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Critical Values of Symmetric Power L-functions

Neil Dummigan, Mark Watkins

Abstract: We consider the critical values of symmetric power L-functions
attached to elliptic curves over Q. We show how to calculate a canonical
Deligne period, and in several numerical examples, especially for sixth and
tenth powers, we examine the factorisation of the rational number appar-
ently obtained when one divides the critical value by the canonical period.
This seems to provide some support for the Bloch-Kato conjecture, when we
compare it with calculations and bounds for Tamagawa factors and global
torsion terms. For large odd powers (5th-9th), we see several examples fit-
ting well with the squareness of the order of the Shafarevich-Tate group.
Keywords: Elliptic curves, Bloch-Kato conjecture, symmetric power L-
function.

1. Introduction

Let E/Q be an elliptic curve. For any prime `, let T`(E) := lim←−E[`m] be
the `-adic Tate module of E, and let V` := (T`(E) ⊗ Q`)(−1) (the Tate twist as
a representation of Gal(Q/Q)). (This V` is isomorphic to the first `-adic étale
cohomology of E/Q.) For any fixed n ≥ 1, let V ′

` = Symn(V`). For any prime
p, let Dp be a decomposition subgroup of Gal(Q/Q) with inertia subgroup Ip. If
` 6= p, let Pp(T ) = det(1−Frob−1

p T |V ′Ip

` ), where Frobp is an arithmetic Frobenius
element topologically generating Dp/Ip ' Gal(Fp/Fp). This polynomial is known
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to have integer coefficients and to be independent of the choice of ` 6= p. Define

L(SymnE, s) :=
∏
p

(Pp(p−s))−1.

This is the L-function attached to (the `-adic realisations of) the motive Symnh1(E),
following the recipe in §2.2 of [Se2]. In the case n = 1 it is just the usual ellip-
tic curve L-function L(E, s), with Pp(T ) = 1 − apT + pT 2 at any prime p of
good reduction, where #E(Fp) = 1 − ap + p. If (for such a prime of good re-
duction) we write 1 − apT + pT 2 = (1 − αT )(1 − βT ), then for general n we
have Pp(T ) =

∏n
i=0(1 − αiβn−iT ). It follows from the fact that |ap| < 2

√
p

that the Dirichlet series for L(SymnE, s) necessarily converges (pointwise) to a
holomorphic function for <(s) > 1 + (n/2).

There is a conductor Nn, defined as in §2.1 of [Se2], and following the recipe
in §3.2 of [Se2] we obtain a gamma factor

γ(s) =





∏l
i=0(2π)−(s−i)Γ(s− i) if n = 2l + 1;

π−(s−l+1)/2Γ((s− l + 1)/2)
∏l−1

i=0(2π)−(s−i)Γ(s− i) if n = 2l, l odd;

π−(s−l)/2Γ((s− l)/2)
∏l−1

i=0(2π)−(s−i)Γ(s− i) if n = 2l, l even.

Letting Λ(s) :=N
s/2
n γ(s)L(SymnE, s) then, as in C9 of [Se2], we expect Λ(SymnE, s)

to have a meromorphic continuation to the whole of C, and to satisfy a functional
equation

Λ(s) = ±Λ(n + 1− s).

In fact, one expects the sign to be + when n is even. For n ≤ 9 the meromorphic
continuation and functional equation are known (see [KS]). For higher values
of n (even n = 18 in two cases), the precise functional equation has been tested
numerically for many E by Watkins, see §5 of [MW]. For this, it is important to
know the correct Euler factors even at primes of bad reduction, i.e., to work out
explicitly the polynomials Pp(T ) defined above. These are well-known for n = 1,
and were determined by Coates and Schmidt [CS] for n = 2 (with corrections
by Watkins [W]). For general n they have been determined by P. Martin. See
the summary in §3 of [MW], where one may also find explicit formulae for the
conductors Nn.

Recently R. Taylor and his collaborators have proved the meromorphic contin-
uation and functional equation of L(SymnE, s) for all n ≥ 1, for any E with at
least one prime of multiplicative reduction, [CHT, HSBT, T]. In fact their result
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applies to elliptic curves over arbitrary totally real fields, and one deduces that it
is enough for E to have at least one prime of potentially multiplicative reduction,
i.e. for E not to have integral j-invariant. See Theorem 5.7 of [T].

For the L-function of a motive, not only is there conjectured a meromorphic
continuation and functional equation, but the orders and leading terms at integer
points have a conjectural interpretation. See [Fl1] for a concise summary, and [Fo],
[FP] for more details. At so-called critical points, Deligne’s conjecture expresses
the value of the L-function as a certain period, up to an undetermined rational
multiple (if the motive has rational coefficients). The motives Symnh1(E) are
especially well-suited to experimental tests of Deligne’s conjecture because

(1) there exist critical points j = l + 1 (if n = 2l + 1) or j = l, l + 1 (if n = 2l

with l odd);
(2) the ap are easily computed for many p, allowing one to obtain the many

coefficients of the Dirichlet series necessary to get good approximations
to L-values (as described in §4.4 of [MW]);

(3) from the real and imaginary periods of E one easily obtains the Deligne
periods for the critical points of L(SymnE, s).

