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Abstract: For each pair q1 ≥ q2 ≥ 1 of real numbers, the authors define a
complex algebra (with identity) H = H(q1, q2), an associated involutive Ba-
nach algebra A = A(q1, q2) and its associated enveloping C∗-algebra C∗(A),
and a quotient C∗-algebra C∗

r (A). Deformation arguments are used to ob-
tain an explicit Plancherel formula for C∗

r (A); the unitary dual of C∗
r (A) is

explicitly described, as is the unitary dual of C∗(A). These results, together
with the theory of types, are used to obtain the Plancherel measure for the
group SL2(F ), where F is a complete non archimedean local field with ar-
bitrary residual characteristic p. This includes an explicit description of the
reduced dual. The methods, but not the results, are independent of p.
Key words and phrases: Hecke algebra, C∗-algebra, Plancherel measure,
type, reduced dual.

0. Introduction

Let q1 ≥ q2 ≥ 1 be two real numbers. In this paper we consider an affine
Hecke algebra H = H(q1, q2) in two parameters: thus it is the complex algebra
with two generators si, i = 1, 2 subject only to the relations s2

i = cisi + 1 where
ci =

√
qi − √qi

−1. In §1 we quickly review the classification of the irreducible
modules of H. The algebra H can be equipped with an involution and a norm;
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in §2 we complete H with respect to this norm to obtain an involutive Banach
algebra A = A(q1, q2). The main result in §2 is the explicit determination of
the topological structure of the full unitary dual Â of the enveloping C∗-algebra
C∗(A) associated to A. (See Proposition 2.10.)

The algebraH is also equipped with a scalar product which provides it with the
structure of a Hilbert algebra (§3.5). In §3 we determine an explicit Plancherel
formula for the reduced C∗-algebra, C∗

r (A) (a quotient of C∗(A)) which results
from this structure (Theorem 3.14). To write down such a formula means to
describe explicitly a certain measure and its support Âr; we describe Âr as a
closed subset of Â. This is accomplished in Proposition 3.15. Modulo some
standard facts on C∗-algebras, sections 1 – 3 are self contained. Finally, in §4
we apply the formula(s) in §3 to obtain the Plancherel measure for the group
SL2(F ) where F is a complete non archimedean local field with arbitrary residue
characteristic p, and describe its reduced dual. For this we avail ourselves of the
theory of types for SL2(F ) (see below). The main result here is Theorem 4.5.

Since others (see [Mat]) have previously derived explicit Plancherel formulas
for affine Hecke algebras in two parameters, and yet others (see [Op]) have ob-
tained formulae for far more general algebras, and since the Plancherel formula
for SL2(F ) was written down some time ago in case p 6= 2, we feel bound to point
out what we think is new in this account. As far as we know, previous versions
(notably [Mat], [Op]) of a Plancherel formula for an affine Hecke algebra have
used some form of residue calculus; this method can be traced back to the theory
of Eisenstein series. Here we use a deformation argument, completely avoiding
residue calculus. Namely we obtain a formula when q1 = q2 = 1 and deduce the
general formula from that. Indeed the rational function that traditionally appears
in this formula has a very clear and conceptual explanation from this point of
view. It is a pleasant exercise to see that the formula we obtain in Theorem 3.14
is the same as that obtained in [Mat], page 47. We also note that Proposition
2.10 implies that the full unitary dual Â as a topological space is independent of
q1, q2.

Our approach to the Plancherel formula for SL2(F ) is very different from pre-
vious methods, and provides a conceptual route to that formula. The method,
but not the answer, is independent of the residue characteristic of F ; moreover it
minimises the role of analysis: this appears primarily in the universal derivation
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of the Plancherel formula for the two parameter Hecke algebra in §3, and there
we largely draw from the theory of C∗-algebras. Briefly, the underlying ideas are
as follows.

If G is the group of F -points of a connected reductive group defined over F

then Bernstein showed that the category R(G) of smooth representations of G

decomposes into a product of full subcategories:

(0.1) R(G) =
∏

s∈B(G)

Rs(G).

Here B(G) is the set of G-inertial equivalence classes [BK] of cuspidal pairs (L, σ)
where L is the group of F -points of an F -Levi subgroup (of an F -parabolic) and
σ is an irreducible supercuspidal representation of L.

Now suppose that µ is a Haar measure on G. If (K, λ) is a pair consisting
of a compact open subgroup K of G and a smooth irreducible representation
(λ,W ) of K, write (λ̌, W̌ ) for the contragredient representation of (λ,W ), and
let H(G,λ) be the convolution algebra with respect to µ of compactly supported
EndC(W̌ )-valued functions f on G such that

f(k1gk2) = λ̌(k1)f(g)λ̌(k2)

for all g ∈ G, k1, k2 ∈ K. If (K, λ) is an s-type (see [BK]) there is an equivalence
of categories

Mλ : Rs(G) → H(G,λ)-Mod,

given on objects by V 7→ Vλ = HomK(W,V).

Let Ĝr denote the reduced dual of G with Plancherel measure µ̂ corresponding
to µ. For s as above let Ĝr(s) denote the set of equivalence classes of irreducible
representations (π, H) of Ĝr such that the space of smooth vectors (π∞,H∞) ∈
Rs(G). According to [BHK] there is a disjoint union

(0.2) Ĝr = ∪s∈B(G)Ĝr(s),

induced from the decomposition (0.1), and each Ĝr(s) is an open subset of Ĝr. If
(K, λ) is an s-type we can define Ĝr(λ) analogously, and in fact Ĝr(λ) = Ĝr(s).
The algebraH(G,λ) is in a natural way a normalised Hilbert algebra (see [BHK]),
so that one can construct a C∗-algebra C∗

r (G,λ) in which H(G,λ) naturally
embeds, with dual space C∗

r (G,λ)̂ , and positive Borel measure µ̂H(G,λ).
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Theorem 4.3 of [BHK] says that there is a homeomorphism

(0.3) m̂λ : Ĝr(λ) → C∗
r (G,λ)̂,

which is induced from Mλ, and that if S is a measurable subset of Ĝr(λ) then

(0.4) µ̂λ(S) =
dimW

µ(K)
µ̂H(G,λ)(m̂λ(S)).

For the group SL2(F ), the second author has provided in [K] a type (J, λ)
for each s, and he has described the algebra H(G,λ) explicitly. Using this, the
principles above, and the results in §3 we describe each Ĝr(λ) and µ̂λ in §4 of
this paper. We do not provide the dimension of λ in case s corresponds to a
supercuspidal representation of G: if the residue characteristic of F 6= 2 this is
well known, and if the residue characteristic of F is 2 it can be computed in
principle starting from the results in [KP]. We remark that the final version of
the Plancherel formula in Theorem 4.5 is written down for that Haar measure µ

on G in which µ(SL2(o)) = 1; here o denotes the ring of integers in F . We leave
it to the interested reader to verify that the formula here differs by a constant
from those in in [GGPS], [SSh], which depend on another normalisation of Haar
measure. We note that the descriptions of the sets Âr in §3 provide us with
descriptions of the sets Ĝr(λ).

The results in §3 could also be used in a similar way to derive the Plancherel
formula for the group PGL2(F ).

Much of this paper was conceived and written during Autumn 1997, while
the two authors were visiting the Institut des Hautes Études Scientifiques, and
the École Normale Supérieure respectively. We thank those institutions for their
hospitality.

1. The algebra H and its representations

1.1 We fix two real numbers q1 ≥ q2 ≥ 1 and we set γi = q
1
2
i , ci = γi−γ−1

i , i =
1, 2. We let H = H(q1, q2) be the complex algebra with identity 1 and two
generators si, i = 1, 2 subject only to the relations

(1.1.1) s2
i = cisi + 1, i = 1, 2.



Explicit Plancherel Theorems for H(q1, q2) and SL2(F ) 439

We note that si is invertible: s−1
i = si − ci, i = 1, 2.

Viewed as a complex vector space the algebra H has a basis consisting of
elements of the form w =

∏k
i=1 ui, ui ∈ {s1, s2} where, for 1 ≤ i ≤ k − 1,

ui 6= ui+1. (We allow for the case k = 0 as well; in that case, we set w = 1.) We
refer to these elements as words and denote the set of words by W; for each such
word w we define its length, l(w), by l(w) = k.

We set d = s1s2, d̄ = s2s1 and set D = C[d, d−1]. We write Z for the center
of H. The elementary lemma below will be very useful for calculations.

