp/Ks) — I'k and the corresponding I'k, -module *(G).
Let 1o : ', — D'k be an isomorphism of profinite groups induced by an
isomorphism of local fields K and K, (they both have the same residue field
and, therefore, are isomorphic). Introduce the corresponding I', -module ¢} (G).
Then

if points of *(G) and ¢} (G) have the same common field of definition over K,
then F(Kv) acts trivially on G for all v > «.

This fact follows easily from elementary properties of Herbrand functions and
is proved in a slightly more general form in n.3.1. Notation. Everywhere in the

paper if f: A — B and g : B — C are morphisms then their composition will
be denoted as fg, i.e. for any a € A, (fg)(a) = g(f(a)).

Acknowledgement. The author expresses a deep gratitude to the referee for
very careful reading of the original version of this paper. His critical remarks
resulted in a considerable improvement of the quality of the exposition.

1. Main notation and results

1.1. The categories mod (O)r and MG(O)x

As in the introduction, let ¢ € N be a power of a prime number p. Let
O = F,[[r]] be a ring of formal power series in one fixed indeterminate 7 and
denote by Ky the fraction field of O. Let R be an O-algebra. Everywhere in the
paper R is an integral domain with fraction field K. (In sections 3 and 4 K will
be a complete discrete valuation field.) Choose a separable closure K, of K and
set 'k = Gal(Ksep/K). Denote by 0 = 0, : R — R the ring endomorphism of
R such that o(r) = r? for any r € R.

Let MG(O)k be the category of O-modules of finite type with continuous
O-linear action of I'gk.

Introduce the category mod (O)g of triples (L, F, [r]), where
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e [ is a free R-module of finite rank;
oif LI = ®(R,o) R then F : L9 — L is an injective R-linear morphism;

e [r] € Endg L is nilpotent and F[x] = [r]@F, where [7]@ = [r] ® id €
Endg(L(9).

If L= (L,F,[n]) and £y = (L1, F,[n]) are two objects from mod (O)p then
Hom 104 (0)5 (£, £1) consists of R-linear morphisms f : L — L; such that
JOF = Ff and fr] = [x]].

Remark. We have a natural embedding Endg L C Endg (L ®p K). Therefore, if
rkr L = s then [7]* = 0.

1.2. Functor Mr : mod (O)r — MG(O)g

Let £ = (L, F, [r]) be an object of the category mod (O)g. Consider the R-
algebra A = A(L) := (Symp L)/I, where the ideal [ is generated by the elements
17— F(l®1) € SympL for all [ € L. Because F is injective, for Ax = A®g K,

we have Qi‘/K =0, Ak is an etale K-algebra and rkp A = dimg Ag = ¢'kr L,

In particular, if G = Spec A then G(Kep) = Homp.a1g(A, Kep) consists of gkl
elements. Notice that G has a natural structure of a group scheme over R given
by the comultiplication A4 : A — A ®k A and the counit e4 : A — K such
that As(l) =l ®1+1®1 and exs(l) = 0 for all I € L. Set [o](l) = ol for
a €F,and ! € L. Introduce [7]4 : A — A, which is induced by the given above
[r] € Endg L. As a result, we obtain a structure of O-comodule on A. Therefore,
G(Ksep) is an O-module with a natural continuous action of the Galois group I'x

i.e. Q(Ksep) S MG(O)K

Clearly, the correspondence £ — G(Ksep) determines a functor Mrp from
mod (O)gr to MG(O)k. As a matter of fact, with the above notation the corre-
spondence £ — G induces antiequivalence of the category mod (O)r and the
category of finite flat p-group schemes G over R with etale generic fibre, zero
Verschiebung Vi and a structure of O-module scheme. For the proof in the case
O = Zy, cf. [Ga]; the general case can be considered similarly.

1.3. The categories mod "(O)g and MG"(O) g
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Let h € N. Introduce the category mod "(O)r as a full subcategory in
mod (O)g consisted of £ = (L, F,[r]) such that (7id;, —[x])*(L) C Im F.

Denote by MG"(O) the full subcategory in MG(O)x consisting of O[I'x]-
modules Mr (L), where £ is an object of the category mod "(O)g.

We are going to prove the following three results:

e if G € MG"(O)f then G can be embedded into a w-divisible group of finite
height, consisting of objects of the category MG"(O)k;

e if K is a complete dicrete valuation ring with perfect residue field, e =
e(K/Ko), G € MG"(O)k and 7N G = 0 then the ramification subgroups F(Kv) act
trivially on G for v > e (N -1+ q’%) —1;

e with the above notation and assumptions if ( N_—hl) % 0 mod p then the above
ramification estimate is sharp.

Remark. In the context of classical p-group schemes an analogue of the above
first result is Raynaud’s theorem stating that any finite flat group scheme admits
embedding into a p-divisible group (even into an abelian scheme). In the context
of O-strict modules (the case h = 1) this result was proved in [Ab6]. The case of
arbitrary h will be proved in the next section by esssentially the same method. It
seems our method can be also applied to prove an analogue of this statement for
Fontaine’s modules of finite cryatalline height in the mixed characteristic case.

2. Embedding into a m-divisible group.
2.1. The concept of w-divisible group.
Tate’s definition of p-divisible groups in the category of finite flat p-group

schemes admits the following interpretation in the categories MG"(O) and
mod "(O)p.

