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Abstract: In the case of local fields of positive characteristic we introduce
an analogue of Fontaine’s concept of Galois modules with crystalline height
h ∈ N. If h = 1 these modules appear as geometric points of Faltings’s
strict modules. We obtain upper estimates for the largest upper ramification
numbers of these modules and prove (under an additional assumption) that
these estimates are sharp.
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0. Introduction.

Let p be a prime number. Let K be a complete discrete valuation field with
perfect residue field k of characteristic p. Choose a separable closure Ksep of K

and set ΓK = Gal(Ksep/K). Denote by R the valuation ring of K and for any
v > 0, by Γ(v)

K the ramification subgroup of ΓK with the upper number v.

Suppose, first, that K is of characteristic 0, i.e. K contains Qp, and consider
e = e(K) — the ramification index of K over Qp. In this situation for h ∈ N,
Fontaine [Fo3] introduced the category MGh

K of finite Zp[ΓK ]-modules with crys-
talline height h. Examples of such modules are given by subquotients of crys-
talline representations of ΓK with the Hodge-Tate filtration of length h or, more
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specifically, of Galois modules of h-th etale cohomology of projective schemes over
K with good reduction. If h = 1 then the corresponding Galois modules appear
as points G(Ksep) of finite flat p-group schemes (i.e. group schemes killed by a
power of the endomorphism p idG) G over R. In this case Fontaine [Fo1] proved
a very important ramification estimate:

(α) if G ∈ MG1
K , pNG = 0 and v > e

(
N + 1

p−1

)
− 1 then the ramification

subgroup Γ(v)
K acts trivially on G.

This result was generalised in [Ab2] (cf. also [Fo2], [Ab1,3]):

(β) if G is a subquotient of crystalline representation of ΓK with the Hodge-Tate
filtration of length h < p − 1, pNG = 0 and e = 1 then for v >

(
N + h

p−1

)
− 1,

Γ(v)
K acts trivially on H.

Now suppose that K is of characteristic p and k ⊃ Fq, where q is a power of
p. Introduce an analogue of Zp. This will be a subring O = Fq[[π]] of R, where
π ∈ R is not invertible in R. If K0 is the fraction field of O in K then denote by
e = e(K/K0) the ramification index of K over K0. In this situation an analogue
of the category of finite flat p-group schemes over R is the category of O-strict
modules over R with etale generic fibre. (The concept of O-strict module was
introduced in [Fa].) This category was studied in details in [Ab6], where the
following ramification estimate2 was obtained:

(γ) if G = G(Ksep), where G is an O-strict module over R and πNG = 0 then

for v > e
(
N + 1

q−1

)
− 1, Γ(v)

K acts trivially on G.

This estimate is a complete analogue of the above Fontaine’s estimate for p-
group schemes in the mixed characteristic case. Notice that all O-strict modules
appear as kernels of isogenies of Drinfeld modules, cf. [Ab6]. The above re-
sult gives another evidence that Galois modules arising from torsion points of
Drinfeld modules give a perfect analogue of first etale cohomology in the mixed
characteristic case. If we try to think about equicharacteristic interpretation of

2the statement of this result in the Introduction to [Ab6] contains a misprint
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higher etale cohomology it looks natural to consider the Galois modules arising
from Anderson’s motives, cf. eg. [An] for their definition. This idea perfectly
matches with Fontaine’s definition of Galois modules of finite crystalline height
h in the mixed characteristic case. Let MGh(O)K be the corresponding category
of O[ΓK ]-modules of “finite crystalline height” h ∈ N (it is defined in Section 1).
Notice that if G ∈ MG1(O)K then G appears in the form G(Ksep), where G is
O-strict module over R. In section 3 we apply methods from [Ab6] to prove the
following ramification estimate:

(δ) if G ∈ MGh(O)K and πNG = 0 then for v > e
(
N − 1 + hq

q−1

)
− 1, Γ(v)

K acts
trivially on G.

In section 4 it is shown that this ramification estimate can not be improved
under the sufficiently general assumption

( −h
N−1

) 6≡ 0mod p. In particular, the
estimate (δ) does not match with the above mentioned estimate for subquotients
of crystalline representations in the mixed characteristic case. One can say that
in the case of local fields of positive characteristic the Galois modules with finite
crystalline height do not give a precise analogue of crystalline representations.
Notice that the above ramification estimates (α) and (β) constitute an essen-
tial ingredient of the proof of the Shafarevich Conjecture and its generalizations,
[Fo1,2], [Ab1,3], [Sc]. In the equicharacteristic case there are no such interesting
applications of the corresponding estimates (γ) and (δ). But anyway these es-
timates give a non-trivial information about torsion points of Anderson motives
and also some ideas what one can expect when studying crystalline representa-
tions in the mixed characteristic case.

The proof of estimate (δ) uses essentially the existence of embedding of any G ∈
MGh(O)K in a π-divisible group consisting of objects of the category MGh(O)K .
This statement is parallel to the corresponding statement for h = 1 from [Ab6]
and is proved in section 2. Due to this result we can assume that G is a free
O/πN -module, this allows us to have much better control on equations of the
K-scheme G such that G(Ksep) = G.

The method of proving the ramification estimates from sections 3 and 4 can
be used only in the characteristic p case. It was applied earlier by the author, cf.
eg. [Ab4,5]. The basic idea of this method can be explained as follows.
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Suppose α > 0, α ∈ Q and its p-adic valuation is zero. Then there is a
finite totally ramified extension Kα of K such that its Herbrand function has a
unique edge point (α, α), cf. eg. [Ab4, n.1.5]. Consider a natural embedding
ι : ΓKα = Gal(Ksep/Kα) −→ ΓK and the corresponding ΓKα-module ι∗(G).
Let ια : ΓKα −→ ΓK be an isomorphism of profinite groups induced by an
isomorphism of local fields K and Kα (they both have the same residue field
and, therefore, are isomorphic). Introduce the corresponding ΓKα-module ι∗α(G).
Then

if points of ι∗(G) and ι∗α(G) have the same common field of definition over Kα

then Γ(v)
K acts trivially on G for all v > α.

This fact follows easily from elementary properties of Herbrand functions and
is proved in a slightly more general form in n.3.1. Notation. Everywhere in the

paper if f : A −→ B and g : B −→ C are morphisms then their composition will
be denoted as fg, i.e. for any a ∈ A, (fg)(a) = g(f(a)).

Acknowledgement. The author expresses a deep gratitude to the referee for
very careful reading of the original version of this paper. His critical remarks
resulted in a considerable improvement of the quality of the exposition.