Lemma. We have

d−1 = d̄− c2s1 − c1s2 + c1c2,

and furthermore

(1.1.2) s1d− d−1s1 = c1d + c2, s1d
−1 − ds1 = −c1d− c2;

(1.1.3) s2d− d−1s2 = c2d + c1, s2d
−1 − ds2 = −c2d− c1.

Proof. This is a direct calculation.

1.2 Corollary.

(i) H is free of rank two as a left D-module. A basis is given by {1, s1}.
(ii) Set z = d + d−1. Then z = d̄ + d̄−1, and z ∈ Z. Moreover,

Z ∼= C[z],

and D is free of rank two as a left Z-module with basis {1, d}.
(iii) Set t = c1d + c2 − (d− d−1)s1. Then

td = d−1t

and

t2 = −f(z) = −(z2 − c1c2z − (c2
1 + c2

2 + 4)).

(iv) We have f(x) = 0 for x = γ1γ2 + 1
γ1γ2

, x = −(γ1

γ2
+ γ2

γ1
).

Proof. The last two assertions follow easily from Lemma 1.1. As for (i), note that
Lemma 1.1 implies D +Ds1 is a subalgebra of H which contains s1. Moreover,

s2 = c2 + s−1
2 = c2 + s−1

2 s−1
1 s1 = c2 + d−1s1 ∈ D +Ds1,
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hence D + Ds1 = H. Since s1 is not a zero-divisor, it will therefore suffice to
show that

(1.2.1) H = D ⊕Ds1

Suppose that a ∈ D ∩ Ds1. Then dra ∈ C[d] ∩ C[d]s1 for large enough r. This
latter intersection is {0} since the words in C[d] all have even length while the
words in C[d]s1 all have odd length. Since d is invertible it follows that a = 0
and so D ∩Ds1 = 0. Thus H = D ⊕Ds1.

The first assertion in (ii) is a direct computation. For the other assertions,
first note that (1.1.2) and (1.1.3) imply that C[z] ⊆ Z. Next, observe that D
is an integral domain. Then (1.2.1) implies that Z ⊆ D. Indeed if a + bs1 ∈ Z
so that d(a + bs1) = (a + bs1)d, a short computation (use (1.1.1) and (1.2.1))
shows that b(d− d−1) = 0, hence b = 0. Since d±2 = zd±1 − 1 and d−1 = z − d,

we have D = C[z] + C[z]d. Suppose then that z1 + z2d ∈ Z where zi ∈ C[z].
Thus s1(z1 + z2d) = (z1 + z2d)s1, and this implies that z2(ds1 − s1d) = 0. By
(i) H = D ⊕ Ds1, thus if z2 6= 0 it cannot be a zero divisor. Since ds1 6= s1d it
follows that z2 = 0.

1.3 Given any complex unital algebra A we write A-Mod for the category of
all unital left A-modules. Given a left D-module N , we set indN = indHDN =
HomD(H, N). Then indN is a leftH-module via aφ(x) = φ(xa), φ ∈ indN, a, x ∈
H and we obtain in this way a functor

indHD : D-Mod → H-Mod.

On the other hand, we have the usual functor of restriction

res = resHD : H-Mod → D-Mod

It will be useful to us that (res, ind) is an adjoint pair. This means that, given
a left D-module N and a left H-module M there is an isomorphism of complex
vector spaces

T (M, N) : HomD(resM, N) ∼= HomH(M, indN)
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and that, further, the collection of maps T (M, N) is natural in M and N . In our
case, the maps T (M, N) are defined as follows. Given f ∈ HomD(resM, N) we
set T (M, N)f(m)(x) = f(xm), m ∈ M, x ∈ H.

1.4 We set X = Homalg(D,C). Then we may identify X with C× via χ →
χ(d), χ ∈ X. Given χ ∈ X we write Cχ for C viewed as a left D-module via
b · x = χ(b)x, b ∈ D, x ∈ C. Then the set of modules Cχ is, up to equivalence, a
complete set of irreducible left D-modules.

Set M = indD where D is viewed as a left D-module via left multiplication.
Then M is a left H-module as above and is also a right D-module, the action
f → f · b of D on M being given by

f · b(x) = f(x)b, f ∈ M, b ∈ D, x ∈ H.

One checks that these structures are compatible; that is, that M is an (H,D)-
bimodule.

Corollary 1.2 implies that M is free as a right D-module; for example, one has
the basis {Φ0,Φ1} where

Φ0(1) = 1, Φ0(s1) = 0;

Φ1(1) = 0, Φ1(s1) = 1.

Using this basis to identify M with D⊕D one obtains a matrix representation
σ : H → M2(D) which is given on the generators si by

σ(s1) =

[
0 1
1 c1

]
, σ(s2) =

[
c2 d−1

d 0

]
.

It follows that σ(d) =

[
d 0

c1d + c2 d−1

]
.

If f = f(d, d−1) ∈ D we define f− by f−(d, d−1) = f(d−1, d). The map f → f−

is an algebra automorphism. We now define D− to be the left D-module whose
underlying set is just D but where the module structure is given by

x · y = x−y, x ∈ D, y ∈ D−
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and set M− = indD−. Then M− is an (H,D)-bimodule where the right module
structure is obtained as for M above, viewing D− as a right D-module under
ordinary multiplication. The following simple result, whose proof is immediate,
will be very useful in what follows.

1.5 Proposition.

(i) For F ∈ M, define the D-valued function J(F ) on H by J(F )(h) = F (th),
h ∈ H. Then J(F ) ∈ M− and J : M → M− is an injective map of (H,D)
bi-modules.

(ii) For F ∈ M− define the D-valued function J−(F ) on H by J−(F )(h) =
F (th), h ∈ H. Then J−(F ) ∈ M and J− : M− → M is an injective map
of (H,D) bi-modules.

(iii) We have J− ◦ J(F ) = −f(z)F, F ∈ M.

1.6 We set X̃ = Homalg(H,C). Then X̃ has four elements, these elements being
obtained by sending si to either γi or −γ−1

i , i = 1, 2. Given ρ ∈ X̃, we write Cρ

for the one-dimensional left H-module corresponding to ρ.

For χ ∈ X, set Mχ = indCχ. Then the map F → χ ◦ F is a surjective
map of left H-modules of M onto Mχ. Similarly, we obtain a two-dimensional
complex matrix represention, σχ of H by applying χ to the entries of the matrix
representation σ.

Proposition.

(i) Set Γ = {γ1γ2, −γ1γ
−1
2 , −γ−1

1 γ2, (γ1γ2)−1}. Then Mχ is irreducible if
and only if χ(d) /∈ Γ.

(ii) Let χ, χ′ ∈ X and suppose that χ(d) /∈ Γ, χ′(d) /∈ Γ. Then the modules
Mχ,Mχ′ are isomorphic if and only if either χ′ = χ or χ′ = χ−1.

(iii) Every irreducible left H-module is isomorphic either to some Cρ or to
some Mχ.

Proof. Assertion (i) follows easily from the fact that (res, ind) is an adjoint
pair. As for (ii), the fact that Mχ,Mχ′ are inequivalent unless χ′ = χ, χ−1

follows from the fact that the representations σχ, σχ′ have different traces. Now
suppose that χ′ = χ−1. Then just as above we may define a homomorphism
Jχ : Mχ → Mχ′ by setting Jχ(F )(x) = F (tx), F ∈ Mχ, x ∈ H and we may define
J−χ : Mχ′ → Mχ similarly. Clearly, we have that J−χ ◦Jχ is just multiplication by
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χ(−f(z)). Corollary 1.2 (iv) implies that Jχ is an isomorphism unless χ(d+d−1) ∈
{γ1γ2 + 1

γ1γ2
, −(γ1

γ2
+ γ2

γ1
)}. But these are precisely the characters χ for which

χ(d) ∈ Γ. Since we are assuming that Mχ is irreducible, we are done.

To prove (iii) let N be a non-zero irreducible left H-module; by Corollary 1.2
it is finitely generated as a left D-module, hence it has an irreducible D-quotient.
Assertion (iii) now follows from this and the fact that (res, ind) is an adjoint pair.

2. The algebra C∗(A) and its dual

2.1 We define an involution x → x∗ on H characterised by the following prop-
erties:

(i) si
∗ = si, i = 1, 2;

(ii) x → x∗ is multiplication reversing and conjugate linear.

We denote by ρ0 the element of X̃ defined by ρ0(si) = γi, i = 1, 2. Then we
may define a norm || || on H by setting

||
∑

w∈W

aww|| =
∑

w∈W

|aw|ρ0(w).

Lemma. We have

(i)
||x∗|| = ||x||, x ∈ H.

(ii)
||xy|| ≤ ||x||||y||, x, y ∈ H.