When we calculate (approximations to) the critical values and divide them by
(approximations to) the Deligne periods, we find numbers whose continued frac-
tion expansions show them to be good approximations to simple rational num-
bers, thus supporting Deligne’s conjecture. (In practice one often divides by an
expected rational factor before looking at the continued fraction, to make the
rationality easier to recognise. See Table 8 of [MW] for various examples with
5 ≤ n ≤ 11.) However, we wish to go further and to test the Bloch-Kato conjec-
ture, which provides a conjectural interpretation of the rational number (up to
sign). Again, it is important for this that we have the correct Euler factors at
primes of bad reduction, whereas if we were only interested in Deligne’s conjec-
ture, they could be discarded.

If E happens to have complex multiplication by the ring of integers of an
imaginary quadratic field K, then L(SymnE, s) =

∏[n/2]
i=0 L(ψn−2i, s − i), for a

certain Hecke character ψ over K (with ψ0 as in [MW]). Hence, the meromorphic
continuation and functional equation are due to Hecke [H]. Furthermore, the p-
part of the Bloch-Kato conjecture for L(SymnE, l+1) is known for primes p > l+2
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of good, ordinary reduction, thanks to Theorem 1 of [Gu]. We do not consider
any CM elliptic curves in this paper.

For the case n = 1 (the first symmetric power), the Bloch-Kato conjecture is
just the Birch–Swinnerton-Dyer conjecture. For n = 2 (the symmetric square),
the `-part of the Bloch-Kato conjecture (for ` > 3 of good reduction such that
E[`] is an irreducible representation of Gal(Q/Q)) follows from the main theorem
of [DFG]. For n ≥ 5 nothing seems to have been proved even about Deligne’s
conjecture. (The case n = 3 of Deligne’s conjecture is covered by Theorem 6.2
of [GH] or, in the case that N is square-free, by Corollary 11.3 of [GK].) An
important motivation for Deligne’s article [De] was the numerical data in [Z]
concerning symmetric power L-functions (n = 3 and n = 4) for the normalised
cusp form of weight 12 and level 1. No new conjecture has arisen as a result
of the numerical data examined in our paper, and there are compelling aesthetic
reasons for believing the Bloch-Kato conjecture in any case. However, since there
are not very many cases in which much has been proved about the Bloch-Kato
conjecture, we hope that the support offered by this paper is of some value.

In §2 we state the conjectures of Deligne and Bloch-Kato in the cases at hand.
In §3 we show how to obtain a canonical Deligne period. An interesting determi-
nant involving binomial coefficients arises here. In §4 we show how to calculate
various Tamagawa factors appearing in the Bloch-Kato conjecture. If p > n + 1
is a prime of multiplicative reduction then the p-part of the Tamagawa factor at
p was essentially calculated in §7 of [Du1]. It turns out to be in excellent agree-
ment with the numerical results of §§6 and 7. For any prime p of multiplicative
(or potentially multiplicative if p 6= 2) reduction, we show how to calculate the
`-part of the Tamagawa factor at p, for any prime ` 6= p. The equations are
very complicated for ` ≤ n, but such small primes, especially ` = 2 (which is so
important in the precise determination of a canonical Deligne period in §3) are of
particular interest for the numerical examples of §§6 and 7. In §5 (and intermit-
tently in §§6 and 7) we consider how to calculate or bound global torsion terms
in the Bloch-Kato conjecture, and find some quite nice applications of invariant
theory, again especially for small `. Since it is difficult to prove anything about
the Shafarevich-Tate group (though we make some tentative constructions), or
about the p-part of a Tamagawa factor at p for p ≤ n, and since often we can
only bound global torsion terms, our numerical tests are somewhat incomplete,
but they seem to provide some support for the Bloch-Kato conjecture at small
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primes. It is really at large primes that the numerical evidence is most convinc-
ing. Firstly, as mentioned above, there is the agreement with the p-part of the
Tamagawa factor at a prime p > n + 1 of multiplicative reduction. Secondly, for
odd n, some of the large primes appearing to even powers (in agreement with the
order of the Shafarevich-Tate group being a square or twice a square) are quite
striking (see §6).

1.1. Acknowledgments. We thank Andrew Stacey for his assistance with the
proof of Lemma 3.1. The second author was partially supported by Engineering
and Physical Sciences Research Council (EPSRC) grant GR/T00658/01 (United
Kingdom) and was a visitor at the Centre de Recherches Mathématiques at the
Université de Montréal for part of this work.

2. Deligne’s conjecture and the Bloch-Kato conjecture

Let E/Q be an elliptic curve. Let M = h1(E) be the motive whose de Rham
and Betti realisations are HdR(M) = H1

dR(E/Q) (algebraic de Rham cohomol-
ogy) and HB(M) = H1(E(C),Q) (singular cohomology), respectively. Since
M(1) is self-dual, the de Rham and Betti realisations of the Tate twist M(1) are
HdR(M(1)) = H1

dR(E/Q)∗ (the dual space) and HB(M(1)) = H1(E(C),Q)∗ '
H1(E(C),Q), respectively.

