
Pure and Applied Mathematics Quarterly

Volume 5, Number 1

(Special Issue: In honor of

Jean Pierre, Part 2 of 2 )

255—294, 2009

Iwasawa Theory and Motivic L-functions

Matthias Flach

To Jean-Pierre Serre.

Abstract: We illustrate the use of Iwasawa theory in proving cases of the
(equivariant) Tamagawa number conjecture.
Keywords: L-functions

Contents

Part 1. Motivic L-functions 256

1. Review of the Tamagawa Number Conjecture 257

2. Limit formulas 260

2.1. Dirichlet L-functions 261

2.2. The Kronecker limit formula 262

2.3. Other Limit Formulas 271

Part 2. Iwasawa Theory 272

3. The Zeta isomorphism of Kato and Fukaya 274

4. Iwasawa theory of imaginary quadratic field 275

4.1. The main conjecture for imaginary quadratic fields 275

Received August 17, 2006.

2000 Mathematics Subject Classification. Primary: 11G40, Secondary: 11R23, 11R33, 11G18

The author was supported by grant DMS-0401403 from the National Science Foundation.



256 Matthias Flach

4.2. The explicit reciprocity law 279

5. The cyclotomic deformation and the exponential of Perrin-Riou 288

6. Noncommutative Iwasawa theory 290

References 292

The present paper is a continuation of the survey article [19] on the equivariant
Tamagawa number conjecture. We give a presentation of the Iwasawa theory of
imaginary quadratic fields from the modern point of Kato and Fukaya [21] and
shall take the opportunity to briefly mention developments which have occurred
after the publication of [19], most notably the limit formula proved by Gealy [23],
and work of Bley [4], Johnson [27] and Navilarekallu [32]. Unfortunately, we do
not say as much about the history of the subject as we had wished. Although
originally planned we also did not include a presentation of the full GL2-Iwasawa
theory of elliptic modular forms following Kato and Fukaya (see Colmez’ paper
[14] for a thoroughly p-adic presentation).

We believe however that the point of view of this paper (due to Kato, Fontaine-
Perrin-Riou, Burns-Flach et al), presenting both the theory of complex L-values
as well as of p-adic L-functions as the construction of trivializations of determi-
nant line bundles, holds great promise for future research, and might eventually
also include complex L-functions via the idea of a Weil-étale topology due to
Lichtenbaum [31] (see also [20]).

It is a pleasure to dedicate this paper to Jean-Pierre Serre who has contributed
so much to modern arithmetic geometry, and also inspired the general theory of
motivic L-functions with his definition in [39].

Part 1. Motivic L-functions

In this part we sketch the theory of motivic L-functions insofar as it does not
involve Iwasawa theory.
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1. Review of the Tamagawa Number Conjecture

We recall the (equivariant) Tamagawa number conjecture in the formulation
of Fontaine and Perrin-Riou, referring to [19] and references therein for further
details.

We consider pure motives M over Q which one can think of as being given by
(a direct summand of) hi(X)(j) where

X → Spec(Q)

is a smooth projective variety and i, j ∈ Z. The motive M gives rise to a ”motivic
structure” consisting of the realisations and the motivic cohomology groups of
M together with comparison isomorphisms and exact sequences relating these
groups. While the reader may want to think of M in a less formal way, e.g. as an
object of Voevodsky’s category DMgm(Q), it is only the motivic structure that
enters into the definition of the L-function of M as well as into the conjectures
on its leading term.

We shall now summarize this data. For a Q-vector space W and a Q-algebra
R we put WR = W ⊗Q R and set Wl = WQl

. Suppose a finite dimensional
semisimple Q-algebra A acts on M . In order not to overburden the notation we
suppose that A is commutative in this summary. One has

• For any prime number l a continuous Al-representation Ml =H i
et(XQ̄,Ql)(j)

of the Galois group GQ.
• The characteristic polynomial Pp(T ) = detAl

(1 − Fr−1
p · T |M Ip

l ) ∈ Al[T ]
where Frp ∈ GQ is a Frobenius element.

• A finitely generated A-space MB = H i(X(C),Q)(j) which carries an
action of complex conjugation and a Hodge structure.

• A finitely generated filtered A-space MdR = H i
dR(X/Q)(j).

• Motivic cohomology A-spaces H0
f (M) and H1

f (M) for both M and its
dual M∗(1).

• An AR-linear map

αM : M+
B,R → (MdR/ Fil0 MdR)R

induced by the AC-linear period isomorphism MB,C ∼= MdR,C.
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• Let S be a finite set of primes containing l, ∞ and primes of bad reduction
of M . There are distinguished triangles in the derived category of Al-
spaces

RΓc(Z[
1
S

],Ml) → RΓ(Z[
1
S

],Ml) →
⊕

p∈S

RΓ(Qp,Ml)

RΓc(Z[
1
S

],Ml) → RΓf (Q,Ml) →
⊕

p∈S

RΓf (Qp,Ml).(1.1)

One expects the following conjectures to hold. Given the length of this list it
might be worthwhile to point out that there are cases where all the conjectures
formulated below are true (see [19]).

Conjecture 1. (Existence of L(AM, s) at s = 0)

• (Independence on l): Pp(T ) lies in A[T ] and is independent of l. This is
known if M has good reduction at p and if A = Q.

• The AC-valued L-function

L(AM, s) :=
∏
p

Pp(p−s)−1,

which is defined and analytic for s with sufficiently large real part, has a
meromorphic continuation to s = 0.

The Taylor expansion

L(AM, s) = L∗(AM)sr(AM) + · · ·

at s = 0 defines L∗(AM) ∈ A×R and r(AM) ∈ H0(Spec(A),Z) and the aim of the
Tamagawa number conjecture is to describe these quantities.

Conjecture 2. (Vanishing Order)

r(AM) = dimA H1
f (M∗(1))− dimA H0

f (M∗(1))
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Conjecture 3. (Motivic cohomology with R-coefficients) The spaces H i
f (M) and

H i
f (M∗(1)) are finitely generated over A and there exists an exact sequence of

AR-spaces

0 → H0
f (M)R

c−→ ker(αM ) → H1
f (M∗(1))∗R

h−→
H1

f (M)R
r−→ coker(αM ) → H0

f (M∗(1))∗R → 0

where c is a cycle class map, h a height pairing, and r the Beilinson regulator.

The exact sequence in Conjecture 3 induces an isomorphism

Aϑ∞ : DetAR(0) ∼= Ξ(AM)⊗A AR

where

Ξ(AM) := DetA(H0
f (M))⊗Det−1

A (H1
f (M))

⊗DetA(H1
f (M∗(1))∗)⊗Det−1

A (H0
f (M∗(1))∗)

⊗Det−1
A (M+

B )⊗DetA(MdR/ Fil0)

is the so called fundamental line of M . All determinants here and in the following
are understood in the graded sense [5]. For example DetR(0) = (R, 0) for any
commutative ring R.

Conjecture 4. (Rationality)

Aϑ∞(L∗(AM)−1) ∈ Ξ(AM)⊗ 1

Viewing L∗(AM)−1 as an element of A×R = Aut(DetAR(0)) this conjecture is
equivalent to the statement that the composite isomorphism

DetAR(0)
L∗(AM)−1

−−−−−−−→ DetAR(0) Aϑ∞−−−→ Ξ(AM)⊗A AR

sends 1 to Ξ(AM)⊗1, i.e. is the scalar extension from A to AR of an isomorphism

(1.2) ζA(M) : DetA(0) ∼= Ξ(AM).
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Conjecture 5. (Motivic cohomology with Ql-coefficients) There are natural iso-
morphisms H0

f (M)Ql
∼= H0

f (Q,Ml) (cycle class map) and H1
f (M)Ql

∼= H1
f (Q,Ml)

(Chern class map).

Since one can construct an isomorphism H i
f (Q,Ml) ∼= H3−i

f (Q,M∗
l (1))∗ for all

i Conjecture 5 computes the cohomology of RΓf (Q,Ml) in all degrees.

The exact triangle (1.1) induces an isomorphism

Aϑl : Ξ(AM)⊗A Al
∼= DetAl

RΓc(Z[
1
S

],Ml).

Let A ⊆ A be any Z-order so that for each prime l there exists a GQ-stable
projective Al-lattice Ml ⊂ Ml.

Conjecture 6. (Integrality)

Al · AϑlAϑ∞(L∗(AM)−1) = DetAl
RΓc(Z[

1
S

],Ml)

This conjecture is equivalent to the statement that the composite isomorphism

ζAl
(Ml) : DetAl

(0)
ζA(M)⊗AAl−−−−−−−−→ Ξ(AM)⊗A Al

Aϑl−−→ DetAl
RΓc(Z[

1
S

],Ml)

is the scalar extension from Al to Al of an isomorphism

(1.3) ζAl
(Ml) : DetAl

(0) ∼= DetAl
RΓc(Z[

1
S

],Ml).

2. Limit formulas

Before one can begin to apply Iwasawa theory to the conjectural picture out-
lined in the last section one has to verify Conjectures 1-5, if not for M then at
least for motivic points in an l-adic family deforming Ml (see the next part for
precise definitions). In other words, Iwasawa theory generally only pertains to
Conjecture 6 although ideas related to Iwasawa theory can sometimes also be
used to address Conjecture 2 (as in the Coates-Wiles theorem [9]). The veri-
fication of Conjectures 1, 2, 4 currently involves the identification of L(AM, s)
with a tuple of automorphic L-functions and the ensuing explicit integral or se-
ries representations. Conjecture 3 was formulated by Fontaine and Perrin-Riou,
generalizing conjectures of Hodge and Beilinson. Known special cases include



Iwasawa Theory and Motivic L-functions 261

the Dirichlet unit theorem, the Borel regulator for K-groups of number fields and
the Mordell-Weil theorem. In most other examples Conjecture 3 is only known
in a weak form where one replaces motivic cohomology groups by a subspace
of explicit elements. Conjecture 5 is known in even fewer cases and amounts
to a ”Tate conjecture” or finiteness of a ”Tate-Shafarevich group” or ”Leopoldt
conjecture”.