Proof. Only the second assertion needs proof and, here, it is enough to check
that ||x||||y|| ≤ ||xy|| when x, y ∈ W . However, it is clear from (1.1.1) that if
x, y ∈ W then xy =

∑
bww with bw ≥ 0. It follows that ||xy|| =

∑
bwρ(w) =

ρ(xy) = ρ(x)ρ(y) = ||x||||y|| and we are done.

2.2 We now may complete H with respect to || || to obtain an involutive
Banach algebra. We denote this algebra by A = A(q1, q2).

Proposition. Let H be a Hilbert space, let B(H) be the algebra of bounded
operators on H and write || ||′ for the operator norm on B(H). Let (π, H) be a
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representation of H; that is π is an algebra homomorphism of H into EndC(H).
Then π(H) ⊂ B(H). In fact, we have

||π(x)||′ ≤ ||x||, x ∈ H.

Proof. Consider first the case where x = si, i = i, 2, let v ∈ H and let V be
the subspace of H spanned by {v, π(si)v}. Then V has finite dimension and is
invariant under π(si). Writing V as a sum of its π(si) eigenspaces and noting
that ρ0(si) is the larger of the two eigenvalues of si, we see that ||π(si)v||H ≤
ρ0(si)||v||H where || ||H is the Hilbert space norm on H. Since v is arbitrary, we
have shown that ||π(si)||′ ≤ ρ0(si).

Now, if w ∈ W then by definition, w =
∏

ui for elements ui ∈ {s1, s2}. It
follows that ||π(w)||′ ≤ ∏ ||π(ui)||′ ≤

∏
ρ0(ui) = ρ0(w). Finally, if x =

∑
aww is

an arbitrary element of H then we have

||π(x)||′ ≤
∑

|aw|||π(w)||′ ≤
∑

|aw|ρ0(w) = ||x||
as was to be shown.

2.3 Corollary. Any representation (π, H) as above extends to a continuous rep-
resentation of A.

2.4 By a unitary representation of H we mean a representation (π, H) where
H is a Hilbert space with scalar product < | >H and such that < π(x)v|w >H=
< v|π(x∗)w >H , x ∈ H, v, w ∈ H. We say that (π, H) is topologically irreducible
if H has no proper non-zero closed π(H)-invariant subspaces.

Lemma.

(i) Let (π, H) be a unitary representation of H. Then π extends to a unitary
representation of A.

(ii) Let (π, H) be a topologically irreducible unitary representation of H. Then
(π, H) is algebraically irreducible; that is, either π ∼= σχ, χ ∈ X, or π ∈ X̃.

Proof. The first assertion follows immediately from Corollary 2.3. As for the
second, note that Proposition 2.2 implies that π(H) ⊂ B(H). Proposition 2.3.1
of [D] then implies that Z acts on H by scalars. Now let v ∈ H be non zero;
then v is a topologically cyclic vector for π. Since H is free of finite rank as a
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Z-module, the remark above implies that π(H)v is a finite dimensional subspace
of H. But any finite dimensional subspace of H is closed (see e.g. [R]§4.15, page
82). Thus π(H)v = H.

Warning Remark. From now on, if A is an involutive Banach algebra, and H

a Hilbert space, we shall say that π : A → B(H) is a representation of A on H

if π is a morphism of involutive Banach algebras. This is the definition used in
[D]2.2.1; thus the unitary representation of A in the statement of Lemma 2.4 (i)
above, is a representation. Any representation of an involutive Banach algebra is
automatically continuous by [D]1.3.7.

2.5 For the corollary below we recall some elementary facts about C∗-algebras.
If H is a Hilbert space we write B(H) for the algebra of bounded linear operators
of H; it is an C∗-algebra under the operator norm and adjoint operation. If C is
a C∗-algebra, a representation of C is a pair (π, H) where H is a Hilbert space,
and π is a morphism π : C → B(H) of involutive algebras; we remark that π is
automatically continuous by [D]1.3.7.

Next, recall that given an involutive Banach algebra A with an approximate
identity there is always a C∗-algebra C∗(A) and a morphism of involutive algebras
τA : A → C∗(A) with the following properties:

(i) if π is a representation of A there is a unique representation ρ of C∗(A)
such that π = ρ ◦ τA, and ρ(C∗(A)) is the C∗-algebra generated by π(A);

(ii) there is a bijection π → ρπ from representations of A to representations
of C∗(A) which preserves nondegeneracy and irreducibility.

For this see [D]2.7; again the map τA is automatically continuous by [D]1.3.7.
We call the algebra C∗(A) the enveloping C∗-algebra of A.

Finally, recall that a C∗-algebra C is called liminal (or CCR) if for each irre-
ducible C∗-algebra representation (π, H) of C the ring of operators π(C) lies in
the two sided ideal of compact operators in H.

The proof of the Corollary below follows immediately from Lemma 2.4, the
remarks above, and the fact that H is dense in A.

Corollary. Let A = A(q1, q2) be as above.

(i) Denote by C∗(A) the enveloping C∗-algebra of A, write C∗(A)̂ for the set
of equivalence classes of irreducible C∗-algebra representations of C∗(A)
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and write Ĥ for the set of equivalence classes of irreducible unitary rep-
resentations of H. Then restriction induces a bijection of C∗(A)̂ onto
Ĥ.

(ii) The algebra C∗(A) is liminal.

2.6 We endow the set Â with the Jacobson topology (c.f. [D] chapter 3):

Recall that a two sided ideal of C∗(A) is primitive if it is the kernel of a
topologically irreducible representation of C∗(A), and that any closed two sided
ideal of C∗(A) is the intersection of the primitive ideals which contain it ([D]2.9.7).
Let Prim (C∗(A)) denote the set of primitive ideals of C∗(A). If I is a closed two
sided ideal of C∗(A) define V (I) ⊂ Prim (C∗(A)) by V (I) = {J |J ⊃ I}. One
then obtains a topology on Prim (C∗(A)) in which the closed sets are precisely
the subsets V (I) ([D]3.1.1). Since C∗(A) is (post)liminal ([D]3.1.6, 4.3.7), the
map [[π]] 7→ ker(π) is a bijection Â → Prim(C∗(A)), and we endow Â with the
topology that makes this map a homeomorphism.

We remark that since C∗(A) is liminal, the space Â is T1 ([D] 4.2.3): points in
Â are closed, or again, given two distinct points x, y ∈ Â there is always an open
neighborhood of x which does not contain y.

Proposition. Let Âj , j = 1, 2 be the subset of Â consisting of equivalence
classes of representations of dimension j. Then Â = Â1 ∪ Â2 and Â2 is an open
subset of Â.

Proof. This is an immediate consequence of Theorem 3.6.3 of [D]. Alternatively,
we know from §1.4 and §2.4 that Â1 has four elements, hence by the T1-property,
it is a closed subset of Â.

2.7 Our goal in the rest of this section is to describe the topological space Â

explicitly. We need some preliminary lemmas.

First, we identify X in §1.4 with C×. Then the subset XU of X consisting of
characters χ for which |χ(d)| = 1, is identified with the unit circle S1; we endow
it with the topology it inherits as a subset of C× via the map χ → χ(d). Let
X ′

U be the subset of characters χ ∈ XU for which χ(d) /∈ Γ. Then, clearly, X ′
U

is open in XU . Finally, let Y be the subset of X ′
U consisting of characters χ for

which Imχ(d) ≥ 0. We identify Y with a subset of the unit circle.
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Lemma. Let C2 be the space of two-dimensional complex column vectors viewed
as a Hilbert space with respect to the usual scalar (dot) product. Then the repre-
sentations σχ, χ ∈ XU are unitary.

Proof. We need to check that (σχ(si))t = σχ(si), i = 1, 2. But this follows
immediately from 1.4 and the fact that χ(d)−1 = χ(d).

2.8 Lemma. Let χ ∈ X. The representation σχ is unitarizable if and only if
either

(i) |χ(d)| = 1
or

(ii) χ(d) is real and f(χ(z)) < 0.

Proof. By Corollary 1.2 (ii) we have that z∗ = z. Thus we must have that
χ(d) + χ(d−1) is real whenever σχ is unitarizable. It follows easily that either
|χ(d)| = 1 or χ(d) is real. In light of Lemma 2.7, we may now assume that χ(d)
is real. In that case, we are looking for a two by two complex matrix Aχ with the
property that At

χ = Āχ such that detAχ > 0 and (σχ(si))tAχ = Aχσχ(si), i =
1, 2. A direct calculation shows that, up to a real scalar, we must have

(2.8.1) Aχ =

[
c1χ(d) + c2 χ(d−1)− χ(d)

χ(d−1)− χ(d) c1χ(d−1) + c2

]
.