A 7-divisible group in the category MG"(O) is an inductive system {G,,, intn>1,
where for any n € N, G,, € MGh(O)K and i, : Gy, — Gp41 are embeddings of
O[I'k]-modules such that if n > m and 4.y, : G — Gy, is the composition of
Tm, .- -,%n_1, then we have the short exact sequence

0 Gm Tmn Gn Inm Gn_m 0
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and Jnmin—mny = 7" idg,, -

n

The above definition can be also adjusted to the category mod *(O)g by in-
troducing the concept of strict embedding. If £ = (L, F, [n]) and £y = (L, F, [7])
then i € Hom 1,04 (0),(£1, £) is a strict embedding if it is induced by i : Ly — L
such that L/i(L1) has no R-torsion. Such i gives rise to a natural short exact
sequence 0 — L3 — L — L3 — 0 in the category mod (O)r. Then
we can proceed similarly to introduce a [r]-divisible group as an inductive sys-
tem {Ly,in}n>1 of objects of the category mod h(O)R, where all i,, are strict
embeddings.

2.2. The statement of the first main theorem.

Theorem A. If G € MG"(O)k then there is a m-divisible group {Gh,in}tn>1 in
the category MG"(O) g such that if N € N is such that 7 idg = 0 then there is
an embedding of G into Gy in the category MG(O) .

The above theorem is implied by the following theorem.

Theorem A’. If £ € mod "(O)g then there is a [r]-divisible group {Ly,in}n>1
in mod "(O)g such that if N € N is such that [*N]L = 0 then there is an
epimorphic map from Ly to L in the category mod (O)g.

The proof of theorem A’ will be given in nn.2.3-2.6 below.

Remark When introducing the category mod *(O)g one could start with O =
[Fy[n] and consider any O-algebra R. Then essentially same arguments give an
analogue of Theorem A’ everywhere locally on R.

2.3. Suppose L = (L, F,[r]) € mod "(O)g.
Lemma 1. There is a unique R-linear V.=V, : L — L9 such that
a) V[r]@ = [x]V;
b) VF = (ridp, —[x])*;
¢) FV = (rid; ) —[x]@)".

Proof. Because F' is injective and Im F O Im(7idy, —[x])", there is a unique R-
linear V such that VF = (midy, —[x])". Then V] F = VF[r] = [x]VF implies
that V[x]@ = [7]V, because F is injective. Similarly,

FVF = F(ridy, —[x))" = (zid; @ —[z]D)"F
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implies the part c) of our lemma.
2.4. Matriz identities

Suppose £ = (L, F,[r]) is an object of the category mod "(O)g and V =V
is the morphism from n.2.3. Choose an R-basis € = {e,}1<p<s 0f L and consider
square matrices C' = (cap), D = (dap), II = (7ap) € Ms(R) such that for 1 < b < s,

V(eb) = Z €a & Cab, F(eb ® 1) = Zeadaba [71'](61)) = Z €aVab-
a a a
Then in obvious notation it holds V(e) = e®C, F(e®1) = €D, [r](e) = ell and
there are the following rules of composition

VF:eewC-eDC
FV:eol-SeD e D
The proof of the following proposition is quite straightforward.

Proposition 2. Suppose € = (ep)1<p<s 15 a basis of a free R-module L and D =
(dap), I = (vap) € My(R). Suppose F : L\Q — L is given by the correspondence
e®1w— €D and [r] : L — L is given via € +— ell. Then L = (L, F,[n]) €
mod "(O)g if and only if

(1) 1D = D@, where TI@ = (v%,);

(2) det D #0;

(3) C:=D Ynl, — )" € M,(R), where I, is the identity matriz of size s;
(4) II is nilpotent.

Remark a) If above conditions (1)-(3) hold then V : & — é®C, CD = (nI,—T1(9)"
and IWC = C1I.

b) Because II is nilpotent, det(nI; — II) # 0 and, therefore, det C' # 0.

2.5. Construction of a m-divisible group in mod "(O)g

For m > 1, let &, be a copy of € = (ep)1<p<s- Set by definition &, = 0 if
m < 0.

For n > 1, construct the objects £,, = (Lp, Fy,, [7]) of the category mod "*(O)r
as follows.
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L, will be the free R-module of rank 2ns with the basis consisting of all

coordinates of the vectors €1, ..., €2,. Define the linear maps F), : L%q) — L,

and V,, : L,, — Lqu) by the following relations, where 1 < m < n:

Fn(é2m ® 1) — éZmD + €am—1
Vn(éQm) = éam & C+ eam—1 ® 1;

Fo(am—1 1) = —eom 1C + Y _ Eam-2:Yi;
120

Vi(€2m—1) = —€2m—1 ® D + Z €2m—2i @ X;
i>0
where for i > 0, the matrices X;,Y; € M(R) are such that

e CD+ Xo=n"I, and DC + Yy = n'I;
o for1<i<h, X;=Y;=(-1)"n""I;
e fori>h, X;=Y;,=0.
Lemma 3. Fori >0, DX, =Y,D.
Proof. 1t is obviously true if ¢ > 1, because in this case X; = Y; are just scalar

matrices. If i = 0 then YoD = (7¢I, — DC)D = D(zx"I, — CD) = DXy. The

lemma is proved.

