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0. Introduction

Inspired by the Langlands program much attention has been paid to Galois repre-
sentations during the past several decades. Early on, there was the progress made
by Langlands, Tunnell, and Buhler toward understanding Artin’s conjecture (re-
garding the holomorphicity of L-functions) for two dimensional representations.
Since Galois representations are usually not induced by one-dimensional char-
acters, automorphic induction does not bring about a simple reduction of the
Langlands correspondence to class field theory. Instead, as a basic question, it
became of interest to understand the so-called primitive Galois representations,
i.e. those representations which are not induced representations. However be-
sides some numerical results these considerations did not contribute much to the
proof of Langlands’ conjecture. Nevertheless it is challenging to have a more
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direct view at Galois representations. Replacing primitive by stable representa-
tions the irreducible Galois representations are parametrized by conjugacy classes
of admissible pairs, and a basic step to better understand the conductor is the
conductor problem for Heisenberg representations which is the main topic of this
paper.

The Galois group G of a local field F , viewed from a global perspective, is the
decomposition group of a fixed prime ideal. The group structure of G implies that
the degrees of its irreducible primitive representations are powers of the residue
characteristic p. A. Weil [W] studied these representations in the case p = 2 and
H. Koch [Ko] treated the general case. Next J. Buhler [B] and G. Henniart [He]
succeeded in finding formulas for the conductors of primitive representations of
degree exactly p. Because the Langlands correspondence commutes with charac-
ter twists it was natural to study the conductor problem for twist classes, and
it was rather obvious that, to deal with the general case, it is enough to know
the minimal conductor in each twist class. Moreover, in local Galois theory it
is possible to reduce the minimal conductor problem for primitive representa-
tions (or, more generally, stable representations, see section 4) to the simplest
type of nonabelian irreducible representations, namely the Heisenberg represen-
tations. Whereas one-dimensional representations of G factor through quotient
commutator groups G/[G,G], Heisenberg representations factor through maxi-
mal quotients of the form G/[[G,G], G], which are two-step nilpotent groups.
The minimal conductor of a twist class of Heisenberg representations is then di-
rectly related to the filtration of the second central step [G,G]/[[G,G], G] which is
induced by the filtration {Gν}ν∈Q+ of ramification subgroups of G. Thus the min-
imal conductor problem reduces to the consideration of filtered quotient groups
of the form Gν ∩ [G,G]/Gν ∩ [[G,G], G] which are indexed by positive rational
numbers ν (Proposition 2.2). Systematic study of these filtered groups began in
[Zi1],[Zi2] and continued in work of Cram [Cr2],[Cr3] and Kaufhold [Kh2]. Be-
cause these results have never been put into journal articles, we shall review them
here with some added remarks.

For G := Gal(F̄ |F ), the Galois group of a local field F , class field theory
implies that a dense subgroup of the abelian quotient G/[G,G] identifies with the
multiplicative group F×. Consequently, the second central step [G,G]/[[G,G], G]
identifies with the alternating square F× ∧ F×. It follows that the filtration of
the second central step (see above) corresponds to a filtration, denoted UUν ,
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of F× ∧ F× and this becomes the basic object to be studied. In fact, for the
conductor problem it would be enough to know this filtration modulo p-powers,
i.e. on F×∧F×/(F×)p∧F×, where p is the residue characteristic of F . Actually
it is enough to consider the group U1 of principal units instead of F×.

Class field theory also implies that the filtration of G/[G,G] by ramification
subgroups corresponds to the filtration of F× by the principal unit subgroups
Uν = 1 + pν . The crux of the matter is that a concrete characterization for
the filtration UUν of F× ∧ F× involves a choice of coordinates; in other words,
in the spirit of [Se1] it would be necessary to represent F× ∧ F×, or rather
U ∧ U = U1 ∧ U1, as the covering group of some proalgebraic group. But the
coordinates which give the filtration

(0.1) UU
ν := UUν ∩ (U1 ∧ U1)/(U1)p ∧ U1

arise naturally by applying the so-called truncated exponential(see section 7) or
in the general case the Artin-Hasse exponential (see section 12). The coordinates
are naturally indexed by a certain set of triples (s, `, r) ∈ S which is denoted Sf,t

and Sf,I in sections 7 and 13 resp. However, it turns out to be a delicate problem
to make the filtration (0.1) explicit by writing down a sequence of coordinate
relations. There are two problems involved in passing from the coordinates to
the filtration. The first is to specify the jumps of the filtration (0.1), i.e, to specify
those rational numbers ν = j(s, `, r) ∈ Q+ such that UU

ν ⊃ UU
ν+ε is a proper

inclusion for all ε > 0. Cram solved this problem completely in [Cr3] (see section
13).

The more difficult problem of describing the filtration in terms of coordinates
remains without a complete solution at the present time. A basic step toward
the solution of this problem is the study of s-extensions, i.e. of the factors U1 ∧
U1/N ∧ U1 such that

(0.2) U s/U s+1 ³ U1/N

is surjective for some integer s ≥ 1. In particular this implies (U1)p ⊂ N .
Therefore if e = eF |Qp

is the absolute ramification exponent of F , then s must be
prime to p and less than e∗ := ep/(p− 1). We call N a complement of U s if (0.2)
is an isomorphism. It appeared as an irritating complication that the filtration
UU

ν on U1 ∧U1/N ∧U1 depends on the choice of the complement N . However,
the right complement was chosen in [Cr2]. In section 11 we try to explain how
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the filtration varies with the complement, and in the appendix to that section we
discuss the implications for the conductor formula of a primitive representation.
The final results on the filtration on

(0.3) U1 ∧ U1/(U s+1(U1)p ∧ U1)(N ∧N),

where N = Cs is Cram’s complement, are Theorems 7.1* and 15.4. At first only
the case s ≤ p − 1 had been studied, but the more complicated general result
appeared as [Cr3], Proposition 4.1.2. From Theorem 7.1* follows immediately
Theorem 7.1 which describes

1) the filtration of U1 ∧ U1/U t+1 ∧ U1 if t ≤ min{e, p − 1} or equivalently
t < min{e∗, p}. In this case the filtration is simply given by the fact that more
and more coordinates vanish.

The best result so far is

2) a description of the filtration of U1∧U1/U t+1(U1)p∧U1 for t < min{e∗, p2}
([Cr3], Theorem 1.5.2). Here it occurs for the first time that we need relations
between different coordinates to describe the filtration. The result does not fol-
low directly from results concerning s-extensions; it depends upon a study of
extensions with two jumps. This will be sketched in section 16.

Let us briefly summarize the contents of this paper. In sections 1-4 we give
basic facts concerning representations of local Galois groups, in particular Heisen-
berg representations, which serve as motivation for what follows. In sections 5-7
we state the main results in the simpler case 1). In sections 8-10 we give some
selected proofs and in section 11 we discuss the filtration for complements other
than Cram’s complement and implications for the conductor formula of primitive
Galois representations. In sections 12-16 we sketch some of the powerful results
of [Cr3] and state the main results concerning the filtrations of (0.3) and in case
2).

We will freely use results of local class field theory where our main reference
is [Se].

Finally I want to thank Allan J. Silberger for his constant support when I was
preparing this paper. Also I want to thank G.-Martin Cram for some discussions
at an early stage of preparing these notes and for allowing me to review the results
of his second thesis.
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Notation: Often we consider quotients A/B such that A does not contain B.
This means that A/B = AB/B. Beginning from section 6 we will write UUν

instead of UUν ∩ (U1 ∧ U1).
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1. Heisenberg representations

Let ρ be an irreducible representation of a (pro-)finite group G. Then ρ is
called a Heisenberg representation if it represents commutators by scalar
matrices. If C1G = G, Ci+1G = [CiG,G] denotes the descending central series
of G, the Heisenberg property means C3G ⊂ Ker(ρ), and therefore ρ determines
a character X on the alternating square of A := G/C2G such that

ρ([â1, â2]) = X(a1, a2) · E

for a1, a2 ∈ A with lifts â1, â2 ∈ G. The equivalence class of ρ is determined by
the projective kernel Zρ which has the property that Zρ/C2G is the radical of X

and by the character χρ of Zρ such that ρ(g) = χρ(g) · E for all g ∈ Zρ.

Proposition 1.1 [ZiRF] Proposition 4.2The map ρ 7→ (Zρ, χρ) is a bijection
between equivalence classes of Heisenberg representations of G and pairs Z, χ such
that

(i) Z ⊆ G is a coabelian normal subgroup,

(ii) χ is a G-invariant character of Z,

(iii) X(g1, g2) := χ(g1g2g
−1
1 g−1

2 ) is a nondegenerate alternating character on
G/Z.

For pairs (Z, ρ) with properties (i)-(iii) the corresponding Heisenberg representa-
tion ρ is determined by the identity:

√
(G : Z) · ρ = Ind G

Z (χ).

Two Heisenberg representations ρ1, ρ2 induce the same alternating character
X1 = X2 if and only if ρ2 = χ⊗ ρ1 for some character χ of A.

Moreover, assume that every projective representation of A lifts to an ordinary
representation of G. Then by I. Schur’s results:

(i) the commutator map

A ∧Z A ∼= C2G/C3G, a1 ∧ a2 7→ [â1, â2]

is an isomorphism;

(ii) the map ρ 7−→ Xρ ∈ X(A∧ZA) from Heisenberg representations to alternating
characters on A is surjective.
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Now let F |Qp be a p-adic number field and G = Gal(F̄ |F ) the absolute Galois
group. Then the lifting property holds, and via class field theory we turn (i) into
an isomorphism:

(1) c : FF× ∼= C2G/C3G,

where FF× := lim←−(F×/N∧ZF×/N) is the profinite completion of the alternating
square of F×. If K|F is the abelian extension corresponding to the norm subgroup
N ⊂ F× and if WK|F denotes the relative Weil group, then the commutator map
for WK|F induces an isomorphism:

(2) c : F×/N ∧ F×/N −→ K×
F /IF K×,

where K×
F denotes the norm 1 subgroup and IF K× the augmentation with re-

spect to K|F . Taking the projective limit over all abelian extensions K|F the
isomorphisms (2) induce:

(3) c : FF× ∼= lim←− K×
F /IF K×,

where the limit on the right side refers to the norm maps. This gives a more
explicit description of Heisenberg representations of the Galois group:

Corollary1.2 The set of Heisenberg representations ρ of G = GF is in bijective
correspondence with the set of all pairs (X, χ) such that:

(i) X is a character of FF×,

(ii) χ is a character of K×/IF K×, where the abelian extension K|F corresponds
to the radical N ⊂ F× of X, and

(iii) via (2) the alternating character X corresponds to the restriction of χ to
K×

F .

Given a pair (X, χ), we construct the Heisenberg representation ρ by induction
from GK to GF : √

(F× : N) · ρ = Ind K↑F (χ),

where N, K are as in (ii) and where the induction of χ (to be considered as a
character of GK) produces a multiple of ρ. From (F× : N) = [K : F ] we obtain
the dimension formula:

dim(ρ) =
√

(F× : N),

where N is the radical of X.
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Let M be any subgroup between N and F× and consider the class field L|F
which corresponds to M . Then we have an exact commutative diagram:

L×∧L×/NK|L∧L×
NL|F∧NL|F−−−−−−−→ F×∧F×/N∧ F×−−−−→F×∧F×/(M∧M)(N∧F×)

c

y c

y c

y

K×
L /ILK× ι−−−−→ K×

F /IF K× NK|L−−−−→ L×F /IF NK|L.

Note that L×F ⊆ NK|L(K×) because NL|F : L×/NK|L(K×) ∼−→ M/N is a surjec-
tive map between groups of the same order. From the diagram we see a more
direct construction of ρ. Choose M maximal isotropic for X and consider the
class field L|F which corresponds to M . Since X is trivial on M ∧M we see that
χ|K×

F
is trivial on the kernel of NK|L : K×

F /IF K× → L×F /IF NK|L and therefore
there is a character χL of L×/IF NK|L such that χ = χL ◦NK|L. Then we obtain
ρ = Ind L↑F (χL) independently of the choice of χL. Heisenberg representations of
dimension p are obtained from bicyclic extensions K ⊃ L ⊃ F of degree p2 and
characters χL of L×/IF NK|L which are nontrivial on L×F = IF L×.

Finally we remark that for any field extension E|F the diagram

EE× c−−−−→ C2GE/C3GE

NE|F∧NE|F
y

y
FF× c−−−−→ C2GF /C3GF

is commutative. Therefore:

Proposition 1.3. Let E|F be a finite extension.