Our result now follows from the fact that detAχ = −f(χ(z)).

2.9 We note that all σχ satisfying 2.8(ii) above are irreducible. There may
however, be at most two points in 2.8(i) above where reducibility occurs. Re-
moving such points and using Proposition 1.6 and Corollary 2.5, we see that the
map χ(d) 7→ σχ induces a bijection of sets

f : Ξ′ → Â2,

where

Ξ′ = (−γ1

γ2
,−1] ∪ Y ∪ [1, γ1γ2).

Our first goal in describing Â is to show that with the standard topology on
Ξ′, f is a homeomorphism. We begin by identifying the space of each irreducible
unitarizable representation σχ in 2.8 with the Hilbert space C2 in a continuous
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way, and describing σχ under this identification. With this in mind, and with Aχ

as in (2.8.1), we write

νχ =





c2 + c1, if χ(d) ∈ (1, γ1γ2)

1, if χ(d) ∈ Y

c2 − c1, if χ(d) ∈ (−γ1

γ2
,−1),

and set

Bχ =





1
νχ
Aχ, if χ(d) ∈ (−γ1

γ2
,−1) ∪ (1, γ1γ2)

I, if χ(d) ∈ Y .

Next, let

µ̃(1)
χ =




−γ−1

1 χ(d) + γ1χ(d)−1 + c2, if χ(d) ∈ (−γ1

γ2
,−1) ∪ (1, γ1γ2)

1, if χ(d) ∈ Y .

and

µ̃(2)
χ =





γ1χ(d)− γ−1
1 χ(d)−1 + c2, if χ(d) ∈ (−γ1

γ2
,−1) ∪ (1, γ1γ2)

1, if χ(d) ∈ Y .

We write µ
(i)
χ = µ̃

(i)
χ

νχ
for i ∈ {1, 2}.

Let λ =
√

1 + γ2
1 . With respect to the right D-basis Φ0,Φ1 of §1.4 we define

Ψ′
1 = λ−1

[
1
γ1

]
and Ψ′

2 = λ−1

[
−γ1

1

]
. The vectors Ψ′

1,Ψ
′
2 form a right D-basis for

M and for any specialisation to Mχ this is an orthonormal basis for the usual dot
product. The vectors Ψ′

1,Ψ
′
2 are eigenvectors for the matrix Bχ with respective

(positive) eigenvalues µ
(1)
χ , µ

(2)
χ .

Henceforth we let R2 denote the set of all topologically irreducible two-dimensional
matrix representations of C∗(A); that is, R2 is the set of all topologically irre-
ducible C∗-algebra representations of C∗(A) with Hilbert space C2 (c.f. Lemma
2.7).

We then have the following useful lemma.
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Lemma.

With notation as above:

(i) The map χ(d) → Bχ is continuous on matrix coefficients, for χ(d) ∈ Ξ′.

(ii) For i ∈ {1, 2} define Ψi(χ) =
√

µ
(i)
χ

−1

Ψ′
i, for χ(d) ∈ Ξ′. Then Ψi(χ) be-

longs to the eigenspace corresponding to the eigenvalue µ
(i)
χ . The vectors Ψ1(χ),Ψ2(χ)

provide an orthonormal basis for the form 〈v|w〉χ = v∗Bχw.

(iii) Set µχ =
√

µ
(1)
χ

µ
(2)
χ

, for χ(d) ∈ Ξ′. Then with respect to the basis {Ψ1(χ),Ψ2(χ)}
the action of H on Mχ is given by

[σχ](s1) =

[
γ1 0
0 −γ−1

1

]

and
(2.9.1)

[σχ](s2) = λ−2

[
c2 + γ1(χ(d) + χ(d)−1) (χ(d)−1 − χ(d)γ2

1 − γ1c2)µχ

(χ(d)− γ2
1χ(d)−1 − γ1c2)µ−1

χ γ2
1c2 − γ1(χ(d)−1 + χ(d))

]
.

The map χ(d) 7→ [σχ] induces an injection of sets g : Ξ′ → R2.

(iv) Set bχ = −γ1

√
µ̃

(1)
χ µ̃

(2)
χ

= −γ1

√
((γ1χ(d)−1 − γ−1

1 χ(d)) + c2)((γ1χ(d)− γ−1
1 χ(d)−1) + c2).

Then

(2.9.2) [σχ](s2) = λ−2

[
c2 + γ1(χ(d) + χ(d)−1) bχ

bχ γ2
1c2 − γ1(χ(d)−1 + χ(d))

]
.

The matrices in (2.9.1) and (2.9.2) are hermitian; moreover the matrix (2.9.2)
is defined when χ(d) ∈ {−γ1

γ2
, γ1 · γ2}, whereas the matrix (2.9.1) is not.

Proof. Straightforward.

2.10 For the explicit description of the topological space Â below, we employ
the following construction/definition:



450 Philip Kutzko, Lawrence Morris

Definition. Let Ξ be a locally compact Hausdorff topological space. Let x0 be
a point of Ξ, and write Ξ′ for the subspace Ξ\{x0}. Let x1

0, x
2
0 be two copies of

x0. We define a new space Ξ̃ as follows.

(1) The set Ξ̃ = Ξ′ ∪ {x1
0, x

2
0}.

(2) The topology on Ξ̃ is the weakest such that
(a) any neighborhood base for x ∈ Ξ′ will be a neighborhood base for x ∈ Ξ̃,

and
(b) If U is an open neighborhood of x0 then, for i ∈ {1, 2}, any set of the

form (U\{x0}) ∪ {xi
0} is an open neighborhood of xi

0.

In particular, Ξ̃ is non Hausdorff, but it is T1.

We shall say that Ξ̃ is the space obtained from Ξ by replacing x0 with a double
point. One can vary this construction by taking a finite set of points {x1, . . . , xn}
in Ξ in place of one point x0.

The algebra H has four irreducible one dimensional representations, corre-
sponding to the possibilities si 7→ γi or si 7→ −γ−1

i (§1.6). In what follows we
shall write ρ{x,y} for the one dimensional representation ρ(s1) = x, ρ(s2) = y.
Each of these representations is unitarizable via the usual scalar product on C,
and we shall use the same symbol to denote the corresponding representation for
C∗(A).

Proposition. Let

Ξ = [−γ1

γ2
,−1] ∪ Y ∪ [1, γ1γ2],

and let
Ξ′ = (−γ1

γ2
,−1] ∪ Y ∪ [1, γ1γ2).

(i) Via the identification C× → X of §1.4 the map χ(d) → σχ induces a
homeomorphism f : Ξ′ → Â2.

(ii) The space Â is homeomorphic to the space obtained from Ξ by replac-
ing −γ1

γ2
and γ1γ2 with double points. Under this identification ρ{γ1,γ2} and

ρ{−γ−1
1 ,−γ−1

2 } correspond to the double point at γ1γ2; and ρ{−γ−1
1 ,γ2} and ρ{γ1,−γ−1

2 }
correspond to the double point at −γ1

γ2
.

In particular the Hausdorff space Â2 is open and dense in Â.
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Remarks. (i) Of course the subintervals in the definition of Ξ′ may be empty.

(ii) In particular, part (ii) of the Proposition illustrates Theorem 4.4.5 of [D].

Proof. To prove (i), let h : R2 → Â2 be the map which sends a representation
to its equivalence class. Then the map f : Ξ′ → A2 factors: f = h ◦ g, where
g : Ξ′ → R2 is the injection of sets defined in Lemma 2.9(iii).

Furthermore the map h : R2 → Â2 is continuous and open, by Theorem 3.5.8
of [D]. Here, R2 is endowed with the topology of weak pointwise convergence over
C∗(A): a typical basic open neighborhood V(v,w;a1,...,an;ε)(π0) for π0 is provided
by choosing v, w ∈ C2, a finite set a1, . . . , an ∈ C∗(A), ε > 0 and then defining

V(v,w;a1,...,an;ε)(π0) = ∩n
i=1{π| |(π(ai)v, w)− (π0(ai)(v), w)| < ε},

where ( , ) denotes the usual dot product for C2.

On the other hand, the injection g is a homeomorphism onto its image in
R2. For, on each segment defining Ξ′ the matrix coefficients above are contin-
uous maps hence, by definition of the weak pointwise convergent topology, so
is the map χ 7→ [σχ]. Moreover, this map is open. Indeed the formula (2.9.1)
says that χ(d) 7→ [σχ](s2)11 is an open map; this implies that the image under
χ(d) 7→ [σχ] of any open segment containing χ0(d) will contain a suitable open
set V(e1,e1;s2;ε)(πχ0) ∩ image (g). Here e1, e2 denote the standard basis elements
for C2.