Lemma 4. Z@O[W]i(é)Yi = 0.
Proof. We must prove that 3, II'Y; = 0. But

R\ .
}/OZ_Dc_'_ﬂ_hIS:_(ﬂ_Is_H)h_'_ﬂ_hIS:_;<—1)'Lﬂ'h Z(@)HZ:_Z;]:UYL
(2 1z

The lemma is proved.

For 1 <i < 2n, set [W]n(éz) = €;_9.
Proposition 5. For anyn > 1, L, = (Ly, Fy,[7]n) is an object of the category
mod "(O)g.

Proof. Clearly, [r], is nilpotent. Therefore, widy, —[n], is given by a non-
degenerate matrix and it will be sufficient to verify the following two properties:
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a) Fulrln = [1]50 Fy;
b) Vi Fp = (midy, —[7]n)".

Let1<m<n.

Verify a):

(Fn[ﬂ']n)(é%n ® 1) = [ﬂ'}n(Fn(éQm ® 1)) = [W]n(EQmD + é2m—1) = éQm—QD + eom—3
([ﬂ'}%q)Fn)(éQm ® 1) - Fn(éQm72 & 1) - é2m72D + é217173

(Fulm]n)(E2m-1®1) = [w]n(—E2m 1C + > Eom-2Yi) = —Eam-3C + > _ Ea(m_1)-2:Y
i>0 i>0

([7)DFy) (Eam—1 @ 1) = Fp(Eam—3 @ 1) = —€am—3C + Z €2(m—1)-2:Yi
i>0

Now verify b):
(VnFn)(EQm) - Fn(vn(é2m)) - Fn(éQm &® C) + Fn(éQm—l & 1)
= @mDC + gy 1C — B2 1C + > _ o2V

i>0
= égm(DC + Yo) + Z égm_gi(—l)iﬂhfi <}Z>

i>1
= Z égm_gi(—l)iﬂ'hfi (?) = (71' idLn —[W]n)h(égm);

h>i>0

(VnFn)(é2m—l) — Fn(vn(éZm—l)) — _Fn(éQm—l ® D) + Z Fn(EZm—Zi & Xz)

i>0

= €2m-1CD — Z €am—2iY;iD + Z(é2m—2iDXz‘ + eam—2i—1X;)
i>0 i>0

= eam-1(CD + Xo) + Z €am—2i—1X; + Z éam—2i(—YiD + DX;)
i>1 i>0

= Zészlfm(—l)iﬂh_i <h> = (midg, —[]n)"(E2m—-1)-

. (]
120

The proposition is proved.
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Notice that for any n > 1, we have natural strict embeddings iy, : £, — Ly 41
in the category mod "(O)g. Then the above proposition implies the following
corollary.

Corollary 6. The inductive system {Ly,in}n>1 s a [7]-divisible group in the
category mod "(O)g.

2.6. Epimorphic map f: Ly — L

For 1 < m < N, set f(Eo) = [7]V"™(€) = ell" =™ and f(€2,,_1) = 0. This
gives the R-linear map f : Ly — L. This map is epimorphic because f(éan) =
é. It remains to verify that f is a morphism in the category mod "(O)g.

Proposition 7. a) f[r] = [7]nf;
b) fOF = Fyf.

Proof. Let 1 < m < N. Verify a):
&am) = [7]VF1T(@) = f(am—2) = ([N f)(E2m)

eam-1) = 0 = f(E2m-3) = ([7]nf)(E2m—1)-

Now verify b):

(Fnf)(E2m @ 1) = f(€amD) + f(E2m—1) = [7]V " (e)D = elI"""D

q)me N—m

(fDF)(egn 1) = F(r]N""e®1) = Fle @ I ) = eDII@
and use that IID = DII(@),
Finally, (f9F) (2,1 ®1) =0 and
(Fnf)(Eom—1 @ 1) = f(—Eom-1C + > _ Eom—2:Y;) = [x]"™ | D [a]'(e)V; | =0
i>0 i>0

by Lemma 4. The proposition is proved.

3. Ramification estimates.

Suppose h € N and G € MG"(O)k, where O = F[[r]] is the valuation ring
of the field of formal Laurent series Ky = F,((7)), K = k((u)) is an algebraic
extension of Ky with perfect residue field k, R = O is the valuation ring of K
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and e is the ramification index of the extension K/Ky. We denote by vg the
valuation on K such that vy (K*) = Z.

Theorem B. If N € N is such that ©™NG = 0 then for
h
v>e<N—1+q> -1
qg—1
the ramification subgroup F(Kv) acts trivially on G.
The proof of Theorem B follows the strategy from [Ab6] (where the case h =1
was considered) and will be given in nn.3.1-3.4 below.

3.1 Auziliary field K, [Ab4, n.1.5]

Let o be a rational positive number with zero p-adic valuation. Then there
are m € N, ged(m,p) = 1, and M € N such that a = m/(¢™ —1). Notice that
for a given «, the corresponding numbers m and M are not unique and can be
chosen to be arbitrarily large if necessary. Then there is a field extension K,
of K with the same residue field k such that [K, : K] = ¢™ and its Herbrand
function equals

x, if 0

ST <o
a—l—zq_Tf", ifx > a.