1. Main notation and results

1.1. The categories mod (O)R and MG(O)K

As in the introduction, let q ∈ N be a power of a prime number p. Let
O = Fq[[π]] be a ring of formal power series in one fixed indeterminate π and
denote by K0 the fraction field of O. Let R be an O-algebra. Everywhere in the
paper R is an integral domain with fraction field K. (In sections 3 and 4 K will
be a complete discrete valuation field.) Choose a separable closure Ksep of K and
set ΓK = Gal(Ksep/K). Denote by σ = σq : R −→ R the ring endomorphism of
R such that σ(r) = rq for any r ∈ R.

Let MG(O)K be the category of O-modules of finite type with continuous
O-linear action of ΓK .

Introduce the category mod (O)R of triples (L,F, [π]), where
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• L is a free R-module of finite rank;

• if L(q) = L⊗(R,σ) R then F : L(q) −→ L is an injective R-linear morphism;

• [π] ∈ EndR L is nilpotent and F [π] = [π](q)F , where [π](q) := [π] ⊗ id ∈
EndR(L(q)).

If L = (L,F, [π]) and L1 = (L1, F, [π]) are two objects from mod (O)R then
Hom mod (O)R

(L,L1) consists of R-linear morphisms f : L −→ L1 such that
f (q)F = Ff and f [π] = [π]f .

Remark. We have a natural embedding EndR L ⊂ EndK(L⊗R K). Therefore, if
rkR L = s then [π]s = 0.

1.2. Functor MΓ : mod (O)R −→ MG(O)K

Let L = (L,F, [π]) be an object of the category mod (O)R. Consider the R-
algebra A = A(L) := (SymR L)/I, where the ideal I is generated by the elements
lq − F (l ⊗ 1) ∈ SymR L for all l ∈ L. Because F is injective, for AK = A⊗R K,
we have Ω1

A/K = 0, AK is an etale K-algebra and rkR A = dimK AK = qrkR L.
In particular, if G = Spec A then G(Ksep) = HomR-alg(A,Ksep) consists of qrkR L

elements. Notice that G has a natural structure of a group scheme over R given
by the comultiplication ∆A : A −→ A ⊗K A and the counit eA : A −→ K such
that ∆A(l) = l ⊗ 1 + 1 ⊗ l and eA(l) = 0 for all l ∈ L. Set [α](l) = αl for
α ∈ Fq and l ∈ L. Introduce [π]A : A −→ A, which is induced by the given above
[π] ∈ EndR L. As a result, we obtain a structure of O-comodule on A. Therefore,
G(Ksep) is an O-module with a natural continuous action of the Galois group ΓK

i.e. G(Ksep) ∈ MG(O)K .

Clearly, the correspondence L 7→ G(Ksep) determines a functor MΓ from
mod (O)R to MG(O)K . As a matter of fact, with the above notation the corre-
spondence L 7→ G induces antiequivalence of the category mod (O)R and the
category of finite flat p-group schemes G over R with etale generic fibre, zero
Verschiebung VG and a structure of O-module scheme. For the proof in the case
O = Zp, cf. [Ga]; the general case can be considered similarly.

1.3. The categories mod h(O)R and MGh(O)K
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Let h ∈ N. Introduce the category mod h(O)R as a full subcategory in
mod (O)R consisted of L = (L,F, [π]) such that (π idL−[π])h(L) ⊂ Im F .

Denote by MGh(O)K the full subcategory in MG(O)K consisting of O[ΓK ]-
modules MΓ(L), where L is an object of the category mod h(O)R.

We are going to prove the following three results:

• if G ∈ MGh(O)K then G can be embedded into a π-divisible group of finite
height, consisting of objects of the category MGh(O)K ;

• if K is a complete dicrete valuation ring with perfect residue field, e =
e(K/K0), G ∈ MGh(O)K and πNG = 0 then the ramification subgroups Γ(v)

K act

trivially on G for v > e
(
N − 1 + qh

q−1

)
− 1;

• with the above notation and assumptions if
( −h
N−1

) 6≡ 0mod p then the above
ramification estimate is sharp.

Remark. In the context of classical p-group schemes an analogue of the above
first result is Raynaud’s theorem stating that any finite flat group scheme admits
embedding into a p-divisible group (even into an abelian scheme). In the context
of O-strict modules (the case h = 1) this result was proved in [Ab6]. The case of
arbitrary h will be proved in the next section by esssentially the same method. It
seems our method can be also applied to prove an analogue of this statement for
Fontaine’s modules of finite cryatalline height in the mixed characteristic case.

2. Embedding into a π-divisible group.

2.1. The concept of π-divisible group.

Tate’s definition of p-divisible groups in the category of finite flat p-group
schemes admits the following interpretation in the categories MGh(O)K and
mod h(O)R.

A π-divisible group in the category MGh(O)K is an inductive system {Gn, in}n>1,
where for any n ∈ N, Gn ∈ MGh(O)K and in : Gn −→ Gn+1 are embeddings of
O[ΓK ]-modules such that if n > m and imn : Gm −→ Gn is the composition of
im, . . . , in−1, then we have the short exact sequence

0 −→ Gm
imn−→Gn

jnm−→Gn−m −→ 0
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and jnmin−m,n = πm idGn .

The above definition can be also adjusted to the category mod h(O)R by in-
troducing the concept of strict embedding. If L = (L,F, [π]) and L1 = (L1, F, [π])
then i ∈ Hom mod (O)R

(L1,L) is a strict embedding if it is induced by i : L1 −→ L

such that L/i(L1) has no R-torsion. Such i gives rise to a natural short exact
sequence 0 −→ L1 −→ L −→ L2 −→ 0 in the category mod (O)R. Then
we can proceed similarly to introduce a [π]-divisible group as an inductive sys-
tem {Ln, in}n>1 of objects of the category mod h(O)R, where all in are strict
embeddings.

2.2. The statement of the first main theorem.

Theorem A. If G ∈ MGh(O)K then there is a π-divisible group {Gn, in}n>1 in
the category MGh(O)K such that if N ∈ N is such that πN idG = 0 then there is
an embedding of G into GN in the category MG(O)K .

The above theorem is implied by the following theorem.

Theorem A’. If L ∈ mod h(O)R then there is a [π]-divisible group {Ln, in}n>1

in mod h(O)R such that if N ∈ N is such that [πN ]L = 0 then there is an
epimorphic map from LN to L in the category mod (O)R.

The proof of theorem A′ will be given in nn.2.3-2.6 below.

Remark When introducing the category mod h(O)R one could start with O =
Fq[π] and consider any O-algebra R. Then essentially same arguments give an
analogue of Theorem A′ everywhere locally on R.