(i) The Heisenberg representation ρ = (X, χ) restricts to an irreducible represen-
tation ρE if and only if the norm map NE|F : E× → F×/N is surjective, where
N denotes the radical of X. For the corresponding class field K we have then
K ∩ E = F and ρE = (X ◦ (NE|F ∧NE|F ), χ ◦NEK|K).

(ii) The restriction ρ|GE
is isotypic if and only if N ∩ NE|F is the radical of

X|NE|F∧NE|F . Then we obtain:

ρ|GE
=

√
(F× : N ·NE|F ) · ρE .
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We still mention the following characterization of Heisenberg representations
which is useful if we want to identify them under the local Langlands correspon-
dence:

Let ρ be an irreducible representation of G = GF and identify finite characters
χF of F× with characters of GF . The torsion number tF (ρ) is the number of all
χF such that χF ⊗ ρ ∼= ρ. Then:

Proposition 1.4. The torsion number tF (ρ) of an irreducible representation
divides dim2(ρ), and equality holds if and only if ρ is a Heisenberg representation.

Appendix: Heisenberg representations with symmetric or symplectic
structure

Let ρ = (Zρ, χρ) be a Heisenberg representation of G of dimension n =√
(G : Zρ) in the space V |C. We consider the decomposition

(*) V ⊗ V = Sym2(V )⊕Alt2(V ), tr2
ρ = tr2

ρ,σ + tr2
ρ,α

into the sum of the symmetric and alternating square of V. If ψ is a 1-dimensional
character of G, then < ψ, ρ ⊗ ρ > 6= 0 is equivalent to the existence of a nonde-
generate bilinear form

Φ : V ⊗ V → C, such that Φ(gv1, gv2) = ψ(g)Φ(v1, v2).

Depending on whether ψ meets Sym2(V ) or Alt2(V ) the form Φ will be symmetric
or symplectic.

Proposition1.5. For a Heisenberg representation ρ = (Zρ, χρ) the following are
equivalent:

(i) ρ⊗ ρ contains a 1-dimensional character ψ,

(ii) ψ|Zρ = χ2
ρ,

(iii) χ2
ρ is a character of Zρ/C2G,

(iv) X(g1, g2) = χρ(g1g2g
−1
1 g−1

2 ) satisfies X2 ≡ 1.

(v) G/Zρ is an F2 vector space.

The proof follows from Frobenius reciprocity because Proposition 1.1 implies

ρ⊗ ρ = IndG
Z (χ2

ρ).
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As a consequence we see that n = dim(ρ) is a power of 2, and ρ ⊗ ρ is the sum
of 1-dimensional characters, namely of all ψ such that ψ|Zρ = χ2

ρ. Because of (*)
we see that (for n 6= 1) we must have characters ψ which meet Sym2(V ) and
others which meet Alt2(V ). Therefore if the conditions of Proposition 1.5 are
fulfilled, then ρ will admit symmetric structures and symplectic sructures as well
(provided that n 6= 1). The function f(g) = χρ(g2) is then a well defined function
on G/C2G (but not a character because (df)(g1, g2) = X(g1, g2) = X(g2, g1)), and
all characters ψ must have the properties: ψ(g) ∈ {±χρ(g2)} if g ∈ G− Zρ, and
ψ(g) = χρ(g2) if g ∈ Zρ. They are obtained as ψ = ϕf, where ϕ is a ±1function
on G/Zρ such that dϕ = X.

In the case G = GF we have Corollary 1.2. Then in the case of Proposition
1.5 the radical N of X must contain F×2, and therefore N = F×2 is the only
nontrivial possibility if the residue characteristic is p 6= 2.

Remark. In a letter to M.F.Vigneras (25.11.1984) I asserted that Heisenberg rep-
resentations cannot admit symplectic structures. A counterexample by D.Prasad
prompted me to write this appendix. One can do more considering primitive or
stable representations (see sections 3, 4 below) but I will not go into this.

2. Next we want to know the Swan conductor of ρ = (X, χ). Let {Gi}i≥0,∈Q
be the ramification subgroups of G = GF in the upper notation. For irreducible
representations ρ of G we have the numerical invariants

j(ρ) := max{i; ρ|Gi 6= 1}, swF (ρ) = dim(ρ) · j(ρ),

where the second number, the (exponential) Swan conductor of ρ, is always an
integer. This follows from [Se],VI,§2, proof of Cor.1, because the restriction
of ρ (being irreducible) to ramification subgroups is either trivial which means
〈ρ|Gi , ui〉 = 0 or disjoint from trivial and then 〈ρ|Gi , ui〉 = dim(ρ).

Definition 2.1. Let UU i ⊆ FF× be the subgroup which under (1) corresponds
to Gi ∩ C2G/Gi ∩ C3G ⊆ C2G/C3G, and for a character X of FF× put

(4) j(X) := max{i; X|UU i 6= 1}.

Proposition 2.2. [Zi1]section 2 The Swan conductor of ρ = (X, χ) satisfies

swF (ρ) ≥ s̃wF (ρ) =
√

(F× : N) · j(X),
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where N is the radical of X. The right side is precisely the minimum of all Swan
conductors for Heisenberg representations ρ corresponding to X. Let ρ0 = (X, χ0)
be a minimal representation corresponding to X. Then in general we will have
ρ = χF ⊗ ρ0 = (X, (χF ◦NK|F )χ0) and

(5) swF (χF ⊗ ρ0) =
√

(F× : N) ·max{j(χF ), j(X)},

where j(χF ) = max{i; χF |U i 6= 1} refers to the principal unit filtration in F×.

It is suggestive to consider the groups UU i as principal unit subgroups of FF×.
A jump of the filtration UU i is a rational number ν ≥ 0 such that UUν ⊃ UUν+ε

is a proper inclusion for all ε > 0. As we see from (4), we have direct access to
the conductors of Heisenberg representations of our Galois group G if we know
the filtration UU i and its jumps explicitly.

3. In connection with the local Langlands conjectures it became of in-
terest to know the irreducible representations of G = Gal(F̄ |F ) and in particular
those representations which are primitive, i.e. those irreducible representations
which cannot be constructed as induced representations from a proper subgroup
H ⊂ G. A. Weil [W] commenced the study of these representations and complete
results were given in H. Koch [Ko]:

Theorem 3.1., [Ko].An irreducible representation ρ of G is primitive if and only
if the following conditions are fulfilled:

(i) The restriction of ρ to the subgroup of wild ramification V ⊂ G is irreducible;
and

(ii) there exists a finite tame normal extension K|F such that the restriction ρK

to GK ⊂ G is a Heisenberg representation ρK = (X, χ) where the character X of
KK× is totally anisotropic with respect to the natural action of GK|F .

Let N be the radical of X. Since both ρ and ρK = (X, χ) fulfill condition (i),
it follows that:

U1
K ·N = K×,

where U1
K denotes the principal units of K. Thus N determines a totally and

wildly ramified abelian extension of K. Moreover we must have:

(U1
K)p ⊆ N.
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Otherwise the maximal power pν , (ν ≥ 1) such that (U1
K)pν * N would be an

isotropic GK|F -module. In particular we see that (K×)p ⊂ N.

Proposition 3.2. [He],Theorems 1.7 and 5.3. Let ρ be a primitive irreducible
representation of G. Then (with the notations of Theorem 3.1(ii)):

(6) swF (ρ) =
1

eK|F
· swK(ρK) ≥ s̃wF (ρ) =

1
eK|F

·
√

(K× : N) · jKK(X),

where the estimate actually occurs for appropriate character twists of ρ.

The conductor formulas (5) and (6) suggest that one should try to give the fil-
tration UU i of FF× and also the jumps of that filtration explicitly. The remarks
following Theorem 3.1 suggest that one should begin by studying the filtration
modulo (F×)p ∧ F×. We are going to review here the results of [Cr3] and [Kh2]
concerning this question. To put things into perspective we mention that Propo-
sition 3.2 applies to a wider class of representations, which we will call stable
representations.

4. Stable representations and admissible pairs

In order to obtain parameters for the irreducible representations of the Galois
group G = Gal(F̄ |F ) it turns out to be convenient to work with stable instead of
primitive representations. An irreducible representation ρ of G is called stable
if: (∗) The restriction of ρ to ramification subgroups Gν for ν ∈ Q, ν ≥ 0, is

always isotypic.

Remark. We remark that ρ is primitive if and only if (∗) holds for all normal
subgroups N of G, because G is pro-solvable (Theorem of T.R.Berger).

As a variant of Theorem 3.1 one can prove [ZiRF], sections 4-6:

Proposition 4.1. An irreducible representation ρ of G is stable if and only if
the following conditions are fulfilled:

(i) The restriction of ρ to the subgroup of wild ramification V ⊂ G is still irre-
ducible,

(ii) there exists a finite tame normal extension K|F such that the restriction ρK

to GK ⊂ G is a Heisenberg representation ρK = (X, χ), where the character X of
KK× is nondegenerate on all principal unit subgroups U i

K in the following sense:
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If N ⊂ K× is the radical of X and if Xi is the restriction of X to U i
K ∧U i

K , then

N ∩ U i
K = rad(Xi) for all i ≥ 1.

Again we have U1
K ·N = K× because condition (i) is the same as in Theorem 3.1.

Moreover let Mi = U i
K(N∩U1

K)/(N∩U1
K) for all i ≥ 1, and let M⊥

i ⊂ U1
K/N∩U1

K

be the orthogonal complement with respect to X. Then we have

U1
K/N ∩ U1

K = M1 =
⊕

i≥1

Mi ∩M⊥
i+1

and Mi ∩M⊥
i+1

∼= Mi/Mi+1 and therefore K×/N ∼= M1 is again p-elementary.

Now for a fixed base field F and G = GF we consider admissible pairs
(K|F, ρ) which means:

(i) ρ is a stable representation of GK .

(ii) For each ramification subgroup Gν the induction Ind Gν

GK∩Gν (ρGK∩Gν ) is ir-

reducible. (We remark that GK ∩ Gν = G
ψK|F (ν)

K is a ramification subgroup of
GK and therefore we have up to isomorphism a unique irreducible representation
ρGK∩Gν ⊆ ρ|GK∩Gν .)

(iii) The extension K|F is minimal in the sense that Ind K|E(ρ) will not be stable
for proper subextensions K ⊃ E ⊇ F. In fact it is enough to check here the cases
where K|E is ramified of degree p.

In an obvious way we can form conjugate admissible pairs (sK|F, sρs−1) for
any s ∈ G.

Proposition 4.2.( [ZiRF], 2.2 and 6.1). The map

(K|F, ρ) 7−→ Ind K|F (ρ) ∈ Ĝ

induces a bijection between G-conjugacy classes of admissible pairs and irreducible
representations of G.

It is obvious that the conductor formula (6) also includes the case of stable
representations.

Remark. If we consider only representations of dimension prime to p, then
admissible pairs (K|F, ρ) consist of [K : F ] prime to p, dim(ρ) = 1 and our
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properties are equivalent to the properties introduced by R. Howe [Ho]. (see also
[KoZ] 1.8 and §3.)

Example. If σ ∈ Ĝ is irreducible then in general it seems hard to find an
admissible pair (K|F, ρ) which defines σ. According to [ZiRF],Theorem 1.4 one
has to consider a representation filter with leading term σ. But if σ = (X, χ)
is a Heisenberg representation then the construction of ρ is much more direct.
Consider Xi = X|U i∧U i for all i ≥ 0 and denote Ri := rad(Xi) ⊆ U i. If rad(X) =
N then obviously N ∩ U i ⊆ Ri, and according to Proposition 1.3(ii) σ is stable
if and only if this is an equality for all i, i.e. Ri ⊆ N. Otherwise consider
M =

∏∞
i=0 N ·Ri.

Then M is isotropic for X and therefore:

N ⊂ M ⊂ M⊥ ⊂ F× corresponding to K ⊃ E ⊃ L ⊃ F,

where K is the class field of N. We consider the commutative diagram:

FF×/NK|F ∧ F× cK|F−−−−→ K×
F /IF K×

xNL|F∧NL|F
x

LL×/NK|L ∧ L×
cK|L−−−−→ K×

L /ILK×
y

yNK|E

LL×/(NE|L ∧ L×)
cE|L−−−−→ E×

L /ILE×

We have the isomorphism NL|F : L×/NE|L ·L×F → NL|F /NE|F = M⊥/M. Since X

restricted to M⊥ has the radical M we see that the alternating character XL of
L× such that XL(a∧b) = X(NL|F (a)∧NL|F (b)) will have the radical NE|L ·L×F ⊃
NE|L. So it lives on the lowest row of the diagram. In correspondence we find
χE a character of E×/ILE× such that χE ◦ NK|E = χ. Then ρ = (XL, χE) is a
stable Heisenberg representation of GL and (L|F, ρ) is the admissible pair which
defines σ. Note that Heisenberg representations are monomial but nevertheless
they can be stable of dimension greater than one, and therefore the admissible
pair will not be supported by a character in general.