In order to then address Conjecture 6 it is not sufficient to know Conjecture
4 as such (i.e. up to an unspecified factor in A×) but one needs to know it in
a precise form. This is what we mean by a limit formula. This terminology
originates with the Kronecker limit formula (see section 2.2 below) but we shall
denote any precise description of L∗(AM) in the fundamental line as a ”limit
formula”. In all the examples a limit formula goes hand in hand with the fact
that the spaces involved in the definition of Ξ(AM) have A-rank ≤ 1. This seems
to be the basic limitation of the cases where proofs of Conjecture 6 are currently
known (the analytic class number formula being an exception).

2.1. Dirichlet L-functions. Let m be any positive integer and define

ζm := e2πi/m, Fm = Q(ζm), Gm = Gal(Fm/Q) ∼= (Z/mZ)×

and

M = h0(Spec(Fm)), A = Q[Gm] ∼=
∏
χ

Q(χ), A = Z[Gm].

The L-function L(AM, s) takes values in A ⊗ C =
∏

η∈Ĝm
C, where Ĝm =

Hom(Gm,C×), and coincides with the tuple of Dirichlet L-functions (L(η, s))η∈Ĝm
.

Limit formulas are known for the leading coefficient of L(AM, s) at any integer
argument s = j. The article [19] already gives a comprehensive discussion of these
limit formulas, including a description of L∗(AM, 0) in the fundamental line and
the ensuing Iwasawa theory. We shall therefore simply recall the trivialization of
the fundamental line obtained at s = 0. Here one has the well known formulae

L(η, 0) =−
fη∑

a=1

(
a

fη
− 1

2

)
η(a)

d

ds
L(η, s)|s=0 =− 1

2

fη∑

a=1

log |1− e2πia/fη |η(a) η 6= 1 even,
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and it is known that ords=0 L(η, s) = 0 (resp. 1) if η = 1 or η is odd (resp. η 6= 1
is even). For a number field F and set of places S denote by YS = YS(F ) (resp.
XS = XS(F )) the free abelian group on S (resp. the kernel of the sum map on
YS). For an abelian group G denote by # the automorphism g 7→ g−1 as well as
the induced functor on G-modules and the induced automorphism of A.

There is a canonical isomorphism

Ξ(AM)# ∼−→ Det−1
A (O×Lm

⊗
Z
Q)⊗DetA(X{v|∞} ⊗Z Q)

∼−→
∏

χ6=1
even

Det−1
Q(χ)(O×Lm

⊗
A
Q(χ))⊗DetQ(χ)(X{v|∞} ⊗

A
Q(χ))×

∏

other χ

Q(χ)

∼−→
∏

χ6=1
even

(O×Lm
⊗
A
Q(χ))−1 ⊗Q(χ) (X{v|∞} ⊗

A
Q(χ))×

∏

other χ

Q(χ)

and in this description Aϑ∞(L∗(AM)−1) = (L∗(AM)−1)#Aϑ∞(1) has components

Aϑ∞(L∗(AM)−1)χ =





2 · [Fm : Ffχ ][1− ζfχ ]−1 ⊗ σm χ 6= 1 even
(
L(χ, 0)#

)−1 otherwise.

Here σ : Fm → C is the embedding with σm(ζm) = e2πi/m and

L(χ, 0)# =
∑
η∈χ

L(η−1, 0)eη ∈
∑
η∈χ

eηA ∼= Q(χ)

where we view a Q-rational character χ as an Aut(C)-orbit of complex characters.

2.2. The Kronecker limit formula. Our exposition in this section closely fol-
lows the treatment in de Shalit’s book [17, Ch.II] except for minor improvements
involving the canonical choice of various 12-th roots. We also borrow from John-
son’s thesis [27] and Bley’s paper [4]. We first introduce certain (very classical)
elliptic functions, then give the connection to elliptic curves and finally specialize
to elliptic units. This leads to limit formulas for Artin L-functions at s = 0 sim-
ilar to those discussed in the previous section. We then discuss Eisenstein series
and logarithmic derivatives of elliptic functions which lead to limit formulas for
CM elliptic curves at the central point. The interplay between these two sets
of limit formulas lies at the heart of the Iwasawa theory of imaginary quadratic
fields as discussed in section 4 below.
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2.2.1. Elliptic functions. Let L = Z · w1 + Z · w2 be a lattice in C with oriented
basis w1, w2, i.e. so that τ := w1/w2 has positive imaginary part. The Dedekind
Eta-function is defined as

η(τ) = e
πiτ
12

∞∏

n=1

(1− qn
τ ); qτ := e2πiτ

and we put
η(2)(w1, w2) = w−1

2 2πiη(w1/w2)2.

This function depends on the choice of basis but

∆(L) = ∆(τ) = (2π)12η(τ)24

does not. Define a (non-holomorphic) Theta-function

ϕ(z, τ) = eπiz z−z̄
τ−τ̄ q1/12

τ (q1/2
z − q−1/2

z )
∞∏

n=1

(1− qzq
n
τ )(1− q−1

z qn
τ )

where qz = e2πiz and

ϕ(z;w1, w2) = ϕ(z/w2, w1/w2).

The function ϕ has a simple zero at each lattice point z ∈ Z · w1 + Z · w2. At
z = 0 we get

d

dz
ϕ(z, τ)|z=0 = lim

z→0

ϕ(z, τ)
z

= e
2πiτ
12 (2πi)

∞∏

n=1

(1− qn
τ )2 = 2πiη(τ)2.

and hence
d

dz
ϕ(z;w1, w2)|z=0 = η(2)(w1, w2).

For any pair of lattices L ⊆ L̃ of index prime to 6 with oriented bases ω :=
(w1, w2) and ω̃ := (w̃1, w̃2) Robert shows in [36, Thms. 1,2] that there exists a
unique choice of 12-th root of unity C(ω, ω̃) so that the functions

δ(L, L̃) := C(ω; ω̃)η(2)(ω)[L̃:L]/η(2)(z; ω̃)

and

ψ(z;L, L̃) = C(ω; ω̃)ϕ(z;ω)[L̃:L]/ϕ(z; ω̃) = δ(L, L̃)
∏

u∈T

(℘(z;L)− ℘(u;L))−1

only depend on the lattices L, L̃ and so that ψ satisfies the distribution relation

(2.1) ψ(z;K, K̃) =
[K:L]∏

i=1

ψ(z + tj ;L, L̃)
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for any lattice L ⊆ K so that K ∩ L̃ = L (and where K̃ = K + L̃). The ti ∈ K

are a set of representatives of K/L. The set T is any set of representatives
of (L̃ \ {0})/(±1 n L) and ℘ is the Weierstrass ℘-function associated to L. In
particular we see that ψ(z;L, L̃) is an elliptic function, i.e. a rational function on
the elliptic curve E = C/L with divisor [L̃ : L](O)−∑

P∈L̃/L(P ).

2.2.2. Elliptic curves. Kato reproves Robert’s result in a scheme theoretic context
[29]. Again the key insight is that the distribution relation (or norm compatibil-
ity) suffices to canonically normalize the 12-th root. For elliptic curves over fields
this insight goes back at least to John Coates’ paper [11, Appendix].

Lemma 2.1. (Kato) Let E/S be an elliptic curve over a base scheme S and
c : E → Ẽ an S-isogeny of degree prime to 6. Then there is a unique function

cΘE/S ∈ Γ(E \ ker(c),O×)

satisfying

(i) div(cΘE/S) = deg(c) · (0)−∑
P∈ker(c)(P )

(ii) For any morphism g : S′ → S we have g∗E(cΘE/S) = c′ΘE′/S where
gE : E′ := E ×S S′ → E and c′ is the base change of c.

(iii) For any S-isogeny b : E → E′ of degree prime to deg(c) have b∗(cΘE/S) =

c′ΘE′/S where b∗ is the norm map associated to the finite flat morphism
E \ ker(c) → E′ \ ker c′. Here c′ is the isogeny E′ → E′/b(ker(c)).

(iv) For S = Spec(C), E = C/L and c : C/L → C/L̃ for lattices L ⊆ L̃ we
have

cΘE/S(z) = ψ(z;L, L̃).

Proof. This is [29, Prop. 1.3] or [38, Thm. 1.2.1] if c is multiplication by an
integer. In general, one can follow the argument of [29] to prove existence and
uniqueness of cΘE/S satisfying (i) and (iii) with b the multiplication by an integer.
For a general isogeny b : E → E′ of degree prime to deg(c) the element b∗(cΘE/S)
then satisfies (i) for c′ as well as (iii) for multiplication by an integer, hence must
coincide with c′ΘE′/S . A similar argument shows (ii). ¤
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2.2.3. Elliptic Units. Let K be an imaginary quadratic field. For any integral
ideal f in K we denote by K(f) the ray class field of K of conductor f and by wf

the number of roots of unity in K congruent to 1 modulo f (so wf | w1 | 12). We
let h be the class number of K.

Given f 6= 1 and any (auxiliary) a which is prime to 6f we define an analog of
the cyclotomic unit 1− ζf by

azf = ψ(1; f, a−1f)

and for f = 1 we define a family of elements indexed by all ideals a of K by

u(a) =
∆(OK)
∆(a−1)

.

Lemma 2.2. The complex numbers azf and u(a) satisfy the following properties

a) (Rationality) azf ∈ K(f), u(a) ∈ K(1)
b) (Integrality)

azf ∈



O×K(f) f divisible by primes p 6= q

O×K(f),{v|f} f = pn for some prime p

u(a) · OK(1) = a−12OK(1)

c) (Galois action) For (c, fa) = 1 with Artin symbol σc ∈ Gal(K(f)/K) we
have

az
σc
f = ψ(1; c−1f, c−1a−1f); u(a)σc = u(ac)/u(c).