For H1
dR(E/Q) we choose a basis {ω, η}, where ω is a Néron differential for E

and the image of η in H1(E, OE) is Serre dual to ω. Let e+ and e− be generators
for H1(E(C),Z)± with respect to the natural action of complex conjugation.
Then {e+, e−} is a basis for HB(M(1)). Let c± :=

∫
e± ω and f± :=

∫
e± η. Let

{ω∗, η∗} be the basis for HdR(M(1)) dual to {ω, η}. Then under the comparison
isomorphism HB(M(1))⊗ C ' HdR(M(1))⊗ C we have

(1) e+ 7→ c+ω∗ + f+η∗, e− 7→ c−ω∗ + f−η∗.

In the notation of §1.7 of [De], we have F+ = F− = 〈η∗〉, so ω∗ may be viewed
as a basis for HdR(M(1))/F±, and the determinants (with respect to bases {e±}
and {ω∗}) of the induced isomorphisms

HB(M(1))± ⊗ C ' (HdR(M(1))/F±)⊗ C
are c±. These are Deligne periods for the motive M(1). Note that Deligne
defined his periods up to non-zero rational multiples. The c± above are merely
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representatives. But throughout this paper, c± will mean the exact periods just
defined (up to sign; note that different choices of integral bases will change the
signs of c± and f± in pairs).

We also define, for each n ≥ 1, periods c±(Symn(M(1))) = c±((SymnM)(n))
for the motives whose realisations are symmetric powers of those of M(1). These
periods are the determinants of isomorphisms

(SymnHB(M(1)))± ⊗ C ' (SymnHdR(M(1))/F±)⊗ C

with respect to rational bases, where F± are chosen far enough along the Hodge
filtration for the dimensions of the two sides to match. (Call these dimensions d±.)
Again, the periods are defined only up to non-zero rational multiples. However,
there are natural choices of bases on the left and right that lead to canonical
representatives (up to sign). These are the periods appearing in Conjecture 2.3
and Proposition 3.3. In Lemma 3.1 we use a different basis on the left, and
get a different representative, whose relation to the natural one is worked out in
Lemma 3.2.

Let δ = δ(M(1)) := c+f− − c−f+. It is convenient for us to use this notation,
but in fact (up to sign)

δ =





2πi if E(R) is not connected, so H1(E(C),Z) = 〈e+, e−〉Z;
4πi if E(R) is connected, so [H1(E(C),Z) : 〈e+, e−〉Z] = 2.

This follows from our choice of η, and is connected with Legendre’s period re-
lation, see A1.3.4 and A1.3.13 of [K]. The following is our case of Proposition
7.7 of [De] (note that if ∆ is the minimal discriminant, then E(R) is connected
precisely when ∆ < 0).

Proposition 2.1 (Deligne).

(1) If n = 2l + 1 then d± = l + 1 and (up to a non-zero rational multiple)

c±(SymnM(n)) = (c±)(l+1)(l+2)/2(c∓)l(l+1)/2δl(l+1)/2.

(2) If n = 2l then d+ = l+1, d− = l and (up to a non-zero rational multiple)

c+(SymnM(n)) = (c+c−)l(l+1)/2δl(l+1)/2;

c−(SymnM(n)) = (c+c−)l(l+1)/2δl(l−1)/2.



Critical Values of Symmetric Power L-functions 133

The statements about d± are trivial. Deligne proves those about c±(SymnM(n))
by an indirect method of “dimensional analysis”. For any integer j, we define
c±(SymnM(j)) = (2πi)(j−n)d±(−1)j−n

c±(−1)j−n
(SymnM(n)).

An integer j is said to be critical for SymnM if and only if F 0HdR(SymnM(j)) =
F+(HdR(SymnM(j))), i.e., if and only if we have the equality F jHdR(SymnM) =
F (−1)j−n

(HdR(SymnM(n))). Thus we get that j is critical for SymnM if and only
if dim(HdR(SymnM)/F j) = d(−1)j−n

. If n = 2l + 1 then j = l + 1 (the central
point of symmetry for the conjectured functional equation of L(SymnE, s)) is the
unique critical point. If n = 2l with l odd then j = l, l + 1 (the “near-central”
points, paired by the conjectured functional equation) are the unique critical
points. If n = 2l with l even then there are no critical points. In the special case
of the motive SymnM(j), Deligne’s conjecture says the following:

Conjecture 2.2 (Deligne). If j is critical for SymnM then L(SymnE, j) is a
rational multiple of c+(SymnM(j)).

Below we shall state (a special case of) the Bloch-Kato conjecture, which re-
moves the ambiguity about the rational multiple. First we need to define some of
the terms that will appear in the conjecture. For each prime ` there is an `-adic
realisation H`(M) of the motive M . This is a 2-dimensional Q`-vector space with
a continuous linear action of Gal(Q/Q). Its symmetric powers are the `-adic re-
alisations of the SymnM , and to get the `-adic realisations of the SymnM(j) we
just take the appropriate Tate twists. Choose the Z-lattice T = H1(E(C),Z) in
HB(M(1)). Then T` := T ⊗Z` is naturally identified with a Gal(Q/Q)-invariant
Z`-lattice in H`(M(1)), and is the `-adic Tate module of E.