Finally we remark that stable representations come as tensor products of elemen-
tary stable representations.

An irreducible representation ρ of G = Gal(F̄ |F ) is called elementary stable if
there is a positive ν = ν(ρ) ∈ Q such that:
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(a) ρ on Gν is still irreducible,

(b) ρ on Gν+ε is scalar for all rational ε > 0.

This implies that 0 < ν <
p·eF |Qp

p−1 and that there exists a finite tame Galois
extension K|F such that

(c) ρK = (X, χ) is a Heisenberg representation of GK ,

(d) νK = eK|F · ν is an integer,

(e) there is a natural surjection UνK
K /UνK+1

K ³ K×/N where N denotes the
radical of X

(f) the restriction of X onto UνK
K ∧ UνK

K has the radical N ∩ UνK
K ⊇ UνK+1

K .

Proposition 4.3.[Kh1]. Every stable representation ρ of G decomposes into
a tensor product ρ = ρ1 ⊗ · · · ⊗ ρr of elementary stable representations with
different numbers νi = ν(ρi). The decomposition is unique up to character twists.
In particular the rational numbers νi are uniquely determined. Conversely every
tensor product of elementary stable representations ρi with different numbers ν(ρi)
is an irreducible stable representation.

The proof depends on the following facts from [ZiRF]:

(i) A stable representation is a tensor product of irreducible projective represen-
tations of factor groups G/Gν+ε such that the representation on Gν/Gν+ε is still
irreducible. (By a projective representation we understand here a representation
with a multiplier.)

(ii) Stable representations with respect to a descending central series are always
Heisenberg.

And moreover

(iii) The full Galois group G has trivial Schur multiplier and therefore if c is any
cocycle on a finite factor group G/N we find always a function ϕ on G such that
c = dϕ.

5. A strategy. Our base field is F |Qp. We want to know more on the filtration
UU i of FF× which has been defined in section 2. For an abelian extension K|F
let ψK|F be the corresponding Herbrand function (Serre IV,§3). Then under (3)
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we must have:

(7) c : UU i ∼= lim←−
K

(U
ψK|F (i)

K ∩K×
F )/IF K×,

where the principal unit subgroup Uν
K for ν /∈ Z is defined through the next

integer ν+ > ν, and the projective limit has to be taken with respect to the norm
maps. The idea is to exploit this formula.

For subgroups A, B ⊆ F× we let A ∧ B denote the product inside of FF×.

Some preliminary results are the following:

Proposition 5.1.[Zi1].

(i) It is basically enough to study the induced filtration UU i ∩ (U1 ∧ U1) on the
alternating square of principal units. UU i = UU i ∩ (U1 ∧ U1) × U i ∧ 〈πF 〉.
(ii) For all i ∈ Q, i ≥ 1 we have U i ∧ U1 ⊆ UU i ∩ (U1 ∧ U1), and equality holds
for the integers 1, . . . , p.

(iii) All jumps of the filtration (i) are bigger than 1, not integral, and there exists
a power pν depending on F such that all jumps are in 1

pν · Z.

Restricting to the filtration UU i ∩ (U1 ∧ U1) we get the following refinement
of (3). We fix a complementary group CF of U1 in F× and consider only abelian
extensions K|F with norm group NK|F (K×) ⊇ CF . We will call them CF -
extensions. Then we have the following diagram ([Zi2], Prop.2.2(iii)):

(8)

N1 ∧ U1/N1 ∧N1
ι−−−−→ U1 ∧ U1/N1 ∧N1

−−−−→ U1 ∧ U1/N1 ∧ U1

y
y

y
IF U1

K/IF K×
F

ι−−−−→ C2W 1
K|F /IF K×

F

−−−−→ C2W 1/IF U1
K ,

in which the maps ι and  are, respectively, injective and surjective. We also note
that N1 = NK|F (K×) ∩ U1 and that the commutator c in WK|F induces vertical

isomorphisms in (8) which connect the filtrations UU i and U
ψK|F (i)

K , respectively.
The left vertical map is given explicitly as c(x ∧ y) = x̂wy−1, where x̂ ∈ U1

K is
a preimage of x ∈ N1 under the norm map and y 7→ wy ∈ GK|F via class field
theory. In particular, we obtain

(9) c : UU i ∩ (U1 ∧ U1) ∼= lim←−
K

(U
ψK|F (i)

K ∩ C2W 1
K|F )/IF U1

K ,
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where the projective limit extends over all CF -extensions and C2W 1
K|F denotes

the commutator subgroup of the first ramification group of the relative Weil
group. Since K and F have the same residue field kF the formula (9) tells us
that a quotient UU i ∩ (U1 ∧ U1)/UU i+ε ∩ (U1 ∧ U1) is a subquotient of kF . Ac-
tually the quotient is ∼= kF or in some exceptional cases it is half of that. We
will speak of full jumps or half jumps. In accordance with what we have said
above we will concentrate on the filtration UU i ∩ (U1 ∧ U1) mod ((U1)p ∧ U1).
In order to simplify notation, beginning from now we will write UU i instead
of UU i ∩ U1 ∧ U1. We begin with two special cases.

6. The filtration on U1 ∧ U1/U2 ∧ U1.

We fix a prime πF and use the identification

(10) kF ∧Fp kF
∼= U1 ∧ U1/U2 ∧ U1, a ∧ b 7−→ (1 + aπF ) ∧ (1 + bπF ).

For a convenient description of our filtration we need a second identification. Let
φ be the Fp-Frobenius and kF {φ} the noncommutative polynomial ring such that
φ · a = φ(a) · φ = ap · φ for a ∈ kF . Let f = [kF : Fp] denote the absolute inertial
degree. We will write:

trφ = 1 + φ + · · ·+ φf−1 ∈ kF {φ}.

Then the second identification is L : kF ∧ kF 7→ kF {φ}:

(11) a∧b ∈ kF ∧kF 7−→ L(a∧b) :=
f−1∑

ν=1

(aφν(b)−bφν(a))φν = a ·trφ ·b−b ·trφ ·a.

The image are polynomials
∑

cνφ
ν such that φν(cf−ν) = −cν . If f is even we

obtain the relation φf/2(cf/2) + cf/2 = 0. We call them alternating polynomials.

Theorem 6.1. The induced filtration UU
i on U1 ∧ U1/U2 ∧ U1 has the jumps

s` = 1 + 1
pf−` for ` = f − [f/2], . . . , f − 1, and via (10), (11) the subgroup

UU
s` corresponds to alternating polynomials with coefficients ci = 0 for i =

f − [f/2], . . . , `− 1. If f is even then the first jump sf/2 is a half jump.

Instead of reviewing a proof (see [Zi2]) we go immediately to a more general case.
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7. The filtration on U1 ∧ U1/U t+1 ∧ U1.

Let e be the ramification exponent of F |Qp and put t = min{e, p − 1}. Then
(U1)p ⊂ U t+1, hence the factor group U1/U t+1 is p-elementary, and the truncated
exponential Exp(x) := 1 + x + · · ·+ xp−1

(p−1)! induces the isomorphisms

(12) Et : kt
F 3 (a1, . . . , at) 7−→

t∏

i=1

Exp(aiπ
i
F ) ∈ U1/U t+1,

(13) Et ∧ Et : kt
F ∧ kt

F
∼−→ U1 ∧ U1/U1 ∧ U t+1, a ∧ b 7→ Et(a) ∧ Et(b),

for vectors a, b ∈ kt
F where πF is again a fixed prime. We will always identify

ai ∈ kF with its multiplicative representative in the valuation ring OF .

On the other hand we embed kt
F ∧ kt

F into the noncommutative ring kt×t
F {φ}

of polynomials with matrix coefficients such that φA = φ(A)φ for A ∈ kt×t
F . (It

is the endomorphism ring of the additive group Gt
a defined over kF .) For row

vectors a = (a1, ..., at) ∈ kt
F the embedding L : kt

F ∧kt
F → kt×t

F {φ} is the following
generalization of (11):

(14) kt
F ∧kt

F 3 a∧ b 7−→ L(a∧ b) =
f−1∑

ν=0

Lνφ
ν = ta · trφ · b− tb · trφ ·a ∈ kt×t

F {φ}

with matrices Lν , such that (Lν)i,j = aiφ
ν(bj)− biφ

ν(aj). Note that the polyno-
mials have now a coefficient L0 which is a skew symmetric matrix. The image
of (14) consists of all polynomials L =

∑f−1
ν=0 Lνφ

ν such that φν(Lf−ν) = − tLν ,
for ν = 1, . . . , f − 1 and tL0 = −L0, where for p = 2 one has to add that the
diagonal of L0 is zero. We obtain the relations

(15) φf/2((Lf/2)i,i) + (Lf/2)i,i = 0, for f even

which will give us t half jumps in that case.

Remark 7.0 The image L(kt
F ∧ kt

F ) of the map (14) is an Fp-space acted on by
the multiplicative group (k×F )t if we put:

xL = diag(x1, x2, . . . , xt) · L · diag(x1, x2, . . . , xt)

for x ∈ (k×F )t and L =
∑

ν Lνφ
ν . More explicitely this means ((xL)ν)i,j =

xiφ
ν(xj) · (Lν)i,j . We are going to filter L(kt

F ∧ kt
F ) by (k×F )t-subspaces. In par-

ticular we have an action of k×F using diag(x, x2, ..., xt) if x ∈ k×F . The more
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sophisticated filtrations found by Cram [Cr3] (see beginning from section 12 be-
low) are invariant only under this latter action. In fact as one can see from section
12, the action of k×F only uses powers xi where i is prime to p.

Theorem7.1.[Kh2].Let be t ≤ min{e, p− 1}. Then:

(i) The jumps of the filtration UU
ν on U1 ∧ U1/U1 ∧ U t+1 are the numbers

ν(s, `, r) := s + r/pf−`

for integers 1 ≤ r ≤ s ≤ t and ` = 0, . . . , f − 1, where equality r = s is allowed
only if ` ≥ f/2. These numbers begin from ν(1, f − [f/2], 1) and increase to
ν(t, f − 1, t), where r, `, s play the role of digits of first, second and third order,
respectively.

(ii) Take the coefficients (L`)s,r as independent coefficients of our polynomials
(14), where r, `, s vary as in (i). Then under

(16) (Et ∧ Et) ◦ L−1 : L(kt
F ∧Fp kt

F ) −→ U1 ∧ U1/U1 ∧ U t+1

the filtration ¯UUν corresponds to the filtration {Fν}ν such that Fν = L(kt
F∧Fpkt

F )
if ν = ν(1, f−[f/2], 1), and for Fν(s,`,r) the next term Fν′ of the filtration is given
by adding the relation (L`)s,r = 0. So we end with Fν′ = 0 for ν = ν(t, f − 1, t).
And in the case when f is even, the jumps ν(i, f/2, i) for i = 1, . . . , t are half
jumps.

Remarks. 1. For kF = Fp the example of section 6 gives nothing, whereas for
t 6= 1 the map (16) will give us the t(t−1)

2 full jumps ν(s, 0, r) = s + r/p for
1 ≤ r < s ≤ t.

2. Because of the relation φ`((Lf−`)r,s) = −(L`)s,r it would be possible to take
(Lf−`)r,s as independent coefficients.

3. In the case t = 2, f = 4 the polynomials L have the form:

L =

(
0−c

c 0

)
+

(
−φ(b)−φ(g)

d −φ(h)

)
φ +

(
a−φ2(e)
e f

)
φ2 +

(
b−φ3(d)
g h

)
φ3

with a, . . . , h ∈ k where a = (L2)1,1, f = (L2)2,2 satisfy (15), and the jumps are:
1 + 1/p2 ⇒ a = 0, 1 + 1/p ⇒ b = 0, 2 + 1/p4 ⇒ c = 0, 2 + 1/p3 ⇒ d = 0,
2 + 1/p2 ⇒ e = 0, 2 + 2/p2 ⇒ f = 0, 2 + 1/p ⇒ g = 0, 2 + 2/p ⇒ h = 0.