Part (i) now follows, since f : Ξ′ → Â2 is bijective.

In proving (ii), we identify Ξ′ with Â2, via (i). To avoid excessive notation,
we let ρ+ = ρ{γ1,γ2} , ρ− = ρ{−γ−1

1 ,−γ−1
2 } in the statement of (ii), and similarly

ρ+ = ρ{γ1,−γ−1
2 } , ρ− = ρ{−γ−1

1 ,γ2}. We write ρ± for an element of {ρ+, ρ−} and
we write ρ± for an element of {ρ+, ρ−}.

We shall assume that γ1 > 1: the proof that follows is readily adapted if γ1 = 1.

Since Â2 is open in Â (Proposition 2.6), it is enough to show the following:

(A) Any set of the form (δ, γ1 · γ2)∪{ρ±} where δ ∈ (1, γ1 · γ2), is open in Â; any
set of the form (−γ1

γ2
, λ) ∪ {ρ±} where λ ∈ (−γ1

γ2
, −1), is open in Â,

and
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(B) Any open set in Â containing ρ± must contain a set (δ, γ1 · γ2)∪ {ρ±} where
δ ∈ (1, γ1 ·γ2); any open set in Â containing ρ± must contain a set (−γ1

γ2
, λ)∪{ρ±}

where λ ∈ (−γ1

γ2
, −1).

Proof of (A): We shall prove the first assertion: any set of the form (δ, γ1 ·γ2)∪
{ρ+}, or of the form (δ, γ1 · γ2) ∪ {ρ−} is open in Â.

For this it suffices to prove the following:

(A1) Let S be any open segment of Ξ′ which is the complement of an interval
[δ, γ1 · γ2), where 1 < δ < γ1 · γ2. Then the closure of S in Â is S together with δ

and the two double points ρ+ , ρ− corresponding to −γ1

γ2
.

Indeed, (A1) implies that any set of the form (δ, γ1 · γ2) ∪ {ρ+, ρ−} is open in Â.
Since points are closed in Â, this in turn implies the first assertion of (A).

To prove (A1), observe that the closure of S in Â is the set V (I) where I = ∩J ,
and where J runs through all the ker σχ for χ(d) ∈ S. But σχ(a) = 0 if and
only if its associated matrix [σχ](a) = 0. The descriptions (2.9.1) and (2.9.2)
imply that for any a ∈ C∗(A), [σχ](a)i j → 0 if i 6= j as χ(d) → −γ1

γ2
, while

[σχ](a)1 1 → ρ+(a) and [σχ(a)]2 2 → ρ−(a). This implies immediately that if
a ∈ I, then a ∈ ker(ρ+) ∩ ker(ρ−), and (A1) follows.

Proof of (B): Any open set containing ρ+ contains a set of the form (δ, γ1 ·
γ2) ∪ {ρ+}, and similarly for ρ−.

Let O be an open set containing ρ+. Then, under the identification Â → Prim
(C∗(A)), O is the complement of a closed set V (I): O = {π|ker (π) 6⊃ I}. In
particular there is a ∈ I and ρ+(a) 6= 0. But limχ(d)→γ1·γ2

(πχ(a))1 1 = ρ+(a) 6= 0
implies that (πχ(a))1 1 6= 0 if χ(d) is sufficiently close to γ1 · γ2. In other words
there is a number δ : γ1 · γ2 > δ > 1 such that if χ(d) ∈ (δ, γ1 · γ2) then
(πχ(a))1 1 6= 0. But, via our identifications, this means that O ∩ Â2 contains the
segment (δ, γ1 · γ2).

The second assertion in (B) is proved in a similar way.

3. Some harmonic analysis

3.1 We define a functional Λ : H → C by setting Λ(1) = 1, Λ(w) = 0, w ∈
W, w 6= 1. For x, y ∈ H we set < x|y >= Λ(xy∗).
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Lemma. For any two words w, u ∈ H we have Λ(wu∗) = δw,u.

Proof. We proceed by induction on l(w), the case l(w) = 0 being trivial. We
also may suppose that u 6= 1. Suppose without loss of generality that w = w′s1

for some word w′. If u = u′s2 for some word u′ then w 6= u and wu∗ is a word
so that Λ(wu∗) = 0. If u = u′s1 for some word u′ then wu∗ = c1w

′s1u
′∗ + w′u′∗.

We have that Λ(w′s1u
′∗) = 0 while Λ(w′u′∗) = δw′,u′ = δw,u by induction. This

gives us what we want.

3.2 Proposition.

(i) < | > is a scalar product.
(ii) < x|y >=< y∗|x∗ >, x, y ∈ H.
(iii) < xy|z >=< y|x∗z >, x, y, z ∈ H.

Proof. For (i) we must show that < | > is sesquilinear, hermitian and positive-
definite. This, as well as (ii), and (iii), is a routine computation using Lemma
3.1.

3.3 Corollary. The set of words is orthonormal for < | >.

3.4 Proposition.

(i) For each element x ∈ H, the map y → xy of H to H is continuous with
respect to the topology induced by < | >.

(ii) The set of xy, x, y ∈ H is dense in H.

Proof. Assertion (ii) is trivial since H is unital, while (i) follows from Proposition
2.2 since < | > is positive definite by Lemma 3.1.

3.5 Recall ([D]A 54) that a Hilbert algebra is an involutive algebra B equipped
with a scalar product < | > which provides B with the structure of a Hausdorff
pre-Hilbert space, satisfying properties (ii) and (iii) of Proposition 3.2, and (i)
and (ii) of Proposition 3.4 with respect to < | > .

Corollary. H is a Hilbert algebra with respect to < | >.

3.6 Let H be the Hilbert space completion of H with respect to < | >,
so that the action of left multiplication of H on itself extends to give a unitary
representation of H on H ([D]A 54). This extends to a representation of A by
Lemma 2.4(i), and property 2.5(i) then implies there is a unique morphism of
C∗(A) into B(H). We denote the image of C∗(A) in B(H) by C∗

r (A): this is a
C∗-algebra by property 2.5(i) above. The action of H on H is faithful, hence
by property (i) of 2.5 above, H embeds in C∗

r (A). We write Âr for the dual of
C∗

r (A). Since C∗
r (A) is a quotient of C∗(A) it is liminal, and moreover we may
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identify Âr with a closed subset of Â by Proposition 3.2.1 of [D]. In particular
Âr is a T1 space as well.

We can now state what may be referred to as the Plancherel theorem in this
context. The modifications of results in Dixmier that are needed to justify this
formula may be found in [BHK]3.2:

Proposition. There is a positive Borel measure µ̂ = µ̂H on Â which is unique
with the following property

Λ(x) =
∫

Â
trπ(x)dµ̂(π), x ∈ H.

Further, the support of this measure is Âr.

Remarks. (i) The Borel structure on Â is that given by the Jacobson topology
of §2.6. Since A is liminal, Proposition 4.6.1 in [D] implies this structure is
equivalent to the Mackey Borel structure of [D]3.8.2. By Borel measure we simply
mean a positive measure on Â, as defined in [D] B 30, for example.

(ii) We remind the reader that if m is a Borel measure on a topological space
X, the support of m is the smallest closed set F such that m(X\F ) = 0.

(iii) For the convenience of the reader we shall elaborate the final statement
of the Proposition. The algebras C∗(A) (resp. C∗

r (A)) are liminal, so Â (resp.
Âr) is homeomorphic to Prim (C∗(A)) (resp. Prim (C∗

r (A)). (See §2.6 for the
definitions.) Let I denote the kernel of the representation π : C∗(A) → B(H)
in §3.6: it is a closed two-sided ideal. By definition the support of π consists of
those classes of irreducible representations of C∗(A) whose kernels contain I ([D]
3.4.6). This set corresponds precisely to Âr by [D] 2.11.5, and it is a closed set
by definition of the Jacobson topology. But from Theorem 8.6.8 of [D], this is
precisely the support (as defined in Remark (ii)) of our measure µ̂.

3.7 Corollary. Let ν be the restriction of µ̂ to Â2. Then there are non-
negative numbers κρ, ρ ∈ Â1 such that

(3.7.1) Λ(x) =
∫

Â2

trπ(x)dν(π) +
∑

ρ∈Â1

κρρ(x), x ∈ H.

Remark. From §1.4 and §2.4 we know that Â1 consists of four points.
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3.8 Our goal for the remainder of this section is to elucidate Proposition 3.6
and Corollary 3.7; in particular we want to describe the measures µ̂, ν and the
topological space Âr explicitly.