For fixed n, define T ′`(j) := (SymnT`)(j−n), V ′
` (j) := T ′`(j)⊗Q` and A′`(j) :=

V ′
` (j)/T ′`(j). Following [BK] (Section 3), for p 6= ` (including p = ∞) let

H1
f (Qp, V

′
` (j)) = ker

(
H1(Dp, V

′
` (j)) → H1(Ip, V

′
` (j))

)
.

Here Dp is a decomposition subgroup at a prime above p, Ip is the inertia sub-
group, and the cohomology is for continuous cocycles and coboundaries. For
p = ` let

H1
f (Ql, V

′
` (j)) = ker

(
H1(D`, V

′
` (j)) → H1(D`, V

′
` (j)⊗Bcris)

)

(see Section 1 of [BK] for the definition of Fontaine’s ring Bcris). Let H1
f (Q, V ′

` (j))
be the subspace of those elements of H1(Q, V ′

` (j)) that, for all primes p, have local
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restriction lying in H1
f (Qp, V

′
` (j)). There is a natural exact sequence

0 −−−−→ T ′`(j) −−−−→ V ′
` (j) π−−−−→ A′`(j) −−−−→ 0.

Let H1
f (Qp, A

′
`(j)) = π∗H1

f (Qp, V
′
` (j)). Define the `-Selmer group H1

f (Q, A′`(j))
to be the subgroup of elements of H1(Q, A′`(j)) whose local restrictions lie in
H1

f (Qp, A
′
`(j)) for all primes p. Note that the condition at p = ∞ is superfluous

unless ` = 2. Define the Shafarevich-Tate group

X(j) =
⊕

`

H1
f (Q, A′`(j))

π∗H1
f (Q, V ′

` (j))
.

Beware that we are using the same notation for different values of n. Since almost
always for us j = l + 1, we shall use “X” as alternative notation for X(l + 1).

For a finite prime p, let H1
f (Qp, T

′
`(j)) be the inverse image of H1

f (Qp, V
′
` (j))

under the natural map. Suppose now that p 6= `. If H0(Qp, V
′
` (j)) is triv-

ial (i.e., unless n = 2l and j = l) then, by inflation-restriction, we find that
H1

f (Qp, V
′
` (j)) ' (V ′

` (j)Ip)/(1 − Frobp)(V ′
` (j)Ip) is trivial, so H1

f (Qp, T
′
`(j)) is

the torsion part of H1(Qp, T
′
`(j)). Again using the triviality of H0(Qp, V

′
` (j)),

we identify H1
f (Qp, T

′
`(j)) with H0(Qp, A

′
`(j)). This has a subgroup that is

given by (V ′
` (j)Ip/T ′`(j)

Ip)Frobp=id, whose order is the `-part of Pp(p−j), where
Pp(p−s) = det(1 − Frob−1

p p−s|V ′Ip

` ) is the Euler factor at p in L(SymnE, s)
(strictly speaking, its reciprocal). When p is a prime of good reduction, so
that V ′

` (j)Ip = V ′
` (j) maps surjectively to A′`(j), the subgroup is the whole

of H0(Qp, A
′
`(j)), but in general we define the `-part of the Tamagawa factor

cp(j) to be the index of the subgroup. It is also possible to define a p-part of
cp(j) (which needn’t be an integer) using a measure of H1

f (Qp, T
′
p(j)) arising from

the Bloch-Kato exponential map (and the choice of basis for HdR(SymnM(j))/F 0

specified below). The Tamagawa factor c∞(j) is defined below, when we calculate
it. Since almost always for us j = l + 1, we shall use “cp” as alternative notation
for cp(l + 1).

Having chosen T we get a Z-lattice SymnT in HB(SymnM(n)). Let (SymnT )±

be the subgroups on which complex conjugation acts as ±1. Any Z-basis for
(SymnT )± is a Q-basis for (HB(SymnM(n)))±. Using this in conjunction with
the basis {ω∗n, ω∗n−1η∗, . . . , ω∗n−d±+1η∗d±−1} for HdR(SymnM(n))/F± gives a
natural choice for the Deligne period c±(SymnM(n)), used in the conjecture
below.
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Conjecture 2.3 (Bloch-Kato).

(1) Suppose that n = 2l+1, and that L(SymnE, l+1) 6= 0. Then (up to sign)

L(SymnE, l + 1)
c+(SymnM(l + 1))

=

(∏
p≤∞ cp

)
#X

(#H0(Q, A′(l + 1)))2
.

(2) Suppose that n = 2l with l odd. Then

L(SymnE, l + 1)
c+(SymnM(l + 1))

=

(∏
p≤∞ cp

)
#X

#H0(Q, A′(l))#H0(Q, A′(l + 1))
.

Notice that in the first case c+(SymnM(l+1)) = c(−1)l
(SymnM(n))/(2πi)l(l+1),

while in the second case (since l is odd) it is c+(SymnM(n))/(2πi)l2−1. Our
first task is to find, for this choice of Deligne period, the undetermined rational
multipliers in Proposition 2.1. We shall find that they are certain powers of 2.