The proof uses the fact (see Proposition 5.1(ii)) that for U1∧U1/U1∧U t+1 the
filtration UUν is a refinement of the filtration U1 ∧U s for s = 1, . . . , t. Let ki for
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i = 1, . . . , t denote the different copies of kF and use the notation kr∧ks = kr⊗ks

for r < s. Then instead of (13) (14) we may consider the maps:

(17) Es ∧ Es : (⊕s
r=1kr) ∧ ks −→ U1 ∧ U s/U1 ∧ U s+1

(18) L : (⊕s
r=1kr) ∧ ks −→ys{φ} ⊂ ks×s{φ},

where the matrices Lν ∈ ks×s
F , (Lν)i,j = aiφ

ν(bj) − biφ
ν(aj) are now latches of

level s, i.e. (Lν)i,j = 0 unless (i ≤ s and j = s) or (i = s and j ≤ s.)

We denote ys{φ} the image of (18) in ks×s{φ}. Then it is possible to decompose
(16) into the maps

(19) (Es ∧ Es) ◦ L−1 :ys{φ} −→ U1 ∧ U s/U1 ∧ U s+1

for all s = 1, . . . , t. We fix s and according to Theorem 7.1 (ii) we try to identify
the groups UUν/U1 ∧ U s+1 for s < ν < s + 1 in ys{φ}. Theorem 7.1 is then a
consequence of

Theorem 7.1∗. The filtration {UU
ν}ν≥s of U1 ∧ U s/U1 ∧ U s+1 has the jumps

ν(s, `, r) for integers r, ` as in 7.1(i), and under the isomorphism (19) the filtra-
tions Fν∩ys{φ} and {UU

ν}ν≥s correspond.

On the other hand we also want to describe the dual filtration F∗ν(s,`,r) on the
space (kt ∧ kt)∗ ∼= (U1 ∧U1/U1 ∧U t+1)∗ of alternating characters which is given
as

X ∈ F∗ν(s,`,r) if j(X) < ν(s, `, r)

i.e. if X is trivial on UUν(s,`,r). For this we consider the form 〈a, b〉 = tr(a·tb) ∈ Fp

on kt and identify Fp with roots of unity µp ⊂ C. Then we obtain

L(kt ∧ kt) ∼= (kt ∧ kt)∗, P 7→ XP

which sends the polynomial P =
∑f−1

ν=0 Pν · φν to the alternating form

XP (a, b) = tr(a · P (tb)).

Proposition 7.2 We have rad(XP ) = Ker(P ) hence dim(XP ) =
√

[kt : Ker(P )]
is the dimension of Heisenberg representations (X, χ) where X identifies with XP

in the sense explained after 5.1. The minimal conductor is

s̃wF (XP ) =
√

[kt : Ker(P )] · j(XP ) ∈ Z,

hence 1
2codimFp(Ker(P ))− logp(denom(j(XP )) ≥ 0.
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Now we ask for the filtration F∗ν(s,`,r) of L(kt ∧ kt) such that

(19.1) P ∈ F∗ν(s,`,r) if and only if j(XP ) < ν(s, `, r).

Let S = Sf,t be the set of all triples (s, `, r) such as in Theorem 7.1(i) and consider
on L(kt ∧ kt) the Fp- bilinear pairing

(19.2) < P, L >=
t∑

i=1

trf/2((Pf/2)i,i · (Lf/2)i,i) +
∑

(s,`,r)∈S′
tr((P`)s,r · (L`)s,r),

where the first terms only occur if f is even and where S′ is S without the
triples from the first terms. We note that (15) for the polynomials P and L

implies that (Pf/2)i,i · (Lf/2)i,i is invariant under φf/2, and therefore the trace

trf/2 = 1+φ+...+φ
f
2
−1 is well defined. Concerning the action of (k×F )t introduced

in remark 7.0 we see:

(19.3) < xP, L >=< P, xL > .

Now an easy computation shows:

Proposition 7.3 If P =
∑f−1

ν=0 Pν · φν ∈ L(kt ∧ kt), then XP (a, b) =< P, L(a ∧
b) > . Therefore F∗ν(s,`,r) = Fν(s,`,r)⊥ with respect to the nondegenerate pairing
(19.2).

Remark. We note here that the pairing (19.2) and the Proposition 7.3 extend
to the more general case where we consider U1 ∧ U1 modulo p-powers. See the
remark at the beginning of section 14.

Therefore Theorem 7.1 has the following

Corollary 7.4. Let be t ≤ min{e, p− 1} and consider the isomorphism

(U1 ∧ U1/U1 ∧ U t+1)∗ ∼−→ L(kt
F ∧ kt

F )

which takes X to the polynomial PX such that X(Et(a)∧Et(b)) = XPX
(a, b) for

all a, b ∈ kt
F . Then:

j(X) < ν(s, `, r) if and only if PX ∈ F∗ν(s,`,r), where F∗ν(s,`,r) consists of all
polynomials P such that (Pλ)σ,ρ = 0 for all (σ, λ, ρ) ∈ S such that ν(σ, λ, ρ) ≥
ν(s, `, r).

Remark. Now the assignment ν 7→ F∗ν is covariant in the sense that F∗ν increases
together with ν. If we add relations (L`)s,r = 0 where we go now in opposite
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direction then the conductor j(XL) goes down. In the case t = 2, f = 4 (see
remark 3) we obtain

h = 0 ⇔ j(XL) < 2 + 2/p,

h = g = 0 ⇔ j(XL) < 2 + 1/p, . . . ,

h = g = · · · = a = 0 ⇔ j(XL) < 1 + 1/p2,

which means that XL ≡ 1.

8. What are the jumps ? [Zi3]

Let Cs ⊆ U1 be a subgroup which is a complement of U s/U s+1, i.e. Cs ⊇ U s+1

and U1/U s+1 = U s/U s+1 ×Cs/U s+1 is a direct product. Such a Cs exists for all
s ≤ t but besides the trivial case C1 = U2 it is not unique. We obtain natural
isomorphisms

(20) U1 ∧ U s/U1 ∧ U s+1 ∼−→ U1 ∧ U1/(U1 ∧ U s+1)(Cs ∧ Cs),

and the natural projection

(21) U1 ∧ U1/U1 ∧ U t+1 −→
t∏

s=1

U1 ∧ U1/(U1 ∧ U s+1)(Cs ∧ Cs)

is also an isomorphism.

Proposition 8.1 Assume s ≤ t. Then the filtrations UUν/(U1∧U s+1)(Cs∧Cs)
on the right side of (21) have disjoint jumps for the different values of s. Therefore
(21) is a direct product of filtered groups and the maps (20) are isomorphisms of
filtered groups.

For the proof we consider s-extensions K|F , where s ≥ 1 is an integer. This
means that K|F is a Galois extension such that s is the only jump in the filtration
of GK|F by ramification subgroups. Equivalently K|F is abelian and the norm
residue map induces a surjection:

(22) kF
∼= U s/U s+1 ³ F×/NK|F ∼= GK|F .

Hence pn := [K : F ] ≤ pf , and, with Ni := NK|F ∩ U i = NK|F (U i
K) for i =

1, . . . , s, we obtain U s+1 ⊆ Ns and U s/Ns
∼−→ U i/Ni. Because (22) factorizes via

U s/U s+1 → U s(F×)p/U s+1(F×)p → F×/NK|F we have 1 ≤ s ≤ pe
p−1 and p - s

(unless s is the upper bound), where e refers to F |Qp. Maximal s-extensions will
correspond to norm subgroups NK|F = Cs · CF ⊂ F× for complements CF and
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Cs as above. If s 6= p e
p−1 , then every s-extension is extendable to such a maximal

s-extension. From (8) we obtain:

Lemma 8.2 If K|F is an s-extension with norm subgroup N1 = NK|F (K×)∩U1

then (3) induces an isomorphism

(23) c : U1 ∧ U1/(U1 ∧ U s+1)(N1 ∧N1) ∼= C2W 1
K|F /IF (K×

F · U s+1
K ),

such that UUν corresponds to U
ψK|F (ν)

K ∩C2W 1
K|F . Moreover we have C2W 1

K|F =
U s+1

K ∩ K×
F , K×

F ⊆ U s
K , and for a ∧ b ∈ N1 ∧ U1 we explicitly have c(a ∧ b) =

âwb−1 ∈ IF U1
K/ ∼, where â ∈ U1

K is a preimage of a under the norm map and
b 7→ wb ∈ GK|F via class field theory.

To realize the values of all possible jumps it is convenient to study the bigger
quotients C2W 1

K|F /IF U s+1
K = Ĥ−1(GK|F , U s+1

K ).

Proposition 8.3 Let f = fF |Qp
and let r be the position of s in the sequence

of all numbers ≥ 1 which are prime to p. Then for any s-extension of degree
[K : F ] = pn the group Ĥ−1(GK|F , U s+1

K ) is p-elementary of Fp-dimension f ·r ·n
and the filtration U i

K ∩ K×
F /IF U s+1

K = U i
K ∩ C2W 1

K|F /IF U s+1
K (for i > s) has

exactly r · n jumps of full size, namely i = s + jp` where ` = 0, . . . , n − 1,
j = 1, . . . , s and p - j. In particular U s+pn

K ∩ C2W 1
K|F /IF U s+1

K = {1} if s < p

because then: s + spn−1 < s + pn.

Proof. The proof is by induction on n. We mention that

C2W 1
K|F /IF U1

K
∼−→ K×

F /IF K× = Ĥ−1(GK|F ,K×).

In the cyclic case n = 1 this vanishes and therefore

Ĥ−1(GK|F , U s+1
K ) = IF U1

K/IF U s+1
K

in that case. We may use that the groups of our filtration occur as images of the
maps Ĥ−1(GK|F , U i

K) −→ Ĥ−1(GK|F , U s+1
K ) for i > s. In the induction step we

go from K to E|K such that [E : K] = p and consider the exact sequence

Ĥ−1(GE|K , U i
E) cor−→ Ĥ−1(GE|F , U i

E) N∗−→ Ĥ−1(GK|F , U
ϕE|K(i)

K ) → {1}.

Then we can apply the induction hypothesis for E|K and K|F. ¤

Now we may use Lemma 8.2 in order to see that the jumps of Proposition
8.3 will correspond to the jumps s + j/pn−` on the left side of (23). Since in
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Proposition 8.1 the assumption is s ≤ t < p we obtain disjoint sets of jumps for
different values of s. This ends the proof.

In the next step we will see the positions of the jumps more precisely. We
preserve the assumptions of Proposition 8.3 and for the commutator subgroups
of the ramification groups W j

K|F (upper numeration) we simply write: CW j :=

C2W j
K|F . Then:

Proposition 8.4. Let be 1 ≤ j < s, p - j. The filtration U i
K ∩CW j/CW j+1 has

exactly the jumps i = s + jp`, ` = 0, · · · , n− 1 which are full size.

We will need a series of Lemmas:

Lemma 8.5. CW j ⊆ U s+j
K for all j = 1, . . . , s.

Proof. Because of CW j = CW s · IF U j
K and IF U j

K ⊆ U j+s
K we can restrict to the

case j = s. We consider the division algebra D of invariant 1/pn, (pn = [K :
F ]). The relative Weil group W = WK|F is imbedded into D and from [ST] we
conclude:

Wϕ(v) = W ∩ Uv
D for all v ≥ 0,∈ Z,

where ϕ = ϕK|F and where Uv
D are the principal units in D. This is because K|F

is fully unramified. From ϕ(s) = s we get W s = W ∩U s
D, hence CW s ⊆ W ∩U2s

D

because CU s
D ⊆ U2s

D . From the exactness of Uv
K ↪→ Wϕ(v) −→ Gϕ(v) and Gv =

{1} for v > s we see W ∩U2s
D = K×∩U2s

D = U2s
K , because D/K is unramified. ¤

We fix σ 6= 1 ∈ G and consider

x ∈ U i
K 7−→ x1−σ ∈ IF U i

K ⊆ CW i ⊆ U i+1
K .