We shall begin by defining another functional Λ′ on H by

Λ′(x) = Λ(t2x) = Λ(−f(z)x).

We then have the following rather surprising result, which will be crucial in
the proof of Propositions 3.10 and 3.12 below.

Lemma. We have

Λ′(1) = 2; Λ′(d±2) = −1; Λ′(dn) = 0 otherwise.

In particular, the restriction of Λ′ to D is independent of q1, q2.

Proof. Since Λ(xy) = Λ(yx), x, y ∈ H by Proposition 3.2(ii), we have Λ(t2dn) =
Λ(td−nt) = Λ(t2d−n) . Thus we need only compute Λ′(dn) for n ≥ 0.

Now d−1 = s−1
2 s−1

1 = (s2 − c2)(s1 − c1) so that

Λ(d−1) = c1c2

and a similar calculation shows that

Λ(d−2) = c2
1 + c2

2 + c2
1c

2
2.

Further, from Corollary 1.2 we have that

t2 = −d−2 − d2 + c1c2d
−1 + c1c2d + c2

1 + c2
2 + 2.

Our result now follows by a direct calculation, keeping in mind that Λ(1) = 1
while Λ(dn) = 0, n ≥ 1.

3.9 Lemma. Let ÂU (resp. ÂR) denote the subset of Â2 consisting of equiv-
alence classes of representations σχ for which |χ(d)| = 1 (resp.χ(d) is real but
χ(d) 6= ±1). Then

(i) Â2 = ÂU ∪ ÂR;
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(ii) ÂR is homeomorphic to




(−γ1

γ2
,−1) ∪ (1, γ1γ2), for γ1 > γ2 ≥ 1

(1, γ1γ2), for γ1 = γ2 > 1

∅, for γ1 = γ2 = 1.

In particular, ÂR is open in Â2, and ÂU is closed in Â2.

Proof. This follows from Lemma 2.8 and Proposition 2.10.

3.10 Now we can determine Âr ∩ Â2.

Proposition. The measure ν of Corollary 3.7 is supported on ÂU .

Proof. By Corollary 1.2 (iv) we have that ρ(−f(z)x) = 0, ρ ∈ X̃, x ∈ H. It
follows from (3.7.1) that

Λ′(x) =
∫

Â2

trπ(−f(z)x)dν(π) =
∫

Â2

ωπ(−f(z))trπ(x)dν(π), x ∈ H

where ωπ is the central character of π. Then we have

Λ′(x) =
∫

ÂU

ωπ(−f(z)trπ(x)dν(π) +
∫

ÂR

ωπ(−f(z)trπ(x)dν(π).

From Lemma 3.8 we have that |Λ′(dn)| ≤ 2, n ∈ Z. We also have that

|
∫

ÂU

ωπ(−f(z)trπ(dn)dν(π)| ≤
∫

ÂU

|ωπ(−f(z)trπ(dn)|dν(π) ≤ 2M

∫

ÂU

dν(π)

where M is the maximum value of the quadratic polynomial |ωπ(−f(z))| on the
interval [−2, 2]. Since

2
∫

ÂU

dν(π) =
∫

ÂU

trπ(1)dν(π) ≤
∫

Â
trπ(1)dµ(π) = Λ(1) = 1,

we see that

|
∫

ÂU

ωπ(−f(z)trπ(dn)dν(π)| ≤ M, n ∈ Z.

On the other hand, ωπ(−f(z)) > 0 for π ∈ ÂR and K = max{|χ(d)|, |χ(d−1|} >

1 for σχ ∈ ÂR. But |trσχ(d2n)| ≥ K2n from which it follows easily that
∫

ÂR

ωπ(−f(z)trπ(d2n)dν(π)
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is unbounded if ν(ÂR) 6= 0. Thus ν(ÂR) = 0 which was to be shown.

3.11 Set Âri = Âr ∩ Âi, i = 1, 2. Then, with notation of Proposition 2.10, the
map χ → σχ is a homeomorphism of Y onto Âr2; this follows from Proposition
3.10, Lemma 3.9, and Proposition 2.10. We let ν ′ be the Borel measure on Y
that corresponds to ν under this homeomorphism. We then have the following

Corollary. We have

(3.11.1) Λ′(x) =
∫

Y
trσχ(x)χ(−f(z))dν ′(χ), x ∈ H.

3.12 We may now state one of our major results.

Proposition. Fix Haar measure µX on X so that µX(XU ) = 1 and fix measure
ν0 on Â2 so that ν0 is supported on the set of representations σχ, χ ∈ Y and
so that the map χ → σχ, χ ∈ Y is measure preserving. Then ν is absolutely
continuous with respect to ν0 and we have

dν(σχ) =
χ(z2 − 4)
χ(f(z))

dν0(σχ).

Proof. Consider for the moment the case that q1 = q2 = 1. In that case, we have
that

Λ(dn) = δn,0.

However, it is standard that the measure µX is the unique Borel measure on
XU with the property that

δn,0 =
∫

XU

χ(dn)dµX(χ).

We conclude easily that

Λ(dn) =
∫

Y
trσχ(dn)dµX(χ)

so that

(3.12.1) Λ′(dn) =
∫

Y
trσχ(dn)χ(−f(z))dµX(χ)

in case q1 = q2 = 1.
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Now let q1, q2 be arbitrary. Lemma 3.8 implies that the functionals on D
defined by the right hand sides of the expressions (3.11.1), and (3.12.1) are equal.
Since f(z) = z2 − 4 in case q1 = q2 = 1 we conclude that that

dν ′(χ) =
χ(z2 − 4)
χ(f(z))

dµX(χ).

Our proposition follows immediately.

3.13 We must now compute the constants κ(ρ) which appear in Corollary 3.7.
Since each of the characters ρ is a component of Âr it follows that either κρ = 0 or
else the Hilbert space completion H of H has a non-zero H subspace isomorphic
to Cρ. A standard argument now shows that either κ(ρ) = 0 or else |ρ(d)| < 1.

Now if q1 6= q2 there are two characters ρi, i = 1, 2 which satisfy this condition.
These are determined by

ρ1(si) = −γ−1
i , i = 1, 2;

ρ2(s1) = −γ−1
1 , ρ2(s2) = γ2.

In case q1 = q2 then ρ1 above is the unique character satisfying |ρ(d)| < 1.

Proposition. The constants κ(ρ1), κ(ρ2) are given by

κ(ρ1) =
1
2

(
q1 − 1
q1 + 1

+
q2 − 1
q2 + 1

)
κ(ρ2) =

1
2

(
q1 − 1
q1 + 1

− q2 − 1
q2 + 1

)
.

Proof. We have (see 1.4) that trσχ(ci − 2si) = 0, i = 1, 2. It follows that

ci = Λ(ci − 2si) = (γi + γ−1
i )κ1 + (−1)i+1(γi + γ−1

i )κ2, i = 1, 2.

Our result now follows easily.

3.14 We have now proved the following:

Theorem. With all notation as above, we have

Λ(x) =
∫

Âr2

trσχ(x)
χ(z2 − 4)
χ(f(z))

dν0(σχ) + κ(ρ1)ρ1(x) + κ(ρ2)ρ2(x), x ∈ H.
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3.15 We have the following description of Âr, which follows from Proposition
2.10 and the remarks following the statement of Proposition 3.6. We employ the
notation of Proposition 2.10; moreover, we denote the closure of a subset B in a
topological space A by ClA(B).

Proposition.

(i) The map χ → σχ induces a homeomorphism from the space Âr2 onto Y .

(ii) (a) If γ1 > γ2 ≥ 1 then Âr is just Âr2 together with two isolated points,
corresponding to the irreducible representations ρ{−γ−1

1 ,−γ−1
2 }, ρ{−γ−1

1 ,γ2}.

(b) If γ1 = γ2 > 1 then Cl(Âr2) in Âr is homeomorphic to the space obtained
from ClR2(Y ) by replacing −1 with a double point. These two points correspond
to the one dimensional representations ρ{1,−1}, ρ{−1,1}. The space Âr consists
of Cl(Âr2) together with an isolated point corresponding to the representation
ρ{−γ−1

1 ,−γ−1
2 }.

(c) If γ1 = γ2 = 1 then Âr2 is dense in Âr. The space Âr is homeomorphic to
the space obtained from ClR2(Y ) by replacing each of −1, 1 with a double point.
The two points in place of −1 correspond to the one dimensional representations
ρ{1,−1}, ρ{−1,1}. The two points in place of 1 correspond to the one dimensional
representations ρ{1,1}, ρ{−1,−1}.