2.3. Suppose L = (L,F, [π]) ∈ mod h(O)R.

Lemma 1. There is a unique R-linear V = VL : L −→ L(q) such that
a) V [π](q) = [π]V ;
b) V F = (π idL−[π])h;
c) FV = (π idL(q) −[π](q))h.

Proof. Because F is injective and ImF ⊃ Im(π idL−[π])h, there is a unique R-
linear V such that V F = (π idL−[π])h. Then V [π](q)F = V F [π] = [π]V F implies
that V [π](q) = [π]V , because F is injective. Similarly,

FV F = F (π idL−[π])h = (π idL(q) −[π](q))hF
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implies the part c) of our lemma.

2.4. Matrix identities

Suppose L = (L,F, [π]) is an object of the category mod h(O)R and V = VL
is the morphism from n.2.3. Choose an R-basis ē = {eb}16b6s of L and consider
square matrices C = (cab), D = (dab),Π = (γab) ∈ Ms(R) such that for 1 6 b 6 s,

V (eb) =
∑

a

ea ⊗ cab, F (eb ⊗ 1) =
∑

a

eadab, [π](eb) =
∑

a

eaγab.

Then in obvious notation it holds V (ē) = ē⊗C, F (ē⊗ 1) = ēD, [π](ē) = ēΠ and
there are the following rules of composition

V F : ē
V−→ ē⊗ C

F−→ ēDC

FV : ē⊗ 1 F−→ ēD
V−→ ē⊗ CD.

The proof of the following proposition is quite straightforward.

Proposition 2. Suppose ē = (eb)16b6s is a basis of a free R-module L and D =
(dab),Π = (γab) ∈ Ms(R). Suppose F : L(q) −→ L is given by the correspondence
ē ⊗ 1 7→ ēD and [π] : L −→ L is given via ē 7→ ēΠ. Then L = (L,F, [π]) ∈
mod h(O)R if and only if
(1) ΠD = DΠ(q), where Π(q) = (γq

ab);
(2) det D 6= 0;
(3) C := D−1(πIs −Π)h ∈ Ms(R), where Is is the identity matrix of size s;
(4) Π is nilpotent.

Remark a) If above conditions (1)-(3) hold then V : ē 7→ ē⊗C, CD = (πIs−Π(q))h

and Π(q)C = CΠ.
b) Because Π is nilpotent, det(πIs −Π) 6= 0 and, therefore, detC 6= 0.

2.5. Construction of a π-divisible group in mod h(O)R

For m > 1, let ēm be a copy of ē = (eb)16b6s. Set by definition ēm = 0̄ if
m 6 0.

For n > 1, construct the objects Ln = (Ln, Fn, [π]n) of the category mod h(O)R

as follows.
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Ln will be the free R-module of rank 2ns with the basis consisting of all
coordinates of the vectors ē1, . . . , ē2n. Define the linear maps Fn : L

(q)
n −→ Ln

and Vn : Ln −→ L
(q)
n by the following relations, where 1 6 m 6 n:

Fn(ē2m ⊗ 1) = ē2mD + ē2m−1

Vn(ē2m) = ē2m ⊗ C + ē2m−1 ⊗ 1;

Fn(ē2m−1 ⊗ 1) = −ē2m−1C +
∑

i>0

ē2m−2iYi;

Vn(ē2m−1) = −ē2m−1 ⊗D +
∑

i>0

ē2m−2i ⊗Xi

where for i > 0, the matrices Xi, Yi ∈ Ms(R) are such that

• CD + X0 = πhIs and DC + Y0 = πhIs;

• for 1 6 i 6 h, Xi = Yi = (−1)i
(
h
i

)
πh−iIs;

• for i > h, Xi = Yi = 0.

Lemma 3. For i > 0, DXi = YiD.

Proof. It is obviously true if i > 1, because in this case Xi = Yi are just scalar
matrices. If i = 0 then Y0D = (πhIs − DC)D = D(πhIs − CD) = DX0. The
lemma is proved.

Lemma 4.
∑

i>0[π]i(ē)Yi = 0.

Proof. We must prove that
∑

i>0 ΠiYi = 0. But

Y0 = −DC + πhIs = −(πIs −Π)h + πhIs = −
∑

i>1

(−1)iπh−i

(
h

i

)
Πi = −

∑

i>1

ΠiYi.

The lemma is proved.

For 1 6 i 6 2n, set [π]n(ēi) = ēi−2.

Proposition 5. For any n > 1, Ln = (Ln, Fn, [π]n) is an object of the category
mod h(O)R.

Proof. Clearly, [π]n is nilpotent. Therefore, π idLn −[π]n is given by a non-
degenerate matrix and it will be sufficient to verify the following two properties:
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a) Fn[π]n = [π](q)n Fn;

b) VnFn = (π idLn −[π]n)h.

Let 1 6 m 6 n.

Verify a):

(Fn[π]n)(ē2m ⊗ 1) = [π]n(Fn(ē2m ⊗ 1)) = [π]n(ē2mD + ē2m−1) = ē2m−2D + ē2m−3

([π](q)n Fn)(ē2m ⊗ 1) = Fn(ē2m−2 ⊗ 1) = ē2m−2D + ē2m−3

(Fn[π]n)(ē2m−1 ⊗ 1) = [π]n(−ē2m−1C +
∑

i>0

ē2m−2iYi) = −ē2m−3C +
∑

i>0

ē2(m−1)−2iYi

([π](q)n Fn)(ē2m−1 ⊗ 1) = Fn(ē2m−3 ⊗ 1) = −ē2m−3C +
∑

i>0

ē2(m−1)−2iYi

Now verify b):

(VnFn)(ē2m) = Fn(Vn(ē2m)) = Fn(ē2m ⊗ C) + Fn(ē2m−1 ⊗ 1)

= ē2mDC + ē2m−1C − ē2m−1C +
∑

i>0

ē2m−2iYi

= ē2m(DC + Y0) +
∑

i>1

ē2m−2i(−1)iπh−i

(
h

i

)

=
∑

h>i>0

ē2m−2i(−1)iπh−i

(
h

i

)
= (π idLn −[π]n)h(ē2m);

(VnFn)(ē2m−1) = Fn(Vn(ē2m−1)) = −Fn(ē2m−1 ⊗D) +
∑

i>0

Fn(ē2m−2i ⊗Xi)

= ē2m−1CD −
∑

i>0

ē2m−2iYiD +
∑

i>0

(ē2m−2iDXi + ē2m−2i−1Xi)

= ē2m−1(CD + X0) +
∑

i>1

ē2m−2i−1Xi +
∑

i>0

ē2m−2i(−YiD + DXi)

=
∑

i>0

ē2m−1−2i(−1)iπh−i

(
h

i

)
= (π idLn −[π]n)h(ē2m−1).