This implies (see also [29, 15.4.4])

az
Nc−σc
f = cz

Na−σa
f ; u(a)1−σc = u(c)1−σa .

d) (Norm compatibility) For a prime ideal p one has

NK(pf)/K(f)(azpf)wf/wpf =





azf p | f 6= 1

az
1−σ−1

p

f p - f 6= 1

u(p)(σa−Na)/12 f = 1

e) (Kronecker limit formula). Put Gf = Gal(K(f)/K) and let η be a complex
character of Gf. If f = 1 and η 6= 1 choose any ideal a so that η(a) 6= 1.



266 Matthias Flach

Then

L(η, 0) = ζK(0) = − h

w1
η = 1

d

ds
L(η, s)|s=0 =− 1

1− η(a)
1

12w1

∑

σ∈G1

log |σ(u(a))|2η(σ) η 6= 1, f = 1

d

ds
L(η, s)|s=0 =− 1

Na− η(a)
1
wf

∑

σ∈Gf

log |σ(azf)|2η(σ) f 6= 1.

Proof. As in [17, Ch.II.2]. Note that in d) we may choose any 12-th root of u(p)
since σa −Na annihilates any root of unity. ¤

Remarks. The relations in c) show the auxiliary nature of a. In Q[Gf] the
element Na− σa becomes invertible and

zf = (Na− σa)−1
azf ∈ O×K(f),{v|f} ⊗Z Q

is independent of a. The last item in b) shows that u(c)1−σa ∈ O×K(1) is a unit.
However, 1 − σa is not invertible in Q[G1], only in direct factors Q(χ) where
χ(σa) 6= 1. For such χ we obtain an element

u(a)(1−σa)−1 ∈ O×K(1),{v|a} ⊗Z[G1] Q(χ)

independent of a.

The Galois action in c) together with the relation

ψ(λz;λL, λL̃) = ψ(z;L, L̃)

for any λ ∈ C× shows that the Galois conjugates of azf are the numbers aΘE/C(α)
where (E, α) runs through all isomorphism classes of pairs with E/C ∼= C/L an
elliptic curve with CM by OK , a : C/L → C/a−1L and α ∈ E(C) a primitive
f-division point. In fact azf is the value of aΘE/K(1) at a single closed point with
residue field K(f) on an elliptic curve E/K(1).

We now fix an ideal m of OK and set

M = h0(Spec(K(m))), A = Q[Gm], A = Z[Gm].

We view K(m) as a subfield of C and denote by τm the resulting archimedean
place of K(m).
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For f 6= 1 the image of azf ∈ K(m) under the Dirichlet regulator map is

azf 7→ −
∑

σ∈Gm

log |σ(azf)|2σ−1(τm)

and hence for any η of conductor f

eη · azf 7→ (Na− η(a)−1)L′(η−1, 0) · wf · [K(m) : K(f)] · eη(τm).

Note here that eησ = η(σ)eη, and that τm (resp. azf if f is a prime power) lies in
the larger A-module Y{v|∞} ⊃ X{v|∞} (resp. OK(f)[1f ]

× ⊃ O×K(f)) but application
of eη turns this inclusion into an equality since η has conductor f 6= 1.

For a nontrivial character η of conductor f = 1 we pick an ideal a with η(a) 6= 1.
Then eηOK(1)[1a ]× = eηO×K(1), and

eη · u(a) 7→ (Na− η(a)−1)L′(η−1, 0) · 12w1 · [K(m) : K(1)] · eη(σm).

There is a canonical isomorphism

Ξ(AM)# ∼−→ Det−1
A (O×K(m) ⊗Z Q)⊗DetA(X{v|∞} ⊗Z Q)

∼−→ Q×
∏

χ6=1

Det−1
Q(χ)(O×K(m) ⊗

A
Q(χ))⊗DetQ(χ)(X{v|∞} ⊗

A
Q(χ))

and in this description Aϑ∞(L∗(AM, 0)−1) = (L∗(AM, 0)−1)#Aϑ∞(1) has com-
ponents

Aϑ∞(L∗(AM, 0)−1)χ =(2.2)

=





(Na− χ(a)) · wf · [K(m) : K(f)] · [azf]−1 ⊗ τm f 6= 1

(1− χ(a)) · 12w1 · [K(m) : K(1)] · [u(a)]−1 ⊗ τm f = 1, χ 6= 1

−w1
h χ = 1.

2.2.4. CM elliptic curves at the central point. As in [17, Ch.II 1.4] we fix an
abelian extension F/K and an elliptic curve E/F with CM by OK and so that
the Weil restriction B := ResF

K E is an abelian variety of CM-type [24, Thm.
4.1]. Put

A = EndK B ⊗Q
a semisimple K-algebra isomorphic to a product of CM-fields. If E/F is the base
change of an elliptic curve E/K (which can only happen if K has class number
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one) then A = K[G] where G = Gal(F/K). In general one can think of A as a
twisted form of K[G]. Considering E as a scheme over K, the motive

M = h1(E)(1)

over K as well as the spaces

M+
B = H1(Eτ1(C),Q), MdR/ Fil0 = tE := HomF (H0(E, Ω1

E/F ), F )

have rank one over A. Here Eτ1 is the base change via our fixed embedding
τ1 : K → C. Note that Eτ1 ∼= ∏

τ Eτ where τ runs through all embeddings of F

restricting to τ1. We have

Ξ(AM) =H1(Eτ1(C),Q)−1 ⊗A HomF (H0(E, Ω1
E/F ), F )

⊗A Det−1
A E(F )Q ⊗A DetA E(F )∗Q

and

L(AM, s) = (L(φ−1
ε , s))ε∈J ∈

∏

ε∈J

C ∼= AC

where φ is the A-valued Serre-Tate character associated to B and J = HomQ(A,C).

In order to describe L(AM, 0) we introduce Eisenstein numbers following [17,
Ch.II .3]. The (non-holomorphic) Eisenstein series

E1(z, L) :=
∂

∂z
log ϕ(z, w1, w2)− z̄

2A(L)

only depends on the lattice L = Z·w1+Z·w2 with volume πA(L) = (2i)−1(w1w̄2−
w̄1w2). For a pair L ⊆ L̃ of lattices of index prime to 6 we set

(2.3) E1(z, L, L̃) := [L̃ : L]E1(z, L)− E1(z, L̃) =
d

dz
log ψ(z, L, L̃).

Fix an F -basis ω of H0(E, Ω1
E/F ) and an integral ideal m divisible by the

conductor of both F/K and φ. Choose an embedding τ : F → C extending τ1 on
K so that the period lattice L of ωτ on Eτ equals Ωm for some Ω = Ωm ∈ C×.
Then

Ω =
∫

γ
ωτ

for a unique γ = γm ∈ H1(Eτ (C),Q). Choose a set C of ideals of OK so that the
Artin symbol c → σc gives a bijection C ∼= G. Considering E over the field F we
have the isogenies

λ(c) : E → Eσc
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as in [17, Ch.II.1.5] and define Λ(c) ∈ F by

(2.4) φ(c)∗ω = λ(c)∗ωσc = Λ(c)ω.

Note that H0(E, Ω1
E/F ) is free of rank 1 over both F and A but the two actions

do not commute since for λ ∈ F and a ∈ C

φ(a)∗λω = λ(a)∗λσaωσa = λσaφ(a)∗ω.

Lemma 2.3. Setting L = Ωm the following hold.

a) (Homogeneity) For λ ∈ C× one has

E1(λz, λL) = λ−1E1(z, L)

b) (Rationality) If z ∈ ΩOK then

E1(z, L) ∈ F (E[m])

c) (Galois Action) If z ∈ ΩOK and c ∈ C then

E1(z, L)σc = E1(Λ(c)z, Λ(c)c−1L)

d) (Kronecker limit formula)

Lm(φ−1
ε , 0) = Ω ·

∑

c∈C

Λ(c)φ−1
ε (c)E1(Ω, L)σc

Proof. See [17, Ch.II.3]. ¤

Corollary 2.1. Assume in addition that the m-torsion points of E are rational
over F so that E1(Ω, L) ∈ F . If L(φ−1

ε , 0) 6= 0 for all ε ∈ J then

Ξ(AM) = H1(Eτ1(C),Q)−1 ⊗A HomF (H0(E, Ω1
E/F ), F )

and

Aϑ∞(L∗(AM, 0)−1) = Aϑ∞(L(AM, 0)−1) =
∏

p|m
(1− φ−1(p))γ−1 ⊗ ω′.

where ω′ is the F -linear form whose A-dual coincides with

[F : K]E1(Ω, L)ω ∈ H0(E, Ω1
E/F ).
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Proof. By the theorem of Coates-Wiles (and Arthaud) [9], the non-vanishing of
L(φ−1

ε , 0) implies E(F )Q = 0 and hence the formula for Ξ(AM). We have a chain
of AR-linear isomorphisms

H1(Eτ1(C),Q)R ∼=HomFR(H
0(E, Ω1)R, FR)

∼=HomC(H0(E, Ω1)R,C)

∼=HomAR(H
0(E, Ω1)R, AR)

induced by, respectively, the integration pairing

(γρ, η
ρ) 7→ (

∫

γρ

ηρ)ρ ∈
∏

ρ∈HomK,τ1
(F,C)

C = FR,

the trace map FR → KR = C and the trace map AR → KR = C. The value

(aε)ε∈JK
∈

∏

ε∈JK

C ∼= AR

on a given pair (γρ, ω
ρ) is determined by the set of equations

TrFC/C(
∫

γρ

(φ(b)∗η)ρ)ρ =
∑

ε∈JK

ε(φ(b))aε

as b runs through C and where JK = HomK,τ1(A,C). Taking γτ = γ and γρ = 0
for ρ 6= τ , and η = [F : K]E1(Ω, L)ω, we find

∑

ε∈JK

ε(φ(b))aε = Λ(b)[F : K]E1(Ω, L)σb

∫

γ
ω = Λ(b)[F : K]E1(Ω, L)σbΩ.