Proof. For part (i) see the remarks preceding Corollary 3.11. As for part (ii),
the sets described in (ii)(a) – (c) are the supports of the measure in each case;
this follows from the preceding sections, and the description of Â in 2.10.

4. An application

4.1 In this section we illustrate the preceding theory by deducing the Plancherel
formula for the group SL2(F ) where F is a local non-archimedean field; this
will include a description of the reduced dual. For this we follow the strategy
outlined in the introduction. In [K] the second author has explicitly described
a complete list of types for G = SL2(F ) other than those inertial pairs where
L = SL2(F ) = G; in other words for each s he describes a pair (K, λ). For
each pair (K, λ) he also gives an explicit description of the algebra H(G,λ). We
shall use these descriptions together with (0.1) – (0.4), to describe the Plancherel
measure µ̂ for SL2(F ) explicitly.

To describe the decomposition (0.1) for SL2(F ), let o denote the ring of integers
in F , p its maximal ideal, and Fq = o/p its residue field with q elements, where
q = pn for some rational prime p. Fix a generator $ ∈ p; we implicitly employ the
additive valuation η on F with the property that η($) = 1. Let L,N , denote the
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diagonal, and upper unipotent subgroups of SL2(F ) respectively, and let B = LN
denote the group of upper triangular matrices in SL2(F ).

In this framework each subcategory Rs(G) in (0.1) is one of the following listed
below.

(1) Supercuspidal elements. For each irreducible supercuspidal representa-
tion (σ,V) of G we write s(σ) for its inertial equivalence class. Then Rs(σ)(G) is
the full subcategory of R(G) whose objects are isomorphic to sums of copies of
σ.

(2) Induced elements. The group L can be identified with F×; it has a unique
maximal compact subgroup L0 which is isomorphic with o×. For each quasichar-
acter ψ : o× → C× we let Rψ(L) be the full subcategory of R(L) whose objects
(π,V) satisfy π(x)v = ψ(x)v for all x ∈ L0, v ∈ V. We set s(ψ) = {ψ, ψ−1} and
let Rs(ψ)(G) be the full subcategory of R(G) whose objects are subrepresenta-
tions of representations of G of the form IndG

B(τ) (normalised induction), with τ

an object in Rψ(L) or Rψ−1
(L) .

4.2 Next for each s in §4.1 we describe the associated type (K,λ) and its algebra
H(G,λ).

(1) Supercuspidal elements. It is a fact (see [KP], [KS]) that for each s(σ)
in 4.1(1) above there is a pair (K, λ) where K is a compact open subgroup of G
and λ is an irreducible smooth representation of K with the property that

σ = c-IndG
K(λ)

(compact induction). The pair (K,λ) is an s(σ)-type (see [BK]§5). The algebra
H(G,λ) is just the trivial C -algebra, and under the equivalence of categories
(guaranteed by the existence of s-types) Rs(σ)(G) → H(G,λ)-Mod which sends
the space V of σ to its space of λ-invariants Vλ, the representation σ corresponds
to the trivial H(G,λ) module.

(2) Induced elements. Given s(ψ) as in 4.1(2) define sw(ψ) by

sw(ψ) =

{
1, if 1 + p ⊂ kerψ

n, where 1 + pn ⊂ kerψ, but 1 + pn−1 6⊂ kerψ, otherwise.

Now define

K = Kλ = {
(

c11 c12

c21 c22

)
∈ G|c11, c22 ∈ o×, c12 ∈ o, c21 ∈ psw(ψ)},

and
λ = λψ : K → C×

λψ((cij)) = ψ(c11).
Then λ is a character and the pair (K, λ) = (Kλ, λψ) is an s(ψ) type (see [K]§2.1).
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To describe the algebra H(G,λ) in each case, we write C[Z] for the group
algebra on Z: its elements are functions f : Z→ C with finite support, and it has
a basis {en}n∈Z where en(m) = δm,n. The algebra C[Z] has a conjugate linear
involution f 7→ f∗ characterised by e∗n = e−n; the convolution product is given
by f ∗ g(`) = ΣZf(n)g(`− n); and the algebra identity is e0. For f, g ∈ C[Z] we
define

〈f |g〉 = f ∗ g∗(0).

Now let Π =
[
$ 0
0 $−1

]
and define hΠ to be the function on G which is supported

only on the double coset KΠK and given by hΠ(k1Πk2) = q−1ψ(k−1
1 k2) for

k1, k2 ∈ K.

Recall ([BHK]§3.1) that a Hilbert algebra A with identity e, and inner product
< | > is normalised if < e|e >= 1.

We then have the following result ([K]§3.1, §3.3):

Proposition. Normalise Haar measure µ on G so that µ(Kλ) = 1. Then (i) if

ψ2 6= 1 the element hΠ is invertible and there is an isomorphism of normalised
Hilbert algebras

Φψ : H(G,λψ) → C[Z]

given by sending hΠ to e1. (ii) Suppose ψ2 = 1. Then there is an isomorphism

of normalised Hilbert algebras

Φλ : H(G,λψ) →



H(1, 1), if ψ 6= 1

H(q, q), if ψ = 1.

4.3 From now on we put

ϑ =

{
q, if ψ = 1,

1, if ψ2 = 1, ψ 6= 1,

and we set H(ϑ) = H(ϑ, ϑ). We also write

Φ∗λ : H(G,λ)-Mod →
{
C[Z]-Mod, if ψ2 6= 1
H(ϑ)-Mod, if ψ2 = 1

for the equivalence induced by Φλ in Proposition 4.2.

Then combining (0.2) and Proposition 4.2(ii) we have equivalences of cate-
gories:
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(4.3.1) Φ∗ψ ◦Mψ : Rs(ψ) →
{
C[Z]-Mod, if ψ2 6= 1,

H(ϑ)-Mod, if ψ2 = 1.

Let `1 denote the space of sequences f : Z → C for which ΣZ|f(n)| < ∞. It has
an involution f∗(n) = f(−n), and is an algebra via convolution; this equips it
with the structure of an involutive Banach algebra. Indeed it is the L1-algebra
for the locally compact abelian group Z. We shall write A(ϑ) for the algebra
denoted by A(ϑ, ϑ) in §2.2. Then (4.3.1) induces homeomorphisms (see (0.3))

m̂λ : Ĝr(λ) →
{

C∗
r (`1)̂, if ψ2 6= 1,

C∗
r (A(ϑ))̂, if ψ2 = 1

induced from (ρ,V) 7→ Φ∗λ((ρ∞)λ, (V∞)λ).

Definition. If Φ∗ψ◦Mψ(ρ,V) = (σ,M) we say that (σ,M) corresponds to (π,V).

4.4 These correspondences, and the resulting homeomorphisms, can be made
explicit in terms of parameters as follows.

First, given ψ and a number t ∈ C we define a quasicharacter χt on L = F×
by

χt|o× = ψ; χt($) = q−t.

This provides a one dimensional representation (χt,Ct) of L. We write (ρt,Vt) for
the representation of G in Rs(ψ) obtained from (χt,Ct) via normalised induction
from B = LN . On the other hand Ct has the structure of a left D-module
(notation of §1) via d · s = q−ts, s ∈ C.

Assume first that ψ2 = 1. Then from the constructions in §1 we obtain a left
H(ϑ)-module (σt,Mt) where Mt = HomD(H(ϑ),Ct).

On the other hand if ψ2 6= 1 then Ct above has the structure of a left C[Z]-
module via e1 · s = q−ts, s ∈ C.

Then

Proposition. ([K]§4.2) (i) Suppose that ψ2 6= 1. Then Ct corresponds to
(ρt,Vt).

(ii) Suppose that ψ2 = 1. Then (σt,Mt) corresponds to (ρt,Vt).

4.5 Now we can proceed to the description of the Plancherel measures µ̂λψ
in

(0.4) on each open set Ĝr(λψ). In what follows we shall employ the following
conventions.

First, we write S1 for the unit circle: we identify it with the closed interval
[− π

ln q , π
ln q ] with the end points identified via the map x 7→ q−ix. We shall write
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ν0(t) for that measure on S1 such that d ν0(t) = ln q
2π d t where d t denotes Lebesgue

measure on [− π
ln q , π

ln q ].

Second, if (ρ,V) ∈ Rs(ψ) is preunitary and irreducible, we write [[ρ̃, Ṽ]] for the
resulting object in Ĝr(λψ).

Third, if t ∈ C we define L(1, t) = (1− q−t)−1.

Finally, we employ the definition/construction in §2.10, and we remind the
reader that Kλ always denotes the compact open subgroup of §4.2.