The proposition is proved.
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Notice that for any n > 1, we have natural strict embeddings in : Ln −→ Ln+1

in the category mod h(O)R. Then the above proposition implies the following
corollary.

Corollary 6. The inductive system {Ln, in}n>1 is a [π]-divisible group in the
category mod h(O)R.

2.6.Epimorphic map f : LN −→ L
For 1 6 m 6 N , set f(ē2m) = [π]N−m(ē) = ēΠN−m and f(ē2m−1) = 0̄. This

gives the R-linear map f : LN −→ L. This map is epimorphic because f(ē2N ) =
ē. It remains to verify that f is a morphism in the category mod h(O)R.

Proposition 7. a) f [π] = [π]Nf ;
b) f (q)F = FNf .

Proof. Let 1 6 m 6 N . Verify a):

(f [π])(ē2m) = [π]N+1−m(ē) = f(ē2m−2) = ([π]Nf)(ē2m)

(f [π])(ē2m−1) = 0̄ = f(ē2m−3) = ([π]Nf)(ē2m−1).

Now verify b):

(FNf)(ē2m ⊗ 1) = f(ē2mD) + f(ē2m−1) = [π]N−m(ē)D = ēΠN−mD

(f (q)F )(ē2m ⊗ 1) = F ([π]N−mē⊗ 1) = F (ē⊗Π(q)N−m
) = ēDΠ(q)N−m

and use that ΠD = DΠ(q).

Finally, (f (q)F )(ē2m−1 ⊗ 1) = 0 and

(FNf)(ē2m−1 ⊗ 1) = f(−ē2m−1C +
∑

i>0

ē2m−2iYi) = [π]N−m


∑

i>0

[π]i(ē)Yi


 = 0

by Lemma 4. The proposition is proved.

3. Ramification estimates.

Suppose h ∈ N and G ∈ MGh(O)K , where O = Fq[[π]] is the valuation ring
of the field of formal Laurent series K0 = Fq((π)), K = k((u)) is an algebraic
extension of K0 with perfect residue field k, R = OK is the valuation ring of K
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and e is the ramification index of the extension K/K0. We denote by vK the
valuation on K such that vK(K∗) = Z.

Theorem B. If N ∈ N is such that πNG = 0 then for

v > e

(
N − 1 +

hq

q − 1

)
− 1

the ramification subgroup Γ(v)
K acts trivially on G.

The proof of Theorem B follows the strategy from [Ab6] (where the case h = 1
was considered) and will be given in nn.3.1-3.4 below.

3.1 Auxiliary field Kα, [Ab4, n.1.5]

Let α be a rational positive number with zero p-adic valuation. Then there
are m ∈ N, gcd(m, p) = 1, and M ∈ N such that α = m/(qM − 1). Notice that
for a given α, the corresponding numbers m and M are not unique and can be
chosen to be arbitrarily large if necessary. Then there is a field extension Kα

of K with the same residue field k such that [Kα : K] = qM and its Herbrand
function equals

ϕKα/K(x) =





x, if 0 6 x 6 α;

α + x−α
qM , if x > α.

From the construction of this field extension Kα/K, cf.[Ab4, n.1.5], it follows
the existence of a uniformising element uα of Kα such that vK(u − uqM

α ) =
1 + α(1− q−M ).

Introduce the field isomorphism κα : K −→ Kα = k((uα)) such that κα(u) =
uα and κα|k = id. We have the following properties:

• ∀a ∈ R, vK(a− κα(a)qM
) > 1 + α(1− q−M );

• ∀a ∈ K, vK(a− κα(a)qM
) > vK(a) + α(1− q−M ).

Here and everywhere below in the paper we shall use the following notation:

— for a ∈ K, ã := a− κα(a)qM
;

— πα := κα(π);

— α∗ = α(1− q−M ).
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The role of the fields Kα in obtaining ramification estimates can be explained
as follows.

First, remind the definition of the biggest ramification number v(E2/E1), where
E1 ⊂ E2 are finite extensions of K in Ksep. By definition, v(E2/E1) is the second
coordinate of the last corner point of the Herbrand function ϕE2/E1

. Equivalently,

the ramification subgroups Γ(v)
E1

of ΓE1 = Gal(Ksep/E1) act trivially on E2 if and
only if v > v(E2/E1). For example, v(Kα/K) = α.

Now consider a field isomorphism κ̄α : Ksep −→ Ksep such that κ̄α|K = κα.

Proposition 8. Let E be a finite field extension of K in Ksep and let Eα =
κ̄α(E). Then:
a) if E ⊂ Eα then v(E/K) 6 α;
b) if there is a field extension K ′ ⊃ K such that EEα = K ′Eα and v(K ′/K) > α

then v(E/K) = v(K ′/K).

Proof. a) Suppose v(E/K) = v0 > α. Then Γ(v0)
K acts non-trivially on E,

acts trivially on Kα (because v(Kα/K) = α) and, therefore, acts non-trivially
on EKα ⊂ Eα. On the other hand, Γ(v0)

K = Γ(v1)
Kα

with v0 = ϕKα/K(v1) by
the definition of the Herbrand function, cf. [Se]. But then v1 > v0 (use the
explicit form of ϕKα/K) and Γ(v1)

Kα
must act trivially on Eα because v(Eα/Kα) =

v(E/K) = v0 < v1. The contradiction. So, v(E/K) 6 α and a) is proved.

b) Apply the composition property of Herbrand’s functions

ϕEα/K(x) = ϕKα/K(ϕEα/Kα
(x))

where x > 0, to their last corner points to obtain

v(Eα/K) = max{α, ϕKα/K(v(Eα/Kα))}.

This gives that v(E/K) > α. Indeed, otherwise,

ϕKα/K(v(E/K)) = ϕKα/K(v(Eα/Kα)) 6 α,

implies that v(Eα/K) = α and, therefore,

v(EEα/K) = max{v(E/K), v(Eα/K)} = α < v(K ′Eα/K).
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The contradiction. Therefore, α < v(Eα/K) < v(E/K) (use the above explicit
formula for ϕKα/K) and v(E/K) = v(EEα/K) = v(K ′Eα/K) = v(K ′/K). The
part b) is proved.