Now set
aε = Lm(φ−1

ε , 0) = Ω ·
∑

c∈C

Λ(c)φ−1
ε (c)E1(Ω, L)σc

and note that ε(φ(b)) = φε(b). Then
∑

ε∈JK

ε(λ(b))aε =
∑

ε∈JK

∑

c∈C

φε(b)φε(c)−1Λ(c)E1(Ω, L)σcΩ

=
∑

c∈C


 ∑

ε∈JK

φε(
b

c
)


 Λ(c)E1(Ω, L)σcΩ

=[F : K]Λ(b)E1(Ω, L)σbΩ

since the set of characters φε coincides with the set of twists of any of its members
by Hom(G,C×) [24, Lemme 4.8]. We conclude that γ ⊗ (ω′)−1 ∈ Ξ(AM)−1 is
sent to Lm(AM, 0) = (Lm(φ−1

ε , 0))ε∈JK
∈ AR. ¤
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Remark. One could make a slightly finer statement here assuming only that
L(φ−1

ε , 0) 6= 0 for all ε : A′ → C where A′ is a direct factor of A. This would
imply E(F ) ⊗A A′ = 0 and a corresponding description of the fundamental line
of the motive M ⊗A A′ over A′.

Lemma 2.4. Let ψ be an algebraic Hecke character of K of infinity type (1, 0).
Then there is a finite extension F/K, an elliptic curve E/F with B = ResF

K(E)
of CM -type and a homomorphism ε : A → C so that ψ = φε.

Proof. See [17, Ch. II, Lemma 1.4 (i)]. ¤

Remark. This Lemma shows that all L-values L(ψ, 0) where ψ is an algebraic
Hecke character of an imaginary quadratic field of infinity type (−1, 0) are covered
by the discussion in this section. All Hecke characters of infinity type (0, 0) are
covered by Lemma 2.2e). We remark that there are limit formulas for L∗(ψ, 0) for
ψ a Hecke character of any infinity type (k, j). If ψ is critical (modulo replacing
ψ by ψ̄ this is the range k < 0, j ≥ 0) these go back to Kronecker and Damerell
and can be found in [17, Ch.II, Prop. 3.5]. In the noncritical range these formulas
are due to Deninger [16] building on Beilinson’s Eisenstein symbol.

2.3. Other Limit Formulas. We recall our convention that a limit formula is
an exact formula without any unspecified factors in A×. The list of such formulas
(known to the author) is indeed quite limited. Conjecture 4 is known in many
more cases of motives attached to automorphic form (see also the survey article
[19]).

Formulas of Gross-Zagier type. The original Gross-Zagier formula concerns
the motive M(f)(1) where f is an elliptic modular form of weight 2 base changed
to a suitable imaginary quadratic field K [25]. As the formula in Corollary 2.1
they deal with the L-function of an abelian variety at the central point but where
now the group of points has A-rank 1 and hence occurs in the fundamental line.
The Gross-Zagier formula has been generalized to forms of higher weight [45] and
to Hilbert modular forms [46], [47] by Zhang.

Formulas of Beilinson-Gealy. These concern the motive M(f)(j) where f

is an elliptic modular form of weight k ≥ 2 and j ≤ 0. These examples (or
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rather their duals under the functional equation) were instrumental in Beilinson’s
generalization of Conjecture 4 from the critical to the general case [1] but a precise
limit formula has only been recently proven by Gealy [23]. As in the case of the
Gross-Zagier formula this required the exact evaluation of certain Rankin Selberg
integrals and is the basis for attacking Conjecture 6. For j in the critical range
1 ≤ j ≤ k − 1 limit formulas are also known and are much more elementary.

The adjoint motive of a modular form. This is an example of a critical motive.
The exact limit formula was proven by Diamond, Flach and Guo [18] building on
work of Shimura and Hida.

Part 2. Iwasawa Theory

Fix a prime number l. Throughout this part we consider pairs (Λ, T ) where Λ
is a pro-l-ring such that

Λ = lim←−
n

Λ/Jn,

with J the Jacobson radical of Λ and Λ/Jn is a finite ring of l-power order, and
where T is a finitely generated projective Λ-module with a continuous action of
GQ,S for some finite set of primes S containing l. We call such a pair an l-adic
family. In order not to overburden notation we assume that Λ is commutative
with the exception of section 6 below.

A motivic point of the family (Λ, T ) is a tuple

(K, A, M) = (K, A, M, φ, ψ, τ)

where M is a motive with an action of the semisimple algebra A, K is a finite
extension of Ql, φ : Λ → K, ψ : Al → K are ring homomorphisms and τ :
Ml ⊗Al

K ∼= T ⊗Λ K is an isomorphism of GQ-representations. By a dense set of
points of the family (Λ, T ) we simply mean a set of homomorphisms φι : Λ → Kι

so that the set of prime ideals ker(φι) is dense in the Zariski topology of Spec(Λ).
If {φι}ι∈I is a dense set of points and Λ is reduced then

Λ →
∏

ι∈I

Kι

is injective.
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Suppose (Λ, T ) is an l-adic family with a dense set of motivic points (Kι, Aι,Mι)
for which Conjecture 4 is known. The isomorphisms

ζAι,l
(Mι,l)⊗Aι,l

Kι : DetKι(0) ∼= DetKι RΓc(Z[
1
S

],Mι,l ⊗Aι,l
Kι)

combine to give an isomorphism

ζ∏
Kι

(T ⊗Λ

∏
Kι) : Det∏

Kι
(0) ∼= Det∏

Kι
RΓc(Z[

1
S

], T ⊗Λ

∏
Kι)

over the ring
∏

ι∈I Kι. The strategy to prove Conjecture 6 for any such point
(Kι, Aι,Mι) in the family (Λ, T ) is to descend the isomorphism ζ∏

Kι
(T ⊗Λ

∏
Kι)

to an isomorphism

ζΛ(T ) : DetΛ(0) ∼= DetΛ RΓc(Z[
1
S

], T ).

If in addition we have T ⊗Λ Al
∼= Ml then Conjecture 6 simply follows by base

change. That this strategy should be feasible using any l-adic family is the content
of Conjecture 7 below. Formulated in this generality, our strategy includes taking
Λ = Al and does not seem to offer any progress over the original problem of
proving Conjecture 6 in a case where Conjecture 4 is known. The technical
advantage of passing to an l-adic family is that Λ can be a regular ring where Al is
not, and if Λ is regular then the verification of the existence of ζΛ(T ) often reduces
to an equality of Fitting ideals. Such an equality is then in turn equivalent to two
inverse divisibilities, proven by rather different arguments: Euler systems for one
direction and congruences for Galois representations associated to automorphic
forms for the other (or in simple cases the analytic class number formula).

The descent from
∏

Kι to Λ proceeds via intermediate rings
∏

ι∈I

Kι ⊃ Q(Λ) ⊃ Λ

where Q(Λ) is the localisation of Λ at the set of elements s so that φι(s) 6= 0
for all ι. The descent from

∏
ι∈I Kι to Q(Λ) amounts to the ”existence of an

l-adic L-function” because it expresses l-adic continuity properties of the leading
coefficients L∗(AιMι). The descent from Q(Λ) to Λ is traditionally called a ”main
conjecture” and is equivalent to the equality of Fitting ideals mentioned above
(if Λ is regular).

Other rings H(Λ) and K are involved in the case where (Λ, T ) is the cyclotomic
deformation of a motive with good reduction. We refer to section 5 below for
details.
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3. The Zeta isomorphism of Kato and Fukaya

We recall the central conjecture of Kato and Fukaya in [21, Conj. 2.3.2] which
goes back to Kato [28, Conj. 3.2.2] if Λ is commutative. In essence, this is a
generalization of Conjecture 6 to any l-adic family. Our notation is different
in that our ζΛ(T ) is the ζΛ(T )−1 of [21] where P 7→ P−1 = HomR(P, R) is
the functor sending a graded invertible R-module to its inverse and a morphism
φ : P → Q to its contragredient HomR(φ,R)−1.

Conjecture 7. There exists a unique way to associate an isomorphism

ζΛ(T ) : DetΛ(0) ∼= DetΛ RΓc(Z[
1
S

], T )

to any l-adic family (Λ, T ) so that the following conditions hold.

(i) For any exact sequence of l-adic families

0 → T ′ → T → T ′′ → 0

with common Λ there is a commutative diagram

DetΛ RΓc(Z[ 1
S ], T ) ∼−−−−→ DetΛ RΓc(Z[ 1

S ], T ′)⊗DetΛ RΓc(Z[ 1
S ], T ′′)

ζΛ(T )

x ζΛ(T ′)⊗ζΛ(T ′′)
x

DetΛ(0) can−−−−→ DetΛ(0)⊗DetΛ(0).

(ii) Let (Λ, T ) and (Λ′, T ′) be l-adic families and Y a Λ′-Λ-bimodule, finitely
generated and projective over Λ′ and so that T ′ = Y ⊗Λ T . Then there is
a commutative diagram

Y ⊗Λ DetΛ RΓc(Z[ 1
S ], T ) ∼−−−−→ DetΛ′ RΓc(Z[ 1

S ], T ′)

Y⊗ΛζΛ(T )

x ζΛ′ (T
′)
x

Y ⊗Λ DetΛ(0) can−−−−→ DetΛ′(0).

In particular, for any homomorphism Λ → Λ′ we have

ζΛ(T )⊗Λ Λ′ = ζΛ′(T ⊗Λ Λ′).