3. The exact Deligne period

Lemma 3.1. Consider the periods c̃±(SymnM(n)) calculated with respect to bases
{(e+)n, (e+)n−2(e−)2, . . .} and {(e+)n−1(e−), (e+)n−3(e−)3, . . .} for the Betti spaces
(HB(SymnM(n)))±, and {ω∗n, ω∗n−1η∗, . . . , ω∗n−d±+1η∗d±−1} for the de Rham
spaces HdR(SymnM(n))/F±.

(1) If n = 2l + 1 then d± = l + 1 and

c̃±(SymnM(n)) = (c±)(l+1)(l+2)/2(c∓)l(l+1)/2(2δ)l(l+1)/2.

(2) If n = 2l then d+ = l + 1, d− = l and

c̃+(SymnM(n)) = (c+c−)l(l+1)/2(2δ)l(l+1)/2;

c̃−(SymnM(n)) = (c+c−)l(l+1)/2(2δ)l(l−1)/2.

Proof. First consider the example c̃+(Sym2M(2)). Recall that

e+ 7→ c+ω∗ + f+η∗, e− 7→ c−ω∗ + f−η∗,

so, modulo F+,

(e+)2 7→ (c+)2(ω∗)2 + 2c+f+ω∗η∗, (e−)2 7→ (c−)2(ω∗)2 + 2c−f−ω∗η∗,
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and

c̃+(Sym2M(2)) = det

[
(c+)2 2c+f+

(c−)2 2c−f−

]
= 2c+c−δ.

By Proposition 2.1, we had to get a rational multiple of c+c−δ. As in Deligne’s
proof of Proposition 2.1, this follows from the fact that η is determined only up
to the addition of a multiple of ω. Moreover, if we change bases over C, changing
c+, c− and δ, we still get the same rational multiple of the new c+c−δ. To discover
which rational multiple, we adjust η by a multiple of ω to make f− = 0, then
rescale e+ and e− to make c+ = c− = 1, then rescale η to make f+ = 1 (hence
δ = −1). Now, to discover which rational multiple we have (the sign doesn’t
matter), we set c+ = c− = f+ = 1 and f− = 0 in the above matrix, and take the

determinant of the resulting

[
1 2
1 0

]
to find ±2.

In general we get a matrix containing certain binomial coefficients, and we
must show that the absolute value of its determinant is the appropriate power of
2. For example, for c̃+(Sym8M(8)) the matrix we consider is

A =




1 8 28 56 70
1 6 15 20 15
1 4 6 4 1
1 2 1 0 0
1 0 0 0 0




which is column-equivalent to




1 8 24 32 16
1 6 12 8 0
1 4 4 0 0
1 2 0 0 0
1 0 0 0 0




.

For c̃−(Sym8M(8)) the matrix we consider is

B =




1 7 21 35
1 5 10 10
1 3 3 1
1 1 0 0


 which is column-equivalent to




1 6 12 8
1 4 4 0
1 2 0 0
1 0 0 0


 .

Clearly, if we can prove that column reduction will always produce this pattern
of ascending powers of 2 on the diagonal, then for the absolute value of the
determinant we will get the power of 2 specified by the lemma. In fact, it appears
to be the case that in the jth column (starting from j = 0) we have, going up
from the diagonal, 2j multiplied by part of the jth diagonal of Pascal’s triangle.
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This is in fact a special case of Corollary 3.1 of [St]. For the convenience of the
reader we explain the argument in our special case. (As pointed out by Stacey,
presumably it can be derived also using the techniques of [Kr].)

The binomial coefficient
(
w
j

)
is a polynomial of degree j in w, and can be

expressed in the form
(
w
j

)
= 1

j!w
j +

∑
0≤k<j ak

(
w
k

)
, for some rational numbers ak.

Substituting 2w for w,

(
2w

j

)
−

∑

0≤k<j

ak

(
2w

k

)
=

1
j!

2jwj = 2j




(
w

j

)
−

∑

0≤k<j

ak

(
w

k

)
 .

This proves precisely the column equivalence we sought, for matrices such as A,
involving even rows of Pascal’s triangle. Matrices such as B, involving odd rows
of Pascal’s triangle, are easily obtained from the others by elementary column
operations, using the fundamental recurrence relation for binomial coefficients.

¤

Recall that we have chosen the Z-lattice T = H1(E(C),Z) in HB(M(1)), with
e± generators for T±.

Lemma 3.2.

(1) If ∆ > 0 then bases for (SymnT )± are given by {(e+)n, (e+)n−2(e−)2, . . .}
and {(e+)n−1(e−), (e+)n−3(e−)3, . . .}.

(2) If ∆ < 0, let E+ be the Z-span of {(e+)n, (e+)n−2(e−)2, . . .}, let E− be
the Z-span of {(e+)n−1(e−), (e+)n−3(e−)3, . . .}, and let E = E+ ⊕ E−.
Let 2b± be the orders of (SymnT )±/E±.
(a) If n = 2l + 1 then b+ = b− = l(l + 1).
(b) If n = 2l then b+ = l(l + 1) and b− = l(l − 1).