This induces

U i
K/U i+1

K
1−σ−→ CW i/CW i+1 −→ U i+s

K /U i+s+1
K ,

and in case p - i the combined map is an isomorphism ([Se], p. 79, Ex. 3a.).
Thus we obtain:

Lemma 8.6. Let be 1 ≤ j < s and p - j. The filtration U i
K ∩ CW j/CW j+1 has

the first jump i = s + j which is of full size. ¤
Now we consider an intermediate field K ⊃ E ⊃ F with [K : E] = p, [E :

F ] = pn−1, for instance take E to be the fixed-point field of σ. Then:

1 → (CW j/CW j+1)K/E → CW j/CW j+1 NK/E−→ (CW j/CW j+1)E/F → 1

is exact and IEU j
K/IEU j+1

K = (CW j/CW j+1)K/E
∼−→ U j+s

K /U j+s+1
K . We have

an isomorphism

(∗) U j+s+1
K ∩ CW j/CW j+1 NK/E−→ (CW j/CW j+1)E/F
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because the left side intersects the kernel of the norm map trivially and it has
the same order as the right side.

We must prove that NK/E maps the quotient U i
K ∩CW j/CW j+1 onto U

ϕ(i)
E ∩

(CW j/CW j+1)E/F with ϕ = ϕK/E , if i ≥ s + j. This follows from:

Lemma 8.7. U i
K ∩ CW j

NK/E−→ U
ϕ(i)
E ∩ CW j

E/F , ϕ = ϕK/E,
is surjective for j = 1, . . . , s and i ≥ s + 1.

Proof. We proceed by induction on j. The case j = 1 follows because CW 1 =
U s+1

K ∩K×
F and NK/E(Uv

K ∩K×
F ) = U

ϕ(v)
E ∩E×

F for all v ≥ s + 1. Now we assume
the Lemma to be true for a certain j and consider the commutative diagram

U i
K ∩ CW j+1 ι−−−−→ U i

K ∩ CW j −−−−→ U i
K ∩ CW j/CW j+1

y
y

y
U

ϕ(i)
E ∩ CW j+1

E/F

ι−−−−→ U
ϕ(i)
E ∩ CW j

E/F

−−−−→ U
ϕ(i)
E ∩ (CW j/CW j+1)E/F

in which the maps ι are injective, the maps  are surjective, and the vertical maps
are the norm maps NK/E . By the induction hypothesis the middle vertical maps
are surjective for i ≥ s+ j. Therefore, by (∗), the right and left vertical maps are
also isomorphisms for i ≥ s + j + 1. ¤

Proposition 8.4 now follows by applying (∗), Lemma 8.7, and induction on n
(pn = [K : F ]).

Corollary 8.8. Let K|F, G, s, pn,W = WK|F be as above. Then CW s/IF U s+1
K

is p-elementary of Fp-dimension fn (f = fF |Qp
) and the principal unit filtration

U i
K∩CW s/IF U s+1

K has the jumps i = s+sp` which are of full size (` = 0, . . . , n−
1).

For the last result see [Zi1](8.5).

9. Cram’s complements

We restrict again to s ≤ t, and we consider the different factors on the right
side of (21). Each factor has its filtration

U1 ∧ U1 ⊃ (U s ∧ U s)(Cs ∧ Cs) ⊃ (U1 ∧ U s+1)(Cs ∧ Cs).

The terms we denote Γ ⊃ Γs ⊃ ∆s resp. This filtration has a splitting, namely:

(24.1) Γ/∆s = Cs ∧ U1/∆s × Γs/∆s,

(24.2) C2W 1
L|F /IF U s

L = IF U1
L/IF U s

L × C2W s
L|F /IF U s

L,

where L|F is the maximal s-extension corresponding to the norm subgroup Cs·CF ,
hence L×F U s+1

L = U s
L. The maps from (24.1) down to (24.2) are given through
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the commutator in WL|F and connect the filtrations as described in Lemma 8.2.
Because of Propositions 8.3, 8.4 and Corollary 8.8 we have some information on
the jumps on C2W 1

L|F /IF U s
L, C2W 1

L|F /C2W s
L|F and C2W s

L|F /IF U s
L, and we can

transport this to get information on the jumps on Γ/∆s, Γ/Γs, Γs/∆s resp..

So far everything is independent of the complement Cs which we have chosen.
But in general it is not true that the splitting (24) is a direct product of
filtered groups, a phenomenon which gave rise to many irritations. To ensure
that (24) is in fact such a product one has to choose an appropriate complement
Cs of U s/U s+1, namely as a variation of (12) take

(25) C ′
s := Es(k1 ⊕ · · · ⊕ ks−1 ⊕ {0}) ⊂ U1/U s+1

The C ′
s were considered first by G.-M.Cram [Cr2], and we call them Cram’s

complements. We will also use the notation C ′
s = Es−1(ks−1

F ) ⊂ U1/U s+1. Then
we obtain
Proposition 9.1. For Cs = C ′

s the filtrations induced by {UUν}ν on the factors
of the right side of (24) have disjoint jumps, namely ν = ν(s, `, r) for r < s on
the first factor and ν = ν(s, `, s) for ` ≥ f/2 on the second factor.

Remark. The jumps on the second factor are the same for any choice of Cs but
in general these jumps may occur also on the first factor.

Proof. The crux of the proof is to identify the filtration of

(26) c : Cs ∧ U1/∆s
∼−→ IF U1

L/IF U s
L, a ∧ b 7→ âwb−1

where the map refers to the end of Lemma 8.2 in the case when N1 = Cs =
C ′

s is Cram’s complement. In particular one wants to show that the filtration
U i

L ∩ IF U1
L/IF U s

L does not admit jumps of the type i = s + sp`. In a first step
one has to express the norm map in terms of coordinates:

Fix a prime πL such that NL|F (πL) = πF and let πK = NL|K(πL) for any
subextension K|F of L. For the pair (K, πK) let Cs(K) be Cram’s comple-
ment on the K-level. Then it is possible to describe the norm map in terms of
coordinates, namely:

(27)

k1 ⊕ · · · ⊕ ks−1
φd⊕···⊕φd

−−−−−−→ k1 ⊕ · · · ⊕ ks−1

Es−1

y
yEs−1

Cs(K)/U s+1
K

NK|F−−−−→ Cs/U s+1

is commutative if [K : F ] = pd. In particular the norm map for Cram’s com-
plements is surjective. This gives us a modified version of (26). Put ∆s(K) :=
(U1 ∧ U s+1)(Cs ∧N1(K|F )), i.e. ∆s(K) ⊇ ∆s(L) = ∆s. Then (26) turns into

(28) Cs ∧ U1/∆s(K) ∼−→ IF Cs(K)/IF U s+1
K
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for all subextensions K|F of L.

Lemma 9.2. We have natural isomorphisms

(29) IF Cs(K)/IF U s+1
K

∼−→ IF U1
K/IF U s

K
∼−→ C2W 1

K|F /C2W s
K|F ,

which respect the principal unit filtration, i.e.

U i
K ∩ IF Cs(K)/IF U s+1

K
∼−→ U i

K ∩ C2W 1
K|F /C2W s

K|F

for all i. Equivalently the filtration U i
K ∩ IF Cs(K)/IF U s+1

K has no jumps of type
i = s + sp`.

Proof. The maps (29) are isomorphisms because the norm map for Cram’s com-
plements is surjective. Next we want to exclude the jump i = 2s. Via the left
vertical of (27) we obtain a map

(30) (k1 ⊕ · · · ⊕ ks−1)⊗GK|F
∼−→ IF Cs(K)/IF U s+1

K −→ U s+1
K /U2s+1

K .

To make this explicit a careful computation is necessary.

Lemma 9.3, [Cr2], [Kh2], 4.3 Let xr ∈ kr = k, σ ∈ GK|F , and let b(σ) ∈ k

such that πσ−1
K ≡ 1 + b(σ) · πs

K mod U s+1
K . Then:

Exp(xrπ
r
K)σ−1 ≡ 1 + rxrb(σ)ε · πr+s

K mod U2s+1
K ,

for all r = 1, . . . , s − 1 where ε ∈ U1
K is a principal unit which does not depend

on σ and r. ¤
Now we use the isomorphism

ps+1
K /p2s+1

K
∼= U s+1

K /U2s+1
K

and observe that kF = W (kF )/pW (kF ) (where W (kF ) denotes the Witt ring) acts
on ps+1

K /p2s+1
K , because νK(p) = [K : F ]e ≥ t ≥ s. So we may consider ps+1

K /p2s+1
K

as a kF -space with basis {ε ·πr+s
K ; r = 1, . . . , s}. From Lemma 12 we see that via

(29) IF Cs(K) is contained in the subspace generated by {ε·πr+s
K ; r = 1, . . . , s−1}.

and therefore IF Cs(K)∩U2s
K ⊆ U2s+1

K , which means that i = 2s cannot be a jump
for the filtration U i

K ∩ IF Cs(K)/IF U s+1
K .

For the induction step we consider the direct product

(31) C2W 1
K|F /IF U s+1

K = IF Cs(K)/IF U s+1
K × C2W s

K|F /IF U s+1
K .

We denote the three terms A, B, C, respectively.We use induction on ` to show
that:

(i) U i
K ∩B has no jumps of type i = s + sp`.

(ii) U i
K ∩A = U i

K ∩B × U i
K ∩ C for all i ≤ s + sp`+1.
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Proof. We know the possible jumps of A and C. For ` = 0 we can use U s+1
K ∩A =

A, U2s
K ∩C = C and U2s

K ∩B = U2s+1
K ∩B to obtain (ii) for all i ≤ 2s+1. Then we

apply Corollary 8.8: U2s+1
K ∩C = U s+sp

K ∩C which gives us (ii) for all i ≤ s + sp.

We assume (i), (ii) for some ` ≥ 0. Thus we know (ii) for i0 = s + sp`+1. This
implies

U i0+1
K ∩A ⊆ U i0

K ∩B × U i0
K ∩ C, x = y · z.

Now we consider a tower K ⊃ E ⊇ F such that [K : E] = p. Then by Lemma
8.7 we obtain an isomorphism:

NK|E : U s+sp`+1

K ∩A
∼−→ U s+sp`

E ∩AE|F .

Now we use NK|E(x) = NK|E(y) · NK|E(z) and NK|E(x) ∈ U s+sp`+1
E ∩ AE|F

because x ∈ U i0+1
K . Moreover NK|E(y) ∈ U s+sp`

E ∩ BE|F = U s+sp`+1
E ∩ BE|F by

induction hypothesis. Therefore:

NK|E(z) ∈ U s+sp`+1
E ∩ CE|F .

We know that C has only jumps of type s + sp` (Corollary 8.8) and again by
Lemma 8.7 we have the isomorphism:

NK|E : U i0
K ∩ C/U i0+1

K ∩ C
∼−→ U s+sp`

E ∩ CE|F /U s+sp`+1
E ∩ CE|F .

Then we conclude
z ∈ U i0+1

K ∩ C = U s+sp`+2

K ∩ C.

Therefore our original equation x = y · z implies now y ∈ U i0+1
K ∩B which gives

(ii) for i = i0 +1. Since i0 is a full jump for C we must have U i0
K ∩B = U i0+1

K ∩B
which is our assertion (i) for ` + 1. Finally using once more Corollary 8.8 we see
that (ii) for i = i0 + 1 will imply (ii) for all i ≤ s + sp`+2.

We have seen that (31) is a direct product of filtered groups. But then (24.2)
and (24.1) are direct products of filtered groups too and Proposition 9.1 is proved.

¤

Corollary 9.4. Let s ≤ t and X be a character of U1∧U1/(U1∧U s+1)(N1∧N1)
as in Lemma 8.2. Moreover assume that N1 is in the radical of X.

(i) If Cram’s complement C ′
s is contained in N1, then

j(X) = j(X|(Us∧Us)(N1∧N1)) ∈ {s +
s

pn−`
; ` = n− [

n

2
], . . . , n− 1}.

(ii) If C ′
s * N1, then it may happen that j(X) = s + j

pn−` for some j < s.

For 9.4(ii) see Proposition 11.4 and remark.
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10. Proof of Theorem 7.1

Now in particular we know that for Cram’s complements Lemma 9.2 holds.
We consider the diagram:

(32)

(k1 ⊕ · · · ⊕ ks−1) ∧ (ks/N) Norm−1⊗w−−−−−−−→ (k1 ⊕ · · · ⊕ ks−1)⊗GK|F

Es−1∧Es

y (30)

y

Cs ∧ U1/∆s(K)
(28)−−−−→ IF Cs(K)/IF U s+1

K ,

where N ⊂ ks corresponds through (22) to the s-extension K|F, and Norm−1

means reversing the first row of (27). We denote {F ν
N}ν the filtration of (k1⊕· · ·⊕

ks−1) ∧ (ks/N) which via the main diagonal of (32) corresponds to the filtration

U
ψK|F (ν)

K ∩ IF Cs(K)/IF U s+1
K . Then we have seen the following properties:

(i) The filtration F ν := F ν
{0} has the jumps ν = ν(s, `, r) where s is fixed and

` ∈ {0, . . . , f − 1}, r ∈ {1, . . . , s− 1} may vary.