3.2. By Theorem A we can assume that G is the πN -torsion part of a π-
divisible group in the category MGh(O)K . So, if G comes from L = (L,F, [π]) ∈
mod h(O)R then we can choose an R-basis of L consisting of elements of vectors
ē1, . . . , ēN , where for i = 1, . . . , N , each ēi is a copy of ē = (e1, . . . , es) and it holds
[π](ē1) = 0̄, [π](ē2) = ē1, . . . ,[π](ēN ) = ēN−1. Then the structure of an object of
the category mod h(O)R on L is given via matrices C1, . . . , CN ∈ Ms(R), where
det(C1) 6= 0 and

F (ē1 ⊗ 1)C1 = πhē1

F (ē2 ⊗ 1)C1 + F (ē1 ⊗ 1)C2 = πhē2 −
(

h

1

)
πh−1ē1

...........................

F (ēN ⊗ 1)C1 + · · ·+ F (ē1 ⊗ 1)CN = πhēN

+ · · ·+ (−1)i

(
h

i

)
πh−iēN−i + · · ·+ (−1)hēN−h

with the agreement ēi = 0̄ if i 6 0.

Then G appears as the set of Ksep-points of the K-scheme B given by the
equations

(1)

X̄
(q)
1 C1 = πhX̄1

X̄
(q)
2 C1 + X̄

(q)
1 C2 = πhX̄2 −

(
h

1

)
πh−1X̄1

............................

X̄
(q)
N C1 + · · ·+ X̄

(q)
1 CN = πhX̄N

+ · · ·+ (−1)i

(
h

i

)
πh−iX̄N−i + · · ·+ (−1)hX̄N−h

Here X̄1, . . . , X̄N are copies of the vector X̄, which contains as its coordinates s

independent variables, and by definition X̄i = 0̄ if i 6 0. As earlier, each X̄
(q)
i is

obtained from X̄i by raising all its entries to q-th power.
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3.3. Consider the Kα-scheme Bα given as Spec Kα[Ȳ1, . . . , ȲN ] with equations

(2)

Ȳ
(q)
1 κα(C1) = πh

αȲ1

Ȳ
(q)
2 κα(C1) + Ȳ

(q)
1 κα(C2) = πh

αȲ2 −
(

h

1

)
πh−1

α Ȳ1

............................

Ȳ
(q)
N κα(C1) + · · ·+ Ȳ

(q)
1 κα(CN ) = πh

αȲN + · · ·+ (−1)i

(
h

i

)
πh−i

α ȲN−i

+ · · ·+ (−1)hȲN−h

Here Ȳ1, . . . , ȲN are copies of the vector Ȳ , which contains as its coordinates s

independent variables, and by definition Ȳi = 0̄ if i 6 0.

As earlier in n.3.1, consider the field isomorphism κ̄α : Ksep −→ Ksep, which
extends the field isomorphism κα. Clearly, κ̄α induces a one-to-one map between
the points G = B(Ksep) and Gα := Bα(Ksep). In particular, if E = K(G) (resp.
Eα = Kα(Gα)) is the field of definition of all points of G (resp. Gα) over K (resp.
Kα), then κ̄α(E) = Eα.

Lemma 9. a) If α∗ > e
(
N − 1 + hq

q−1

)
− 1 and (Ȳ 0

1 , . . . , Ȳ 0
N ) ∈ Gα then there is

a unique (X̄0
1 , . . . , X̄0

N ) ∈ G such that vK(X̄0
i − Ȳ 0qM

i ) > eh
q−1 for all 1 6 i 6 N .

b) With the above notation the correspondence

(Ȳ 0
1 , . . . , Ȳ 0

N ) 7→ (X̄0
1 , . . . , X̄0

N )

gives a one-to-one map between the points of Gα and G.

Lemma 9 implies the following corollary.

Corollary 10. If α∗ > e
(
N − 1 + hq

q−1

)
− 1 then EKα = Eα.

Proof of corollary. Denote by η : Gα −→ G the one-to-one map from Lemma
9. Clearly, for any τ ∈ ΓKα = Gal(Ksep/Kα) and Ȳ 0 ∈ Gα, it holds τ(η(Ȳ 0)) =
η(τ(Ȳ 0)). Therefore, Gal(Ksep/Eα) =

{
τ ∈ ΓKα | τ Ȳ 0 = Ȳ 0,∀Ȳ 0 ∈ Gα

}

=
{
τ ∈ ΓKα | τX̄0 = X̄0,∀X̄0 ∈ G

}
= Gal(Ksep/EKα). The corollary is proved.

Proof of Lemma 9 First, prove the part a.)

For 1 6 i 6 N , let Z̄i = X̄i − Ȳ
0(qM )
i , C̃i = Ci − κα(Ci)(q

M ) and (as earlier)
π̃i = πi − κα(πi)qM

. Then Z̄1, . . . , Z̄N satisfy the following equations (where by
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definition Z̄i = 0̄ if i 6 0)

(3)

Z̄
(q)
1 C1 = πhZ̄1 + F̄1

Z̄
(q)
2 C1 + Z̄

(q)
1 C2 = πhZ̄2 −

(
h

1

)
πh−1Z̄1 + F̄2

................................

Z̄
(q)
N C1 + · · ·+ Z̄

(q)
1 CN = πhZ̄N + · · ·+ (−1)i

(
h

i

)
πh−iZ̄N−i

+ · · ·+ (−1)hZ̄N−h + F̄N

where

F̄1 = π̃hȲ
0(qM )
1 − Ȳ

0(qM+1)
1 C̃1

F̄2 = π̃hȲ
0(qM )
2 −

(
h

1

)
π̃h−1Ȳ

0(qM )
1 − (Ȳ 0(qM+1)

2 C̃1 + Ȳ
0(qM )
1 C̃2)

...........................

F̄N = π̃hȲ
0(qM )
N + · · ·+ (−1)i

(
h

i

)
π̃h−iȲ

0(qM )
N−i + · · ·+ (−1)h−1hπ̃Ȳ

0(qM )
N−h+1−

− (Ȳ 0(qM+1)
N C̃1 + · · ·+ Ȳ

0(qM+1)
1 C̃N )

Clearly, the above formulas imply that

vK(F̄i) = min{vK(coordinates of F̄i)} > α∗ + 1 > e

(
N − 1 +

hq

q − 1

)
.

Then the statement a) of Lemma 9 is equivalent to the existence of a unique
solution Z̄0

1 , . . . , Z̄0
N ∈ Ks

sep of system (3) such that for all 1 6 i 6 N , vK(Z̄0
i ) >

eh
q−1 .

This follows easily by induction from the following lemma.