Proof.

(1) If ∆ > 0 then T is spanned by {e+, e−}, so this is obvious.
(2) If ∆ < 0 then T is spanned by {e+, (e+ + e−)/2}. An alternative Z-

basis for T is {v+, v−}, where v± := (e+ ± e−)/2. We should say right
away that, despite the notation, complex conjugation switches v+ and v−.
Observe that e± = v+ ± v−, so that, apart from the factor of 1/2, there
is a symmetrical relation between (e+, e−) and (v+, v−). Hence if we let
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2a be the index of E in SymnT , then this is also the index of SymnT in
(1/2n)E, so 2a = n(n + 1) and a = n(n + 1)/2.

A basis for (SymnT )+ is {(v+)n + (v−)n, (v+)n−1v− + (v−)n−1v+, . . .},
while a basis for (SymnT )− is {(v+)n−(v−)n, (v+)n−1v−−(v−)n−1v+, . . .}.
Expressing the associated basis for (SymnT )+ ⊕ (SymnT )− in terms of
the basis {(v+)n, (v−)n, (v+)n−1v−, (v−)n−1v+, . . .} for SymnT , we get a

matrix with l blocks of

(
1 1
1−1

)
along the diagonal (and a 1 in the bot-

tom corner) if n is even, or l + 1 blocks in n is odd. Hence the index of
(SymnT )+ ⊕ (SymnT )− in SymnT is 2l if n is even, 2l+1 if n is odd. It
follows that b+ + b− + l = a or a− 1, so

b+ + b− =





2l(l + 1) if n = 2l + 1;

2l2 if n = 2l.

Let σ be complex conjugation, and consider the following table showing
how we can generate some elements of (SymnT )±.

v (1 + σ)v

(e+)n 2(e+)n

(e+)n−1v+ (e+)n

(e+)n−2(v+)2 (1/2)
(
(e+)n + (e+)n−2(e−)2

)

(e+)n−3(v+)3 (1/4)
(
(e+)n + 3(e+)n−2(e−)2

)

(e+)n−4(v+)4 (1/8)
(
(e+)n + 6(e+)n−2(e−)2 + (e+)n−4(e−)4

)

(e+)n−5(v+)5 (1/16)
(
(e+)n + 10(e+)n−2(e−)2 + 5(e+)n−4(e−)4

)

v (1− σ)v

(e+)n 0
(e+)n−1v+ (e+)n−1e−

(e+)n−2(v+)2 (1/2)
(
2(e+)n−1e−

)

(e+)n−3(v+)3 (1/4)
(
3(e+)n−1e− + (e+)n−3(e−)3

)

(e+)n−4(v+)4 (1/8)
(
4(e+)n−1e− + 4(e+)n−3(e−)3

)

(e+)n−5(v+)5 (1/16)
(
5(e+)n−1e− + 10(e+)n−3(e−)3 + (e+)n−5(e−)5

)

We then let W± be the subgroup of (SymnT )± that is generated by the
(1 ± σ)

(
(e+)n−j(v+)j

)
for odd j (and also by (v+v−)n/2 for W+ if n

is even). Let 2B± be the order of (W± ⊗ Z2)/(E± ⊗ Z2). Necessarily
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B± ≤ b±. Looking at the pattern in the above tables, and considering
the diagonal entries of the triangular matrix expressing our generators for
W± in terms of the standard bases for E±, it is easy to determine the
B±.
• If n = 2l + 1 then B+ = B− = 2(1 + 2 + . . . + l) = l(l + 1).
• If n = 2l then B+ = l(l + 1) and B− = 2(1 + 2 + . . . + l− 1) = l(l− 1).
In both cases, B+ + B− = b+ + b−. Since B+ ≤ b+ and B− ≤ b−, the
lemma follows.

¤

Below, c±(SymnM(l + 1)) are the natural Deligne periods appearing in Con-
jecture 2.3. We gather together what we have found so far, combining Lemmas
3.1 and 3.2.

Proposition 3.3. Suppose that n = 2l + 1.

(1) If ∆ > 0 then

c+(SymnM(l + 1)) = 2l(l+1)/2(c±)(l+1)(l+2)/2(c∓)l(l+1)/2/(2πi)l(l+1)/2,

where ± = (−1)l.
(2) If ∆ < 0 then

c+(SymnM(l + 1)) = (c±)(l+1)(l+2)/2(c∓)l(l+1)/2/(2πi)l(l+1)/2,

where ± = (−1)l.

Suppose that n = 2l with l odd.

(1) If ∆ > 0 then

c+(SymnM(l + 1)) = 2l(l+1)/2(c+c−)l(l+1)/2/(2πi)(l
2−l−2)/2.

(2) If ∆ < 0 then

c+(SymnM(l + 1)) = (c+c−)l(l+1)/2/(2πi)(l
2−l−2)/2.

