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1. INTRODUCTION

We present uniqueness criteria for p-adic period morphisms for proper varieties
and show that they imply equality of the p-adic period morphisms defined using
the syntomic, almost étale and motivic constructions. As an illustration, consider
the simplest case: good reduction with rational coefficients. We have a smooth
and proper scheme X over a complete discrete valuation ring V' of mixed charac-
teristic (0, p) with perfect residue field k£ and fraction field K. Let X, denote its
special fiber. We write W (k) for the Witt vectors of k. Recall the statement of
the Crystalline conjecture relating the étale cohomology of the geometric generic
fiber X7 as a representation of the Galois group of the field K and the de Rham
cohomology of X g with some extra structures.

Conjecture 1.1. There exists a natural p-adic period isomorphism
Q; - Hi(va Qp) ® Ber =~ Hér(XO/W(k)) ® Ber

that is Be-linear, Galois equivariant, compatible with Frobenius, and induces an

isomorphism on filtrations after passing to Byg.

Here, B, is Fontaine’s crystalline ring of periods. It is equipped with Galois
action and Frobenius. It maps to another ring of period Bygr that is equipped
with a descending filtration. The filtration on the right hand side comes from that
and the Hodge filtration on the crystalline cohomology HE.(Xo/W (k)) tensored
with K (a group that is known to be isomorphic to the de Rham cohomology
H'rn(Xk/K)). As a corollary one gets that the étale cohomology groups as Galois
representations can be recovered from the crystalline cohomology

G+ H' (X, Q) = (Hiy(Xo/W (k) © Br)*=" 1 FO(Hip(Xi/K) © Bag).

It is natural to wonder how unique the p-adic period isomorphism is. In the
above conjecture one often postulates that the period morphism should preserve
Chern classes of vector bundles. It turns out that if one postulates instead that
the period morphism should be compatible with higher Chern classes from the
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p-adic K-theory groups K;(Xy,, Qp) one gets that there is a unique p-adic period
morphism having all the required properties. The higher Chern classes considered
are the étale ones into H Z'(X?, Q,) and the syntomic ones into

H' (Xy, S(r)q,) = (Hiy (Xo/W (k) ® Ber) = N (Hip(Xc/K) © Bar), i <.
We prove

Theorem 1.2. There exists a unique natural p-adic period isomorphism
it H'(X7,Qp) ® Bey =~ H..(Xo/W (k) ® Bex

that is Ber-linear, Galois equivariant, compatible with Frobenius, induces an iso-
morphism on filtrations after passing to Bggr, and is compatible with the étale and
syntomic higher Chern classes from p-adic K -theory.

This theorem follows from our construction of the p-adic period morphism in
[23]. We have shown there that the higher Chern classes induce an isomorphism
between the étale cohomology groups H i(Xfa Qp) and certain gamma graded
pieces of the p-adic K-theory groups of the geometric generic fiber K;(X4%, Q).
The last groups, in turn, are isomorphic to the p-adic K-theory groups of the
integral model Kj;(X3,,Qp). Hence to give the period map &; from the étale
cohomology to the syntomic cohomology is the same as to give a map from the
p-adic K-theory of the integral model to the syntomic cohomology. If we impose
compatibility of the p-adic period map with higher Chern classes this morphism
has to be equal to the syntomic higher Chern classes.

Rational crystalline conjecture was proved in the above generality by three
different methods. There is the syntomic method due to Fontaine-Messing [11],
Kato-Messing [19], and Tsuji [31]. Then there is the almost étale method of
Faltings [6]. Finally there is the motivic method of the author [23]. In the
syntomic method the period map &; from the syntomic cohomology to the étale
cohomology is defined as the cospecialization map on the syntomic-étale site. It
is proved to be an isomorphism via a detailed study of the sheaves of p-adic
nearby cycles that turn out to be isomorphic to certain syntomic sheaves. In
the almost étale method the period map «; itself is defined by evaluating acyclic
crystalline resolutions on sheaves of crystalline periods B on certain ”étale in

characteristic 07 site. That gives a map from the crystalline cohomology to the

+

cohomology of the sheaves B

on this site. Almost étale theory shows now
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that this cohomology is almost isomorphic to the étale cohomology tensored with
the usual ring of periods BZ. The motivic method we discussed above: to get
the p-adic period map @;, this time from the étale cohomology to the syntomic
cohomology, we first use the étale higher Chern classes to pass from the étale
cohomology to the p-adic K-theory of the geometric generic fiber, then we go
to the p-adic K-theory of the integral model, and follow that with the syntomic
higher Chern classes. In all these methods, the fact that the induced period map
«; is an isomorphism follows from the Poincaré duality and compatibility with

the (usual) Chern classes.

Checking compatibility of the above p-adic period maps with higher Chern
clases yields

Corollary 1.3. The p-adic period morphisms defined using the syntomic, almost
étale and motivic constructions are equal.

We obtain analogous results for the integral p-adic period morphisms as well
as the rational semistable ones.

Acknowledgments. Parts of this paper were written during my visits to Uni-
versity of Cambridge, University of Tokyo, and Kyoto University. I would like
to thank these institutions and especially my hosts: Tony Scholl, Takeshi Saito,
and Kazuya Kato for their hospitality.

Throughout the paper, let p be a fixed prime, let K denote a chosen algebraic
closure of a field K, and, for a scheme X, let X,, = X ®Z/p"™. All the log-schemes
are assumed to be fine.

2. PRELIMINARIES

2.1. Rings of periods. Let V be a complete discrete valuation ring with fraction
field K of characteristic 0 and with perfect residue field k£ of characteristic p.
Let W (k) be the ring of Witt vectors of k with fraction field Ky . Set Gxg =
Gal(K/K), and let o be the absolute Frobenius on W (k). For a V-scheme X,
let X denote the special fiber of X. We will denote by V, V>, and VO the
scheme Spec(V') with the trivial, canonical (i.e., associated to the closed point),
and (N — V, 1+ 0) log-structure respectively, and, for a log-scheme X, we will
denote by X the underlying scheme.



On Uniqueness of p-adic Period Morphisms 167

Let us recall the definitions of the rings B, and Bgr of Fontaine [§8], [9], [11].
We have

Bt = ng(Spec(Vn/Wn(k))), Bt = projlim B, B, = B:;[til,pfl],

cr,n cr,no

where V is the integral closure of V in K and t is a certain element of B that
will be defined below. The ring B is a topological W (k)-module equipped with
a Frobenius ¢ coming from the crystalline cohomology, filtration F" B by the
completed devided powers of the canonical PD-ideal of BZ. (or their modifications
— see below), and a natural G g-action. We have ¢(t) = pt and G acts on t via
the cyclotomic character.

The canonical morphism 6 : Bctm — V, is surjective. Let Jern denote its
kernel. Let

B}, = projim(Q ® projlim B, /JI),  Bur = Bllt™").
r n

cr,n

The ring B;R has a discrete valuation given by powers of ¢. Its quotient field is
Bgr. We will denote by F"Bgg the filtration induced on Byr by powers of t.

The above generalizes to certain V-algebras [6, II], [31, 1]. First, let R be a
smooth V-algebra such that R/pR # 0. Consider the p-adic completion R. For
simplicity, we will assume that Spec(R/pR) is connected, which implies that R
is a normal domain. In general, Risa product of normal domains and what
follows applies to each factor. Recall that R is called small if there is an étale

map V[T ... Tjﬂ] — R. If R is small, Frobenius is surjective on ﬁ/p

For small R, the crystalline rings of periods can be simply defined by setting

=~

B (R) = Hey(Spec(Rn /Wa(k), - Bii(R) = projlim BS,,(R),
where R is the normalization of R in the maximal étale extension of R[1/p]. In
particular B (V') = BZ.. For general smooth V-algebras, we have a more explicit
construction. Let S = projlim ﬁ/ p, where the maps in the projective system are
the p-th power maps. With addition and multiplication defined coordinatewise .S
is a ring of characteristic p. The Frobenius of S is bijective, so that the ring of Witt
vectors W (S) is p-torsion free, complete and separated for the p-adic topology.
There is a homomorphism 6 from W (S) to EA: 6 maps (xo,x1,...) € W(9),

pm

Tn = (Tpm) € S, to the limit over m of fcgz +py,, + -+ p"Tmm, where

" means a lift from ﬁ/p to R. This is a surjection if Frobenius is surjective on
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E/p. The kernel of 6 is generated by £ = [(p)] + p[(—1)], where (p), (—1) € S are
the reductions mod p of sequences of p-power roots of p and (—1) respectively (if
p # 2 we may and will choose (—1) = —1).

The ring Bé;(ﬁ) is then the p-adic completion of the devided power envelope
D¢(W(S)) of the ideal EW(S) in W(S). Let J., denote the PD ideal of D¢ (W (.5)).

=

BX(R) is an algebra over BZ(V) having the following properties:

(1) the Frobenius automorphism of S induces an automorphisms ¢ of W(5)
and BX(R);

(2) BX (E) is equipped with a decreasing separated filtrations F" B, (E) and
F;‘Bé;(ﬁ) such that ¢(Fng;(§)) C p"Bj;(E): F"B;;(E) is the closure
of the n-th divided power of J. and Fj'Bd, (E) is the closure of the ideal
consisting of those elements in the n-th divided power of J.; whose ¢-
image is divisible by p"; for n < p — 1, FIBL(R) = F"BA(R);

(3) the Galois group Gal(ﬁ,/ﬁ) acts on B (R); the action is continuous,
commutes with ¢ and preserves the filtrations;

To define the element ¢t € F!BZ, choose a sequence of p-power roots of unity
inV: ¢o=1, Gur1 = Cm, 1 # 1. Let us fix such a sequence. Take ¢ = (¢,) and

me =[] — 1€ W(S). Set

t=log([c)) = > (=)™ (m — D™,

m>1

For small R and r > 0, we have [22, Prop. 5.1] the following fundamental exact
sequence of Galois modules

~ =~

(2.1) 0 — Z,t — FrBL(R) "% BL(R) — 0,

where tI = %) (t2=1 /p)la™)] for r = (p — 1)q(r) + k(r), 0 < k(r) < (p — 1).

One can carry out the above explicite construction of Bz (A) for any noetherian
V-algebra A such that A/pA # 0, A is a normal domain, flat over V| containing
all p-power roots of —p [31, 1.1]. We also have a cohomological intepretation. Let
A denote the image of the map 0 : W (S4) — 27 where 5S4 denotes the analog of

S for A. For every n > 0, we get a PD-thickening Spec(A,) < Spec(BZ ,,(4)),

cr,n

hence an object of the crystalline site of A, over Wi (k). One checks that this is
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a final object [31, A1.5]. In particular, the natural map
HY(An/Wa(k), JJ1) = FTBE . (A)

is an isomorphism.

Define the elements q and ¢’ of W(S4) by ¢ = ZaEFP [¢@] and ¢; = ¢~ (q). In
the case Spec(A/pA) is connected and the maps ¢ — ¢ : S4 — Sa are surjective
for all n > 0, we have the following analog of the fundamental exact sequence
31, 1.2.4]

T I8 7T¢71
(2.2) 0— Z,t" — FBL(A) " -5 BL(4) — 0.

We will need the crystalline interpretation of the ring B (see [18], [31]). The
definitions of all the period rings below depend on the choice of a uniformizer 7

of V. Let us fix such 7. It has minimal equation f(7) = 0, where
f(X)=X4aX 1+ .. a1 X +ag

is an Eisenstein polynomial (hence all a;’s are divisible by p and ag is not divisible
by p?). Let Ry, denote the PD-envelope of the ring W, (k)[X]* (log-structure
given by X) with respect to the exact closed immersion W, (k)[X]* — V. *,
X — m. We have V' = W, (k)[X]/f(X) and Ry; , is obtained by adjoining divided
powers f(X)"/n! or X" /nl. It has PD-filtration Fk(R‘X,n) by the ideals generated
by divided powers f(X)"/n! for n > k and the log-structure is associated to
(N — Ry, 1 — X). Frobenius acts by — X? and (W (k)-linear) monodromy by
N(X) = X.