(iii) For any motivic point (K, A, M) of the l-adic family (Λ, T ) we have

ζΛ(T )⊗Λ K = ζAl
(Ml)⊗Al

K

where ζAl
(Ml) is the isomorphism (1.2) arising from Conjecture 4.



Iwasawa Theory and Motivic L-functions 275

The sweeping generality of this conjecture leads to some interesting problems.
For example, as explained in the introduction, ζΛ(T ) can often be constructed
using a dense set of motivic points but it is expected to induce the isomorphism
ζAl

(Ml) for any motivic point. A limit formula has to be available for such a
point, not only for the complex L-function but also for the l-adic L-function
(here we use the term l-adic L-function synonymous for the isomorphism ζΛ(T )
constructed from the dense set of motivic points). Much work in the theory
of l-adic L-functions can be subsumed under this problem. An example is our
discussion in section 4 below.

Also note that Λ can be a finite ring. This expresses the fact that l-adic
families are related by congruences, and it can be used to show uniqueness of any
collection of isomorphisms ζΛ(T ) satisfying (ii), (iii) [21, 2.3.5]. While it is not
true that any l-adic family (Λ, T ) has a dense set of motivic points, or indeed
any motivic point, any given (Λ, T ) arises by base change via property (ii) from
a family with a dense set of (Artin) motivic points (see section 6 below).

The content of the Fontaine-Mazur conjecture [22] is that a pair (Zl, T ) is mo-
tivic if and only if it is ”motivic at l”, i.e. the restriction of the GQ-representation
T to GQl

is a potentially semistable representation. This would imply that an
arbitrary l-adic family (Λ, T ) has a dense set of motivic points if the restriction
of the family to GQl

has a dense set of potentially semistable points.

4. Iwasawa theory of imaginary quadratic field

In some sense the Iwasawa theory of imaginary quadratic fields began with the
Coates-Wiles theorem (see [17, IV.2] for a ”properly” Iwasawa theoretic proof). A
major subsequent success was the work of Rubin [37] giving the first examples of
elliptic curves over number fields with finite Tate-Shafarevich group and proving
a main conjecture. From the point of view of this paper, the main conjecture is
the construction of a basis ζΛ(T ) for a certain l-adic family.

4.1. The main conjecture for imaginary quadratic fields. Let K be an
imaginary quadratic field, m an ideal of OK and l a prime number. We shall
define an l-adic family (Λ, T ) depending on these parameters and show how the
limit formulas of section 2.2.3 lead to a candidate for ζΛ(T ).
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Resume the notation introduced in section 2.2. Put

Λ = lim←−
n

Zl[Gmln ] ∼= Zl[Gtor
ml∞ ][[S1, S2]]

where Gtor
ml∞ is the torsion subgroup of Gml∞ = lim←−n

Gmln . The Iwasawa alge-
bra Λ is a finite product of complete local 3-dimensional Cohen-Macaulay (even
complete intersection) rings. However, Λ is regular if and only if l - #Gtor

ml∞ . The
elements Si = γi − 1 ∈ Λ depend on the choice of a complement Γ ∼= Z2

l of Gtor
ml∞

in Gml∞ and of a choice of topological generators γ1, γ2 of Γ. Define

T = lim←−
n

H0(Spec(K(mln)⊗K Q̄),Zl)

which is a free, rank one Λ-module. We may regard (Λ, T ) as an l-adic family
over K (or (Λ, IndQK(T )) as an l-adic family in the above sense). The motivic
points of (Λ, T ) are given by (motives associated to) algebraic Hecke characters
of K of conductor dividing mln for some n. However already the Artin motives
h0(Spec(K(mln))) with their action of A = Q[Gmln ] form a dense set of motivic
points. These correspond to the Hecke characters of infinity type (0, 0).

Define a perfect complex of Λ-modules

∆∞ = R HomΛ(RΓc(OK [
1
ml

], T ),Λ)#[−3].

Then H i(∆∞) = 0 for i 6= 1, 2 and there is a canonical isomorphism

H1(∆∞) ∼= U∞
{v|ml} := lim←−

n

OK(m0ln)[
1
ml

]× ⊗Z Zl

and a short exact sequence

0 → P∞
{v|ml} → H2(∆∞) → X∞

{v|ml∞} → 0

where

P∞
{v|ml} := lim←−

n

Pic(OK(mln)[
1
ml

])⊗Z Zl

X∞
{v|ml∞} := lim←−

n

X{v|ml∞}(K(mln))⊗Z Zl.

All limits are taken with respect to Norm maps (on XS ⊂ YS this is the map
sending a place to its restriction).
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Let m0 be the prime to l-part of m. For d | m0 put

azdl∞ :=(azdln)n>>0 ∈ U∞
{v|ml}

τ :=(τmln)n>>0 ∈ Y ∞
{v|ml∞}

We fix an embedding Q̄l → C and identify Ĝk with the set of Q̄l-valued char-
acters. The total ring of fractions

(4.1) Q(Λ) ∼=
∏

ψ∈ ˆGtor
ml∞

Ql

Q(ψ)

of Λ is a product of fields indexed by the Ql-rational characters of Gtor
ml∞ . Since

for any place w of Q the Z[Gmln ]-module Y{v|w}(K(mln)) is induced from the
trivial module Z on the decomposition group Dw ⊆ Gmln , and for w = ∞ (resp.
nonarchimedean w) we have [Gmln : Dw] = [K(mln) : K] (resp. the index [Gmln :
Dw] is bounded as n →∞) one computes easily

(4.2) dimQ(ψ)(U
∞
{v|ml} ⊗Λ Q(ψ)) = dimQ(ψ)(Y

∞
{v|ml∞} ⊗Λ Q(ψ)) = 1

for all characters ψ. Note that the inclusion X∞
{v|ml∞} ⊆ Y ∞

{v|ml∞} becomes an
isomorphism after tensoring with Q(ψ) and that eψ(az

−1
m0l∞ ⊗ σ) is a Q(ψ)-basis

of

Det−1
Q(ψ)(U

∞
{v|ml} ⊗Λ Q(ψ))⊗DetQ(ψ)(X

∞
{v|ml∞} ⊗Λ Q(ψ)

∼=DetQ(ψ) (∆∞ ⊗Λ Q(ψ)) .

Hence we obtain a Q(Λ)-basis

L := (Na− σa)az
−1
m0l∞ ⊗ τ

of DetQ(Λ) (∆∞ ⊗Λ Q(Λ)).

Lemma 4.1. Let F/K be a subextension of K(m0l
∞)/K with group G and put

M = h0(Spec(F )); A = Q[G].

Denote by χ any Ql-rational character of G, by χ : Λ → Ql(χ) the corresponding
ring homomorphism, by q its kernel and set V = Ml ⊗Ql[G] Ql(χ). There is an
isomorphism of perfect complexes

∆∞
q ⊗

Λq

Ql(χ) ∼= RΓc(OK [
1
ml

], V )∗[−3]
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and an isomorphism of determinants

DetΛq ∆∞
q ⊗

Λq

Ql(χ) ∼= DetQl(χ) RΓc(OK [
1
ml

], V )# ∼= Ξ(AM)# ⊗
A
Ql(χ).

If χ(l) 6= 1 then the element L is already a Λq-basis of ∆∞
q and maps to the

basis of Ξ(AM)# ⊗A Ql(χ) described in (2.2).

Proof. This is a straightforward descent computation analogous to the case of
even characters χ with χ(l) 6= 1 in the proof of [19, Thm. 5.1]. ¤

Remark. The Artin motivic points described in this Lemma form a dense set
in those direct factors of the family (Λ, T ) corresponding to characters χ of Gtor

ml∞

with χ(l) 6= 1. In order to extend the Lemma to characters χ with χ(l) = 1 one
needs to prove results for elliptic units analogous to those of Solomon [40] for
cyclotomic units. This has been done by Bley [3] if l is split in K/Q.

Conjecture 8. (Iwasawa Main Conjecture, see also [28, Conj. III.1.2.3]) There
is an identity of invertible Λ-submodules

Λ · L = DetΛ ∆∞

of DetQ(Λ) (∆∞ ⊗Λ Q(Λ)).

Remarks. a) Following the example of Burns and Greither [7] (see also [19,
Thm. 5.2]) one shows that this conjecture is in many, but not all, cases implied
by Rubin’s 2-variable Iwasawa main conjecture [37, Thm. 4.1] together with
the vanishing of the µ-invariant of a 2-variable Iwasawa module. The cases not
covered by Rubin are those where either l divides 6h · #Gtor

ml∞ or where one
considers a χ-component for characters vanishing on the decomposition group of
l in Gtor

ml∞ if l is ramified or inert in K/Q.

b) Conjecture 8 together with Lemma 4.1 (for all characters χ of G) imme-
diately imply Conjecture 6 for the pair (h0(Spec(F )),Z[G]) and the prime l in
accordance with the strategy outlined at the beginning of this section. This has
again been carried out by Bley if l is split in K/Q [4]. If l is a prime dividing l,
Bley also proves a one-variable main conjecture over Gml∞ where l - 2h is allowed
to divide Gtor

ml∞ .
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c) In order to show that the trivialization of DetΛ ∆∞ given by L agrees with
the isomorphism ζΛ(T ) of Kato and Fukaya one must show that property (iii)
of Conjecture 7 holds for all motivic points of (Λ, T ), not only for Artin motivic
points. This is a rather delicate question which we shall address for the motives
attached to CM elliptic curves in the remainder of this section.

4.2. The explicit reciprocity law. In this paragraph we sketch the descent
computations relating the l-adic L-function L introduced above with the L-value
described in Corollary 2.1. The existence of such a relationship was anticipated
in the seminal work of Coates and Wiles [9] and then formulated precisely in the
reciprocity law of Wiles [44]. We use the equivalent formulation of this law by
Kato [28, Thm II.2.1.7].