Lemma 11. Suppose Z̄ is a vector with s independent variables as its coordinates
and ā ∈ Ks

sep is such that vK(ā) > ehq
q−1 . Then the system of equations

Z̄(q)C1 − πhZ̄ = ā

has a unique solution Z̄0 ∈ Ks
sep such that vK(Z̄0) = vK(ā)− eh; in addition, all

coordinates of Z̄0 belong to the field of definition of ā over K.

Proof of Lemma 11. The existence is given by the following explicit formula

Z̄0 = −π−hā−π−h(1+q)ā(q)C1−. . .−π−h(1+...+qn+1)ā(qn+1)C
(qn)
1 C

(qn−1)
1 . . . C1−. . .
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Suppose Z̄1 6= Z̄0 is another solution with vK(Z̄1) > eh
q−1 . Then for W̄ =

Z̄0 − Z̄1 we have vK(W̄ ) > eh
q−1 and W̄ (q)C1 = πhW̄ . But then vK(πhW̄ ) =

vK(W̄ (q)C1) > vK(W̄ (q)) = vK(W̄ ) + (q − 1)vK(W̄ ) > vK(W̄ ) + eh = vK(πhW̄ ).
The contradiction. Lemma 11 is proved.

Continue the proof of lemma 9. Its part b) follows from the following obser-
vation. Any two solutions (X̄0

1 , . . . , X̄0
N ) and (X̄1

1 , . . . , X̄1
N ) of (1) such that for

1 6 i 6 N , vK(X̄0
i − X̄1

i ) > eh/(q − 1), must coincide. This can be proved again
by induction from the uniqueness property of Lemma 11. Lemma 9 is proved.

3.4. Finally, suppose that

v = v(E/K) > e

(
N − 1 +

qh

q − 1

)
− 1.

Choose α ∈ Q, α > 0 with zero p-adic valuation and a corresponding big enough
M ∈ N, cf. n.3.1, such that

v > α > α∗ > e

(
N − 1 +

qh

q − 1

)
− 1.

Then by Corollary 10 we have Eα = EKα and, therefore, Proposition 8 implies
that v 6 α. The contradiction. Therefore, the above assumption about v =
v(E/K) is false and Theorem B is completely proved.

4. Computation of an upper ramification number

As earlier, h,N ∈ N, K = k((u)) with perfect k of characteristic p, q is a power
of p, K0 = Fq((π)) is a closed subfield in K, R and O are valuation rings in K

and K0, respectively, and e = e(K/K0) is the ramification index of K/K0.

4.1 The statement of Theorem C

Introduce L = (L,F, [π]) ∈ mod h(O)R as follows.

Let L be a free R-module with the basis e1, . . . , eN , e0
1, . . . , e

0
N . Define [π] ∈

EndR L by the relations [π](e0
n) = e0

n−1 and [π](en) = en−1, where 1 < n 6 N .
Define an R-linear morphism F : L(q) −→ L by the following relations:

F (e0
n ⊗ 1) = e0

n, F (en ⊗ 1) =
∑

06j6h

(−1)j

(
h

j

)
πh−jen−j − ue0

n,
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where 1 6 n 6 N , and by definition en = e0
n = 0 if n 6 0. Clearly, for any

1 6 n 6 N , (π idL−[π])h(e0
n) is an R-linear combination of F (e0

i ⊗ 1) = e0
i ,

1 6 i 6 n, and also (π idL−[π])h(en) = F (en ⊗ 1) + ue0
n ∈ Im F . Therefore,

L = (L,F, [π]) ∈ mod h(O)R.

Let L(0) := (L(0), F (0), [π](0)), where L(0) is the submodule of L generated by
e0
1, . . . , e

0
N and F (0) and [π](0) are induced by F and [π], respectively. Then L(0) ∈

mod 0(O)R ⊂ mod h(O)R and we have a natural embedding of L(0) into L in the
category mod h(O)R. This embedding is strict and gives rise to the following
short exact sequence in mod h(O)R, 0 −→ L(0) −→ L −→ L(h) −→ 0, where
L(h) = (L(h), F (h), [π](h)) ∈ mod h(O)R, L(h) is the free R-module with basis
e1
1, . . . , e

1
N , [π](h)(e1

n) = e1
n−1 and F (h)(e1

n) = (π idL(h) −[π](h))he1
n with

1 6 n 6 N and e1
0 = 0.

Consider the corresponding short exact sequence of ΓK-modules

0 −→MΓ(L(h)) −→MΓ(L) −→MΓ(L(0)) −→ 0.

Clearly G(0) = MΓ(L(0)) is just the cyclic module O/πN with the trivial ΓK-
action.

Remark. Though we do not need it, notice that for h = 1, the Galois module
structure on G(1) = MΓ(L(1)) is induced by the restriction to ΓK of the Lubin-
Tate character χLT : ΓK0 −→ O∗. In equivalent terminology, G(1) is the πN -
torsion of the Carlitz module over O. Then L(h) appears as h-th tensor power of
L(1) and, therefore, the action of ΓK on the corresponding G(h) = MΓ(L(h)) is
induced by the restriction to ΓK of the character χh

LT .

Theorem C. Suppose G = MΓ(L) and
( −h
N−1

) 6≡ 0mod p. Then the ramification

subgroups Γ(v)
K act trivially on G if and only if v > e(N − 1 + hq/(q − 1))− 1.

Remark. If h = 1 then the above result has an analogue in the mixed charac-
teristic case. Namely, if K ⊃ Qp then there is a finite flat group scheme G over

R = OK such that G = Spec A, A = ⊕06i<pN R[ pN√
vi] and v = 1 + u, where u

is a uniformising element of K. This group scheme appears as an extension of
the constant etale group scheme (Z/pNZ)R over R via the constant multiplica-
tive group scheme µpN = Spec R[X]/(XpN − 1) over R. One can verify that Γ(v)

K

acts trivially on G(Ksep) if and only if v > e(N + 1/(p − 1)) − 1, i.e. Fontaine’s
estimate from [Fo1] is sharp. In the equicharacteristic case the above Theorem
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C shows that under the additional condition
( −h
N−1

) 6≡ 0mod p the estimate from
Theorem B is sharp. If this additional condition does not hold one should expect
the existence of better ramification estimates.

Proof of Theorem C. The proof is given below in the remaining part of the paper.