Set
Bj, = Hy(V,/Ry,). BY =projlimHY(V, /RY,).
n
The ring E:;n has a natural action of G, Frobenius ¢, and a monodromy op-

erator N. It is also equipped with a PD-filtration Fzéstn = ng(V: /Ry T[f])
We have a morphism Bf , — E:{n induced by the map H2(V,/W,(k)) —
HO(V) Ry;,). Tt is compatible with the Galois action, the Frobenius, and the

filtration. The following lemma describes the structure of E;n explicitely.

Lemma 2.1. ([18, Proposition 3.3]) Let s be a p"'th root of © contained in K.
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(1) The PD-morphism B, <Y > Bi

ot st that sends Y to vs — 1 is an

isomorphism. We have 57" vy = X and Vs = CN*pnvs for any p™ th root (
of 1 in V', where™ denotes a lifting from V,, to Bé;,n.

(2) The monodromy operator N is a Ban-linear homomorphism character-
ized by N(1) =0 and N((vs — 1)) = (v, — 1)Uy,

(3) The Frobenius ¢ is a PD-linear homomorphism such that ¢(vs) = v%.

(4) The Galois action of Gk is characterized by o(vs) = Vg(s), 0 € GK.

The natural map Rj;, — BY s compatible with all the structures. We

st,n
need to explain the definition of the element vg in the above lemma. There is a
in [31, p.256]. It shows that we

as the PD-envelope of the closed immersion

particularly nice (equivalent) definition of E;gn

. D+
can view Bg ,

Vo BEX <, (k) Wa(k)[X]

defined by the map 6 : BJ.,, — V,, and the projection W, (k)[X] — V,, X + .

cr,n
This makes V: — E:{n into a PD-thickening in the crystalline site of V: / Ré’ "
Here B;Lrj;f is a PD-thickening in the crystalline site of V: / R‘X,’n given by B:;,n
and the map 0 equipped with the following log-structure. Fix a sequence of p-
power roots of 7 in V: sg =, st +1 = Sn. Denote by [r] the associated element
of BY. The log-structure of Bey is given by (N — B, 1+ [x]). We easily see

Cr?

that there is a unique element v € 1+ F 1B such that vig(r] = X. That

st,n
gives our v in the above lemma.

The element [r]7 ! is contained in 1+ F!Byg and hence log([r]m~!) converges
in B}, to an element uf,. Let B} denote the subring of Bqg generated by B&[1/p]
and uf,). Fontaine shows that uf,) is transcendental over B[1/p]. Hence B is
a polynomial algebra in one variable over B [1/p]. The action of Gk on B:er
restricts well to By: we have o (up) = ugy + log(8(0)), o € Gk, where (o) is
defined by o([]) = B(c)[n]. The Frobenius ¢ extends to B by ¢(ufr) = puj

and one defines the monodromy operator N : Bff — B as the unique BJ[1/p]-
derivation such that Nuj; = —1. We have N¢ = ppN. Let By = Bcr[u[ﬂ]].

Different choices of the uniformizer 7 yield isomorphic rings B, so we can and
we will identify them via these isomorphisms. The dependence on 7 will then be
encoded in the morphism ¢ : B:g — BCTR.
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Kato [18, 3.7] shows that the ring B is canonically (and compatibly with all
the structures) isomorphic to the elements of B3 [1/p] annihilated by a power of
the monodromy operator N.

Lemma 2.2. There is a canonical BZ[1/p]-isomorphism
B = Bil/pN T, ug 16 {log(vg ) uz,

compatible with the action of Gk, ¢ and N.

We have projections

p1:§+ — BT Vs

st,n cr,n’

— 1; pO:B:;—>B$[1/p], ug — 0.

n

. D+
Since By,

unique map of Ejtn to B:;m as PD-thickenings of V: over Ry . In particular

is the final object in the crystalline site of V: over Ry, pi is the

it is compatible with filtrations. The projections are compatible with the map
Bji — B{[1/p] and induce the identity on Bf, and Bf[1/p]. Notice though
that they are clearly not (!) Galois equivariant. However their restrictions to
(E;;JNZO = B}, and (BH)N=" = Bf[1/p] are. We will see a more general

version of this phenomena in log-comparison theorems below.

2.2. Syntomic cohomology. Let X be a flat finite type scheme over W (k).
Recall the differential definition [16] of syntomic cohomology of Fontaine-Messing
[11]. Assume first that we have an immersion i : X — Z over W (k) such that
Z is a smooth W (k)-scheme endowed with a compatible system of liftings of the
Frobenius {F, : Z, — Z,}. Let D, = Dx, (Z,) be the PD-envelope of X,, in
Zy, (compatible with the canonical PD-structure on pW,(k)) and Jp, the ideal
of X, in Dy,. Set J5' = {a € J[DTL+8|¢(CL) € p"Op,,.}/p" for some s > r. For
0<r<p-1,J57" =J l[;l This definition is independent of s. Consider the
following complexes

Sn(r)x : = Cone(J5! ™~ @ Uy 1y = op, @ Q. w1,

Sh(r)x : = Cone(J5 0y 1y 0 T Op, ©Qy e 4) -1

where ¢, is "‘¢/p™”’ (see [31, 2.1] for details). The complexes S, (r)x, S, (r)x
are, up to canonical quasi-isomorphisms, independent of the choice of ¢ and {F}, }.
There is a natural map S/, (r)x — Sp(r)x, whose kernel and cokernel is annihi-
lated by p”. The reader will find more canonical definition of these complexes in
the next chapter.
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In general, immersions as above exist étale locally, and we define S, (r)x €
D" (X4, Z/p") by gluing the local complexes, and Sy, (r)x.. € D" ((X57)et, Z/p")
as the inductive limit of S,(r)x,,, where V' varies over the integral closures of
V in all finite extensions of K in K. All these complexes are equipped with a
well-behaved product. Set

HY(X, 8u(r)) = Hg (X, Sn(r)x),  H'(Xy7, Su(r)) := H (Xe7, Su(r)xp,)-

Similarly, we define S, (r) x and S}, () x, and the groups H(X, S}(r)), H(X, Si(r).
For r» > 0, we get the long exact sequences

) 7 r 1—¢r
(2.3) ... — HY(Xy, Su(r)) — HCY(XV,n/Wn(k),Jf(vi/wn(k)) -
Hér(XV,n/Wn(k)7 Ovan/Wn(k)) e,
i i r ¢
= HI(Xyp, Sy (r)) — Hi (X, /Wa(K), J)[(lm )

Hy (X, /Wa(R), Oxy I Walk)) = -+

Let now X* be a flat and separated, finite type log-scheme over W (k). Recall
[17] that there exists log-crystalline cohomology, which is defined by mimicking
the definition of the classical crystalline cohomology. Using it, the above con-
struction of syntomic complexes goes through almost verbatim (see [31, 2.1] for
details) to yield the logarithmic analog S, (r)xx on Xg and the corresponding
log-syntomic cohomology groups

HY (X7, Sp(r)) o= Heg (X, Sn(r) <), H'(X, 8n(r) 1= Hi (X, Sn(r) ).
Similarly for complexes S/, (r) xx. There are natural maps
e: HY(X,Sn(r)) — H(X*,S,(r)), e:HYX,Su(r)) — H(X*, S,(r)).
Again, for r > 0, we get the long exact sequences

i i r 1—-¢r
(24) ...— H (X%, Sp(r)) — Hcr(X%n/Wn(k:), J;Vi/wn(k)) =

) X
He (X3 /Wa(K), Oxg,n/wn(m) — ...,

—

i i T "—¢
= HI(XZ,S)(r) — Ho (X2 [Wa(k), J)[(lm/wn(k)) P

HE(XE W (k). Ok watsy) = -
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Lemma 2.3. For X smooth and proper over W (k) and p—2 > r > i, the natural
map
H' (X7, Sn(r)) = FMHy (X7, /Wi (k), Oxy wia()® "

18 an isomorphism.

Proof. By [11, II1.1.3] and [11, III.1,II.2], respectively, we have the following
isomorphisms
He (X, /Wa(k)) = He (X/W (k), Ox, jw () © B
i (X [WalB), T ) = FT(HE (X0 [ Wa(R)) @ BE,)

By [11, 11.2.7], the filtered Frobenius module H! (X,/W,(k)) belongs to the
Fontaine-Laffaille category FM(r) [10]. This implies that the map

) S8 HE (X /W (R)) @ B

cr,n

F'(Heo(Xn/Wa (k) © Bg

cr,n

is surjective and our isomorphism follows from the exact sequence (2.3). g

Rationally, we have the following computation.

Lemma 2.4. Let r > i. For X smooth and proper over V', we have a canonical

Galois equivariant isomorphism

~

Q@projlim H' (X, 5,,(r)) = (He (Xo/W (K))@Ber) "= NF" (Hyp (X / K) @k Bar)-

Proof. Here we consider H.(Xo/W (k))® B&[1/p] a subspace of H, (X i /K)®K
BF, via the isomorphism H.(Xo/W (k)) @) K ~ H}p(Xk/K) and the injec-
tion Ber @ (x) K — Bgr. Recall that Kato and Messing have constructed the
following isomorphisms [19, 1.2,1.3]

HE(Xo/W (k) © BE[1/p] = Q © HL(Xy/W (K)),
(Hjr(Xx/K) ® Bjp)/F'(Hjp(Xx/K) ® Bjp) ~
Q ® projlim Hiy Xy ./ Wa(k), Ox jwate/ T )

It follows that the image of the map

Q @ proj lim Hi, (X, /Wa(k), Oxy /T i) =

Q © proj lim H¢, (X, /W (k)
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is equal to (H..(Xo/W (k) ® BL[1/p))?="" N F"(Hix(Xk/K) ®k Bjy). Hence
we get a natural map

Q@projlim H' (X, 8,(r) — (Hy(Xo/W (k)@ B[1/p))* =" NF"(Bjp@x Hyp (X /K)).

For r > i, let oz;{r : H' (X7, Qp(r)) — Q®projlim,, H (X7, S;,(r)) be the p-adic
period morphism defined by Tsuji in [31, 3.1.12, 3.3.4]. It is an isomorphism. We
know that the composition of the above two maps

H'(Xk, Qp(r)) — (H&x(Xo/W (k) © Ber)*™ N F'(Bap @k Hyp(Xk/K))

is an isomorphism as well [31, 4.8.1, 4.10.2]. Hence our lemma. O

Before stating the analog of the above lemma for log-schemes we need to recall
properties of certain cohomology groups and morphisms that appear in p-adic
comparison theorems for log-schemes. Assume that X* is a fine and saturated
log-scheme, log-smooth and proper over V' *. We have the log-crystalline cohomol-
ogy HE (X /W, (k)?) that is equipped with a (nilpotent) monodromy operator N
and a Frobenius ¢. We have N¢ = ppN. If X is of Cartier type, the Frobenius
is bijective and we have the Hyodo-Kato K-isomorphism [15, 5.1]

P K Q) HL(XE /W (K)) S Hjp(XE/K).