Resume the notation of section 2.2.4, in particular F/K is an abelian extension
and E/F is an elliptic curve with CM by OK so that the Weil restriction B of
E to K is of CM type. The motive M = h1(E)(1) over K has an action of
A = A⊗Q where A = EndK B. We let m be the conductor of B, fix a prime l of
OK dividing l and set

m = m̃0l
m

with l - m̃0. So m̃0 = m0 unless l is split in K/Q and l̄ divides m. Since M is a
direct summand of M ′ = h1(E ⊗F F ′)(1) for any extension F ′/F , and we have
M ′⊗A′ A ∼= M if F ′/K is also abelian, we may always replace F by such a larger
extension F ′ and prove Conjecture 6 for the pair (M ′, A′).

Lemma 4.2. After possibly replacing m by a multiple we may assume that F =
K(m) and that in addition E is defined over K(m̃0) and has good reduction at
primes dividing l.

Proof. After replacing m̃0 by a multiple so that wm̃0
= 1 there is a Hecke character

φ′ of K of conductor dividing m̃0 and infinity type (1, 0) by [17, Ch. II, Lemma
1.4 (ii)]. By [17, Ch.II, Lemma 1.4 (i)] there exists then an elliptic curve over
E′/K(m̃0) with j-invariant j(E) and with Serre-Tate character φ′◦NK(m̃0)/K , and
hence with good reduction outside primes dividing m̃0. Since the conductors of
both φ and φ′ divide m, so does the conductor of the finite order character φ/φ′.
Again by [17, Ch.II, Lemma 1.4 (i)] the curves E and E′ then become isomorphic
over K(m) since they have the same j-invariant and the same Serre-Tate character
(namely φ ◦NK(m)/K = φ′ ◦NK(m)/K). ¤
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We henceforth assume that the assumptions of Lemma 4.2 are in effect and
that ω is also defined over K(m̃0). We put Fn = K(m̃0l

n) = F0(E[ln]) [17, Ch. II,
Prop. 1.6] and shall in the following use the notation Ω, γ,Λ, φ etc. introduced in
section 2.2.4 referring to E/F0 and m̃0 rather than E/F and m. In particular τ0 :
F0 → C is an embedding so that the pair (Eτ0 , ωτ0) is isomorphic to (C/Ωm̃0, dz).
For any n ≥ 0 we have the isogeny

λ(l)σ−n
l : Eσ−n

l → Eσ
−(n−1)
l

isomorphic under τ0 to

(4.3) C/Λ(l−n)lnΩm̃0
Λ(l)

σ−n
l−−−−−→ C/Λ(l−(n−1))ln−1Ωm̃0.

The points Λ(l−n)Ω ∈ C define a sequence of primitive lnm̃0-division points pn

on Eσ−n
l which are compatible under the isogenies λ(l)σ−n

l . Let pn = ζn + qn be
the unique decomposition with ζn (resp. qn) a primitive ln (resp. m̃0)-division
point. Then

λ(l)σ−n
l (ζn) = ζn−1; λ(l)σ−n

l (qn) = qσl
n = qn−1

where we have used [17, Prop.1.5]. In particular

(4.4) qn = q
σ−n

l
0 .

Let d be the order of σl in Gm̃0
and set ξ = Λ(ld) ∈ OK so that the composite

morphism

E = Eσ−d
l → E

is multiplication with ξ. Let

Tξ(E) = lim←−
n=kd

E[ln]

be the Tate module of E formed with respect to multiplication by ξ. Then Tξ(E)
is free of rank 1 over OKl

with basis ζ = (ζkd)k≥0 and Ml = IndK
F Tl(E) is a

GK-stable projective Al-lattice in Ml. The action of GK on Ml factors through
a character

κ : Gml∞ → A×l

and we also denote by κ : Λ → Al the corresponding ring homomorphism. We
denote by ∗ the OKl

or Kl-dual and by ζ−1 the dual basis of ζ.



Iwasawa Theory and Motivic L-functions 281

Lemma 4.3. a) There is a natural isomorphism

∆∞ ⊗LΛ,κ Al
∼= RΓc(OK [

1
ml

],Ml)∗[−3].

b) The image of an element

u = (un)n≥0 ∈ lim←−
n

H1(OFn [
1
ml

],Z/lnZ(1)) ∼= U∞
{v|ml} = H1(∆∞)

under the induced isomorphism

H1(∆∞)⊗Λ,κ Al
∼= H1(OK [

1
ml

],M∗
l (1)) ∼= H1(OF [

1
ml

], Tl(E)∗(1))

is given by

(4.5) TrFn/F (un ∪ ζ−1
n )n=kd≥0.

c) The image of an element

s = (sn)n≥0 ∈ lim←−
n

Z/lnZ[Gm0ln ] · τ = Y ∞
{v|∞}

under the isomorphism Y ∞
{v|∞} ⊗Λ,κ Al

∼= H0(Spec(K ⊗Q R),M∗
l ) = M∗

l is given
by

(sn ∪ ζ−1
n )n=kd≥0.

Proof. Set An = A/ln, Mn = Ml/ln, ΛA,n = An[Gm̃0ln ] and denote by κn :
Gm̃0ln → A×n the action on Mn. We also denote by κn the automorphism of
ΛA,n induced by the character g 7→ κn(g)g of Gm̃0ln . Then κ∞ = lim←−n

κn is an
automorphism of

ΛA := Al[[Gm̃0l∞ ]].

Note here that the notational change from Λ to ΛA also involves a projection
from Gm0l∞ to Gm̃0l∞ . The sheaf Fn := fn,∗f∗nAn (where fn : Spec(OFn [ 1

ml ]) →
Spec(OK [ 1

ml ]) is the natural map and An denotes the constant sheaf) is free of
rank one over ΛA,n with GK-action given by the inverse of the natural projection
GK → Gm̃0ln ⊂ Λ×A,n. There is a ΛA,n-κ−1

n -semilinear isomorphism tw : Fn →
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Fn ⊗An Mn sending 1 to 1⊗ ζn. Shapiro’s lemma gives a commutative diagram
of isomorphisms

(4.6)

RΓc(OK [ 1
ml ],Fn) tw−−−−→ RΓc(OK [ 1

ml ],Fn ⊗An Mn)y
y

RΓc(OFn [ 1
m̃0l ],An)

∪ζn−−−−→ RΓc(OFn [ 1
m̃0l ],Mn)

where the horizontal arrows are ΛA,n-κ−1
n -semilinear. Taking the OK/ln-dual

(with contragredient Gm̃0ln-action) we obtain a # ◦ κ−1
n ◦ # = κn-semilinear

isomorphism

RΓc(OK [
1

m̃0l
],Fn ⊗An Mn)∗[−3] → RΓc(OK [

1
m̃0l

],Fn)∗[−3].

After passage to the limit this gives a κ∞-semilinear isomorphism

RΓc(OK [
1

m̃0l
],F∞ ⊗

Al

Ml)∗[−3] → RΓc(OK [
1

m̃0l
],F∞)∗[−3] ∼= ∆∞ ⊗Λ ΛA.

where F∞ = lim←−n
Fn

∼= T ⊗Λ ΛA. Hence a Λ-linear isomorphism

(
∆∞ ⊗Λ ΛA

)⊗ΛA,κ∞ ΛA
∼= RΓc(OK [

1
m̃0l

],F∞ ⊗
Al

Ml)∗[−3].

Part a) follows by noting that κ coincides with the composite

Λ → ΛA
κ∞−−→ ΛA → Al

where the last map is is the augmentation map, and that F∞ ⊗ΛA
Al
∼= Al with

trivial GK-action. The OK/ln-dual of the H2 of the inverse map in the lower row
in (4.6) coincides with

H1(OFn [
1

m̃0l
],M∗

n(1))
∪ζ−1

n←−−− H1(OFn [
1

m̃0l
],An(1))

by Poitou-Tate duality. This gives b). Similarly to the lower row in (4.6) we have
a κ−1-semilinear isomorphism

Fn = H0(Fn ⊗ R,An)
∪ζn−−→ H0(Fn ⊗ R,Fn ⊗An Mn) = Fn ⊗An Mn,

the OK/ln-dual of the inverse of which is the κ-semilinear isomorphism ΛA,n ·τ →
ΛA,n · τ ∪ ζ−1

n given by cup product with ζ−1
n . Passing to the limit and tensoring

over ΛA with Al we deduce c). ¤
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For the next proposition we introduce some notation from [17, Ch.I]. Let L/Kl

be a finite unramified extension of degree d and E/L a relative Lubin-Tate group
in the sense of [17, Thm. I.1.3] with respect to a given element ξ ∈ OKl

of
valuation d. Let ϕ ∈ Gal(L/Kl) be the Frobenius and

f : E → Eϕ

an isogeny so that f (d) is multiplication by ξ where

f (n) = fϕn−1 ◦ · · · ◦ fϕ ◦ f : E → Eϕn
.

Denote by ζn a sequence of primitive ln-division points on Eϕ−n
so that fϕ−n

(ζn) =
ζn−1 and set Ln = L(ζn). Finally, let un ∈ lim←−L×n be a norm compatible system
with Coleman power series gu,ζ , i.e. so that

gϕ−n

u,ζ (ζn) = un.

We view gu,ζ as a function on the formal group E . For a fixed m ≥ 1 define

cm(u) = TrLn/Lm
(un ∪ ζ−1

n )n=kd≥m ∈ H1(Lm, Tξ(E)∗(1))

where Tξ(E) = lim←−n=kd
E [ln] is the Tate-module of E with respect to multiplication

by ξ.