4.2. Let X1, . . . , XN , Y1, . . . , YN be independent variables. Then the O[ΓK ]-
module G appears as the set of all solutions g = (Y 0

1 , . . . , Y 0
N , X0

1 , . . . , X0
N ) ∈ K2N

sep

of the following system of equations:

(4) Xq
n = Xn, Y q

n =
∑

06j6h

(−1)j

(
h

j

)
πh−jYn−j − uXn,

where 1 6 n 6 N and by definition Xn = Yn = 0 if n 6 0. Notice that the
structure of O-module on this set of solutions is induced by the usual addition
and the action of O is given by the relations [π](Xn) = Xn−1, [π](Yn) = Yn−1

and for any α ∈ Fq, [α](Xn) = αXn, [α](Yn) = αYn. Let g ∈ G be such that
X1(g) = · · · = XN (g) = 1. Then its field of definition K(g) over K appears in
the form K(Y 0

1 , . . . , Y 0
N ), where (Y 0

1 , . . . , Y 0
N ) ∈ KN

sep is a solution of the following
system of equations

(5) Y q
n − πhYn =

∑

16j6h

(−1)j−1

(
h

j

)
πh−jYn−j − u, 1 6 n 6 N,

Notice that for above choice of g ∈ G, the field of definition K(G) of all points
of G over K is equal to the composite K(g)K(G(h)), where K(G(h)) is the field
of definition of all points of G(h) = MΓ(L(h)) over K. (Use that any point of G

appears in the form [o]g + g1, where o ∈ O and g1 ∈ G(h).)

4.3. A property of K(G(h))

Use the notation and definitions from n.3.1.

Proposition 12. There is δ(N, h) > 0 such that if α∗ > e
(
N − 1 + h

q−1

)
−

δ(N, h) then K(G(h))Kα = κ̄α(K(G(h))).

Proof. The elements of G(h) are solutions (X0
1 , . . . , X0

N ) ∈ KN
sep of the following

system of equations (where, as usually, Xi = 0 if i < 0):
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Xq
1 = πhX1

Xq
2 = πhX2 −

(
h

1

)
πh−1X1

............................

Xq
N = πhXN + · · ·+ (−1)i

(
h

i

)
πh−iXN−i + · · ·+ (−1)hXN−h

Because the action of O on G(h) is transitive, K(G(h)) = K(X0
1 , . . . , X0

N ), where
(X0

1 , . . . , X0
N ) ∈ G(h) is such that X0

1 6= 0. As earlier, κ̄α establishes a one-to-one
correspondence between G(h) and the set G

(h)
α of solutions (X0

1α, . . . , X0
Nα) ∈ KN

sep

of the system

(6)

Xq
1α = πh

αX1α

Xq
2α = πh

αX2α −
(

h

1

)
πh−1

α X1α

............................

Xq
Nα = πh

αXNα + . . . + (−1)i

(
h

i

)
πh−i

α XN−i,α + . . . + (−1)hXN−h,α

(as earlier, Xiα = 0 if i < 0). Choose (X0
1α, . . . , X0

Nα) ∈ G
(h)
α such that X0

1α 6= 0
and set Zi = Xi − X0qM

iα . Notice that Kα(X0
1α, . . . , X0

Nα) = κ̄α(K(G(h))) :=
Kα(G(h)

α ). Then Z1, . . . , ZN satisfy the following system of equations

(7)

Zq
1 = πhZ1 + F1

Zq
2 = πhZ2 −

(
h

1

)
πh−1Z1 + F2

............................

Zq
N = πhZN + . . . + (−1)i

(
h

i

)
πh−iZN−i + . . . + (−1)hZN−h + FN

where

F1 = π̃hX0qM

1α

F2 = π̃hX0qM

2α −
(

h

1

)
π̃h−1X0qM

1α

............................

FN = π̃hX0qM

Nα + . . . + (−1)i

(
h

i

)
π̃h−iX0qM

N−i,α + . . . + (−1)h−1hπ̃X0qM

N−h+1,α.
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Set

δ(N, h) = min
{

vK(X0qM

iα ) | 1 6 i 6 N
}

.

Clearly, δ(N, h) > 0. Notice that all Fi ∈ Kα(G(h)
α ) and for 1 6 i 6 N , it holds

vK(Fi) > e(h + 1− i) + α∗ + δ(N, h) > e(N − i) +
ehq

q − 1
.

Now we can proceed with a small induction to find successively Z1 then Z2

etc. by using Lemma 11 for the first equation, then the second, etc. This will
give the existence of a unique solution (Z0

1 , . . . , Z0
N ) of system (7) such that for

1 6 i 6 N , vK(Z0
i ) > e

(
N − i + h

q−1

)
. As earlier in n.3.3 this implies that

K(G(h))Kα = Kα(G(h)
α ).

Proposition 12 is proved.

4.4. Now we are going to study the fields K(g), where g ∈ G is such that
X1(g) = · · · = XN (g) = 1, cf. n.4.2.

Consider the following formal identity on the K-algebra A of functions on G

(π idA−[π])−h = π−h
∑

i>0

γiπ
−i[π]i,

where for all i > 0, γi = (−1)i
(−h

i

)
. This allows us to rewrite system (5) in the

following equivalent form:

Y q
n − πhYn = −

∑

16i<n

γi

πi
Y q

n−i − u
∑

06i<n

γi

πi
, 1 6 n 6 N.

Use the notation and definitions from n.3.1.

Remind that for any a ∈ K1, ã = a− κα(a)qM
. If a is given by a big formula

then we shall use also the notation ã = (a)∼. Until the end of this paper we
assume that α = m

qM−1
∈ Q and M ∈ N are chosen such that

α(1− q−M ) = α∗ = e(N − 1) +
eqh

q − 1
− 1− ε(α),

where

• 0 < ε(α) < q−N ;

• αq−M < ε(α);
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• ε(α) < δ(N, h).

(Use that rational numbers with zero p-adic valuation are dense in the set of
all rational numbers and for a given α we can choose arbitrarily large M). Notice
that α∗qM = m ∈ N is prime to p and this implies that the p-adic valuation of
ε(α)qM is zero. Notice also that under such a choice of α we can apply the result
of proposition 12.

As earlier, choose an extension κ̄α of κα to Ksep. Then it induces a one-to-one
correspondence between the set of solutions of system (5) and the solutions of
the system

(8) Y q
nα − πh

αYnα = −
∑

16j6h

(−1)j−1

(
h

j

)
πh−j

α Yn−j,α − uα

∑

06j<n

γi

πi
α

, 1 6 n 6 N,

Fix a solution gα = (Y 0
1α, . . . , Y 0

Nα) ∈ KN
sep of this system and set K(gα) =

K(Y 0
1α, . . . , Y 0

Nα). Introduce for 1 6 n 6 N , the new variables Zn such that
Zn = Yn − Y 0qM

nα .