Similarly, we have the groups H’.(X,¢/R;5 ) and a monodromy operator acting
on them: there exists a quasi-nilpotent integrable connection ([31, Lemma 4.3.2,
Lemma 4.3.6])

Vi HE (X /R\X/n) — HL (X /R\X/n) W, (k) Qxla/n(k)[x]X/Wn(k)

and we define V(a) = N(a)dlog X. This connection is compatible with Frobenius
thus N¢ = p¢N. In the case X/V is proper it also satisfies Griffiths transver-
sality. To see that recall [7, 5] that R (X,S/Ry;,) can be represented by a

”’ means iso-

finite complex of filtered free Ry ,-modules, where ”‘filtered free
morphic to a direct sum of copies of Ry, with (possibly) shifted filtrations.
The classical argument applies and gives Griffiths transversality on this complex.
Hence on cohomology groups as well. It follows that N(FFH! (X)/ R‘X,n)) C
FE1HI (X /R‘X/yn). Moreover, all the structures on H. (X} /Ry;,,) are compati-

ble with those on R{; . There is a natural projection (X +— 0)

po s Ho(X/Ry,) — He(Xg /Wa(k)°)
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that commutes with the monodromy. If X is of Cartier type, the map Q ® po
has a canonical section [15, Lemma 5.2]

s+ Hy(Xg /Wi (k)")[1/p] — He(X™ /RY)[1/p]

compatible with Frobenius and the monodromy operators. It induces an Ry -
linear isomorphism

Ry @w k) He (Ko /Wa(k)")[1/p] = He(X™ /RY)[1/p]

Kato shows [18, 4] that there is a long exact sequence
o HE (X7 /Wh(k) — Ho (X /Ry,) = Ho (XS /RG,) — -
It follows that the canonical Galois equivariant map
HIL(XE [ Wa(R)) — (Hi(XE /RS, )N
induces an isomorphism

He (X3 /W (k))[1/p] = (HE (X /Ry)[1/p)) Y

Recall that E:{n ~ HO.(V, /R,). We also have H. (V, /R ) for i > 0 [18,

Prop. 3.1]. It follows [18, Lemma 4.2] that cup product induces an isomorphism
B ®ny, HE(X)/RY,) = HL(XE R,
compatible with all the structures. For X of Cartier type, the above yields an
isomorphism
B3 [1/pl @ HL (X5 /W (K)°) = HL(XZ/RY)[1/p)
and, by taking N-nilpotent elements, an isomorphism
B @ Ho(Xg' /W (K)°) = (He (X0 Ry [L/p]) N

Lemma 2.5. Let r > i. For X* a fine and saturated, log-smooth, vertical, and
proper scheme over V* with Cartier type reduction, we have a canonical Galois
equivariant isomorphism

Qaprojlim H' (X5, S, (r)) = (He (X5 /W (k) )©By) V=" NF" (Hjp (X i/ K)®x Bar).
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Proof. Here we consider H: (X /W (k)?)® B, asubspace of H, (X /K)® Kk By
via the injection ¢ : Bs't — B;R and the Hyodo-Kato isomorphism p. For X* as
above, we have a canonical morphisms

Q@ HL (X3 /W (k) — (Bt @wry Hi(Xo /W (k)°) N7,

that is compatible with Galois action and Frobenius. Composing with the Hyodo-

Kato isomorphism p we get a map
Q® He, (X2 /W (k) — Bt @1y Hyp( X/ K),
that is compatible with Galois action, Frobenius and the monodromy operator.

Recall that we have the following crystalline interpretation of B} ,®x H}p(X/K)
from [18] (see also [31, 4.7.4]):

(Bir ©x Hig(Xi/K))/F"(Bjp ®x Hig(Xk/K)) = Q@ HL (XX /V*,0/J1).
It follows that there is a natural map

Q@projlim H' (X7, 5, (r)) — (H& (X5 W (k))@ BN == NF" (Bl @ k Hip(Xk/K)).-

For r > 1, let a;f':,, : H' (X%, Qp(r)) — Q® proj lim,, H"(X%, S/.(r)) be the p-adic
period morphism defined in [31, 3.1.12, 3.3.4] and in Lemma 4.5 below. It is an
isomorphism. We know that the composition of the above two maps

H' (X, Qp(r)) — (H& (X /W (K)?) @ Ba) =" N F"(Bar ©x Hyp(Xx/K))

is an isomorphism as well ([31, 4.8.1, 4.10.2] and Corollary 4.6 below). Hence our
lemma. g

2.3. Chern classes. For a scheme X, let K.(X), K.(X) denote Quillen’s higher
K-theory and K'-theory groups of X, respectively. The corresponding groups
with coefficients Z/n, will be denoted by K;(X,Z/n) and K](X,Z/n). For n
such that va(n) = 0 or va(n) > 3, and va(n) = 0 or vz(n) > 1 they have a
well-behaved product. For a noetherian regular connected scheme X, we have
the following ~-filtrations compatible with products:
FEEo(X) = {KO(X) | | k<o
(s (1) 3, () eln) = - = o) = Oyia o i 2 B) k>0,
FYKqo(X)= (yiy (z1) U+~ Ui, (2|27 € K, (X), g > 0,01+ - +in 2 k),
F,’Y“Kq(X, Z/p") = (i, (x1)U - Uy, (xn)|zi € K, (X, Z/D"), ¢ > 2,014 - +ip > k),
where ¢ is the augmentation on Ky(X) and p™ > 2.
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For ¢ > 0, there are functorial and compatible families of syntomic Chern
classes
c;);.n K (X) — H* (X, S,(i)) forj >0,
K (X, Z/p") — H? (X, Sp(i))  for j > 2,
that are also compatible with the crystalline Chern classes in Ha 7 (X, /W (k),
Ox,/w. (k) via the canonical map H* (X, Sy(i)) — Hat (X /Wi (k), T 00 1)-

e X /Wn(k)
Similarly, we have syntomic Chern classes in H?~7(X, S/ (i)). Recall the con-
struction of the classes c?;.n. First, one constructs universal classes C'?l'n €

H*(B.GLi/W (k), Sn(i)), C37" € H*(B.GL /W (k), S},(4)). Recall [14] that
H:(B.GL/Wy(k)) ~ Hip(B.GL /Wy (k) ~ Wy (k)[x1, ...,z

where the classes z; € H25(B.GL/W,(k)) are the de Rham Chern classes of
the universal locally free sheaf on B.GL;/W, (k) (defined via a projective space
theorem). Similarly, for the Hodge cohomology we have

Hpyag(B.GL /Wy (k)) = Wy (k)[z1,. .., 7).
It follows that the Hodge-de Rham spectral sequence degenerates. Hence

Hi(BGLWak), Tg op ) = Hig(BGLYWa(k), Q5 0r 1w 1o)
= FYHyp(B.GLi/Wy(K)).
Moreover, since we can lift Frobenius to each GL;/W,(k), we compute that

Hi(BGLYWa(k), T ) = Ha(BGLyYWa(k), T8 e )

It follows that
H*(B.GLi/W (k), Sn(i)) = (F'Hip(B.GLi/Wy(K)))*r="
= (F'H3(B.GL /W, (k)?=F" & H*(B.GL /W (k), S, (i)).
For | > i, we define
C" =z € H(BGL/W(k), Sn(i)), C" =i € H¥(B.GL/W (), S, (i)).

By construction these classes are compatible with the crystalline classes. We note
that both classes 1 € H?(B.GL; /W (k),S,(1)) = H*(B.GL;/W (k), S.,(1)) have
a direct definition via Kato’s [16, I.3] symbol map ¢;"" : O%[~1] — i.0% , [-1] —
i5Sn(1).
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The classes C7}" € H*(B.GL/W (k), Sy(i)) yield compatible universal classes
(see [13, p. 221]) O} € H*(X, GLi(Ox), Sn(i)), hence a natural map of pointed
simplicial sheaves on X, C5*" : B.GL(Ox) — K(2i, 5, (i)x), where K is the Dold-
Puppe functor of Tzogn(i)xpi] and S, i)x is an injective resolution of Sy (i)x.
The characteristic classes ciyjn, j > 2, are now defined [13, 2.22] as the composition

K;(X,Z/p") — H?(X,Z x BGL(Ox)",Z/p") — H/(X,B.GL(Ox)",Z/p")

o B (X, K24, 80(0) ), Z/p™) L HYI(X, 8,(1)),

where B.GL(Ox)™" is the (pointed) simplicial sheaf on X associated to the + -
construction [28, 4.2]. Here, for a (pointed) simplicial sheaf £ on X, H /(X &,
Z/p") = m;j(RI'(X,€&.),Z/p") is the generalized sheaf cohomology of &. [13, 1.7]:

if we let P% denote the constant sheaf of j-dimensional mod p™ Moore spaces,
then H 7/ (X,E,Z/p") = [P%,E], where, for two pointed simplicial sheaves F.,
F!on X, [F., F!] denotes the morphisms from F. to F’ in the homotopy category.
The map f is defined as the composition
j O n O nyy i O (s n
H7(X,K(2i,S,(i)x), Z/p") = 7;(K(2i,5,(i) (X)), Z/p")) = H; (K(2i, S, (i)(X)), Z/p™))
— H;(S,()(X)[2i]) = H* (X, Sn (i),
where h; is the Hurewicz morphism.

This gives mod p" Chern classes in H*(X, S, (%)). Those in H*(X, S}, (x)) and
the integral ones are defined in an analogous way.

Lemma 2.6. ([25, Lemma 2.1]) Assume X to be reqular. Then

(1) the integral Chern class map cf?n, for j >0, is a group homomorphism,
and ¢} restricts to zero on FIMK;(X), j > 0;
(2) for j > 2, the mod p™ Chern class map cfy?n s a group homomorphism

and it restricts to zero on F;+1Kj(X, Z/p™) unless j =2 and p = 2.

The two types of syntomic Chern classes desribed above are related.

Lemma 2.7. For j > 2, we have the following commutative diagram

syn

Ki(X,Z/p") — HZ=9(X,8,(i))

syn
J/Ci’j l

HY3(X, S,(i)) 2 HY3(X, 5, (i)):
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Proof. 1t is clear from the construction of higher Chern classes recalled above
that it suffices to show that p'C! = C*", where we wrote C! for the universal
Chern class C;"" € H*(B.GL/W (k), S;,(i)). But for [ > i, both C}; and iyt
correspond to the class x; € F'H2%(B.GL;/W,(k)). The morphism S, (i) —
Sy (i) induces multiplication by p’ on F*H24(B.GL;/W,(k)). The lemma follows.

O

Recall that, similarly, we have the étale Chern class maps

% L Ki(X) — H¥ (X, Z/p (i), &Y K;(X,Z/p") — HZ (X, Z/p"(i)).

They have analogous properties to those of the syntomic Chern classes.

2.4. p-adic comparison theorems. We will review now the statements of p-

adic comparison theorems.

Conjecture 2.8. (Integral Crystalline conjecture) Let X be smooth and proper
scheme over W (k). For p—2 > r > i, there exists a natural Galois equivariant

period isomorphism

Qi HY(Xp, Z/p"(r)) = F7(HL(X/W (k) © B

cr,n

jor=t

This integral form of the Crystalline conjecture was proved by Fontaine-Messing
and Kato-Messing [11], [19], by Faltings [6], and by Niziol [23]. The precise con-
ditions on r and ¢ in these proofs vary. Since, by Lemma 2.4, H' (X, Sp(r)) =
Fr(HL(X/W(k), Ox/w ) /") © B&,)?r=", we will identify integral crystalline
period morphisms with isomorphisms

iyt H'( X7, Z/p"(r)) ~ H (X7, Sn(r)).

Conjecture 2.9. (Rational Crystalline conjecture) Let X be a proper smooth V -
scheme. There exists a natural Be-linear Galois equivariant period isomorphism

i H' (X%, Qp) ®q, Ber = H(Xo/W (k) ®w (k) Ber

that is compatible with Frobenius and, after extension to Bgg, induces an isomor-

phism on filtrations.

For any r > 0 and a period isomorphism «; as above, define

aig + H'(Xg, Qp(r)) @q, Ber — Hey(Xo/W (k) @w () Ber{—1}
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as a 1= tTaiC(_T). Here {—r} refers to twisting the Frobenius and the filtration.
The map o, is an isomorphism. It follows that we can recover étale cohomology
with the Galois action from the crystalline cohomology:

it H' (X7, Qp(r)) = (HL(Xo/W (k) @w (k) Ber)*™ NF"(Hjp(Xk) ®K Bar)-

For r > ¢, by Lemma 2.4, the right hand side is canonically isomorphic to
Q ® proj lim,, H* (X7, S}, (r)). Hence we can and will identify rational crystalline
period morphisms for r > 4 with isomorphisms

@iyt H'( X7, Qp(r)) ~ Q ® proj lim H' (X7, S, (r)).

The Rational Crystalline conjecture was proved by Faltings [6], Niziol [23], and
Tsuji [31].

Conjecture 2.10. (Semistable conjecture) Let X* be a proper, log-smooth, ver-
tical, fine and saturated V> -scheme with Cartier type reduction. There exists a

natural Be-linear Galois equivariant period isomorphism
a; : H'(Xg, Qp) @q, Bst = Hi (X /W (K)°) @wx) Bst

that preserves the Frobenius and the monodromy operators, and, after extension

to Bgg, induces an isomorphism of filtrations.