(ii) F ν
N is a quotient of F ν , and the filtration F ν

N has the jumps ν(s, `, r) for
` ≥ dimFp(N), whereas the induced filtration F ν ∩ ((k1⊕· · ·⊕ks−1)∧N) has the
complementary jumps ν(s, `, r) for ` < dimFp(N).

(iii) If we combine the main diagonal of (32) with the second map of (30) which
is given by Lemma 9.3 and if we use the basis {επr+s

K ; r = 1, . . . , s− 1} resulting
from Lemma 12, then we obtain a coordinate map

(k1 ⊕ · · · ⊕ ks−1) ∧ (ks/N) −→ ks+1 ⊕ · · · ⊕ k2s,

which takes F
ν(s,`,r)
N for ` = dimFp(N) to coordinate vectors (xs+1, . . . , x2s−1, 0)

such that xs+1 = · · · = xs+r−1 = 0.

With these three properties the filtration on the first factors of the
factorizations (24.1), (24.2) is identified if we assume that Cs = C ′

s is
Cram’s complement. We still have to deal with the filtrations on the second
factors. In the case s = 1 this comes down to Theorem 6.1 and has been dealt
with in [Zi2]sections 3, 5 and 6. Also in the case s > 1 the result is independent of
the choice of Cs and the proof is very similar as for s = 1. ([Cr3],4.3 and [Kh2],5.
resp.) Altogether this proves Theorem 7.1*.

11. Other complements

Each linear map τ ∈ Hom Fp(k1 ⊕ · · · ⊕ ks−1, ks) induces

i⊕ τ : k1 ⊕ · · · ⊕ ks−1 → k1 ⊕ · · · ⊕ ks, x 7→ x⊕ τ(x).

Therefore

Hom Fp(k1 ⊕ · · · ⊕ ks−1, ks) 3 τ 7−→ Cs(τ) := Es(Im(i⊕ τ)) ⊂ U1/U s+1
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turns Hom Fp(k1⊕· · ·⊕ks−1, ks) into the space of parameters for the complements
Cs of U s/U s+1 in U1/U s+1. Cram’s complement C ′

s = Cs(0) is obtained for the
trivial map τ ≡ 0.

We make some remarks on the filtration of (26):

c : Cs(τ) ∧ U1/∆s(τ) ∼−→ IF U1
L/IF U s

L

if Cs = Cs(τ) is an arbitrary complement of U s/U s+1 in U1. We restrict to the
case where s ≤ t ≤ min{e, p−1}, which implies U1∧U s = UU s. Then the natural
isomorphism

Cs(τ) ∧ U s/U1 ∧ U s+1 ∼−→ Cs(τ) ∧ U1/∆s(τ)
is compatible with the filtration because for ν ≥ s :

(Cs(τ) ∧ U1) ∩ UUν = (Cs(τ) ∧ U1) ∩ (U1 ∧ U s) ∩ UUν = (Cs(τ) ∧ U s) ∩ UUν .

We consider the isomorphism

(33.1) U1 ∧ U s/U1 ∧ U s+1 Es∧Es←− ks ∧ ks
L−→ ys{φ}

which is compatible with the filtrations UUν mod U1∧U s+1 and Fν∩ys{φ} resp..
Put:

Is(τ) := Im(i⊕ τ) ⊂ ks.

Then under (33.1) we have:

Cs(τ) ∧ U s/U1 ∧ U s+1 ∼←− Is(τ) ∧ ks
∼−→ L(Is(τ) ∧ ks)

which is compatible with the induced filtrations. The map i ⊕ τ : ks−1 → ks

induces ks−1 ∧ ks
∼−→ Is(τ) ∧ ks ⊂ ks ∧ ks and therefore

(i⊕ τ)L : L(ks−1 ∧ ks)
∼−→ L(Is(τ) ∧ ks) ⊂ys{φ}.

This map is a section for the natural projection map

(33.2) ys{φ} = L(ks ∧ ks) = L(ks−1 ∧ ks)⊕ L(ks ∧ ks) → L(ks−1 ∧ ks)

which forgets the diagonal entries (L`)s,s of the polynomials L ∈ys{φ} for ` =
1, . . . , f − 1.

Lemma 11.1 The projection (33.2) restricted to L(Is(τ)∧ks) is an isomorphism

L(Is(τ) ∧ ks)
∼−→ L(ks−1 ∧ ks)

which maps L(Is(τ) ∧ ks) ∩ Fν into L(ks−1 ∧ ks) ∩ Fν .

Proof. According to Theorem 7.1 a polynomial L ∈ L(Is(τ) ∧ ks) is contained
in L(Is(τ)∧ks)∩Fν for ν = ν(s, `, r) if a certain subset of the coefficients (Lλ)s,ρ

vanish. But the projection map (33.2) replaces the diagonal coefficients (Lλ)s,s

(where λ varies) by zero, hence the condition to be in Fν is preserved. ¤We note
that, according to Theorem 7.1, the jumps of Fν ∩L(ks−1 ∧ ks) are precisely the
numbers ν(s, `, r) = s + r/pf−` for r < s and ` = 0, . . . , f − 1, and these are full
jumps. We ask whether it is possible for the filtration Fν ∩ L(Is(τ) ∧ ks)
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to have other jumps, i.e. jumps ν = ν(s, `, s) for ` ≥ f/2. For this we interpret
the map (i ⊕ τ)L : L(ks−1 ∧ ks)

∼−→ L(Is(τ) ∧ ks) as (i ⊕ τ)L = i ⊕ τL, where
τL : L(ks−1 ∧ ks) → L(ks ∧ ks) is induced by τ. That means:

(33.3) τL[L((a1, ..., as−1) ∧ bs)] = L(τ(a1, ..., as−1) ∧ bs).

In other words, polynomials L =
∑

ν Lνφ
ν ∈ L(Is(τ)∧ks) have the property that

the diagonal coefficients (L`)s,s for ` = f − [f/2], . . . , f − 1 are linear functions
of the other coefficients (L`)s,r where r < s. Assume that (L`)s,s for a fixed
` is a linear combination of coefficients {(Lλ)s,ρ; λ = 0, . . . , f − 1, ρ < s}
with nontrivial contributions from coefficients (Lλ)s,ρ such that s + ρ/pf−λ >

s+s/pf−`. Then (Lλ)s,ρ = 0 for s+ρ/pf−λ < s+s/pf−` does not imply (L`)s,s = 0,
and therefore L(Is(τ) ∧ ks) ∩ Fν has a jump for ν = ν(s, `, s).

If a = (a1, . . . , as) ∈ ks and b = (0, . . . , 0, bs) ∈ ks, then L(a ∧ b) ∈ys{φ} and
according to (14) we obtain:

(Lν)s,j = −bsφ
ν(aj) if j 6= s

(Lν)i,s = aiφ
ν(bs) = −φν((Lf−ν)s,i) if i 6= s

(Lν)s,s = asφ
ν(bs)− bsφ

ν(as).

For τ ∈ Hom Fp(k
s−1, ks) we obtain as = τ(a1, ..., as−1) and therefore:

(Lν)s,s = τ(a1, . . . , as−1)φν(bs)− bsφ
ν(τ(a1, . . . , as−1)).

In (33.3) we have defined τL for homogeneous arguments. But we need now to
give a general expression for the linear extension τL : L(ks−1 ∧ ks) → L(ks ∧ ks).
Our result will be Proposition 11.3 below. Since we can write:

(34) L(ks−1 ∧ ks) = L(k1 ∧ ks)⊕ · · · ⊕ L(ks−1 ∧ ks)

it is basically enough to study the case s = 2. Then τ ∈ HomFp(k1, k2)
and in order to describe τL we have to express (Lν)2,2 in terms of (L`)2,1 for
` = 0, . . . , f − 1. We put λν := (Lν)2,1 and λ := (λ0, . . . , λf−1) ∈ kf . We have
now only two copies of k and consider a ∈ k1, b ∈ k2. Then a ∧ b 7→ λ(a ∧ b) =
−(ab, φ(a)b, . . . , φf−1(a)b) is an isomorphism

(*) λ : k ⊗ k
∼−→ L(k1 ∧ k2) = kf .

Now let α = (α0, . . . , αf−1) be a basis for k|Fp and form the matrix

A =




α0 . . . φf−1(α0)
...

. . .
...

αf−1 . . . φf−1(αf−1)


 .

The matrix A is invertible because under (*) the rows of A correspond to the
k-basis α0 ⊗ 1, . . . , αf−1 ⊗ 1 of k ⊗ k.
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Lemma 11.2. Identifying L(k1 ∧ k2) = kf the map τL : kf → L(k2 ∧ k2) is
given explicitly as τL(λ) =

∑f−1
ν=1 Lνφ

ν , where

(35.1) Lν = (Lν)2,2 = 〈λA−1, φν(τ(α))〉 − 〈φν(λA−1), τ(α)〉.
If τ ∈ Hom Fp(k1, k2) is even k-linear, then:

(35.2) (Lν)2,2 = φν(τ(1))λν − τ(1)φν(λf−ν).

Proof. Obviously the map Lν = Lν(λ) is Fp-linear. Therefore it is enough
to prove that in the case λ = λ(a ∧ b) = −(ab, φ(a)b, . . . , φf−1(a)b) we obtain
(Lν)2,2 = τ(a)φν(b)− bφν(τ(a)).

Let [a]α = (a0, . . . , af−1) ∈ Ff
p be the coordinate vector of a with respect to

the base α. Then obviously [a]αA = (a, . . . , φf−1(a)), hence λ = −b · [a]αA. If
we substitute this on the right side of (35.1) and use that [a]α is φ-invariant then
(35.1) turns into:

(Lν)2,2 = −b〈[a]α, φν(τ(α))〉+ φν(b)〈[a]α, τ(α)〉 = −bφν(τ(a)) + φν(b)τ(a),

as asserted.

If τ is k-linear we get τ(α) = τ(1) · α and therefore:

Lν = φν(τ(1))〈λA−1, φν(α)〉 − τ(1)φν(〈λA−1, φf−ν(α)〉).
Now (35.2) follows because tφν(α) is the ν + 1-st column of A. ¤
Remarks. 1. The formula (35.1) does not depend on the choice of the base α.
If β = αM , M ∈ GLf (Fp) is another base then A is replaced by B = tMA and
τ(β) = τ(α)M.

2. If we write τ(α) = α[τ ]α where [τ ]α ∈ Ff×f
p is the coordinate matrix of τ

then in (35.1) A−1, τ(α) are replaced by A−1 t[τ ]α, α resp.

Using (34) we state the result in the general case:

Proposition 11.3. Consider τ ∈ HomFp(k
s−1, k) and let τi be the restriction

of τ to the i-th copy of k. Then for L ∈ L(ks−1 ∧ ks) with coefficient vectors
(L∗)s,i = ((L0)s,i, . . . , (Lf−1)s,i) we obtain τL(L) =

∑f−1
ν=1(Lν)s,sφ

ν , where

(Lν)s,s =
s−1∑

i=1

〈(L∗)s,iA
−1, φν(τi(α))〉 − 〈φν((L∗)s,iA

−1), τi(α)〉.

In particular if τ is k-linear then

(Lν)s,s =
s−1∑

i=1

φν(τi(1))(Lν)s,i − τi(1)φν((Lf−ν)s,i).
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Therefore in this case the complement Cs(τ) is as good as Cram’s complement
Cs(0) because the filtration UU

ν on Cs(τ)∧U1/∆s(τ) has only the jumps ν(s, `, r)
for r < s.

Proof. We are left only with the last statement. We have to prove that the
filtration Fν∩L(Is(τ)∧ks) has no jumps ν = ν(s, `, s) for ` ≥ f/2. But according
to our second equation (L`)s,s linearly depends on (L`)s,i and (Lf−`)s,i for i < s.
We have s + i/pf−` < s + s/pf−` and s + i/p` < s + s/pf−` because ` ≥ f/2.
Therefore if we come to ν = ν(s, `, s) the coefficients (L`)s,i and (Lf−`)s,i are
already zero, hence the condition (L`)s,s = 0 is empty. ¤

Now we consider the decomposition ys{φ} = L(ks−1 ∧ ks) ⊕ L(ks ∧ ks) with
projection maps pr1 and pr2 resp. and the map

dτ :ys{φ} → L(ks ∧ ks), dτ (L) := pr2(L)− τL(pr1(L)).