Cra K(T) =

From the construction of this field extension K, /K, cf.[Ab4, n.1.5], it follows

M
the existence of a uniformising element u, of K, such that vi(u — ud ) =

1+ a(l—qgM).
Introduce the field isomorphism kq : K — K, = k((uq)) such that ke (u) =
Uq and kKol = id. We have the following properties:

e Vae€ R, vi(a— Ha(a)qM) >14a(l—q¢ M)

I\/I)

o Vae K,vg(a— ka(a)? vi(a) + a(l — g~ M).

WV

Here and everywhere below in the paper we shall use the following notation:

—fora€ K, a:=a—rq(a);

— Tq i= Ka(T);

—a*=a(l - M.
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The role of the fields K, in obtaining ramification estimates can be explained
as follows.

First, remind the definition of the biggest ramification number v(E2/E}), where
E; C Es are finite extensions of K in K. By definition, v(E2/E7) is the second
coordinate of the last corner point of the Herbrand function ¢ g, /g, . Equivalently,

the ramification subgroups Fgl) of 'y, = Gal(Kgep/E1) act trivially on Es if and
only if v > v(E2/E;). For example, v(K,/K) = a.

Now consider a field isomorphism Rq : Kgep — Ksep such that R |k = Kaq.

Proposition 8. Let E be a finite field extension of K in Ksp and let B, =
Ra(E). Then:

a) if E C E, then v(E/K) < «;

b) if there is a field extension K' O K such that EE, = K'E, and v(K'/K) > «
then v(E/K) =v(K'/K).

Proof. a) Suppose v(E/K) = vg > «. Then F%O) acts non-trivially on FE,
acts trivially on K, (because v(K,/K) = «) and, therefore, acts non-trivially
on EK, C E,. On the other hand, F%O) = F%l) with vo = @g, /K (v1) by
the definition of the Herbrand function, cf. [Se]. But then v; > vy (use the
explicit form of 9 /i) and Fg?i) must act trivially on E, because v(E,/K,) =
v(E/K) = vg < v;. The contradiction. So, v(E/K) < o and a) is proved.

b) Apply the composition property of Herbrand’s functions

OB,k (T) = 0K,k (PE, /K. (T))

where = > 0, to their last corner points to obtain
v(Eo/K) = max{a, (PKQ/K(U(Ea/Ka))}'
This gives that v(E/K) > «. Indeed, otherwise,

Yok (V(E/K)) = ¢r, Kk (0(Ea/Ka)) < a,

implies that v(F,/K) = «a and, therefore,

V(FEy/K) = max{v(E/K),v(Ey/K)} = a < v(K'E,/K).
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The contradiction. Therefore, o < v(Ey/K) < v(E/K) (use the above explicit
formula for g, /x) and v(E/K) = v(EE,/K) = v(K'E./K) = v(K'/K). The
part b) is proved.

3.2. By Theorem A we can assume that G is the 7"-torsion part of a 7-
divisible group in the category MG"(O)g. So, if G comes from £ = (L, F,[r]) €
mod "(O)g then we can choose an R-basis of L consisting of elements of vectors

€1,...,en, wherefori=1,..., N, each ¢; isa copy of € = (e, ..., es) and it holds
[7](e1) =0, [7](é2) = €1, ...,[7](én) = éx—1. Then the structure of an object of
the category mod "(O)r on L is given via matrices C1,...,Cy € My(R), where

det(C1) # 0 and
F(él ® 1)01 = 7rhél

F(ey ®1)C) +---+ F(é, ®1)Cy = nlen
(h .
+t (—1)Z<i>wh_’éN_i o (Deny,

with the agreement e; = 0 if i < 0.

Then G appears as the set of Kgep-points of the K-scheme B given by the

equations
XWe =%,

_ _ _ h _
X0+ X0y = 7" X,y — <1>7rh_1X1

h o _
+- 4+ (=) <Z.>7Th_1XN—¢ ot (1) " XNy,

Here X1,..., Xy are copies of the vector X, which contains as its coordinates s
independent variables, and by definition X; = 0 if 4 < 0. As earlier, each Xi(q) is
obtained from X; by raising all its entries to ¢-th power.



Characteristic p Analogue of Modules with Finite Crystalline Height 483

3.3. Consider the K,-scheme B, given as Spec K,[Y1,. .., Yy]| with equations
Yl(q)fia(cl) = 77'2)71

V3V ka(C1) + ¥V ko (Co) = nh¥s — (ill) Y

+ A (D)"Y
Here Yi,...,Yy are copies of the vector Y, which contains as its coordinates s

independent variables, and by definition Y; = 0 if 4 < 0.

As earlier in n.3.1, consider the field isomorphism Ry : Keep — Ksep, Which
extends the field isomorphism k. Clearly, k, induces a one-to-one map between
the points G = B(Kep) and Go = Bo(Ksep). In particular, if E = K(G) (resp.
E, = K4(G,)) is the field of definition of all points of G (resp. G,) over K (resp.
K,), then ko (F) = E,.

Lemma 9. a) Ifa* > e (N -1+ %) —1 and (Y?,..., YY) € G, then there is

a unique (X9,...,X%) € G such that v (XY — Yiqu) > % foralll <i< N.

b) With the above notation the correspondence

(Y2, ..., YR) = (XY,..., X%)

gives a one-to-one map between the points of G, and G.