The Cartier type condition on the special fiber is equivalent to the special fiber
being reduced. It is used to assure that the Frobenius induces an isomorphism on
crystalline cohomology and that crystalline cohomology satisfies Poincaré duality.

For any r > 0 and a period isomorphism «; as above, define
i H' (X7, Qp(r)) @q, Bst — Hap(Xg /W (K)°) @wry Bt {—7}

as o, = t"ayC (=7). The map «;, is an isomorphism. It follows that we can
recover étale cohomology with the Galois action from the log-crystalline coho-

mology:
H* (X, Qp(r)) = (HL (X5 /W (k))@w () Bst) "~ NF (Bap®@k Hip( Xk / K)).

For » > ¢, by Lemma 2.5, the right hand side is canonically isomorphic to
Q ® projlim,, H Z'(Xé, S!(r)). Hence we can and will identify rational semistable
period morphisms for r > ¢ with isomorphisms

Qjp : HZ(va Qp(r)) ~Q® pI‘Oihm HZ(ng S;L(r))
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The Rational Semistable conjecture was first proved by Kato [18] and Tsuji [31]
for the schemes with semistable reduction, and later by Faltings [7] and Niziol
[25] in general. Here a flat scheme X over V' with smooth generic fiber is said
to have semistable reduction if it is regular and the special fiber is a divisor with

normal crossings.

The above formulation of the Semistable conjecture is due to Fontaine and
Jannsen. It was an observation of Faltings [7] that this conjecture can be refor-
mulated in the following way.

Conjecture 2.11. (Semistable conjecture) Let X* be a proper, log-smooth, ver-
tical, fine and saturated V*-scheme with Cartier type reduction. There exists a
natural Be,-linear Galois equivariant period isomorphism

Q; Hz(Xf’ Qp) ®Qp Bcr = H(llr(XX/R;') ®RV Bcr

that preserves the Frobenius and filtrations.

Here the group H!.(X*/R:) @g, B&[1/p] is defined by the map Ry — B,
X — [n], and the Galois action of o € G is defined as o +— exp(B(o)N) ® o
(check below for an explanation of that). We recover the étale cohomology by

taking Frobenius invariants
o+ H' (X, Qp) = FO(Her(X™ /RYY) ®py Ber)®™

Proposition 2.12. If period morphisms are compatible with Chern classes of
vector bundles, then the above version of the Semistable conjecture is equivalent

to the one of Fontaine-Jannsen.

Proof. To see that, recall that H (XX/R;. ) is an R{; -module equipped with
a quasi-nilpotent integrable connection, a descending filtration, and a horizontal

Frobenius. The connection satisfies Griffiths transversality. It follows [31, Prop.

1.6.15] that any two pullbacks of H..(X,X/Ry:,) to B\jtn
+

st,n

are canonically isomor-
phic. In particular, we have a Bt linear horizontal filtered compatible with

Frobenius isomorphism

(25)  w: HR(X3/RS,) ®pe Bl > HL(X/RY,) @ B

st,n?

(2.6) 2@ 1= Lizollo;<i(N — j)(@) (v, — DI = exp(N @ uyy),
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where the first pullback is via X +— [r] and the second via the canonical map
R‘X/yn — §:§n Similarly, for ¢ € Gk, we can compare the pullbacks to E;n
via X +— [r] and via X — o([r]) = [(o)[r] and get the Galois action on
HE (X /Ry,,) Dpx Estn as exp(log(B(c))N) ® o. The isomorphism w is then

Galois equivariant.

Taking now the subspaces of both sides in (2.5) where the monodromy acts
trivially and using the isomorphism

H(l:r(XX/R\?n) ®Rv,n Bct,n = (H(Z:r(X;L(/R?;,n) ®R‘>jn,7r B:E,n)NZO

(notice that the monodromy is trivial on the left hand side because dlog([r]) is

1B+’X®W (R)IX]* /BJ“X) we get a filtered, Galois equivariant, compatible

with Frobenius isomorphism

zero in Q

W Hér(XX/R;Zn> ®Rv,n B:'I_‘,n :> (Hér(X’I;( /R‘>;7n) ®R\>;n B+

N=0
st,n) .

We can use the last isomorphism to pass between Faltings and Fontaine-
Jannsen version of the Semistable conjecture. Consider the following commu-
tative diagram.

Hi (XS /W R)[1/p] — = (HL(Xo/W(K)®) ®wiy BN —2—Hi,(Xo/W (K)°) @w (x) BE[1/7]
1 | 1

Hi (X5 /W (R))[1/p] —(H (Xo/W (1)) ®w () B [1/p)N =0 H, (Xo /W (K)°) ®w (1) B&[1/7)
| i aF

(i (XZ/R)[1/p))N=" (HL(X*/RY) ®ny BLL/M)V=0 2 HL(X*/R}) ®r, BL[1/p)

Here, as above, we equip HE.(Xo/W (k)?)® BL[1/p] with the Galois action given
by exp(log(3(c))N) ® o for 0 € Gi. The BZ[1/p]-linear morphism

w : Hy(Xo/W(k)%) © BE(L/p) — (He(Xo/W (k)°) @ BN
is given by exp(N ® u[ﬂ). It commutes with Galois action and Frobenius.
Now, having the Faltings-type period isomorphism
o+ H' (X, Qp) ®q, Ber = Hi(X™ /Ry}) ®Ry Ber
we can compose it with the section s and the map w and get an isomorphism
a;:  H'(Xg, Qp) ®q, Ber ~ (Hi(Xo/W (k)°) @y Bst)V .
Tensoring with B then yields an isomorphism

& : H'(Xg, Qp) ®q, Bs ~ Hiy(Xo/W (k)°) @ (1) Bat
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It is compatible with Galois action, Frobenius (since the maps s and w are), and
monodromy. We claim that, extended to Bygr, it induces an isomorphism on
filtrations. Indeed, Faltings-type period isomorphism «; is strict for filtrations.
We first check that this implies that &; is compatible with filtrations. For that
recall that the map

H (Xo/W (k)°) @w k) Bst — Hyp(Xk/K) ® Bag
is induced by the composition
HE(Xo/W (k)°) @y Bs — Hix(Xo/W (k)°) @wry BE
= HL (XX /RY) @y BE[L/p] & HI(XZ/RY)[1/p]
— projlim Hi, (X /¥, 0/ J¥)[1/p] & Hip(Xk/K) @ By

S

Chasing the above diagram we conclude that the map
a; : H'(Xz, Qp) ®q, Bar ~ Hjp(Xx/K) @w ) Bar
is the composition of Faltings-type period map «; and the map
HL(X*/R}) ©ry BEL/p] % HL(X*/RY) ©ry BEIL/p] — HI(X2/RY)[L/p)
— proj lim, HL (X" /V, 0/ JEN[1/p] & Hip(Xk/K) ® B
Since all the maps in the above are compatible with filtrations our claim follows.

To check that the map @; is strict for filtrations it suffices now to check injec-
tivity on the associated gradings. By Poincaré duality in étale cohomology and
Serre duality this can be reduced (see the proof of Theorem 4.10.2 in [31]) to
checking that the map

gt g’ (H* (X%, Qp) ®q, Bar) — et’(Hik(Xk /K) @w () Bar),

where d denotes the dimension of X, is an isomorphism. By a standard argu-
ment (see [11, III 6.3], [31, Lemma 4.10.3]) blowing-up reduces this to check-
ing compatibility of &; with Chern classes of line bundles. By assumption,
Faltings-type period map is compatible with the crystalline classes ¢{"(£) €
FYHZ(X*/Ry) and the étale classes ¢§*(L) € H?!(X%,Q,) ® F1B, for line
bundles £ on X . Since ¢*(£) comes from HZ2(X/W(k)) it is invariant un-
der the monodromy hence invariant under the map w. Since ¢{*(£) maps to
AR(Lr) € HE(XX/VX)[1/p] ~ H3p(Xk/K), we are done.
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We have shown that Faltings version of the Semistable conjecture implies the
one of Fontaine-Jannsen (assuming compatibility of both period maps with Chern
classes of vector bundles). The above argument can be basically inverted giving
the claimed equivalence of both versions of the Semistable conjecture. It is inter-
esting to note that in passing between the two versions we ended up working with
the ring B} and Galois representations that are B [1/p, 1/t]-admissible. See [2]
for a discussion of that subject. In particular, the fact [2, Theorem 7.1] that the
category of g;g[l /p, 1/t]-admissible representations is equivalent to the category
of semistable representation, i.e., Bg-admissible representations. O

3. MOTIVIC PERIOD MORPHISMS AND UNIQUENESS CRITERIA

In this section, we will first review our p-adic comparison morphisms [23], [25].
Then we will state uniqueness criteria for p-adic period morphisms that follow
from our constructions. Assume first that X is a smooth scheme over W (k). The
p-adic comparison map in this situation is defined by the following diagram

FrFI Ky (X, Z/p") —— FIJFT T Ko (X7, Z/p")
(3.1) [ [t
H' (X7, Su(r)) H (X7, Z/p"(1)),
where j* is the restriction map. We have proved in [23, Lemma 3.1] that the map
K (X, Z/p") == Ko X5, Z/p")

is an isomorphism for all m. This is so because the kernel and cokernel of the
localization map j* is controlled by the K-groups of the special fibers and, since
we work with K-theory mod p”, those are killed by some ramified extensions of

Let d be the dimension of Xg. Assume that p — 2 > max{r,d + 2r — i}
and 2r — i > max{2d + 1,2}. Under these assumptions the étale Chern classes
cfi’twfi are isomorphisms. More precisely, we have the following proposition [25,
Proposition 3.2].

Proposition 3.1. There exists an integer T(d,r, j) depending only on d,r,j such

that, the kernel and cokernel of the Chern classes

¢ FyJETR (X, Z/p") — HY (X, 20" (1))
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are annihilated by T'(d,r,j). An odd prime p divides T(d,r,j) if and only if
p<d+j+1.

This proposition is a K-theory version of the following theorem of Suslin [29].

Theorem 3.2. For r > d, there is an isomorphism
(X, Z/p" (1) = HY (X, 2/p" (1)),

where H (X3, Z/p"(r)) are the Bloch higher Chow groups [1] appropriately rein-

Zar
dexed.

We know that the Bloch higher Chow groups H%ar(XF, Z/p™(r)) and the
graded pieces of K-theory FJ /F§+1Kj (X3, Z/p") are isomorphic modulo well-
controlled torsion. The integer T'(d,r,j) appearing in the above proposition is
basically the one controlling that torsion.

Our p-adic period morphism
apy s H' (X, Z/p"(r)) — H'(Xy7, Su(r))

is defined as the composition ozf?; : ci?;_i(j*)_l(cff%%)_l. It is clearly Galois

equivariant.

Theorem 3.3. (Niziol [23, Theorem 4.1]) For p—2 > max{r,d+2r—i,2r+i—d}
and min{2r —i,2r — 2d + i} > max{2d + 1,2}, the morphism

aly  H' (X, Z/p"(r)) = H' (X7, Su(r))

18 an isomorphism.

The following uniqueness criterium follows immediately.

Theorem 3.4. For p—2 > max{r,d+2r —i} and 2r —i > max{2d +1, 2}, there

exists a unique crystalline period morphism
aig : H'(Xg, Z/p"(r) — H'(Xy7, Su(r))

that makes the above diagram commute.

Proof. This is implied by the fact that under the stated assumptions the restric-
ét

1or—; are isomorphisms. O

tion map j* and the étale Chern classes ¢
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Remark 3.5. The constants appearing in the above theorems could be im-
proved if instead of Suslin’s theorem quoted above we could use the Beilinson-
Lichtenbaum conjecture

Conjecture 3.6. Forr > j, there is an isomorphism

Hj, (X, Z/p"(r)) = HI (X3, Z/p"(r)).

The Beilinson-Lichtenbaum conjecture follows from the Bloch-Kato conjecture
that is now proved by Voevodsky [33] for prime p = 2 (the Milnor conjecture).
Voevodsky has recently announced [34] a proof of the Bloch-Kato conjecture for
all primes p. The interested reader will find more information on the subject of
the Bloch-Kato conjecture and its relation to p-adic periods in [26].