Theorem. Normalize Haar measure µ on G so that µ(SL2(o)) = 1. For each
λ = λψ we can describe the open and closed set Ĝr(λ) and the associated measure
µ̂λ as follows.

(1) Supercuspidal elements. Each Ĝr(λ) is a singleton set S, and

µ̂λ(S) =
dimλ

µ(Kλ)
.

(2) Induced elements. (i) Suppose that ψ2 6= 1. Then Ĝr(λψ) is home-
omorphic with S1. This homeomorphism is realised by t 7→ [[ρ̃it, Ṽit]], and for
t ∈ [− π

ln q , π
ln q ], we have

d µ̂λψ
([[ρ̃it, Ṽit]]) =

(q + 1)
q1−sw(ψ)

d ν0(t).

(ii) Suppose that ψ2 = 1 but ψ 6= 1. Then Ĝr(λψ) is homeomorphic to the
space obtained from

{t ∈ S1| − π

ln q
≤ t ≤ 0},

by replacing each of t = 0,− π
ln q with a double point. For − π

ln q < t < 0 this
homeomorphism is realised by t 7→ [[ρ̃it, Ṽit]].

Let Zψ = {[[ρ̃it, Ṽit]] | − π
ln q < t < 0}; then

d µ̂λψ
|Zψ([[ρ̃it, Ṽit]]) =

(q + 1)
q1−sw(ψ)

d ν0(t).

The complement of Zψ in Ĝr(λψ) is a set of measure zero.

(iii) Suppose that ψ = 1. Then Ĝr(λψ) is homeomorphic to the space obtained
from

{t ∈ S1| − π

ln q
≤ t ≤ 0},
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by replacing t = − π
ln q with a double point, together with an isolated point [[St]].

For − π
ln q < t ≤ 0 this homeomorphism is realised by t 7→ [[ρ̃it, Ṽit]].

Let Zψ = {[[ρ̃it, Ṽit]] | − π
ln q < t ≤ 0}. For [[ρ̃it, Ṽit]] ∈ Zψ

d µ̂λψ
([[ρ̃it, Ṽit]]) =

(q + 1)
q

L(1, 1 + it)L(1, 1− it)
L(1, it)L(1,−it)

d ν0(t).

The complement of Zψ ∪ {[[St]]} in Ĝr(λψ) is a set of measure zero. We have
µ̂λψ

({[[St]]}) = q − 1.

Remark. If λ is the type for a supercuspidal then the quantities dimλ, µ(Kλ)
are known if q is not a power of 2 (see for example [Sh], [KS]). If q is a power of
2 then they can be computed in principle starting from the results in [KP].

Proof. When considering a particular ψ we shall often write λ for λψ; this should
not cause confusion. Further, we note that until §4.8, each time that we treat
a particular set Ĝr(λψ) we renormalise Haar measure µ so that µ(Kλ) = 1 (c.f.
Proposition 4.2).

The proof proceeds by an appropriate interpretation of previous results.

(1) Supercuspidal elements. Here Ĝr(λ) is a singleton S. Moreover from
(0.4) and 4.2(1) we have

(4.5.1) µ̂λ(S) = dimλ.

If char Fq 6= 2 then dim λ is well known and can be found in [Sh] for example.
If char Fq = 2 the computation for dim λ can be made in principle starting from
the results in [KP].

(2) Induced elements. In this case dim λψ = 1 so that if S is a measurable
subset of Ĝr(λψ) we have from (4.2.2)

µ̂λ(S) = µ̂H(G,λ)(m̂λ(S)).

We treat the induced cases ψ2 = 1, ψ2 6= 1 in §4.6, §4.7 respectively; we complete
the proof of Theorem 4.5 in §4.8. In what follows we shall employ the notation
and results of Proposition 4.4.

4.6 Induced elements: Case ψ2 6= 1. From Proposition 4.2(i) there is an
isomorphism of normalised Hilbert algebras H(G,λψ) → C[Z]. Since C[Z] is the
(full) Hecke algebra of compactly supported functions for the t.d. group Z we
may apply the Plancherel theorem ([BHK] §3.2):

f(0) =
∫

Ẑ
trσ(f)dµ̂(σ)
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for f ∈ C[Z]. Replacing f by f ∗ f∗ as usual we see that

|f |2 = 〈f |f〉 =
∫

Ẑ
trσ(f ∗ f∗) dµ̂(σ).

Now, an irreducible unitary representation of Z is just a unitary character χt :
Z→ S1 parametrised by t ∈ (− π

ln q , π
ln q ] via χt(e1) = q−it. Thus

|f |2 = 〈f |f〉 =
∫

Ẑ
χt(f)χt(f∗) d µ̂(χt),

where
χt(f) = Σn∈Zf(n)χt(n) = Σn∈Zf(n)q−int.

In particular g : t 7→ χt(f) is a trigonometric polynomial, and the usual Plancherel
formula (after making a change of variable ) for such a function g says that

|ĝ|2 =
ln q

2π

∫ π
ln q

− π
ln q

|g|2 d t,

where d t is Lebesgue measure on R. But χ̂t(f) = f . By uniqueness of Plancherel
measure, Proposition 4.4(i), (0.1), and (0.4), we deduce that

(4.6.1) d µ̂([[π̃it,Vit]]) = d ν0(t),

as claimed.

4.7 Induced elements: Case ψ2 = 1. Let

Yψ =

{
{t ∈ S1| − π

ln q < t < 0}, for ψ 6= 1,

{t ∈ S1| − π
ln q < t ≤ 0}, for ψ = 1.

We identify the space C∗
r (A(ϑ))2̂ with Yψ via the maps induced from χ 7→ σχ,

χ 7→ χ(d) as in Propositions 2.10 and 3.15. Then Proposition 3.10 and Theorem
3.14 tell us that µ̂H(ϑ) is zero on the complement of

(4.7.1)

{
Yψ, for ψ 6= 1,

Yψ ∪ {ρ1}, for ψ = 1.

Moreover theorem 3.14 implies immediately that the measure associated to ρ1

is q−1
q+1 . Applying (0.4) and denoting the equivalence class in Ĝr which corresponds

to ρ1 by [[St]], we see that µ̂λ([[St]]) = q−1
q+1 .

Next, we apply proposition 4.4 (ii), with t in the appropriate interval in (4.7.1):
the module (σit,Mit) corresponds to (ρit,Vit). In particular, via the homeomor-
phism m̂λ of (0.3) we see that the representation (ρit,Vit) is irreducible and
pre-unitary: Vit is the space of smooth vectors for an irreducible unitary repre-
sentation (ρ̃it, Ṽit) on G. It follows that Zψ = m̂−1

λ (Yψ). Finally, let d ν0(σit)
be the measure in Proposition 3.12. Then via the homeomorphism µ̂λ and the
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identification in Proposition 3.12 , d ν0(σit) is just the measure d ν0(t), where the
last measure is that defined on the unit circle before the statement of theorem
4.5.

For t in the appropriate interval in (4.7.1) put z = q−it + qit and let f(z) =
z2 − c2z − 2(c2 + 2) where c = q

1
2 − q−

1
2 . With our identifications, Proposition

3.15 implies

(4.7.2) d µ̂ψ|Zψ([[ρ̃it, Ṽit]]) =

{
d ν0(t), if ψ2 = 1, ψ 6= 1,
z2−4
f(z) d ν0(t), if ψ = 1,

for [[ρ̃it, Ṽit]] ∈ Zψ.

The description of Ĝr(λψ) in each case follows from Proposition 3.15 and the
identifications made above.

4.8 Conclusion of the proof of Theorem 4.5. First we normalize the Haar
measure so that µ(SL2(o)) = 1. This has the effect of dividing each formula
(4.5.1), (4.6.1), (4.7.2) by µ(Kλ). Moreover if λ is the cover for a type ψ on L

then the volume of Kλ is easily computed to be q1−sw(ψ)

q+1 .

Thus all that remains is to explain the formula in part (2)(iii) in the statement
of Theorem 4.5. We start from the second formula in (4.7.2) above. Set s = q−it

so that in (4.7.2) above, z = s + s−1. Then we have

z2 − 4
f(z)

=
−(z2 − 4)
−f(z)

=
(1− s2)(1− s−2)

(γ − γ−1s−1)(1 + s)(γ − γ−1s)(1 + s−1)

= γ−2 (1− s)(1− s−1)
(1− γ−2s)(1− γ−2s−1)

= q−1 (1− q−it)(1− qit)
(1− q−1−it)(1− q−1+it)

From this we see that

z2 − 4
f(z)

= q−1 L(1, 1 + it)L(1, 1− it)
L(1, it)L(1,−it)

.
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