Lemma 9 implies the following corollary.

Corollary 10. If o* > e (N 14 %) — 1 then EK,, = E,.

Proof of corollary. Denote by n : G, — G the one-to-one map from Lemma
9. Clearly, for any 7 € 'k, = Gal(Kgep/Ko) and YO € G,, it holds 7(n(Y?)) =
n(r(Y?).  Therefore, Gal(Ksp/Eo) = {r€Tk, |7Y"=Y" VY0 G,}
= {7 €Tk, | 7X°=X"VX? € G} = Gal(Ksep/EK,). The corollary is proved.
Proof of Lemma 9 First, prove the part a.)

For 1 <i<N,let Z; = X; — YZ-O(qM), C; =C; — f-;a(C'i)(qM) and (as earlier)

I—— Ko (7ri)qM. Then Z1, ..., Zy satisfy the following equations (where by



484 Victor Abrashkin

definition Z; = 0 if i < 0)
Z§Q)Cl = 7Th21 + Fl

(3)
_ _ _ /h o
Z](\?)Cl —+ -+ qu)CN = ﬂ'hZN + -+ (—1>Z<i>7'(h_ZZN_Z'
+ o+ (=D Zy_p + Fn
where
Fy = ohy 2@ g2

b= T (M) (N,

_ —~ _ (M Sh\ — . — (M M

Fy = FhY](\)/(q ) +oe At (_1)Z<i>ﬁh_zyzgf(_qi St (— )h 'hi YN( h+)1
(T T Ey)

Clearly, the above formulas imply that

_ h
vi (F;) = min{vg (coordinates of F})} > a* +1>e (N -1+ ql)
q—
Then the statement a) of Lemma 9 is equivalent to the existence of a unique
solution Z9,..., 2% € K&, of system (3) such that for all 1 <i < N, v (Z9) >
eh
q—1-

This follows easily by induction from the following lemma.

Lemma 11. Suppose Z is a vector with s independent variables as its coordinates

and a € K, is such that vk (a) > %

sep 1- Then the system of equations

Z(Q)Cl — 7ThZ =a

has a unique solution Z° € K&, such that v (Z°) = vk (a) — eh; in addition, all

coordinates of Z° belong to the field of definition of a over K.

Proof of Lemma 11. The existence is given by the following explicit formula

nfl)

= ..Cl_...

70 — _p—hg_g—h(+a)g(@) Ci—... _ﬂ—h(l-‘ru--i-qnﬂ)a(qnﬂ)chn)C%‘I
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Suppose Z! # Z° is another solution with vy (Z') > qe_hl. Then for W =
7% — 7' we have vg (W) > qe_—hl and W@WC, = 7"W. But then vy (r"W) =
vg (WD) > vg(WD) = v (W) + (¢ — Dog(W) > v (W) + eh = v (x"W).

The contradiction. Lemma 11 is proved.

Continue the proof of lemma 9. Its part b) follows from the following obser-
vation. Any two solutions (X¥,..., X%) and (X{,...,X%) of (1) such that for
1<i< N, vg(X?— X}) > eh/(g— 1), must coincide. This can be proved again
by induction from the uniqueness property of Lemma 11. Lemma 9 is proved.

3.4. Finally, suppose that

UZU(E/K)>6(N—1+ qq_hl)—l.

Choose a € Q, a > 0 with zero p-adic valuation and a corresponding big enough
M € N, cf. n.3.1, such that
. h
v>a>a >e N—l—i—i1 —1.

Then by Corollary 10 we have E, = EK, and, therefore, Proposition 8 implies
that v < a. The contradiction. Therefore, the above assumption about v =

v(E/K) is false and Theorem B is completely proved.

4. Computation of an upper ramification number

As earlier, h, N € N, K = k((u)) with perfect k of characteristic p, q is a power
of p, Ko = Fy((m)) is a closed subfield in K, R and O are valuation rings in K
and Ky, respectively, and e = e(K/Kj) is the ramification index of K/Kj.

4.1 The statement of Theorem C
Introduce £ = (L, F,[x]) € mod "(O)g as follows.

Let L be a free R-module with the basis e1,...,en,€),...,e%. Define [n] €
Endg L by the relations [7](e?) = €?_; and [7](en) = €51, where 1 < n < N.

Define an R-linear morphism F : L(Y — L by the following relations:

h A
Flep@1)=¢,, Fle,@1)= Z (—1)]< ,)ﬂ'h_]en_]‘ — uel,
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where 1 < n < N, and by definition e, = ¢ = 0 if n < 0. Clearly, for any
1 <n <N, (rid, —[7])"(e2) is an R-linear combination of F(e) ® 1) = €?,

1 < i < n,and also (mid —[7])"(en) = Flen ® 1) + uel € Im F. Therefore,
L= (L,F,[x]) € mod "(O)p.