Let now X be a smooth scheme over V. Consider the following diagram

(3.2)
Q ® projlim,, Ff;/F;"‘*‘lKgr_i(Xv, Z/p™) J—*> Q ® projlim,, F,;/F§+1K2T_i(Xf7 Z/p™)

Q ® projlim,, H(X+, S/, (r)) Q ® projlim,, H (X%, Z/p"(r)).
As above the restriction map j* is an isomorphism. Let d be the dimension of
Xk. Let 2r —i > max{2d+ 1,2} and 2r —i > 3 for p = 2, d = 0. It follows from
Proposition 3.1 that the étale Chern classes cf,erfi are isomorphisms rationally.
Set H' (X, S’Qp (r)) :== Q®projlim, H' (X, S,(r)). We define the p-adic period
morphism

ofyt H'(Xg, Qp(r)) — H'(Xy, g, ()

7,7
as the composition aﬁq : ciy;;ﬂ( j*)*l(cff%_i)*l. It is clearly Galois equivariant.
Theorem 3.7. (Niziol [23, Theorem 5.1]) Let 2r — i > max{2d + 1,2} and
2r —i >3 forp=2,d=0. The p-adic period morphism

aN H'(X%,Qp(r)) ® Bee = H'(Xo/W (k)) ® Ber{—7}

@7

is an isomorphism. It is compatible with Frobenius, Galois action and, after

extension to Bgg, induces an isomorphism on filtrations.

Again a uniqueness criterium follows immediately.
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Theorem 3.8. Let 2r — i > max{2d + 1,2} and 2r —i > 3 for p =2, d = 0.
There exists a unique crystalline period morphism

iy H' (X, Qp(r)) — H'(Xy, Sg, (1))

that makes the above diagram commute.

Proof. Use the fact that the restriction map j* and the étale Chern classes cﬁtgr_i

are isomorphisms. O

Let now X * be a saturated, log-smooth, vertical log-scheme over V' *. Consider
the following diagram

Q Y pI‘Oj hmn F;:/F';)—FlKQr—i(X%a Z/pn) —— Q ® prOj hmn F;/F’:+1K2T—i(Xf7 Z/pn)

syn ét
lcr,zr—i iCT,2T7’i

Q ® projlim,, H'(X7, ;,(r)) Q ® projlim,, H' (X, Z/p" (r))-

Here we wrote K*(Xé, Z/p™) for the direct limit
R, 2/ = il (4,2
over log-blow-ups Y* — X[ of the base changes Xy, of X* to a finite ex-
tension Vi of V. The fact that these log-blow-ups form a cofiltered system fol-
lows from [24]. We also show in that paper that (classically) regular log-blow-
ups are cofinal. Hence ~-filtration is well-defined. The syntomic Chern classes
Cor_i t Kor1 (X3, Z/p") — Hi(Xé, S!(r)) are defined as the following compo-
sition
syn

Ko (X2, Z/p") = injlim Ko, o(Y,Z/p") 25" injlim H'(Y, S, (r))

YX—>X‘>;1 YX—>X51
— injlim HY(Y*, S/ (r)) & igj lingi(Xél,S;L(r)) = Hi(Xé,sz(r)),
1—

Y x —>X'é1

where the last isomorphism follows from [25, Proposition 2.3] (log-blow-ups do
not change syntomic cohomology).

Set Hi(Xé, Sq,(r)) == Q® projlim, Hi(Xé, S/.(r)). Let d denote the dimen-
sion of Xg. Let 2r —i > max{2d+ 1,2} and 2r —¢ > 3 for p =2, d = 0. Just as
above the étale Chern classes are isomorphisms. It turns out that the restriction
map j* is an isomorphism as well (although only for high enough 2r — ). Let K3
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denote a finite extension of K and let Vi be its ring of integers. In [25, Lemma

3.5] we have proved the following lemma.

Lemma 3.9. Let Y be a reqular flat scheme over Vi and let j : Y, — Y be the

open immersion. Then the restriction map
5K (Y. Z/p") = K(Yi Z/p"), §>d+1,
18 an isomorphism and the induced map
§* LK (Y, Z)p") — B ET K (Y Z/pY),  j>d+ 1
has kernel and cokernel annihilated by integers depending only on the dimension

of Yr,, i, and j.

Via the localization sequence in K’-theory, this lemma, follows from the follow-
ing vanishing result of Geisser-Levine [12].

Theorem 3.10. Let Y be a nonsingular scheme of dimension d over a perfect
field of positive characteristic. Then K;(Y,Z/p") =0 for j > d.

Since regular schemes are cofinal in the limit defining KQr_i(Xé, Z/p"™), the

above lemma implies that the restriction map

Q@projlim FJ / Fy ™ Ko, (XX, Z/p") & Q@projlim Fy / F Koy i( Xg, Z/p")
n n

is an isomorphism, as wanted.

A uniqueness criterium follows.

Theorem 3.11. Let 2r —i > max{2d + 1,2} and 2r —i > 3 forp =2, d = 0.
There exists a unique semistable period morphism
i H' (X, Qp(r)) — H'(Xy, Sq, (1))

that makes the above diagram commute.

Proof. Use the fact that the étale Chern classes cﬁf%,_i are isomorphisms rationally

and that the restriction map j* is an isomorphism. ([

We define the period morphism
afy - H'(Xg, Qpr)) — H'(Xy7, 5, (1)

N . Ssyn (j*)—l(cét )—1

as the composition iyt Crlopy i
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Theorem 3.12. (Niziol [25, Theorem 3.9]) Let 2r — i > max{2d + 1,2} and
2r —i >3 forp=2,d=0. The induced Bg-linear period morphism

a%n : Hi(X?, Qp(r)) ® Bst — Hi(XO/W(k)) ® Bs{—r}

18 an isomorphism. It is compatible with Frobenius, monodromy, Galois action,
and filtration after passing to Byg.

4. SYNTOMIC PERIOD MORPHISMS

For a scheme X on the small syntomic site of Spec(W (k)), define

O (X) = HY (X /Wa(k), Ox, jwatiy)s TE(X) = HY (X Wa(R), T 1)

where Ox, w, k) is the structure sheaf of the crystalline site, Jx, /w,x) =
Ker(Ox, jw, k) — Ox,), and j)[gi/Wn(k) is its 7’th divided power of Jx, /w, (k)-

Set j)[(ri/wn(k) = Ox, /wn (k) if 7 < 0. We know [11, I1.1.3] that the presheaves \77@

are sheaves, flat over Z/p", and that \77&711 QZ/p" ~ T[LT]. There is a canonical,
compatible with Frobenius, and functorial isomorphism

* I\ ~ IT* [r]
Hsyn(XJ jT[L ]) - HCI‘(Xn/Wn(k)7 an/Wn(k))

It is easy to see that ¢( T[Lr]) Cp"O;f for 0 <r <p—1. This fails in general and
we modify j,w:

T = {w € Ty, | élx) € p O} /",

for some s > r. This definition is independent of s. We check that J,="> is
flat over Z/p™ and J/7 @ Z/p™ ~ J,="~. This allows us to define the divided

n
Frobenius ¢, =7¢/p"” : T — OF. Set Sy (r) := Ker(J,~" o) O¢r). In the
same way we can define syntomic sheaves S, (r) on X, gyn for m > n. Abusing

notation, we have S,(r) = .S, (r) for the natural map i : X, gn — Xeyn.
Since i is exact, Hg,(Xm,Sn(r)) = Hiy,(X,Sn(r)). Because of that we will

write Sp,(r) for the syntomic sheaves on Xon,syn as well as on Xqy,. We will also
need the ”‘undivided”’ version of syntomic sheaves: S/ (r) := Ker(J,W A ogr).
There is a natural map S, (r) — S,(r) whose kernel and cokernel are killed by
p". If it does not cause confusion, we will also write S, (r), S/, (r) for Re.S,(r),
Re,S],(r), respectively, where € : X, ¢yn — X, ¢ is the canonical projection. We
have natural quasi-isomorphisms Rm.S,(r) ~ S, (r), Rm.S,,(r) ~ S/ (r), where
7 Xg — Xgzar is the canonical projection.
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Proposition 4.1. ([11, II1.1.1]) The following sequence is exact for r >0

0 —— Sulr) —— J=r> 278 oo L,

Let X be a smooth scheme over V. For 0 < r < p — 2, there is a natural
homomorphism on the étale site of X,

o, : Re Sp(r) — 1<, i" RjZ/p" (1),

for the natural maps ¢ : X1 — X,j: Xg — X. We will explain how this map
is defined (see [11], [19] for details). We say that a morphism Z — ) of p-adic
formal schemes over Spf(W(k)) is syntomic if every Z,, — Y,, is syntomic. For
a formal scheme Z the syntomic-étale site Zy; is defined by taking as objects
morphisms ) — Z that are syntomic, quasi-finite and have étale generic fiber
in the sense of rigid geometry. For a scheme Z, we also have the syntomic-étale
site Zg¢. Here the objects are morphisms U — Z that are syntomic, quasi-finite,
and with Uy étale over Zi. Let X be the p-adic completion of X. We have the
following commutative diagram of topoi

v isét jsét
Xt — Xggo ———— Xkt

L

)?ét e, Xet L XK,ét
Abusively, let S,(r) denote also the direct image of S,,(r) under the canonical
morhpism i : X, gyn — Asét. Since i is exact [11, 111.4.1], we have RE.S,(r) =
Re, Sy (r). By [11, IIL.5], there is a canonical homomorphism

a: Sp(r) — g dset«L/p" (1)

Let us recall its definition. Let Spf(B) be syntomic-étale, quasi-finite over X.
Then [11, 4.3] B is a completion of an algebra B that is syntomic-étale, quasi-finite
over X. The inverse image functor i3, F is defined by sheafifying the presheaf
B+ F(B"), where B" is the henselization of B with respect to p. It follows that
to define the map « it suffices to construct functorial maps

ag : Su(r)(B) — Z/p"(r)(B"[1/p]).

We may assume that B is a domain (cf., [11, 5.1]) and that Spec(B/pB) is
connected. Then the fundamental exact sequence (2.2) yields an exact sequence
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of continuous Gal(B"/B")-modules

0— Z/p"(r)(B") — F'B: (BN %" BX (B) — 0.

cr,n cr,n

—

Let B denote the image of the map  : Bt (B") — Bh. We have a natural
isomorphism
HE(B /Wak), i) = FBE . (B).

cr,n

There is also a morphism B — th [31, Lemma 1.4.1], hence a natural map
HE, (B /W), i) — HE(BY /W (k), I5).

Composing these two morphisms we get a map HO.(B,, /W, (k), 7[;]) — FTBjr,n(ﬁ),
that is clearly compatible with Frobenius. This map yields our morphism ag via

maping
S (r)(B) = Ker(HY(Bu/Walk), JIN) " =251 HY(Bo /Wi (k)

into HO(Gal(B"/B"),Z/p"(r)(B")) = Z/p"(r)(B"[1/p]) using the fundamental
exact sequence above.

Having defined the map «, we can apply R, to the induced map S,(r) —
Z:étstét *Z/pn(r) and get

Re, S, (r) =Re S (r) — Revilg Rjsct « L) p" (1) =ik ReuRjset « L) p"(r) = 1" Rj.L [ p"(T).

The second equality was proved in [19, 2.5]. Since R%,S,(r) = 0 for ¢ > r, the
map «, factors through 7<,i*Rj.Z/p"(r). One checks that «, is compatible with
products.

Theorem 4.2. (16, 1.4.3], [21]) Taking the limit over finite extensions of V in
V, the period map o, induces a quasi-isomorphism

0+ Sulr)xy, = 7T RLZ/0" (1),
where i : Xy = Xy J: X — X537 are the canonical maps.
For X smooth and proper over V and r > 4, the integral crystalline period

map is defined as

K

off s H (X, Su(r)) —— H'(Xg, Z/p"(r)).