Note that if we let Ω+ = c+ and iΩ− = c− or c−/2 according as ∆ > 0 or
∆ < 0 (respectively), so that iΩ− is the imaginary part of “the” complex period,
then in the case n = 2l with l odd, we can write uniformly

(2) c+(SymnM(l + 1)) = 2l(l+1)/2(Ω+Ω−)l(l+1)/2/(2π)(l
2−l−2)/2.
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The Tamagawa factor c∞(j) is, by definition, the order of the group

(HB(SymnM(n))/SymnT )±

HB(SymnM(n))±/(SymnT )±
,

where ± = (−1)j−n. It is easy to prove the following.

Lemma 3.4. Let ± = (−1)j−n.

(1) If ∆ > 0 then c∞(j) = 1.
(2) If ∆ < 0 then c∞(j) = 2d∓, in fact the above group is generated by the

image of ((1/2)(SymnT )∓)/(SymnT )∓.

Note that if j = l + 1, then d∓ = l + 1 when n = 2l + 1, and d∓ = l when
n = 2l with l odd.

4. Tamagawa factors at primes of potentially multiplicative

reduction

Recall the definition of cp(j), from the second paragraph before Conjecture
2.3. First suppose that p is a prime of good reduction for E, and consider the
motive SymnM . For a prime ` 6= p, the `-part of cp(j) is trivial. It is also trivial
for p = `, as long as p > n + 1, as may be proved using Theorem 4.1(iii) of [BK].
See the proof of Lemma 1 of [Fl2].

Guess 4.1. If p is any prime of good reduction, then cp(j) = 1 for all j.

Suppose now that E has multiplicative reduction at p. The following comes
from calculations similar to those in §7 of [Du1], where Proposition 7.5 is the
case n = 6.

Proposition 4.2. Suppose that p > n + 1 is a prime of multiplicative reduction.
Let dp := ordp(∆). If n = 2l or 2l + 1 then

ordp(cp) = ordp(dp)− l(l + 1)/2.

Guess 4.3. If p is any prime of multiplicative reduction, then

ordp(cp) = ordp(dp)− l(l + 1)/2.
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Next we consider the `-part of cp(j), where p is a prime of multiplicative
reduction and ` 6= p. Suppose that E has split multiplicative reduction at p.
If n is even then this is no loss of generality, since E may be replaced by an
appropriate quadratic twist. We have an isomorphism E(Qp) ' Q×p /qZ respecting
the action of Gal(Qp/Qp) on both sides, where q is the Tate parameter. We have
ordp(q) = dp, so if `a || dp then q1/`a ∈ Qunr

p whereas q1/`a+1
/∈ Qunr

p . Let {x, y}
be a Z`-basis for the `-adic Tate module T` = T`(E), where, viewed in Q×p /qZ, x

is the image of a compatible system of `-power roots of unity, and y is the image
of a compatible system of `-power roots of q.

Recall that T ′`(j) := (SymnT`)(j − n), V ′
` (j) := T ′`(j) ⊗ Q` and A′`(j) :=

V ′
` (j)/T ′`(j). We need to calculate H0(Qp, A

′
`(j)). Suppose that q is an `c-power

in Qp, but not an `c+1-power. Necessarily c ≤ a. We may choose x, a topological
generator σ of the `-part of the tame quotient of the inertia group Ip, and a
Frobenius element Frobp, in such a way that

σ(x) = x, σ(y) = `ax + y;

Frobp(x) = px, Frobp(y) = `cx + y.

(If the reduction is bad but potentially multiplicative, and ` = 2, then the action
of σ is multiplied by −1. If ` 6= 2, it stays the same, but the 2-part of Ip also
acts non-trivially, through a quotient of order 2. If the reduction is non-split
multiplicative then the action of σ stays the same but the action of Frobp is
multiplied by −1.)

Consider z =
∑n

i=0 aix
n−iyi ∈ A′`(j), with each ai ∈ Q`/Z`. Then

σ(z) =
n∑

i=0

aix
n−i(`ax + y)i.

Taking into account the twist, in A′`(j),

Frobp(z) =
n∑

i=0

aip
j−ixn−i(`cx + y)i.

The condition that z should be fixed by σ (hence by Ip) leads to a triangular set
of equations in Q`/Z`. Considering the coefficient of xn−iyi, for 0 ≤ i ≤ n − 1,
gives

(3)
n∑

k=i+1

`a(k−i)

(
k

i

)
ak = 0.
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(If n is odd and the reduction is bad but potentially multiplicative, there are two
cases to consider. If ` = 2, then each equation must have 2ai added to the left
hand side, and there is an extra equation 2an = 0. If ` 6= 2 then z = 0. If n is
odd and the reduction is non-split then the equations are unchanged.)

If ` > n then none of the binomial coefficients is divisible by `, and the equa-
tions reduce to `aai = 0 for each i ≥ 1, but if ` ≤ n then it can be much more
complicated (see the numerical examples later). The further condition that z

should be fixed by Frobp (hence, overall, by Gal(Qp/Qp)) leads similarly to the
set of equations, for 0 ≤ i ≤ n− 1,

(4) (pj−i − 1)ai +
n∑

k=i+1

pj−k`c(k−i)

(
k

i

)
ak = 0.

(If n is odd and the reduction is non-split then the coefficients pj−i−1 are replaced
by pj−i + 1.)