Proposition 11.4. Let UU
ν be the induced filtration on

U1 ∧ U s/Cs(τ) ∧ U s = U1 ∧ U1/Cs(τ) ∧ U1. Then under

U1 ∧ U s/Cs(τ) ∧ U s ← U s ∧ U s/U s+1 ∧ U s → L(ks ∧ ks)

the filtration UU
ν corresponds to the filtration dτ (Fν∩ys{φ}).

Proof. For L ∈ys{φ} we have dτ (L) ≡ L mod L(Is(τ) ∧ ks) because

pr1(L) + τL(pr1(L)) ∈ L(Is(τ) ∧ ks).

Therefore the diagram

ys{φ} dτ−−−−→ L(ks ∧ ks)

=

y
y

ys{φ} −−−−→ ys{φ}/L(Is(τ) ∧ ks)
is commutative and dτ (Fν∩ys{φ}) can be identified with

(Fν∩ys{φ}) mod L(Is(τ) ∧ ks). ¤

Remark. We note that L(ks∧ks) ⊂ Fν∩ys{φ} if ν ≤ ν(s, f− [f/2], s) such that
ν(s, f − [f/2], s) is the first jump of the filtration dτ (Fν∩ys{φ}). But depending
on τ this can now be a much more subtle filtration of L(ks∧ks) than the standard
filtration (for τ = 0), and in particular jumps ν(s, `, r) with r < s may occur.
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Appendix: Application to primitive representations

If ρ is a primitive irreducible representation of G of dimension pd, then accord-
ing to Proposition 3.2 we have

s̃w(ρ) =
1

eK|F
pdjKK(X),

where K|F is a tame extension and X is an alternating character defined on
K× ∧K×/N ∧K× such that for N1 := N ∩ U1

K :

K×/N ∼= U1
K/N1

∼= U1
K/∆1 × · · · × U1

K/∆r

where ∆1 ∩ · · · ∩∆r = N1 and U si
K /U si+1

K ³ U1/∆i for different s1, ..., sr. This
corresponds to the fact that ρ is the tensor product of r elementary stable repre-
sentations (see section 4).

We restrict to the case that ρ is elementary stable which means r = 1, N1 = ∆1

and s1 = s. Then we obtain the conductor formulas

jKK(X) = s + s/pf−`, s̃w(ρ) = pd+`−f · s(pf−` + 1)
eK|F

if N1 fits with a complement Cs which is as good as Cram’s. We must have
` ≥ f−d ≥ f/2. On the other hand if N1 does not fit with such a good complement
then we could have:

jKK(X) = s + j/pf−` ≥ s + s/pf−[f/2], s̃w(ρ) = pd+`−f spf−` + j

eK|F

for some j = 1, ..., s, where again ` ≥ f − d ≥ f/2. For a particular example see
[Cr1].

12. The Artin-Hasse exponential and a model for Ū1 ∧ Ū1

So far the filtration UU i has not been described modulo (U1)p∧U1 but modulo
appropriate larger subgroups of U1∧U1. In his attempt to come close to this final
aim G. M. Cram [Cr3] makes use of the Artin-Hasse exponential (see H. Hasse
[H] and I. R. Shafarevich [Sh]).

Notation: Let e, f be the ramification exponent and inertial degree of F |Qp

and let O0 = W (kF ) be the Witt ring in OF . Let I be the set of integers prime
to p which are less than e∗ = p e

p−1 . Note that |I| = e and that U
1 := U1/R :=

U1/(U1)pU e∗ is filtered by the subgroups U
ν = Uν/R for ν ∈ I.

We want to identify the e-dimensional kF -spaces kI
F = {(ai)i∈I} and U1/R.
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The Artin-Hasse exponentials are power series

Exp(a, x) = exp(
∞∑

n=0

aφn · xpn · p−n) ∈ O0[[x]]

which can be defined for all a ∈ O0. One has Exp(a + b, x) = Exp(a, x)Exp(b, x),
and Exp(a, x) ≡ Exp(ax) mod xp is the truncated exponential. For a fixed prime
element πF we will use the identification

(36) ExpI : kI 3 (ai)i∈I 7−→
∏

i∈I

Exp(ai, π
i
F ) ∈ U1/R.

which maps ki into U
i = U iR/R. This induces

ExpI ∧ ExpI : kI ∧Fp kI ∼−→ (U1 ∧ U1)/U1 ∧R.

Again we want to use the injection (14)

L : kI ∧ kI ↪→ kI×I
F {φ}

in order to identify the filtration UU i.

13. The jumps in the general case

Let S = Sf,I be the set of all triples (s, `, r) such that ` ∈ {0, . . . , f − 1}, s, r ∈ I,
r ≤ s and r = s only if ` ≥ f/2. The image L(kI∧kI) consists again of polynomials∑f−1

ν=0 Lνφ
ν with Lν ∈ kI×I

F where the coefficients (L`)s,r for (s, `, r) ∈ S may
serve as independent coefficients. A problem is posed now by the fact that the
map

(*) (s, `, r) ∈ S 7−→ ν(s, `, r) = s +
r

pf−`

need not be injective. It may happen that s is much larger than p. As a con-
sequence the values ν(s, `, r) from Theorem 7.1 are no longer distinguished by
s. For instance for s = pν + 1 we could have: pν + 1 + pν+1

pν = pν + 2 + 1
pν and

2ν +1+ 2ν+1
2ν−1 = 2ν +3+ 1

2ν−1 resp. Injectivity of (*) is preserved only if s is fixed.

We write (s, `, r) ∼ (σ, λ, ρ) to mean that ν(s, `, r) = ν(σ, λ, ρ) and we let
[s, `, r] denote the equivalence class of (s, `, r). Equivalence implies λ = ` and
ρ = r − (σ − s)pf−`. In the present case the filtration UUν of U

1 ∧ U
1 will have

other jumps ν = j(s, `, r). These jumps separate the elements of [s, `, r].

Definition 13.1. For s ∈ I consider the inverse Herbrand functions

ϕs(x) = x if x ≤ s and = s +
x− s

pf
if x ≥ s,

ϕ(s)(x) = · · · ◦ ϕs′′ ◦ ϕs′ ,
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where s < s′ < s′′ < · · · ⊂ I is the set of successors of s which are in I. In
particular put ϕ(s)(x) = x if s ∈ I is maximal.

Theorem 13.2 ([Cr3], Th.5.2.1(a)). The jumps of the filtration UUν of U
1 ∧

U
1 are the numbers

ν = j(s, `, r) := ϕ(s)(s +
r

pf−`
) for (s, `, r) ∈ Sf,I .

Remarks.

1. The numbers j(s, `, r) for (s, `, r) ∈ Sf,I are all different.

2. ν(s, `, r) is the maximum of all numbers j(σ, `, ρ) such that (σ, `, ρ) ∼ (s, `, r).

3. Instead of U
1 ∧ U

1 we may also consider U1 ∧ U1/U1 ∧ U t+1(U1)p for any
t ∈ I. Then the Theorem holds if we replace I by It = {s ∈ I; s ≤ t} and also
change the definition of j(s, `, r) by using It.

Ad 1. The denominator of j(s, `, r) has to be paf−` for some a ≥ 1. Therefore
j(s, `, r) = j(σ, λ, ρ) implies paf−` = pαf−λ, hence ` = λ, a = α because `, λ ∈
{0, . . . , f − 1}. Furthermore j(s, `, r) = s1 + k1/paf−` such that k1 > 0 and
j(s, `, r) < s′1, or s1 ∈ I is maximal. Now assume s1 + k1/paf−` = σ1 + κ1/paf−`

and s1 < σ1. Then j(s, `, r) ≥ σ1 ≥ s′1, hence s1 ∈ I must be maximal, which is
a contradiction.

Ad 2. The elements (σ, λ, ρ) ∈ [s, `, r] all have different values σ. If σ is the
maximal of these values then σ + ρ/pf−λ < σ′ or σ ∈ I is maximal, and therefore
j(σ, λ, ρ) = ν(σ, λ, ρ) = ν. On the other hand j(s, `, r) = ϕ(s)(ν) < ϕ(σ)(ν) = ν if
s < σ.

We will quote now the main result leading to the proof of 13.2. Let s ∈ I and
Cs ⊆ U1 be a complement such that U s/U s+1 ∼−→ U1/Cs. Consider the maximal
s-extension K|F such that NK|F (U1

K) = Cs. Then we obtain an exact sequence :

(37) U
1
K∧U

1
K/U

1
K∧U

s
K

NK|F−→ U
1∧U

1
/U

1∧U
s+1 → U

1∧U
1
/(U1∧U

s+1)(Cs∧Cs),

where the arrows are injective and surjective resp. and NK|F (a∧ b) = NK|F (a)∧
NK|F (b).

Proposition 13.3 ( [Cr3]Th.5.2.1(b)). Concerning the first arrow of (37) we
have

NK|F (UU i
K) = UUϕ(i) ∩ Im(NK|F ),

where ϕ = ϕK|F is the inverse Herbrand function for K|F .

The Theorem is easily deduced from the proposition. We have [K : F ] = pf

and K|F is an s-extension. Therefore ϕK|F = ϕs in the notation of definition
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13.1. By induction we may assume that U
1
K ∧ U

1
K/U

1
K ∧ U

s
K has the jumps

j(σ, λ, ρ) for (σ, λ, ρ) ∈ Sf,I<s . They are transferred into the jumps ϕs ◦ j(σ, λ, ρ).
And from the right side of (37) we get the additional jumps ν(s, `, r).

14. First remarks on the filtration in the general case

As in section 7 we have a bijection between the set (L`)s,r of independent
coefficients in L(kI ∧ kI) and the set j(s, `, r) of possible jumps of our filtration.
In both cases the parameters are the triples (s, `, r) ∈ Sf,I . The arrangement of
the numbers j(s, `, r) in terms of the parameters (s, `, r) is now more involved and
the same holds for the filtration F j(s,`,r) of L(kI ∧ kI). Nevertheless Proposition
7.3 holds and therefore F∗j(s,`,r) = F j(s,`,r)⊥.

If we replace F by an unramified extension F ′|F then I is left unchanged
whereas f increases. But for (s, `, r) ∈ Sf,I the numbers ν(s, `, r) ≤ s + s/p <
e∗ + e∗/p have an upper bound which depends only on e, not on f. Therefore
replacing F by F ′ which means to take f sufficiently large, we can always move
to a situation where

j(s, `, r) = ϕs′(s + r/pf−`) for all (s, `, r) ∈ Sf,I ,

i.e. either j(s, `, r) = ν(s, `, r) < s′, or

j(s, `, r) = ϕs′(ν(s, `, r)) = s′ +
s + r/pf−` − s′

pf
< s′′.

We note that the last inequality certainly holds if s < p(1 + pf ) because then:

(38) r ≤ s < p(1 + pf ) ≤ pf−`(1 + pf ) ≤ (s′ − s)pf−` + (s′′ − s′)p2f−`.

Proposition 14.1. For an unramified extension F ′|F we have

(i) NF ′|F (U i
F ′) = U i

F for all i ≥ 1

(ii) NF ′|F (UUν
F ′) = UUν

F for all ν > 1. ¤
We describe now the norm map in terms of our models. We have to find the

map T such that the diagram

U
1
F ′ ∧U

1
F ′ ←−−−− k′I∧k′I −−−−→ L(k′I ∧ k′I)

NF ′|F∧NF ′|F

y trI∧trI

y T

y
U

1
F ∧U

1
F ←−−−− kI ∧ kI −−−−→ L(kI ∧ kI)

becomes commutative. One easily checks that

T (
∑

µ∈Z/f ′
Lµφµ) =

∑

ν∈Z/f

Pνφ
ν
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where Pν = trk′|k(
∑

µ∈pr−1(ν) Lµ). The inner sum extends over the preimage of ν

under the projection map pr : Z/f ′Z→ Z/fZ. [Cr3](Proposition1.4.3.) Proposi-
tion 14.1(ii) means that the filtrations F ′ν of L(k′I ∧ k′I) and Fν of L(kI ∧ kI)
are related through T (F ′ν) = Fν = Fµ, where µ ≥ ν is the next jump in the
filtration of L(kI ∧ kI).