It is an isomorphism
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Similarly, for any r > 0, we get a natural map
ar : Sp(r) — T<, 1" RjZ/p" (),

where Z/p"(r) = (p®a!)~'Z/p™(r) for r = (p — 1)a + b,a,b € Z,0 < b < p—1
[11, IIL5]. Composing with the map S}, (r) — S, (r) we get a natural, compatible
with products, morphism

ar: S)(r) — 1<, 1" Rj.Z/p"(r).

Theorem 4.3. ([31, 3.3.4]) For any 0 < i < r, the kernel and cokernel of the

period map
ar : Hi(S)(r)x, ) — @ RGZ/p"(r),

is annihilated by p~ for an integer N which depends only on p, r, and i.

For X smooth and proper over V and r > 4, the rational crystalline period

map is defined as
O[;'Z:r : HZ(XV7 S(,QP(T)) L’ H’L(va Qp(r)) p—> Hz(Xfa QP(T))a
where H'( X, Sép (r)) = Qp®projlim, H' (X5, S),(r)). It yields an isomorphism

0%1:7‘ : HZ(X77 Sép (T)) = HZ(Xﬁv Qp(r))

The above definitions extend to log-schemes [4], [30]. We have sheaves O,

,W, r > 0, on the small log-syntomic site of Spec(W (k)) defined by

O5F (X7) = HO(X /W), Oy, o) TE X ) = HAC Wak), Tk ),

and a functorial isomorphisms

« [\ ~ 7% [r]
Hsyn(XXHjn ) - Hcr(X;;/WTL(k)? jX;f/Wn(k))

We get the induced sheaves .7,?], the log-syntomic complexes
- <r> ¢r—1 er / L [r] 2=P er
Sp(r) :=Ker(J>"~ — O, S, (r) :=Ker(J\" — O5F),
and, for r > 0, the exact sequence [3, 3.1.4]

0 —— Su(r) — J&> 2L oz —— 0.
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Let X be a log-smooth vertical scheme over V' *. Then the above construction
of the period morphism carries over almost verbatim to yield natural morphisms
on the étale site of X* [30]

ay : Sp(r) = 1<, i"RjZ/p"(r), 0<r<p-—2
ar : S(r) = 1<, i*Rj.Z/p"(r), r>0.

We have the following comparison theorem proved by Tsuji [32, Theorem 5.1],
[31, 3.3.4]. Notice that here we work on X * not on X% as we did in the crystalline

case.

Theorem 4.4. (1) Let X* be a fine and saturated, vertical, log-smooth scheme
over V*. Then for 0 < r < p— 2, the period map o, induces a quasi-

isomorphism
oyt Sp(r) yx = TST’L.*Rj*Z/pn(’I’)X;;.

(2) Let X* be vertical semistable over V* or a finite base change of such,
then for any 0 < i < r, the kernel and cokernel of the period map

ap Hi(S;L(’r’)XS) — i*R'j.Z/p"(r)"

X5
is annihilated by p~ for an integer N which depends only on p, r, and i.

For X * fine and saturated, vertical, log-smooth and proper over V> and r > 1,

the rational semistable period map is defined as
O[;'J:r : HZ(anlep(’r)) L) HZ(X;;’ QP(T)) p—> HZ(X[>é7 Qp(r))v

where Hi(XX,S(’Qp(r)) = Qp ® projlim, H(X*,8/(r)). For X* vertical and
semistable it yields an isomorphism

af,  H'(XX, Sg, () = H' (X, Qp(r)).

Lemma 4.5. Let X* over V> be a fine and saturated, vertical log-smooth scheme.
Then, for r > i, we have an isomorphism

aiy  HY(X3, S, (1) = HY (X, Qp(r)).

Proof. By [27, Theorem 2.9] there exists a ramified extension V; of V such that
the base change X‘jx has a semistable model. That is, there exists a log-blow-up
1
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T:Y* — X;X such that Y* is a semistable scheme (with no multiplicities in
1
the special fiber). We have the following commutative diagram

T

HI(Y, 84, (1) —= H'(Xg, Q1)

il 1

HY(XZ,8p, (1) —" H'(Xz.Qur)).

Since log-blow-ups do not change the syntomic cohomology [25, Proposition 2.3]
and the top horizontal map is an isomorphism, our lemma follows. O

Corollary 4.6. Let X* be a proper, log-smooth, vertical, fine and saturated V> -
scheme with Cartier type reduction. The natural Bg-linear Galois equivariant

period morphism
iy H' (X7, Qp(r)) @q, Bst — Hao(Xg /W (K)°) @wry Bt {—7}
is an isomorphism. It preserves the Frobenius and the monodromy operators,

and, after extension to Bygr, induces an isomorphism of filtrations.

Proof. Having the above lemma, the standard proof ([31, Theorem 4.10.2]) goes
through. O

4.1. Compatibility with higher Chern classes.

Theorem 4.7. Let X be smooth and proper over V.= W (k) and let0 < r < p—2.
For 2r > i+ 2 we have the following commutative diagram

Ko (X, Z/p") —L— Kow i(Xk, Z/p")
[ [
. o .
HY(X,Sn(r)) —— H'(Xk,Z/p"(r)).
Similarly for integral K-theory and 2r > i .

Proof. First, we need a definition of Chern classes
cij + Ki(X, Z/p") — H* (X, ixi* R Z/p" (i),
cij i Kj(X) — H* (X, i.* Rj.Z/p" ().
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Set ¢ : Z/p" — 11" Rj.Z/p"™ equal to the map induces from the localization map
Z/p" — jZ/p"™. Set c1 : O%[—1] — i,i*Rj,Z/p"(1) equal to the composition

Ox[-1] — i*i*Rj*OBK(K [—1] — ii"RjZ/p"(1)

where the last map is induced from the class ¢; : O% [-1] — Z/p"(1) given by
Kummer theory.

Proposition 4.8. Let m > 0, £ = ¢1(0(1)) € H*(PR,i.i*Rj.Z/p"(1)). Let 7x
be the projection P'¢ — X, then the natural map

m
@il Uy« @ ini* RiZ/p" (r — i) x,c[—2i] — Ruxini*Rj.Z /" (r)py
=0

is a quasi-isomorphism for all r.

Proof. Notice that by construction £ is the image of the étale class & = ¢1(O(1)) €
H2(P§K, Z/p"(1)) under the natural map HQ(P}”‘K, Z/p"(1)) — H?(P,i.i* Rj.
Z/p™(1)). Since mxisx = t4x7x,« and Ry, «i* ~ i* Rwx, (proper base change the-

orem), we easily reduce to the statement that for every [, the morphism

m
@8 Uy - @ H (X ke, Z/p" (r — i) — H' (PR, Z/p"(r))
i=0
is an isomorphism. But this is just the projective space theorem in étale coho-
mology. O

Like in [13, 2.2] we can now construct universal classes C; € H*(B.GL/V,
ixi*Rj.Z/p™(i)) that are compatible with the étale universal classes CSt € H?
(B.GL/K,Z/p™(i)). We claim that they are also compatible with the syntomic
universal classes C;*" € H*(B.GL/V, Sy(i)), for i < p — 2 (via the map a,).
Indeed, the classes C;*" € H*(B.GL/V,S,(i)), for i < p — 2, are pullbacks of
classes Cjy) € H*(B.G Ly [V, Sn(i)), for i < m < p—2, and those can be defined
using the projective space theorem in syntomic cohomology quoted below and
Chern classes

M Z Pt — S, (0) = (09)P= S 0% 1] — ix0%, ., [=1] = 1.5 (1).

Here, ¢’ is the canonical map and ¢i*" is the symbol map defined in [16, 1.3].
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Proposition 4.9. ([14, 14.3]) Let p—1 > r > m > 0, &y = c1(0(1)) €
H%*(PR,S,(1)). Let mx be the projection P — X, then we have a quasi-
1somorphism

m
@z{;yn U ﬂ—}k( : @SR(T - Z)X[_zl] - RFX*S’VZ(T)P?'
i=0
Since the morphism «, is compatible with products and Chern classes cg,
c1 (see [31, 3.2.4]), comparing the two projective space theorems yields that
ozT(C’Z-S%I) = Cjm, for i <m < p—2. By construction of higher Chern classes this
suffices to prove our theorem. O
Theorem 4.10. Let X be smooth and proper over V.. For 2r > i+ 2, we have
the following commutative diagram

Kor (X, Z/p") —L— Ko i(Xk,Z/p")

syn T 6t
J{cr,Qrfi J/p Cr,2r77,'

r .
HI(X,8,(r) — H'(Xx,Z/p"(r)).
Similarly for integral K-theory and 2r > 1. Here the étale Chern classes are

defined as the composition
& C':é”t r—i ; :
Gopit Kormi(Xi, Z/p") 5" HY(X g, Z/p"(r) — H'(Xk, Z/p"(r)),

where the last map is induced by the map 1 — p®al, forr =a(p—1)+b,0<b<
p—1.

Proof. By Lemma 2.7, it is enough to show that the following diagram commutes

Ko i(X,Z/p") —1— Ko i(XK,Z/p")

r2r—1 r,2r—1
H'(X,8n(r)) —— H'(Xk,Z/p"(r)).

Note that here ¢ can be arbitrarily large. We have the following special case of
the projective space theorem.

Proposition 4.11. Let m > 0, X = B.GLy,41 /W (k). Take &yn = ¢"(O(1)) €
H%*(PR,S,(1)). Let mx be the projection P} — X, then the natural map

©iblyn Uk 1 D HT(X, Su(r — ) — H' (PR, Su(r))
1=0
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18 an tsomorphism for all v > m.

Proof. This follows immediately from the projective space theorems in the de
Rham cohomology:

@iap Uk @D F T H (X /Wa(k)) = F"Hyp(PR, /W (K)),
=0

@ikar Uk @ Hyg" (Xn/Wa(k)) = Hyp (PR, /Wa(k)).
=0

Having that, the proof of Theorem 4.7 goes through. g

The following corollary follows immediately.

Corollary 4.12. Let X be smooth and proper over V. For 2r > i+ 2 we have

the following commutative diagram

Q, ® projlim,, Ko, _;(X,Z/p") A Q) ® projlim,, Ko,_;(X,Z/p")

lciy;ﬂ J{ cf«erfi
H'(X, Sg, (1) AN HI(X, Qy(r)).
Similarly for integral K -theory and 2r > 1.

Theorem 4.13. Let X* be fine and saturated, log-smooth, vertical and proper
over V. For 2r > i+ 2 we have the following commutative diagram

Kop i(X,Z/p") —— Ko (X, Z/p")

syn ét
J/CT,QT—Z' lcr,Qr—i

HI(XX,S(r)) —s HI(Xg,Z/p"(r)').

7

Similarly for integral K-theory and 2r > i. Here the Chern class ¢, _; is the

syn

composition of the classical syntomic Chern class Kor—i(X,Z/p") “r2ri pi X, Sn(r))
with the natural map H (X, S,(r)) — H (X*,S,(r)).
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Proof. Arguing as in the proof of Theorem 4.7, we get Chern classes into the
étale cohomology of i,i*Rj.Z/p" (i) compatible with the étale Chern classes on
the generic fiber X . It suffices now to show that the map

LiSn(r)x — Su(r)xx —5 ixi* RiLZ/p™ (1) x

Q.

is compatible with Chern classes from K,(X,Z/p"). Using Proposition 4.11
(projective space theorem for the classifying space B.GL,,/W(k)), we reduce
to showing that the classical syntomic Chern classes ¢y, ¢’ commute with
Chern classes ¢y, ¢; (notation as in the proof of Theorem 4.7) via the morphism

a).. But this was checked by Tsuji in [31, 3.2.4]. O

Corollary 4.14. Let X* be fine and saturated, log-smooth, vertical and proper
over V. For 2r > i+ 2 we have the following commutative diagram

Q, ® proj lim, Ko,_i(X2, Z/p") " Q, ® projlim, Kor_i( Xz, Z/p")

lcisznrﬂ' lcgfzrﬂ'
H' (X, S, (1) A HY (X7, Qu(r)).

Similarly for integral K -theory and 2r > 1.