Let £ .= (L), FO) [7]©) where L is the submodule of L generated by
ed,..., e} and F ©) and [7](® are induced by F and [r], respectively. Then £(©) e
mod °(O)gr € mod "(O)x and we have a natural embedding of £(%) into £ in the
category mod "(O)p. This embedding is strict and gives rise to the following
short exact sequence in  mod *(O)g, 0 — LO) — £ — £ — 0, where
LM = (LM, F®) [7]M) e mod "(O)r, LM is the free R-module with basis
el,..el, [m®™(el) = el | and FM(el) = (midym —[r]™)rel with
1<n< Nande}=0.

Consider the corresponding short exact sequence of I' g-modules
0 — Mp(L™) — Mp(£) — Mp(£?) — 0.

Clearly GO = Mp(£©) is just the cyclic module O/7Y with the trivial I'k-

action.

Remark. Though we do not need it, notice that for h = 1, the Galois module
structure on G = Mp(£M) is induced by the restriction to 'y of the Lubin-
Tate character xrr : ', — O*. In equivalent terminology, GW is the 7N-
torsion of the Carlitz module over O. Then £ appears as h-th tensor power of
£ and, therefore, the action of I'x on the corresponding G = Mr(ﬁ(h)) is
induced by the restriction to I'x of the character X}[l/T'

Theorem C. Suppose G = Mrp(L) and (N:h1) # 0mod p. Then the ramification
subgroups Fgg) act trivially on G if and only if v >e(N — 1+ hg/(qg—1)) — 1.

Remark. If h = 1 then the above result has an analogue in the mixed charac-
teristic case. Namely, if K D Q) then there is a finite flat group scheme G over
R = Ok such that G = Spec 4, A = @O<i<pNR[pW] and v = 1 + u, where u
is a uniformising element of K. This group scheme appears as an extension of
the constant etale group scheme (Z/pNZ)g over R via the constant multiplica-
tive group scheme p,nv = Spec R[X]/(XPN — 1) over R. One can verify that F(Kv)
acts trivially on G(Kgep) if and only if v > e(N +1/(p — 1)) — 1, i.e. Fontaine’s
estimate from [Fol] is sharp. In the equicharacteristic case the above Theorem
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C shows that under the additional condition ( N _hl) # O mod p the estimate from
Theorem B is sharp. If this additional condition does not hold one should expect
the existence of better ramification estimates.

Proof of Theorem C. The proof is given below in the remaining part of the paper.

4.2. Let X1,...,XnN,Y1,...,Yn be independent variables. Then the O[I'k]-
module G appears as the set of all solutions g = (Ylo, . ,Y]{),, X?, e ,XR,) e K2N

sep

of the following system of equations:

(1) xi=x vi= 3 (!

>7rh_anj —uXy,
0<G<h J

where 1 < n < N and by definition X,, = Y,, = 0 if n < 0. Notice that the
structure of O-module on this set of solutions is induced by the usual addition
and the action of O is given by the relations [7](X,) = Xp—1, [7](Yn) = Y1
and for any o € Fy, [o](X,) = X, [a](Y,) = aY,. Let ¢ € G be such that
Xi1(9) = --- = Xn(g) = 1. Then its field of definition K(g) over K appears in
the form K (Y,..., YY), where (Y{,... YY) € stgp is a solution of the following
system of equations

. (h )

(5) Yi—r"Y,= > (—1)Jl< ,>7thYn_j —u, 1<n<N,
1<y<h J

SYAS

Notice that for above choice of g € G, the field of definition K(G) of all points
of G over K is equal to the composite K (g)K(G™), where K(G™) is the field
of definition of all points of G") = Mp(L™) over K. (Use that any point of G
appears in the form [0]g + g1, where 0 € O and g; € G).)

4.3. A property of K(G™)

Use the notation and definitions from n.3.1.

Proposition 12. There is 6(N,h) > 0 such that if o* > e (N —14+ %) _
S(N, h) then K(GM)K, = ko (K(GM)).

Proof. The elements of G®) are solutions (X¢,..., X%) € K&

sep Of the following

system of equations (where, as usually, X; = 0 if i < 0):
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R .
XL =ma"Xy+-+ (—1)Z<Z,)7rh‘ZXN_i 4+ (D" Xy_p

Because the action of O on G is transitive, K(G")) = K(XY,...,XY), where
(X9,...,X%) € GM is such that XY # 0. As earlier, &, establishes a one-to-one
h)

correspondence between G and the set G of solutions (X9,,...,X%,) € Ksj\e[p

of the system

h
Xi]a = 7I'aX1a

B\,
Xio =T XNa+ ...+ (—1) <i>wg Kniat o+ (D)"Xn ha
(as earlier, X;o = 0 if i < 0). Choose (X{,,...,X%,) € G such that X £0
and set Z; = X; — X2, Notice that Ko(X%,,...,X%.) = Fa(K(GM)) =
KQ(G(ah)). Then Zy,..., Zy satisfy the following system of equations
78 =717+ Py

h
78 =77, - (

1)7Th1Z1 + Fy

(7)

)Wh_iZNi + ...+ (—1)hZN_h + Fn

— M " M
>7rh_1X§;I_i,a +...+ (—1)h71h7TX]0\;1_h+17a.
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Set
d(N,h) = min {UK(XQqM) |1<i< N}.

(163

Clearly, 5(N, h) > 0. Notice that all F; € Ko(G!") and for 1 <i < N, it holds
ehq

vK(Fi)2e(h+1—i)+a*+5(]\f,h)>e(N—i)+q_1.