Proposition 4.1. (Explicit reciprocity law) For m ≥ 1 the dual exponential map
of the Galois representation Tξ(E)∗(1)

exp∗ : H1(Lm, Tξ(E)∗(1)) → D0
dR(Vξ(E)∗(1)) ∼= H0(E ,Ω1)⊗L Lm

sends cm(u) to

π−ϕ−m

m ω
dlog(gϕ−m

u,ζ )

ω
(ζm)

where ω is an L-basis of H0(E ,Ω1) and πm ∈ L is defined by f (m)∗ωϕn
= πmω.

Proof. The proof of [28, Thm. II.2.1.7] is only for the case where E is a base
change to L of a Lubin-Tate group over Kl but extends easily to the case of a
relative Lubin-Tate group. ¤

After fixing a place l of Kab extending l we let E be the formal group of E

over L = F0,l. Then E is a relative Lubin-Tate group with respect to the element
ξ = Λ(ld) ∈ OK since E/F0 has good reduction at l, and

Ln = Fn,l = K(m̃0l
n)l, ϕ = σl, f = λ(l), πm = Λ(lm).
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The system (azm̃0ln ∈ L×n )n≥1 is norm compatible.

Lemma 4.4. The Coleman power series of the system un = azm̃0ln with respect
to the system of torsion points ζn is induced by the function

g(x) = gu,ζ(x) = aΘE/F0
(x + q0)

on the elliptic curve E/F0.

Proof. (see also [17, Ch. II, Prop. 4.9]). The function gϕ−n
(x) on Eϕ−n

is induced
by the function

aΘE/F0
(x + q0)σ−n

l = aΘ
E

σ−n
l /F0

(x + q
σ−n

l
0 ) = aΘ

E
σ−n

l /F0

(x + qn)

on Eσ−n
l . By (4.3) under the embedding τ0 we have

(4.7) aΘ
E

σ−n
l /F0

(z) = ψ(z, Λ(l−n)lnΩm̃0, a
−1Λ(l−n)lnΩm̃0)

and hence

gϕ−n
(ζn) = aΘ

E
σ−n

l /F0

(pn) =ψ(Λ(l−n)Ω,Λ(l−n)lnΩm̃0, a
−1Λ(l−n)lnΩm̃0)

=ψ(1, lnm̃0, a
−1lnm̃0) = azm̃0ln .

¤

The following Proposition is an analogue of Lemma 4.1 for the pair (M, A)
considered in this section.

Proposition 4.2. Let R be a direct factor of Al which is a field, q the kernel of
the map κ : Λ → Al → R and Λq the localization of Λ at q. If L(φ−1

ε , 0) 6= 0 for
all ε ∈ J then the element L is a basis of DetΛq ∆∞

q . Denote by L⊗ 1 the image
of L under the determinant

DetΛq ∆∞
q ⊗Λq,κ Al

∼= DetAl
RΓc(OK [

1
ml

],Ml)∗[−3].

of the isomorphism of Lemma 4.3 a). Then the image of L ⊗ 1 under

DetAl
RΓc(OK [

1
ml

],Ml)∗[−3] ∼=DetAl
RΓc(OK [

1
ml

],Ml)#(4.8)

∼= Ξ(AM)# ⊗
A

Al

coincides with the element described in Corollary 2.1.
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Proof. As already indicated in Corollary 2.1 the non-vanishing of L(φ−1
ε , 0) im-

plies that E(F ) = 0 does not occur in the fundamental line. The isomorphism

Ξ(AM)⊗A Al
∼= DetAl

RΓc(OK [
1
ml

],Ml)

is then induced by passing to cohomology as well as the isomorphisms

H1(Eτ1(C),Q)⊗A Al
∼= Ml

∼= H0(K ⊗Q R,Ml)
∼−→ H1

c (OK [
1
ml

],Ml)

and

HomF (H0(E, Ω1
E/F ), F )⊗

A
Al
∼= H1

dR(E/F )/F 0 ⊗
A

Al
∼= DdR(Ml)/D0

dR(Ml)

and
DdR(Ml)/D0

dR(Ml)
exp−−→ H1

f (Kl,Ml)
∼−→ H2

c (OK [
1
ml

],Ml).

The isomorphism (4.8) is induced by the dual maps

(4.9) H1(Eτ1(C),Q)∗ ⊗A Al
∼= M∗

l
∼= H0(K ⊗Q R,Ml)∗

∼←− H1
c (OK [

1
ml

],Ml)∗

and

(4.10) D0
dR(M∗

l (1))
exp∗←−−− H1

/f (Kl,M
∗
l (1))

∼←− H1(OK [
1
ml

],M∗
l (1)) ∼←− H2

c (OK [
1
ml

],Ml)∗.

Lemma 4.5. The image of (Na−σa)−1
azm0l∞ under the isomorphism of Lemma

4.3 b) composed with (4.10) is

(4.11)
∏

p|l,p-m
(1− φ(p)−1)E1(Ω,Ωm)ω.

Proof. Assume m ≥ 1. Then by [17, II.1.4, (17)]

λ := π−φ−m

m = Λ(lm)−σ−m
l = Λ(l−m)

and Prop. 4.1, Lemma 4.4 and equations (4.7) and (2.3) show that the image of

azm̃0l∞ under the isomorphism of Lemma 4.3 b) is given by

λω
d

dz
log ψ(z + qm, λlmΩm̃0, a

−1λlmΩm̃0)|z=ζm

=λω E1(λΩ, λlmΩm̃0, a
−1λlmΩm̃0)

=E1(Ω,Ωm, a−1Ωm)ω.
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If m = 0 (i.e. m̃0 = m) the image is

TrF1/F E1(Ω, lΩm̃0, a
−1lΩm̃0)ω

=
∑

c∈1+m̃0/1+m̃0l

E1(Ω, lΩm̃0, a
−1lΩm̃0)σ(c)ω

=
∑

c∈1+m̃0/1+m̃0l

E1(Λ((c))Ω,Λ((c))c−1lΩm̃0, a
−1Λ((c))c−1lΩm̃0)ω

=
∑

c∈1+m̃0/1+m̃0l

E1(cΩ, lΩm̃0, a
−1lΩm̃0)ω

=
∑

t∈m̃0/m̃0l

E1(Ω + Ωt, lΩm̃0, a
−1lΩm̃0)ω − E1(c0Ω, lΩm̃0, a

−1lΩm̃0)ω

=E1(Ω,Ωm̃0, a
−1Ωm̃0)ω − E1(c0Ω, lΩm̃0, a

−1lΩm̃0)ω

=(1− φ(l)−1)E1(Ω,Ωm, a−1Ωm)ω.

Here we have used the distribution relation (2.1) and c0 ∈ OK is such that c0 ≡ 1
mod m̃0, c0 ≡ 0 mod l. Since E is defined over F = K(m̃0) and the conductor
of φ divides m̃0 we have Λ((c)) = φ((c)) = c for c ∈ 1 + m̃0. The last equality
follows since

φ(l)E1(c0Ω,Ωlm,a−1Ωlm)ω = E1(c0Ω,Ωlm, a−1Ωlm)σlΛ(l)ω

=E1(Λ(l)c0Ω,Λ(l)Ωm,Λ(l)a−1Ωm)Λ(l)ω

=E1(c0Ω,Ωm, a−1Ωm)ω

=E1(Ω,Ωm, a−1Ωm)ω.

using [17, II, Prop. 3.3] and the fact that E1(z, Ωm, a−1Ωm) is Ωm-periodic.

Using Lemma 2.3 a) and c) as well as (2.4) we find

E1(Ω,Ωm, a−1Ωm)ω

=
(
Na E1(Ω,Ωm)− E1(Ω, a−1Ωm)

)
ω

=
(
Na E1(Ω,Ωm)− Λ(a)E1(Λ(a)Ω,Λ(a)a−1Ωm)

)
ω

=(Na E1(Ω,Ωm)− Λ(a)E1(Ω,Ωm)σa) ω

=Na E1(Ω,Ωm)ω − E1(Ω,Ωm)σaλ(a)∗ωσa

=Na E1(Ω,Ωm)ω − φ(a)∗(E1(Ω,Ωm)ω)

=(Na− φ(a)∗)E1(Ω,Ωm)ω.
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Since κ(σp) = φ(p) for p - m and since the image of azm0l∞ is




az
1−σ−1

l̄
m̃0l∞ if m0 = m̃0 and l is split

azm̃0l∞ otherwise,

the image of the element (Na − σa)−1
azm0l∞ in H0(E, Ω1

E/F ) is given by (4.11)
for any m ≥ 0. ¤

The point Ω = Ωm̃0
∈ C is a primitive m̃0-division point corresponding to

γ = γm̃0
∈ H1(Eτ0(C),Q) ⊆ H1(Eτ0(C),R) ∼= C.

In H1(Eτ0(C),Q)⊗Q Ql
∼= Vξ(E) the element γ corresponds to the system

(ξ−kΩ)k≥0 = (Λ(l−kd)Ω)k≥0 = (pkd)k≥0 = (ζkd)k≥0

where we have used the fact that qn = pn−ζn is prime-to-l-torsion. Recalling that
passage to cohomology on DetAl

RΓc(OK [ 1
ml ],Ml) introduces a factor

∏
p|ml(1 −

φ(p)−1) Lemma 4.5 then shows that L is mapped to the element

(4.12)
∏

p|m
(1− φ−1(p))γ∗m̃0

⊗A (E1(Ωm̃0
,Ωm̃0

m)ω)−1.