Then Z1, . . . , ZN satisfy the following system of equations

(9) Zq
n−πhZn = π̃hY 0qM

nα −
∑

16i<n

(γi

πi

)∼
Y 0qM+1

n−i,α −
∑

16i<n

γi

πi
Zq

n−i−
∑

06i<n

(γiu

πi

)∼
.

Proposition 13. System (9) has a solution (Z0
1 , . . . , Z0

N ) such that
a) if 1 6 n < N , then Z0

n ∈ Kα(gα) and

vK(Z0
n) > eh

q − 1
+ e(N − n)− ε(α);

b) if n = N then Z0
N−γN−1W

0 ∈ Kα(gα) where W 0 is a solution of the equation
W q − πhW = −π1−N ũ.

We shall prove this proposition below in n.4.5 and use now this result to finish
the proof of Theorem C.

Suppose g ∈ G corresponds to the solution (Y 0qM

1α +Z0
1 , . . . , Y 0qM

Nα +Z0
N , 1, . . . , 1)

of system (4). Then Proposition 13 implies that

K(g)Kα(gα) = K ′Kα(gα),
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where K ′ = Kα(W 0). Notice that

vKα(π−(N−1)ũ) = qMvK(π−(N−1)ũ) =
eqM+1h

q − 1
− qMε(α)

is a prime to p integer. This implies easily that the maximal upper ramification
number of K ′ over Kα is v(K ′/Kα) = qMε(α) > α and, therefore,

v(K ′/K) = max
{
v(Kα/K), ϕKα/K(qMε(α))

}
= α∗+ε(α) = e

(
N − 1 +

hq

q − 1

)
−1.

As v(K ′/K) > α, Proposition 8 implies the equality v(K(g)/K) = v(K ′/K),
which proves Theorem C.

4.5. Proof of proposition 13.

Lemma 14. Suppose (Y 0
1 , . . . , Y 0

N ) ∈ KN
sep is a solution of system (5). If 1 6

n 6 N and r = r(n) ∈ Z>0 is such that rh < n 6 (r + 1)h then vK(Y 0
n ) = q−r−1.

Proof. Use induction on 1 6 n 6 N .

If n = 1 the statement is obviously true, because Y 0q
1 −πhY 0

1 = −u, vK(Y 0
1 ) =

1
qvK(u) and r(1) = 0.

Suppose n > 1 and the proposition is proved for all n′ < n.

If n 6 h then r(1) = · · · = r(n) = 0 and for 1 6 j < n,

vK(πh−jY 0
n−j) = (h− j)e +

1
q

> 1 = vK(u)

and from the equation for Y 0
n it follows vK(Y 0

n ) = q−1.

If n > h then r(n) > 1 and we have for 1 6 j < h,

vK(πh−jY 0
n−j) > e + q−r(n−1)−1 > 1 = vK(u) > q−r(n−h)−1 = vK(Y 0

n−h),

Therefore, vK(Y 0
n ) = 1

qvK(Y 0
n−h) = q−r(n−h)−2 = q−r(n)−1. The Lemma is

proved.

Corollary 15. With the above notation for 1 6 n 6 N , vK(Y 0qM

nα ) = q−r(n)−1.

Lemma 16. Suppose 1 6 n 6 N , 1 6 i < n. Then

a) vK

(
π̃−iY 0qM+1

n−i,α

)
> eqh

q−1 + e(N − n) if i 6= n− 1;

b) vK

(
π̃−iY 0qM+1

n−i,α

)
> eqh

q−1 + e(N − n)− ε(α) if i = n− 1;



492 Victor Abrashkin

c) vK

(
π̃hY 0qM

nα

)
> ehq

q−1 + e(N − n);

d) vK

(
u
πi

)∼ > ehq
q−1 + e(N − n)− ε(α).

Proof of lemma. We have

vK

(
π̃−iY 0qM+1

n−i,α

)
> eqh

q − 1
+ e(N − n) + e(n− i− 1)− 1 + q−r(n−i) − ε(α).

Then use that if i 6= n−1 then e(n− i−1) > 1 and if i = n−1 then r(n− i) = 0.
(Remind also that ε(α) < q−N .) This proves parts a) and b). Similarly,

vK

(
π̃hY 0qM

nα

)
> ehq

q − 1
+ e(N − n) + he− 1− ε(α) + q−r(n)−1.

Then c) follows because he > 1 and ε(α) < q−N , cf. n.4.4. The part d) can be
proved similarly.

The lemma is proved.

Now we can prove Proposition 13.

Use induction on N .

Suppose N = 1. Then there is nothing to prove in a) and Z0
1 appears as a

solution of the equation

(10) Zq
1 − πhZ1 = π̃hY 0qM

1α − γ0ũ.

Therefore, b) follows from Lemma 11 via the estimate c) of Lemma 16.

Now suppose N > 1 and use induction on 1 6 n < N to prove a). If n = 1 then
Z0

1 must satisfy equation (10). Again use Lemma 11 by estimating the valuation
of the right hand side of this equation via the part c) of Lemma 16.

Suppose 1 < n 6 N and we have chosen the corresponding Z0
1 , . . . ,Z0

n−1. Then
for 1 6 i < n,

vK(π−iZ0q
n−i) > −ie + q

(
eh

q − 1
+ e(N − n + i)− ε(α)

)

> ehq

q − 1
+ e(N − n) + (q − 1)ei− qε(α) >

ehq

q − 1
+ e(N − n),

because ε(α) < q−N < q−1, cf. n.4.4.
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This estimate together with estimates from Lemma 16 imply that the right-
hand side of equation (9) has vK-valuation > ehq

q−1 + e(N − n)− ε(α). Therefore,
by Lemma 11 we can choose for n < N , the solution Z0

n ∈ Kα(gα) with

vK(Z0
n) > eh/(q − 1) + e(N − n)− ε(α).

This proves the part a).

If n = N then for a similar reason, the right-hand side of (9) can be written as

−γN−1

(
(π1−N )∼Y 0qM+1

1α + (π1−Nu)∼
)

+ a,

where a ∈ Kα(gα) and vK(a) > ehq/(q − 1).

Then notice that:

1) Y qM+1

1α = πhqM

α Y qM

1α − uqM

α ;

2) the vK-valuation of (π1−N )∼πhqM

α Y 0qM

1α is strictly bigger than ehq/(q − 1);

3) there is an identity
(

u
πN−1

)∼ − (
1

πN−1

)∼
uqM

α = 1
πN−1 ũ.

This implies that the right-hand side of (9) in the case n = N is equal to
− γN−1

πN−1 ũ + a′, where a′ ∈ Kα(gα) and vK(a′) > ehq/(q − 1).

Therefore, by Lemma 11 the part b) is proved.
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