Now we can proceed with a small induction to find successively Z; then Zj
etc. by using Lemma 11 for the first equation, then the second, etc. This will
give the existence of a unique solution (Z?,...,2%) of system (7) such that for
1 <i<N,vg(Z9) > e (N — i+ qfhl> As earlier in n.3.3 this implies that
K(GM K, = K.(GI).

Proposition 12 is proved.

4.4. Now we are going to study the fields K(g), where g € G is such that
Xi(g)=--=Xn(g) =1, cf. n.d.2.

Consider the following formal identity on the K-algebra A of functions on G

(mida —[Tr])fh =g h Z ’yﬁr*i[ﬂ']i,

120

where for all i > 0, v; = (—1)2(_Zh) This allows us to rewrite system (5) in the
following equivalent form:

h Vi Vi
Vi—r"Yo=— > ped S > 1SN
1<i<n 0<i<n

Use the notation and definitions from n.3.1.

Remind that for any a € K1, ¢ = a — /-ﬁa(a)qM. If a is given by a big formula
then we shall use also the notation @ = (a)~. Until the end of this paper we
assume that o = ql\f,”i_l € Q and M € N are chosen such that

al—g My =a*=¢eN-1)+
where
-N

o 0<e(a)< g™,

o ag M < g(a);



490 Victor Abrashkin
o c(a) <O(N,h).

(Use that rational numbers with zero p-adic valuation are dense in the set of
all rational numbers and for a given o we can choose arbitrarily large M). Notice
that a*¢™ = m € N is prime to p and this implies that the p-adic valuation of
e(a)g"

of proposition 12.

is zero. Notice also that under such a choice of o we can apply the result

As earlier, choose an extension K, of ko to Kgep. Then it induces a one-to-one
correspondence between the set of solutions of system (5) and the solutions of

the system
h -1 h—
8) VI, — i Yna = — Z (—=1) (j)wa Yo ja — Ua Z W—;, 1<n<N,
1igsh 0gj<n @
Fix a solution go = (Y{,,...,YJ,) € K& of this system and set K(gq) =

K(YL,...,Yy,). Introduce for 1 < n < N, the new variables Z, such that

Then Z1,...,Zy satisfy the following system of equations

h 5 0gM Vi \ ™ (A0gM+1 Y ViU~
(9) Zg—n"Zn =mhy o = S (2) Ty = 3 Bz - T (B
0<i<n

1<i<n 1<i<n

Proposition 13. System (9) has a solution (ZY,...,Z%) such that
a) if 1 <n < N, then Z° € K,(ga) and

eh

vie(Zy) > =

+e(N —n)—e(a);

b) ifn= N then Z—yn_1W° € K4 (ga) where W is a solution of the equation
W1 —ghW = —x1=Ng,

We shall prove this proposition below in n.4.5 and use now this result to finish

the proof of Theorem C.
: 0q™ | 0 0g™ | 0
Suppose g € G corresponds to the solution (Y] +Z27,..., Yyl +Z3,1,...,1)
of system (4). Then Proposition 13 implies that

K(9)Ka(9a) = K'Ko(ga),
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where K’ = K,(W?). Notice that

f(Nfl)ﬁ) _ M (ﬂf(Nq)ﬂ) _eq

vE, ( g VK = — qMa(a)

is a prime to p integer. This implies easily that the maximal upper ramification
number of K’ over K, is v(K'/K,) = ¢™e(a) > a and, therefore,

v(K'/K) = max {v(Ka/K), px,/x (4" () } = a*+e(a) = ¢ (N T hql> -

As v(K'/K) > «, Proposition 8 implies the equality v(K(g9)/K) = v(K'/K),
which proves Theorem C.

4.5. Proof of proposition 13.

Lemma 14. Suppose (Y,..., YY) € KS{XP is a solution of system (5). If 1 <

n < N and r =1(n) € Zxo is such that rh < n < (r+1)h then vg(Y,0) = ¢ "L
Proof. Use induction on 1 < n < N.

If n = 1 the statement is obviously true, because Yloq — 7YY = —u, v (YP) =
%'UK(U) and r(1) = 0.

Suppose n > 1 and the proposition is proved for all n’ < n.

Ifn<hthenr(l)=---=r(n)=0and for 1 <j <n,
or (AT ) = (h - f)e + ; > 1= v (u)
and from the equation for Y,0 it follows v (V') = ¢~ 1.
If n > h then r(n) > 1 and we have for 1 < j < h,
vK(wh_qug_j) >e+q DS = op(u) > ¢ TP = pp (Y0,

Therefore, vg(Y,)) = %UK(Y;L}L) = ¢ 7("h=2 — =r(=1 " The Lemma is
proved.

Corollary 15. With the above notation for 1 <n < N, vK(Y&%M) =g (-1,
Lemma 16. Suppose 1 <n < N,1<i<n. Then
a) UK( Y,SqMH> > %—I—e(l\f—n) ifi #n—1;

b) vk < _ZYOqMH) > % +e(N —n)—c(a) ifi=n—1;
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c) vk (ﬁYSgM) > ;Thql +e(N —n);

~

d) vk (%) > %—i—e(]\f—n)—g(a).