For simplicity we now also assume that m = m̃0l
m has been increased so that m

is a multiple of d so that lm = (ξm/d) is principal. By definition Ωm̃0
m0 = Ωmm

is the period lattice of ω and hence Ωm̃0
= ξ−m/dΩm and γm̃0

= ξ−m/dγm. Hence
(4.12) equals

∏

p|m
(1− φ−1(p))ξm/d(γ∗m)⊗A ξ−m/d(E1(Ωm,Ωmm)ω)−1

=
∏

p|m
(1− φ−1(p))(γ∗m)⊗A (E1(Ωm,Ωmm)ω)−1

=
∏

p|m
(1− φ−1(p))[F : K](γ∗m)⊗A ([F : K]E1(Ωm,Ωmm)ω)−1

=
∏

p|m
(1− φ−1(p))γ−1

m ⊗A ([F : K]E1(Ωm,Ωmm)ω)−1

since γ−1
m = [F : K]γ∗m (the identification of the A-dual with the K-dual is made

via the trace map). So we do indeed find the element of Corollary 2.1. Since this
element is a Al-basis of (4.8) L is a basis of DetΛq ∆∞

q by Nakayama’s Lemma. ¤
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We remark that the computations of the present section have been (essentially)
extended to infinity type (k, j) where k ≤ −1, j = 0 by Kato [28, Thm. III.1.2.6],
to 0 ≥ −j > k ≤ −1 by Tsuji [41], to j = k + 1 > 0 by Kings [30], to k, j > 0
by Chida [8] (all of these only if K has class number one) and to j = k > 0 by
Johnson [27] (in general).

5. The cyclotomic deformation and the exponential of Perrin-Riou

Let Ml be a finite dimensional Ql-vector space with a continuous action of GQ,S

for a finite set of primes S containing l, and such that Ml is crystalline as a repre-
sentation of GQl

. In this section we do not assume that Ml is the l-adic realisation
of a motive. We shall briefly sketch the ideas of Perrin-Riou [34] of how to con-
struct, under some weak assumptions, a trivialisation of DetKRΓc(Z[ 1

S ], T ) ⊗ K
where T is the cyclotomic deformation of Ml and K is a rather large coefficient
ring containing the classical Iwasawa algebra. The key ingredients are the crys-
talline comparison isomorphism and the exponential of Perrin-Riou, both purely
local constructions over Ql.

We let Fn = Q(ζln), F∞ =
⋃

Fn and set G∞ = Gal(F∞/Q) ∼= Z×l and ∆ =
Gtor∞ . Define

Λ := Zl[[G∞]] ∼= Zl[∆][[X]]; T cyclo = lim←−
n

H0(Spec(Fn ⊗Q Q̄),Zl)

so that T cyclo is a free rank one Λ-module upon which GQ acts via the inverse of
the tautological character GQ → G∞ ⊆ Λ×. Define a free Λ-module

T = Ml ⊗Zl
T cyclo

where Ml is any GQ-stable Zl-lattice in Ml and GQ acts diagonally on T . We
call the resulting l-adic family (Λ, T ) the cyclotomic deformation of Ml.

Set D = Dcrys(Ml) and let

(5.1) Bcris ⊗Ql
Ml

∼= Bcris ⊗Ql
D

be the l-adic period isomorphism of the crystalline representation Ml. Let H(X)
be the set of power series in Ql[[X]] which converges on the unit disc {X ∈
Cl| |X|l < 1} and set H(Λ) = Zl[∆] ⊗Zl

H(X) where X = γ − 1. Set D∞ =
D ⊗Zl

Zl[[X]]ψ=0, let

Exp : D∞ → H(Λ)⊗Λ H1(Ql, T )/TGal(Q̄l/F∞,l)
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be the exponential of Perrin-Riou [33] and

Per : Bcris ⊗Zl
T ∼= Bcris ⊗Zl

D∞

the isomorphism induced by (5.1), as well as a choice of basis of the (free, rank
one) Λ-modules T cyclo and Zl[[X]]ψ=0. Let

K = Frac(Bcris ⊗H(Λ))

be the total ring of fractions of Bcris⊗H(Λ), a finite product of fields indexed by
the Ql-rational characters of ∆. The maps Exp and Per induce an isomorphism

(5.2) H1(Ql, T )⊗Λ K ∼= T ⊗Λ K.

Assume that

a) (Weak Leopoldt) H2(Z[ 1
S ], T ) is a torsion Λ-module

b) The composite map

ρ : H1(Z[
1
S

], T ) → H1(Ql, T ) → H1(Ql, T )⊗Λ K ∼= T ⊗Λ K

is injective and we have

T ⊗Λ K ∼= H0(R, T )⊗Λ K⊕ im(ρ)⊗Λ K

for a given choice of decomposition groups GR, GQl
⊆ GQ.

By standard formulae for the Euler characteristic the class in K0(K) of both sides
in b) agree. Under these conditions one has an isomorphism

ζalg
K (T ) : DetK(0) ∼= DetΛ RΓc(Z[

1
S

], T )⊗Λ K

arising from the triangle

RΓc(Z[
1
S

], T ) → RΓ(Z[
1
S

], T ) →
⊕

p∈S

RΓ(Qp, T ),

the isomorphisms

RΓ(Z[
1
S

], T )⊗Λ K ∼= H1(Z[
1
S

], T )⊗Λ K

RΓ(Ql, T )⊗Λ K ∼= H1(Ql, T )⊗Λ K

RΓ(R, T )⊗Λ K ∼= H0(R, T )⊗Λ K,
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and the acyclicity of RΓ(Qp, T )⊗ΛK for p 6= l. The ”algebraic” l-adic L-function
of Ml is any element L ∈ K× = Aut(DetK(0)) so that the composite isomorphism

(5.3) DetK(0) L−→ DetK(0)
ζalg
K (T )−−−−→ DetΛ RΓc(Z[

1
S

], T )⊗Λ K

is the scalar extension of an isomorphism

DetΛ(0) ∼= DetΛ RΓc(Z[
1
S

], T ).

Of course L is only determined up an element in Λ× = Aut(DetΛ(0)). The
”analytic” l-adic L-function of Ml is the unique element L = Lan of K× so that
the composite isomorphism (5.3) is the scalar extension of the isomorphism ζΛ(T )
of Kato and Fukaya (and hence specializes to the motivic isomorphisms ζAl

(Ml)).

The isomorphism ζalg
K (T ) can be constructed without any reference to motivic

L-functions and only requires the rather weak assumptions a) and b) on global
Galois cohomology. However, it only exists over the large ring K and no general
techniques seem to be available to descend it to Λ (i.e. to specify any element
L).

Perrin-Riou has generalized her theory to the case of a semi-stable representa-
tion in [35]. The Exponential of Perrin-Riou, together with the theory of (φ,Γ)-
modules has been used by Berger and Benois [2] to show the compatibility of
Conjecture 6 with the functional equation of L(AM, s) in case Ml is crystalline
and A = Q.

6. Noncommutative Iwasawa theory

There has been much activity in noncommutative Iwasawa theory recently,
dealing with either the module theory over non-commutative Iwasawa algebras
(see e.g. [43], [42] and other papers by Venjakob) or the conjectural existence of
an l-adic L-function and a formulation of a main conjecture for ordinary elliptic
curves over the GL2-extension generated by the torsion points [12], [13]. We have
kept non-commutative Iwasawa theory in the background in this paper because,
due to the lack of limit formulas, it has not led to the proof of new cases of
Conjectures 2 or 6 so far (there is exciting recent progress, however, in the case
of so called false Tate-curve extensions by Darmon and Tian [15]).

The conjectural picture, on the other hand, extends easily to the non-commutative
situation. The determinant functor with values in graded invertible modules has
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to be replaced by the universal determinant functor (with values in virtual ob-
jects) which exists for any ring R [19],[5], [21]. This step is justified by the fact
that for a ring R which is a product of commutative local rings (such as the
coefficient rings A, Al, Al, Λ) the functor to graded invertible modules is already
universal [5, Lemma 3b)].

With this convention the conjectures in part 1 almost literally apply to the
situation where A is a non-commutative semisimple finite dimensional Q-algebra
(with some minor modifications if AR has quaternionic Wedderburn components,
see [19, Part 3]). Similarly, the restriction to commutative Λ in Conjecture 7 is
unnecessary. As demonstrated in [21, §4] the nonabelian conjectures of [13] (and
also of [26]) are consequences of Conjecture 7. It is also shown in [21, §4] that
the earlier conjectures of Coates and Perrin-Riou on the cyclotomic deformation
of ordinary motives [10] follow from Conjecture 7.

The functoriality in (ii) includes Morita equivalence by taking Λ = Mn(Λ′)
and Y the space of row vectors of length n. Another application of (ii) is the
following reduction to Artin motives (see [21, 2.3.5]) which was also observed by
Huber and Kings [26, §3.3]. Given any l-adic family (Λ′, T ′) let G∞ be the image
of GQ in AutΛ′(T ′). Then G∞ = Gal(F∞/Q) where F∞/Q is the union of finite
Galois extensions Fn/Q, say. If we define

Λ = Zl[[G∞]]; T = lim←−
n

H0(Spec(Fn ⊗Q Q̄),Zl)

then T is a free rank one Λ-module (via the first factor in Fn⊗Q Q̄) with Λ-linear
GQ-action (via the second factor in Fn⊗Q Q̄). Setting Y = T ′ with right Λ-action
via the inverse of G∞ → AutΛ′(T ′) there is an isomorphism of l-adic families
T ′ ∼= Y ⊗Λ T over Λ′. The isomorphism ζΛ(T ) can be constructed if Conjecture
3 is known for the Artin motives h0(Spec(Fn)) over A = Z[Gal(Fn/Q)]. Using
(ii) one can then construct ζΛ′(T ′) without however knowing (iii) for all motivic
points in (Λ′, T ′). The only examples where the necessary limit formulas are
available to carry out this program (and verify (iii) for all motivic points!) is
when F∞ is abelian over Q or an imaginary quadratic field.

We remark that the only examples where Conjecture 3 is proven for an Artin
motive h0(Spec(F )) over a noncommutative A = Z[Gal(F/Q)] (or indeed for
any motive M with non-commutative non-maximal A) is an infinite family of
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quaternion extensions [6], some dihedral extensions F/Q and a single example of
an A4-extension F/Q due to Navilarekallu [32].
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