15. The norm map for s-extensions - a refinement and a generalization
of Theorem 7.1* We consider s-extensions [K : F ] = pd as in section 8, i.e.
(22) holds. We use (36) to define Cram’s complement Cs ⊂ U1/R as the image
of the hyperplane of kI given by as = 0. Obviously U

s+1 ⊂ Cs, and often
we will consider Cs in U1/U s+1R. Again let L|F be the maximal s-extension
corresponding to the norm subgroup Cs ·CF and assume K ⊆ L. In K we consider
Cs(K) relative to a prime element πK such that NK|F (πK) = πF .

Lemma 15.1. : Assume s ≤ e = eF |Qp
. Then the norm map NK|F : U1

K/U s+1
K RK →

U1
F /U s+1

F RF respects the splitting U1/U s+1R = Cs×(U sR/U s+1R). In particular
it induces an isomorphism NK|F : Cs(K) ∼−→ Cs which in terms of (27) – with
the exponential replaced by the Artin-Hasse exponential – is given now by a lower
triangular matrix with main diagonal: diag = (φd, . . . , φd).

More precisely let Q = Q(φ) ∈ kF {φ} be the additive polynomial which ac-
cording to [Se], V, §3,6 corresponds to NK|F : U s

K/U s+1
K → U s

F /U s+1
F . We note

that Q is uniquely determined by the properties:

(i) Q has highest coefficient 1 and divides φf − 1.

(ii) Under a ∈ kF 7→ 1 + aπs
K ∈ U s

K/U s+1
K the subspaces Ker(Q) and Ker(NK|F )

correspond.

Furthermore let Is = {r ∈ I; r ≤ s} and let Ns be the matrix of type Is×Is with
entries 1 at the positions (s, s), (s{−1}, s− p), . . . , (s{−r}, s− rp), . . . as long as
s− rp ≥ 1 and with the convention that s{−r} means r steps backwards in the
sequence Is of numbers prime to p. All other entries of Ns are 0. Note that for
s < p the only entry 1 is at position (s, s).

Lemma 15.2 ([Cr3], Theorem 2.4.2). Keep the assumptions of the previous
Lemma and replace

Q = φd + ηd−1φ
d−1 + · · ·+ η0 ∈ kF {φ}

by

Q{s} = Eφd + ηd−1Nsφ
d−1 + · · ·+ η0N

d
s ∈ kIs×Is

F {φ}.
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Then the diagram

kIs
F

Q{s}
−−−−→ kIs

F

ExpIs
K

y
yExpIs

F

Cs(K)× U s
K/U s+1

K R
NK|F−−−−→ Cs × U s

F /U s+1
F R

is commutative.

Whereas (27) was valid only for s ≤ t < p, Cram’s arguments work for all
s ≤ e. Note that in (27) the norm map has been considered only on Cs. For Q{s}
this means that the last row and column have to be removed. For s < p this
turns Ns into the zero matrix.

The proof is by iteration, beginning from loc.cit. Proposition 2.1.7, a2):

NK|F (Exp(a, πi
K)) ≡ Exp(ap, πi

F )(1 + a · TrK|F (πi
K)) mod U s+1

F

if

[K : F ] = p and 1 ≤ i < s.

Since K|F is in L it is possible to obtain more information on the trace of the pow-

ers of πK . The correcting factor on the right can be replaced by Exp(aη0, π
s− s−i

p

F )
if i ≡ s mod p and by 1 otherwise. This implies the Lemma in case [K : F ] = p
(loc.cit. Lemma 2.4.1), and then one can argue by induction.

We want the results of section 9 for the less restrictive assumption s ≤ e. There-
fore we also need a more general version of Lemma 9.3.

Lemma 15.3 ([Cr3],3.3.1). Assume s ≤ e. Then it is possible to choose πK

such that:

πσ−1
K ≡ 1 + ϑs(σ)πs

K mod U2s
K for all σ ∈ GK|F ,

where ϑs(σ) ∈ k×F , and this implies:

Exp(a, πr
K)σ−1 ≡ 1 + rϑs(σ)πs

K(aπr
K + φ(a)πrp

K + φ2(a)πrp2

K + · · · ) mod U2s+1
K ,

for all 1 ≤ r < s.

As we did after Lemma 9.3 we may again consider U s+1
K /U2s+1

K as a kF -space,
and the Lemma shows that the 2s-coordinate of Exp(a, πr

L)σ−1 is always zero, if
r < s. Therefore IF Cs(K) ∩ U2s

K ⊆ U2s+1
K , and this proves Proposition 9.1 in our

more general context. The induction argument is basically the same as in section
9.
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Using (16), (19) and (20) we consider now the commutative diagram

(39)

L(kI ∧ kI) ∼−−−−→ U
1 ∧ U

1

y
y

ys{φ} ∼−−−−→ U
1 ∧ U

1
/(U1 ∧ U

s+1)(Cs ∧ Cs),

where the left vertical is the natural projection which forgets all entries not in
ys{φ}. Then as a generalization of Theorem 7.1* we obtain:

Theorem 15.4([Cr3]Proposition 4.1.2). Assume that 1 < s ≤ e. Then:

(i) The jumps of the filtration UU
ν on U

1 ∧ U
1
/(U1 ∧ U

s+1)(Cs ∧ Cs) are the
numbers

ν(s, `, r) := s + r/pf−`

where s is fixed, 1 ≤ r ≤ s and ` = 0, . . . , f − 1, and where the equality r = s

is allowed only if ` ≥ f/2. These numbers begin from ν(s, 0, 1) and increase to
ν(s, f − 1, s), where the order can now be different than in Theorem 7.1.

(ii) Take the coefficients (L`)s,r as independent coefficients of our polynomials
L ∈ys{φ}, where r, ` vary as in (i). Then under the lower horizontal map
of the diagram the filtration UU

ν corresponds to the filtration {F̄ν}ν such that
F̄ν =ys{φ} if ν = ν(s, 0, 1), and for F̄ν(s,`,r) the next term F̄ν′ of the filtration
is given by adding the relation

(L`)s,r + φ`((Lf−`)s,s−p`(s−r)) = 0 if r < s, ` 6= 0, and s− p`(s− r) > 0

(L`)s,r = 0 otherwise.

So we end with F̄ν′ = 0 for ν = ν(s, f − 1, s). And in the case when f is even,
the jump ν(s, f/2, s) is a half jump.

Due to Lemmas 15.2 and 15.3 the proof is basically the same as in section 10
where we used (27) and Lemma 9.3 resp..

16. More on the filtration in the general case

For s ∈ I we consider Cram’s complement Cs ⊂ U
1 as in the last section. We

will use the notation

CCs := (Cs ∧ Cs)(U
1 ∧ U

s+1) ⊂ U
1 ∧ U

1
.

Then we have ∩s≤tCCs = U
1 ∧ U

t+1 and

(40) U
1 ∧ U

1
/U

1 ∧ U
t+1 ∼−→

∏

s∈I,s≤t

U
1 ∧ U

1
/CCs
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as in (21). But contrary to Proposition 8.1 this is no longer a direct product of
filtered groups because different factors can have jumps in common. Therefore
Theorem 15.4 on the factors U

1 ∧ U
1
/CCs is not enough to fix the filtration on

the left side of (40). Instead we consider

CCs,s′ := CCs ∩ CCs′

(41) U
1 ∧ U

1
/CCs,s′

∼−→ U
1 ∧ U

1
/CCs × U

1 ∧ U
1
/CCs′ ,

where s, s′ ∈ I are consecutive numbers. On the other hand we consider:

ysy{φ} :=ys{φ}+ys′{φ} ⊆ L(kI ∧ kI).

Then similar to (39) we have the commutative diagram:

(42)

L(kI ∧ kI) ∼−−−−→ U
1 ∧ U

1

y
y

ysy{φ} ∼−−−−→ U
1 ∧ U

1
/CCs,s′

where the left vertical projection forgets all entries of L ∈ L(kI ∧ kI) which are
not in ysy{φ}. As a variation of (37) we have the exact sequence:

U
1
K ∧ U

1
K/CCs(K)

NK|F−→ U
1 ∧ U

1
/CCs,s′ → U

1 ∧ U
1
/CCs′

and by an argument which is similar to what we did at the end of section 13 we
see:

Lemma 16.1.

(i)The jumps of the filtration UU
ν on U

1∧U
1
/CCs,s′ are the numbers ϕs′(s, `, r)

and ν(s′, λ, ρ) where `, r, λ, ρ may vary as allowed by the definition of Sf,I .

(ii) The numbers from (i) are all different, and for f large enough we always
have: ϕs′(s, `, r) = j(s, `, r).

For the very last statement see (38).

Corollary 16.2. If f is large enough the numbers j(s, `, r) where s is fixed
occur as jumps of U

1 ∧ U
1
/CCs,s′ but never occur as jumps of U

1 ∧ U
1
/CCs1,s′1

for s1 > s. And the numbers j(s, `, r) such that j(s, `, r) 6= ν(s, `, r) cannot occur
as jumps also in the case when s1 < s.

Proof. Assume the contrary of the first statement. Then we must have j(s, `, r) =
ν(s′1, λ, ρ), hence the denominator of j(s, `, r) is small. Thus j(s, `, r) = ν(s, `, r)
and ν(s, `, r) = ν(s′1, λ, ρ) > s′1 which is a contradiction.

It may happen that j(s, `, r) occurs as a jump of U
1∧U

1
/CCs1,s′1 for s1 < s. For

that it is necessary that j(s, `, r) = ν(s, `, r) = ν(s′1, λ, ρ). But then we must have
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s′1 = s. If s′1 < s then ν(s′1, λ, ρ) stands for a different jump of U
1∧U

1
/U

1∧U
s′+1

namely for the jump j(s′1, λ, ρ) 6= ν(s′1, λ, ρ) = j(s, `, r). ¤
Therefore if f is large it is enough to study the filtrations UU

ν
/CCs,s′ for all

pairs of consecutive numbers s, s′ ∈ I in order to make the filtration {UU
ν}ν

explicit. This is done in [Cr3] sections 7 and 8. Similar as the study of UU
ν
/CCs

needs to consider s-extensions K|F which are related to Cram’s complements, it
is now necessary to study abelian extensions E|F of the following type:

E = L · L′ where L|F is a Cs-extension of degree pn, n ≥ 1 and L′|F is of
maximal degree pf corresponding to Cram’s complement Cs′ .

Then a careful analysis of the isomorphisms (23) for E, s′ instead of K, s
leads to the following

Theorem 16.3 ([Cr3]Theorem 1.5.2). Assume t < min{e∗, p2} and f large.
Then:

(i) The jumps of the filtration UU
ν on U

1 ∧ U
1
/U

1 ∧ U
t+1 are the numbers

j(s, `, r) = ϕs′(ν(s, `, r)) for triples (s, `, r) ∈ Sf,It .

(ii) Take the coefficients (L`)s,r as independent coefficients of our polynomials
L ∈ L(kIt

F ∧ kIt
F ), where r, `, s vary as in (i). Then under

U
1 ∧ U

1
/U

1 ∧ U
t+1 ∼= L(kIt

F ∧ kIt
F )

the filtration UU
ν corresponds to the filtration {Fν}ν such that for Fν(s,`,r) the

next term Fν′ of the filtration is given by adding the relation

(L`)s,r + φ`((Lf−`)s,s−p`(s−r)) = 0 if r < s, ` 6= 0, and s− p`(s− r) > 0

(L`)s,r − (L`)s′,r−(s′−s)pf−` = 0 if ` = f − 1 and r − (s′ − s)pf−` > 0

(L`)s,r = 0 otherwise.

Remarks.

1. In accordance to Corollary 16.2 the relation which specifies the jump
j(s, `, r) only includes coefficients (Lλ)σ,ρ for σ ∈ {s, s′}. Moreover the relation
always begins with the term which is prescribed by Theorem 15.4.

2. The assumption t < p2 implies that relations ν(s, `, r) = ν(σ, `, ρ) are
possible only for ` = f − 1, that means denom(ν(s, `, r)) = p. For higher
denominators we will always have ν(s, `, r) = s + r/pf−` < s′ and therefore
ν(s, `, r) = j(s, `, r). This is the reason why the second relation in the Theorem
only occurs for ` = f − 1.

3. Because of Proposition 7.3 it is easy also to specify the dual filtration
F∗ν(s,`,r). We leave this to the reader.
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