Proof. Let Y be a log-smooth, vertical, proper scheme over a finite extension
V1 of V with fraction field K. Then, by the above theorem and Lemma 2.7, we

get a commutative diagram

KQT—i(Ya Z/p") - K2r—i(YK17Z/pn)

Syn r .ét
lcr,QTfi J{p C'r,QT'fi

T

Hi(YX, Sh(r) —s Hi(Yi,, Z/p"(r)).

Our corollary follows. O

5. FALTINGS PERIOD MORPHISMS

Faltings construction of the period morphisms uses an auxiliary topos, topos
of “ sheaves of local systems” [6, III], [7, 3]. We will now describe it. For a
scheme X, let Xpg denote the topos defined by the site of finite étale morphisms
U — X with coverings given by surjective maps. For a connected X and a choice
of a geometric point T — X, Xpg is equivalent to the topos of sets Fz with
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a continuous action of the fundamental group 71(X,Z). In particular, for an
abelian sheaf F', the étale cohomology H*(Xpgt, F') is isomorphic to the group
cohomology H*(m(X,T), Fz). Let X be noetherian. Then Xpg; is equivalent to
the topos of étale sheaves that are inductive limits of locally constant sheaves.

There is a map of topoi
T Xy — Xpet

with 7, F given by the restriction of F to finite étale schemes over X and 7*(L) =
L for an ind-locally constant sheaf L. Recall the following notion.

Definition 5.1. A noetherian scheme X is a K (7, 1)-space if for every integer
n invertible on X and any locally constant sheaf L of Z/n-modules, the natural
map L — Rm,m*(L) is an isomorphism.

Faltings [5, 2.1] proves the following generalization of a classical result on the
existence of a base for the Zariski topology consisting of K (7, 1)-spaces.

Theorem 5.2. Let X be a smooth V -scheme. Then any point x € X is contained
in an open U C X such that U xy K is a K(m,1)-space.

It follows that for X/V smooth, every point has a Zariski neighbourhood such
that Uk is a K (m, 1)-space.

Let X be a noetherian V-scheme. Let )Z'ét be the following category. An object
of X is a collection L = ((Ly ), (ru,u,)) of ind-locally constant étale sheaves Ly
on Uy, for every étale open U of X and, for every pair Uy — U, a morphism
royu, ¢ Lu, |(U2)k — Ly, such that ry,u,mv,v, = ru,us and rgp = Id. One
also requires that for every tranquated étale hypercovering Uy — Uy — U, Ly
is the maximal ind-locally constant subsheaf of Ker(jo«Ly, — ji«Ly,), where
ji » (Uj))k — Ug. Morphism f : L — M in X is a collection of morphisms
of ind-locally constant sheaves fy : Ly — My compatible with the restrictions

TULUs -

The category )?ét is a topos. We will sometimes denote by )?ét the equivalent
topos, where all the U’s are assumed to be affine. The underlying site of )Z'ét has
for objects pairs (U,U’), where U is an étale X-scheme and U’ — Uk is a finite
étale morphism; morphisms are compatible pairs of maps and coverings are pairs
of surjective maps.
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There is a canonical map
p: XK,ét - )N(ét

from the étale topos of X to Xvét. First, one equippes every étale and irreducible
U — X with a geometric generic point, and every map U; — Uy between two
such étales with a path between the chosen points. Then the inverse image of
L by p is the direct limit over all tranquated hypercoverings Uy — Uy — Xg
of Ker(jo«Ly, — jis«Lu,); the direct image of F associates to U the ind-locally
constant subsheaf corresponding to the global sections of F on the universal
covering of Ug. On the level of sites, this map is given by sending (U,U’) to
U’ — Xg. There is also a canonical map from Xét to the étale topos of X

wi)?ét — Xgt

defined by the map of sites sending U — X to (U, Ug). The pushforward v, (L)
is the sheaf U — Ly (Uk). Finally, we have a projection

T )N(ét - XK,Fét
induced by the map of sites sending U — X to (X,U). The inverse image 7*L

associates to j : U — X, the local system jj L; the direct image 7. L is equal to
Lx.

The above has a geometric version: topos )Zf « defined by pairs (U,U’) such
that U is étale over X and U’ is finite étale over X4, and the canonical maps of

topoi:
p: Xf,ét - XKét’ Y XKét — Adt, T XKét — AEK Fét

Let X be a smooth scheme over V. One checks [6, III] that, for an locally
constant sheaf L on X, there is an isomorphism

H*(Xeq, pul) ~ H*(Xx, L).
Indeed, it suffices to show that R¥p,L = 0 for k > 0. But (R¥p,L)y = Rkﬂ'*LUK,

where 7 : Ui ¢ — Ug et Hence it is trivial in the case U is a K (m,1)-space.
Since such U’s form a base for the topology of X, we are done. It follows that
for an locally constant sheaf L on X+, there is an isomorphism

H* (X7 400 psL) = H* (X7, L).

Define sheaves O and B, on the topos Xét by associating to étale maps

cr,n

Spec(R) — X, the locally constant sheaves on Spec(Ry) defined by the Galois
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modules R and BT

cr,n

ping to R,, via the map 0 : B

(R). Denote by Bd the subsheaf of B

cr,n
+

cr,n

of sections map-
(R) — R,. The last map is a surjection for R
small, i.e., admitting an étale map from V[Tli, . ,Tl;t] (since Frobenius is sur-
jective on R/p), hence, locally on Xet, B$;2 is a PD-thickening of R,, over W, (k).
There is a cohomological, base-point free definition of these sheaves [20, 2.3]. For
an element (U = Spec(H),U’) of the site of Xg, denote by H’ the normalization
of H in U’. The sheaf O is defined be sending (U,U’) to H'. The sheaf B, is
associated to the presheaf sending (U, U’) to the degree zero crystalline cohomol-
ogy of H] over Wy (k) and B;};g is the subsheaf of Bf, ,, built from sections that

map to H, via the map B — O,.

cr,n

For r > 0, there is a natural morphism

) — H (X, F"BL).

cr,n

Bi,r : H(l;r(Xn/Wn(k)’ JKL/Wn(k’)

In fact, for any abelian sheaf F on the crystalline site of X,, over W, (k), we
have a map Ru,F — Ri/@f(BQ%). Here, ]-'(B$j%) is a sheaf on )~(ét defined
in the following way. For (U,U’) such that Bé;;% is a PD-thickening of H,, set
F(BEWU,U") == F(BEY(U,U")). To define the last map, simply note that
we have a natural map on global sections u,F — . F (Bctjg) and the functor

F — w*}"(Bctjg) is left exact. Taking F = J;L/Wn(ky we get the map (;, from

) — R, F"B&Y — Rip, F*BY . Similarly we get

the composition Ru..J I e

X /W (k
a map

The fundamental exact sequence (2.1) yields a short exact sequence of sheaves
on j\(/ét

0— (Z/p"t'), — FrBL, "5 B, —0.

cr,n cr,n

Here, for a sheaf L on jzét, L, stands for its restriction to the special fiber, i.e.,
to the complement of the generic fiber (the site consisting of objects with trivial
special fiber). For X proper and L torsion, proper base change theorem yields
that the cohomologies of L and L coincide.

For X proper and r» < p — 2, we get the long exact sequence

(5.1)

% n i r br—1 70 i n
—H (Xf,éﬁz/p (T))HH (X?étaF Bct,n) — H (Xf7ét7Bc+1r,n)4)H+1(Xf7étvz/p (7’))—>
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The map H'(Xg 4, Z/p"(r) — H'(Xg ¢« F"Bd ) is injective. This follows

[22, Lemma 8.1] from a key theorem of Faltings [6, Th. 3.3] stating that the

morphism

H (X7 4, Z/p") ® F'BY — H!(X% ., F" B,

cr,n

is an almost isomorphism, i.e., its kernel and cokernel are killed by a power of mp,
where mp is the preimage of the maximal ideal of V" via the map B — v

It follows that the map f3;, induces a morphism

Biy: FT(HL( X,/ Wo(k)) ® BE

cr,n

)=t — H' (X5 4, Z2/p" (7).

Composing it with the isomorphism p* : HZ()Zf ¢ Z/p" (1)) = H' (X7, Z/p"(r))
we get Faltings period morphism

ol o Fr(HL(X,/Wa(k)) © B

cry,n

)Pt = H (X, Z/p"(r)).

Theorem 5.3. (Faltings [6, Thm. 5.3]) Let X be smooth and proper over V', of
F

pure relative dimension d. If r +d < p — 2 then the period morphism «;,. is an

isomorphism.

Let now X* be log-smooth over V*. As before we have sheaves O, BL

cr,n>
and B$:2 on X .. The sheaf Bf .,
Bt

cr,n’

Bé;;% is a PD-thickening of O, (over Ry, ). Because of singularities it is more

is equipped with the log-structure (N —
1 — [n]). Since Frobenius is locally surjective on R/pR [7, Lemma 3.5]

difficult here to relate the cohomology of )N(? to the étale cohomology of X4.
In particular local K (m,1)-type arguments as above do not work and one has
to argue globally using Poincaré duality and compatibility with cycle classes.
Faltings proves the following

Theorem 5.4. Let X* be a saturated, log-smooth, vertical, and proper log-

scheme over V*. Then

(1) we have an isomorphism [7, Theorem 4.9]

p* s H' (X 4, Z/p"(r)) = H' (X5, Z/p"(r));

(2) we have an almost isomorphism [7, Cor. 3.1]

vt H' (X5 o, Z/p") @ B, = H' (X o B )

cr,n K,ét» —cr,n
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For r» > 0, there is a natural morphism

ﬂi,r (X /Rvnv )[(] /R )_) Hi(jzf,ét?FTB;n)

constructed just as above in the good reduction case. More generally, we can
construct a morphism

B : Rl (X, /Ry, OXQ/R%) — RI(Xg et B

Theorem 5.5. (Faltings [7, Cor. 5.4]) Let X* be a saturated, log-smooth, ver-
tical, and proper log-scheme over V= of relative dimension d. The almost mor-
phism

@ RFCT(X /R\/n’ XX /R\X/n)®év B;n_)RF(XfaZ/p) LBg;na azp*v_lﬂ»

has an inverse up to t® (that is, composition either way is the multiplication by

t¢ ). It is Galois equivariant, compatible with Frobenius and filtration.

Passing to the limit over n and tensoring with Q in the above yields an almost

morphism
(67 chr(X /RV7 XX/RX) ®RV (;[1/17] - RF(XFa Zp) ®L B;[l/p]
Taking cohomology we get Faltings period isomorphism
ofy t Hy(X* /R, Oxx ) @ry i) Ber = H' (X, Qp) ® Bar.

By looking at Frobenius invariants one can check (see [20, 2.6]) that the almost

morphism af -

is in fact an actual morphism.
5.1. Compatibility with higher Chern classes. Let us look at the integral
case first. Let X be a smooth and proper scheme over W (k) and 0 < r < p — 2.
To understand the induced isomorphism between syntomic and étale cohomology
notice that we have a commutative diagram

Fr(H (X0 /Wa(k)) ® BE,) ——  Hi(Xg 4, F"B

l? la.is.
) T 517“ 4 oy I
Hi (X /Wa(k), I 1) = HI(Xp) 400 F B:;n>

Here we wrote H'((Xv)% o FTBE

cr,n

o)

where V' is a finite extension of V. The map on the right is an almost isomorphlsm
because both terms are almost isomorphic to H'(X#, Z/p™) @ F"BZ. Using the
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long exact sequences (5.1), (2.1), and the above diagram we see that Faltings
period isomorphism induces an isomorphism
ajp o H'(Xg, Su(r)) = H' (X5, Z/p"(r))
as the composition
1 Bi,r ' iy
afy t H (X, Su(r)) =5 H' (X )iz g0 Z/" (1))
S H (X)) a0 2/0"(r)) = H' (X, Z/p" ().

Notice that this map is already defined over any finite extension of V.

Theorem 5.6. Let X be a smooth and proper scheme over a finite extension V
of W(k). For 2r > i+ 2 we have the following commutative diagram

K2r—i(X7 Z/pn) ]—> K27’—i(XK7 Z/pn)

syn ét
lcr,Q'rfi lcr,QTfi
F

HI(X,S0(r)) — H(Xg, Z/p"(r).