Proof of lemma. We have

N‘ h ,
VK (ﬂ—lY,?33{;1> — 1+ e(N=n)+en—i—1)—1+¢"" —g(a).
k) q J—

Then use that if i #n—1thene(n—i—1) > 1 and if i = n—1 then r(n—14) = 0.
(Remind also that () < ¢~.) This proves parts a) and b). Similarly,

+e(N—n)+he—1—c(a)+q "™

Then c) follows because he > 1 and e(a) < ¢, cf. n.4.4. The part d) can be
proved similarly.

The lemma is proved.
Now we can prove Proposition 13.
Use induction on N.

Suppose N = 1. Then there is nothing to prove in a) and Z) appears as a
solution of the equation

(10) 78— xhzy = ahy 2" _ i,
Therefore, b) follows from Lemma 11 via the estimate ¢) of Lemma 16.

Now suppose N > 1 and use induction on 1 < n < N to prove a). If n = 1 then
Z9 must satisfy equation (10). Again use Lemma 11 by estimating the valuation
of the right hand side of this equation via the part ¢) of Lemma 16.

Suppose 1 < n < N and we have chosen the corresponding Z9, ...,Z% _,. Then
for 1 <i < n,

; h
vK(w_ZZSL) > —ie+q <q€—1 +e(N—-—n+1i)— 5(@))

ehq
qg—1
because e(a) < ¢V < ¢!, cf. n.44.

>

+e(N—n)+(¢g—1)ei — ge(a) > qefql—f—e(N—n),
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This estimate together with estimates from Lemma 16 imply that the right-
hand side of equation (9) has vi-valuation > ;Thql +e(N —n) — e(a). Therefore,
by Lemma 11 we can choose for n < N, the solution ZY € K,(gq) with

k(Zn) = eh/(g—1) +e(N —n) —e(a).
This proves the part a).

If n = N then for a similar reason, the right-hand side of (9) can be written as

Oq]\/[+1

—YN-1 ((ﬂ'kN)NYm + (WlfNu)N) + a,
where a € K4(gq) and vg(a) > ehq/(q —1).
Then notice that:
D YL =yl
2) the vg-valuation of (WlfN)NﬂZqMYl[fM is strictly bigger than ehq/(q — 1);

3) there is an identity (%)N — (ﬁ)AdugtM = WNl,lﬂ.

This implies that the right-hand side of (9) in the case n = N is equal to
— =50+ d/, where a’ € Ko(ga) and v (a') > ehgq/(q —1).

Therefore, by Lemma 11 the part b) is proved.

REFERENCES

[Abl] V.Abrashkin, Group schemes of period p over the ring of Witt vectors. (Russian), Dokl.
Akad. Nauk SSSR 283 (1985), no. 6, 1289-1294.

[Ab2] V.Abrashkin, Ramification in etale cohomology, Invent. Math. 101, (1990), no. 3, 631-
640.

[Ab3] V.Abrashkin, Modular representations of the Galois group of a local field and a general-
ization of a conjecture of Shafarevich, Izv. Akad. Nauk SSSR Ser. Mat. 53(1989), no. 6,
1135-1182; Engl. transl. in, Math. USSR-Izv. 35(1990), no. 3, 469-518.

[Ab4] V.Abrashkin, The ramification filtration of the Galois group of a local field. III, Izv.
Ross. Akad. Nauk Ser. Mat. 62(1998), no. 5, 3-48 ; Engl. transl. in, Izv. Math. 62 no. 5
(1998), 857-900.

[Ab5] V.Abrashkin, Towards explicit description of ramification filtration in the 2-dimensional
case, J. Théor. Nombres Bordeaux, 16(2004), no. 2, 293-333.

[Ab6] V.Abrashkin, Galois modules arising from Faltings’s strict modules, Compositio Math.
142(2006), 867-888.

[An]  G.Anderson, ¢t-motives, Duke Math. J. 53(1986), no. 2, 457-502.



494

[Gal
[Sc]

[Se]

Victor Abrashkin

G.Faltings, Group schemes with strict O-action, Moscow Math. J. 2(2002), no. 2, 249-
279.

J.-M.Fontaine, Il n’y a pas de variété abélienne sur Z, Inv. Math. 81(1985), no. 3, 515-
538.

J.-M.Fontaine, Schémas propres et lisses sur Z, Proc. of Indo-French Conference on
Geometry (Bombay, 1989), Hindustan book agency, Delhi, 1993, p. 43-56.
J.-M.Fontaine, Représentations p-adiques des corps locaux.l., The Grothendieck
Festschrift, Progr. Math., 87, Birkhduser Boston, Boston, MA, 1990, vol. II, p. 249-
309.

P. Gabriel, Etude infinitésimale des schémas en groupes, Schémas en Groupes I, Lecture
notes in Mathematics (Springer-Verlag, eds.), vol. 151, 1970, p. 474-560.

R. Schoof, Abelian varieties over Q with bad reduction in one prime only, Compos. Math.
141 (2005), no. 4, 847-868.

J.-P.Serre, Corps locaux, Deuxieme édition. Publication de I’Université de Nancago, No.
VIII. Hermann, Paris, 1968.

Victor Abrashkin

Maths Dept., Durham University

Sci. Laboratories, South Rd., Durham, DH1 3LE, U.K.
E-mail: victor.abrashkin@durham.ac.uk