Similarly for integral K-theory and 2r > 1.

Proof. Here the period map af , is defined as the composition
i Biyr yri 3 n N~y n ~ oy n
afr cH (X7 Sn(r)) - H (X?éta Z/p (T)S) —H (Xf,étvz/p (T)) —H (X?,Z/p (T))
First, we need a definition of Chern classes
cij Kj(X, Z/p") — H* I (Xe, Z/p" (i),
cij Ki(X) — H¥9(Xg, Z/p"(i)).

For that set cg : Z/p™ — R Z/p™ equal to the canonical map. Set ¢ : O%[—1] —
R Z/p"(1) equal to the composition

O%[~1] = Ryt OX[=1] — RO [-1] — R.Z/p" (1),
where the last map is induced by the Kummer exact sequence
0—Z/p"(1) - O Lo o0

These maps are clearly compatible (via the map p*) with the maps ¢p and ¢ in
the étale cohomology of Xx. We have a projective space theorem
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Proposition 5.7. Letm > 0, { = ¢1(O(1)) € H2(f’\§?ét7 Z/p"(1)). Let mx be the
projection P'¢ — X, then the natural map

m
@€ Unx (P H (X, 2/p"(r — i) — H (PR, Z/p"(r))
=0

18 an isomorphism for all r.
Proof. Reduce to the projective space theorem in étale cohomology. O

Like in [13, 2.2] we can now construct universal classes C; € H QZ(B/\C_}T/ JW (k)et,
Z/p"(i)) that are compatible with the étale universal classes CS* € H?(B.GL/K,
Z/p™(i)). We claim that they are also compatible with the syntomic universal
classes C;"" € H*(B.GL/W (k), Sn(i)), for i <p—2 (via the map ;). Consider
the following commutative diagram

; . B2ii il o
H? (X, 8,(i)) — H(Xg o0 Z/D" (i)

| [

H (X [ WaK), T3, i) = B (K 00 FUBE )

As we have mentioned before the right vertical map is an injection. By compat-
ibility of syntomic and crystalline Chern classes it suffices to show the compat-
ibility of the crystalline universal classes C{* with the universal classes C; (via
the maps fBo;; and h). The classes C € H*(B.GL/W,(k), J/) are pullbacks
of classes Cj, € H?(B.G Ly, /Wy(k), J), for i < m, and those can be defined
using the projective space theorem in crystalline cohomology and the crystalline
Chern classes

o 1 Z/p" — RuOx, jw,k),  f : Ox[=1] = RusJx, jw, (k)

We know that the morphism ; is compatible with products. Faltings checked [7,
Theorem 5.2] that it is also compatible with the Chern classes cg, ¢; in crystalline
and )N(?—cohomology. Comparing the two projective space theorems yields now
that Bgi,i(C’iC;n) = h(Cim), for i < m. By construction of higher Chern classes
this suffices to prove our theorem. O

Let us look now at the rational semistable case. Recalling how we pass from
Faltings period isomorphism to the one of Fontaine-Jannsen and how we then
pass to a morphism from syntomic cohomology to étale cohomology (Lemma
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2.5), and inspecting the large diagram in section 1.4, we see that Faltings period

map
ig + Ho (X /R 4, O g ) ®ny,, Bary — H' (X, Z/0") © B,
induces a map on syntomic cohomology via the composition

HECC W () [1/5) (X R /p)N=0 & (HE (X /R) @5, BE[1/p)N=0
L (X RY) Oy BEL/p) " HI(Xe.Qp) @ BEL/p).

Set XV ot = ()N(V)Két' We have the commutative diagram

HI(Xy Walk)) ——  HU(XZ [RY,) —— HL(X/RY,) ®ny, Bi,

lﬁi lﬁi J{ Bi®0Bo

H'(Xy 4, F'Bh ) == H'(Xy 4, F'B},) =——  H{(Xyr 4, F"BS,)

cr,n cr,n

Hér(X;L( /R\?n) ®Rv,n Bst,n S0 I_Iér()(;z< /R\>;7n) ®RV,n B(;"I_',TZ
lﬁi@ﬁo lﬁi@ld
H(Xy 4, F'BL,) ——  H'(Xy4, F'BL,)

cr,n
All the maps (3, are defined as above. The map [y factors as the composition of

the projection p1 : BE . — B and the natural map B+ — HZ()Z'V « F'BE ).

st,n cr,n cr,n cry,n
This is so because B ,, is the final object in the crystalline site of V,, over R;5, .

Notice that from the definition of the map w it follows that p; is the inverse of

w: HL(XX/RY) ®@py BE[L/p] & (HL(X*/RY) @r, BE[1/p)N=°

We computed that Faltings period morphism induces the map

. gl [r] 8% r
5i,7” . H (Xém/Wn(k)? JX% n/Wn(k)) - H (XV,éta F Bg;,n)
Since all the maps in the above diagram are compatible with filtration and Frobe-

nius, we obtain a canonical map
Bip : H(X™, S}, (r) — H (X7, Z/p"(r),)-

More precisely, we get a canonical map from H*(X*, S/ (r)) to the )Z'f—cohomology

of the cone of ¢ —p" : F'BY ,, — Bf ,,, which in turn maps via multiplication

by p” on F"B{,, to the Xz-cohomology of the cone of ¢, — 1 : FI;"BJr — Bt

cr,n cr,n cr,n*
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But the last cone by the fundamental exact sequence (2.1) is quasi-isomorphic to
Z/p™(r).. Hence Faltings period isomorphism induces a morphism

Big « H'(X35, S3,(r) — H (X, Z/p"(r)')
as the composition

Bi  HI(XE, Su(r) ™5 H (R 40, Z/0" (r)}) & HY (K 400 Z/0" (1)) & H (X, Z/p" (1))

S

It follows that the induced morphism af?r : Hi(Xé, Sép (r) — H' (X7, Qp(r))
is equal to the composition

F

HY(XZ, 84, (r) =5 H (Xg,Qu(r) > H' (X, Qy(r).

Theorem 5.8. Let X* be saturated, log-smooth, vertical and proper over V.

For 2r > i+ 2 we have the following commutative diagram

KQ’I‘—i(XJ Z/p”) ]—> KQT—i(XK7Z/pn)

J{C?;rﬂ' lpTCfoT,i
Hi(X%, S0(r) —20s HY (X, Z/p" ().

Similarly for integral K-theory and 2r > 1.

Proof. The period morphism f; , is defined as the composition

Bi,r

HY(X*,8,(r) = H' (X ¢, Z/p" (1)) & H' (X 4 Z/0"(r)') = H' (X, Z/p"(r)).

S

Arguing as in the proof of Theorem 5.6, we get Chern classes into the cohomology
H Z()?f ¢« Z/P™(r)") that are compatible with the étale Chern classes. We need
to show that they are also compatible with the syntomic Chern classes. For
that it is enough to look at the universal classes. We have the universal classes
C; € H2i(§\/C¥L/W(k)ét, Z/p"(i)) that are compatible with the étale universal
classes C¢' € H?*(B.GL/K,Z/p"(i)). We claim that the classes p’C; are also
compatible with the syntomic universal classes C;*" € H*(B.GL/W (k), S, (i))

(via the map (). Consider the following commutative diagram

; ) B2i,i 0o o
H*(X, 8,,(7)) — H(Xg o0 Z/D"(0))

l [

ng (Xn/Wn(k)a J)[{]H/Wn(k)) 5 H? (Xﬁ,éta FpBg;,n)
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As before the right vertical map is an injection. By compatibility of syntomic and
crystalline Chern classes it suffices to show the compatibility of the crystalline uni-
versal classes C;" with the universal classes p'C; via the maps B2i; and h. Untwist-
ing multiplication by p’ from the definition of B2i,; we see that we need to show
that the classes C{" and C; map to the same class in H2i((§\C_JE/W(k))Két, FiBE ).

cry,n
The classes CF* € H*(B.GL/W,,(k), J) are pullbacks of classes Cim € H*(B.G
L /Wy (k), J), for i < m, and those can be defined using the projective space
theorem in filtered crystalline cohomology. From here we argue exactly as in the
proof of Theorem 5.6. O

The following corollary follows immediately from that and Lemma 2.7.

Corollary 5.9. Let X* be saturated, log-smooth, vertical and proper over V.

For 2r > i+ 2 we have the following commutative diagram

Q, ® projlim, Ko,_i(X2, Z/p") I Q, ® projlim, Kor_i( X5, Z/p")

syn &t
lcr,eri lCT,Z'I'*i

H(X5S,00) T H(XG Q)

Similarly for integral K-theory and 2r > 1.

Let now X be a smooth and proper scheme over V. The above gives us Faltings
rational crystalline period isomorphism

of : Hy(Xo/W (k) ® Ber = H'(X7, Qp) @ Bex
as the composition
He(Xo/W (k) ® Bor = Hio(Xg /W (k)") ® Ber = Hi (XX /RY) @ px Ber
Oi_g H' (X7, Qp) @ Be.

It induces the following map on syntomic cohomology

F

of, i H(Xy,Sq,(r) = H(X,Sq,(r) = H (X, Qu(r)).
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Corollary 5.10. For 2r > i+ 2 we have the following commutative diagram
Q, @ proj lim,, Ko, (X7, Z/p") —— Q, @ proj lim,, Ko,_;( X7, Z/p")
J{ c:“y2nrfz lcf‘,t2’r7i
Hi(Xy, S, (1)) e, H (X7, Qy(r)).

Similarly for integral K -theory and 2r > 1.

Proof. Since Kop—i( Xy, Z/p") = Kor—i(X;,Z/p") in this case and log-Chern
classes are defined via the classical ones this is just a restatement of the above
corollary. O

6. COMPARISON OF p-ADIC PERIOD MORPHISMS

We conclude with the promised comparison of described here p-adic period
morphisms. Assume first that X is smooth and proper over W (k). Let d denote
the dimension of Xg.

Corollary 6.1. Let p — 2 > max{r,d + 2r — i}, 2r —i > max{2d + 1,2}, and

r > t. Then the integral crystalline period morphisms a{’(r, afr, and oelNJ

afpt H(Xg Z/p"(r) ~ FT(HL(X/W(R) © B

@,r cr,n

)¢7‘:1
are equal.

Proof. Apply the uniqueness criterium from Theorem 3.4. The needed compat-
ibility of the period morphism with higher Chern classes is clear in the case of
the map a% and was proved in Theorem 4.7 and Theorem 5.6 for the other two

maps. [

Let now X be smooth and proper over a finite extension V' of W (k).
Corollary 6.2. The rational crystalline period morphisms O‘Zo’ afjo, and a%
afo:  H'(X%,Qp) ® Ber = Hy(Xo/W (k) @ Ber

are equal.
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Proof. Take r such that 2r —i > max{2d+ 1,2}, 2r —i > 3 for p =2, d = 0, and

r > 4. It suffices to show that the crystalline period morphisms O‘er af - and
N
ai,r

O‘?,r : Hi(va Qp(1)) ® Bey =~ Hér(XO/W(k)) ® Be{—1}

are equal. For that apply the uniqueness criterium from Theorem 3.8. The
needed compatibility of the period morphism with higher Chern classes is clear
in the case of the map ozf-vm and was proved in Theorem 4.3 and Corollary 5.10
for the other two maps. O

Let X be a fine and saturated, log-smooth scheme over V> with Cartier type

reduction.
Corollary 6.3. The period morphisms a;f':o, afo, and ozf-\fo
O‘;‘k,o : Hi(Xfﬂ Q) ® Byt =~ H(Z:]r(XOX /W(k)o) ® Bt

are equal.

Proof. Choose r such that 2r —i > max{2d + 1,2}, 2r —i >3 forp =2, d = 0,

and r > i. It suffices to show that the period morphisms o , af |

afy o H'(X, Qp(r)) ® Ba = Hi(Xg /W (k)") ® By ~r}

N
and ay

are equal. For that apply the uniqueness criterium from Theorem 3.11. The
needed compatibility of the period morphism with higher Chern classes is clear
in the case of the map aﬁ, and was proved in Corollary 4.6 and Corollary 5.9 for

the other two maps. O
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