Proposition 4.4. Suppose that p is a prime of split multiplicative reduction and
` 6= p.

ord`(cp(j)) ≥
n∑

i=1

min{ord`(pj−i − 1), c},

with equality if c = a and ` > n.

Proof. We need to count the number of ways of choosing the ai so that the
equations (3) and (4) are satisfied, to get the order of H0(Qp, A

′
`(j)). To get a

lower bound we just look at those solutions such that `cai = 0 for all i ≥ 1. If
κ := ord`(pj − 1) then we must have `κa0 = 0, i.e. `κ choices for a0. This just
accounts for the power of ` in the Euler factor at p, evaluated at s = j. It is the
terms for i ≥ 1 that actually contribute to the `-part of cp(j), and if `cai = 0 for
all i ≥ 1 then the equations (3) are automatically satisfied (because c ≤ a) and
the equations (4) for i ≥ 1 reduce to (pj−i − 1)ai = 0. ¤

Note that the Euler factor is given by

Pp(p−s) =





(1− p−s) if n is even or reduction is split multiplicative;

(1 + p−s) if n is odd and reduction is non-split multiplicative;

1 if n is odd and reduction is additive, potentially multiplicative.

We gather now some facts that will be directly applicable in §6.1.
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Lemma 4.5. Let E/Q be an elliptic curve of conductor N , and fix n ≥ 1.

(1) Let ` > n + 1 be a prime. For any prime p of good reduction, the `-part
of cp is trivial. For any prime p 6= ` of multiplicative reduction such that
` - ordp(∆), the `-part of cp is trivial.

(2) If n is odd and p is a prime of bad, but potentially multiplicative, reduc-
tion, and if ` 6= 2, then the `-part of cp is trivial.

(3) Let ` be a prime such that ` > 3. For any prime p 6= ` of bad, but
potentially good, reduction, the `-part of cp is trivial.

Proof.

(1) We need only consider p | N (c.f. first paragraph of §4). In the equa-
tions (3) (which apply since ` 6= p) we have a = c = 0 (since ` - ordp(∆))
and ` does not divide any of the binomial coefficients in the equations
(since ` > n). Hence a1 = a2 = . . . = an = 0.

(2) It was noted above that in this case z = 0. In this case the Euler factor
at p is trivial (because V ′

`
Ip is).

(3) This follows, as in the proof of Lemma 1 of [Fl2], from the fact (see §5.6(a)
of [Se1]) that for any prime p of potentially good reduction, the image
in Aut(E[`]) of the inertia group Ip has order divisible at most by the
primes 2 and 3.

¤

5. Global torsion

The 2-adic cyclotomic character is trivial (mod 2), so the 2-torsion subgroups
of both H0(Q, A′(l)) and H0(Q, A′(l + 1)) are isomorphic to H0(Q,SymnE[2]),
and the order of this group is a lower bound for the 2-part of #H0(Q, A′(l))
and also for the 2-part of H0(Q, A′(l + 1)). Let G be the image of Gal(Q/Q) in
Aut(E[2]). Then H0(Q,SymnE[2]) = (SymnE[2])G.

Proposition 5.1.

(1) If #E[2](Q) = 4 then G is trivial, and #H0(Q,SymnE[2]) = 2n+1.
(2) If #E[2](Q) = 2 then G ' Z/2Z, and #H0(Q,SymnE[2]) = 2[(n+1)/2].
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(3) If #E[2](Q) = 1 and ∆ is not a square then we have G = GL2(F2)
and #H0(Q,SymnE[2]) = 2r, where r is the number of solutions in non-
negative integers a, b to 2a+3b = n. In fact, r = [n/6]+1 unless we have
n ≡ 1 (mod 6), in which case r = [n/6].

(By Proposition 3 of [MO], if N is square-free then the case that #E[2] = 1
and ∆ is a square does not occur.) The first two parts are trivial. In the last, the
assertion about G is discussed in §5.3(a) of [Se1], and the rest is a consequence of
the fact that the ring of invariants for the natural action of GL2(F2) on F2[x, y] is
generated by x2 +xy + y2 and xy2 +x2y, of degrees 2 and 3, see §3.2, Example 4
of [Sm]. See the numerical examples below for what can be done in some cases
for ` 6= 2. An important fact, that we will use repeatedly in §§6 and 7, is that
the determinant of the action of Gal(Q/Q) on E[`] is the (mod `) cyclotomic
character.

For any prime p 6= ` of good reduction, the `-part of the Euler factor at p,
evaluated at l + 1, is the order of H0(Qp, A

′
`(l + 1)). Running a short PARI

[P] program to evaluate the Euler factor, we may thus get an upper bound for
H0(Q, A′`(l +1)). This doesn’t work for j = l when n = 2l, since the Euler factor
vanishes and H0(Qp, A

′
`(l)) is infinite.

The following is directly applicable to §6.1.

Lemma 5.2. Let ` > n be a prime such that the natural map from Gal(Q/Q) to
Aut(E[`]) ' GL2(F`) is surjective. (For example, if N is square-free and ` ≥ 11,
by Theorem 4 of [Mz].) Then the `-part of H0(Q, A′(j)) is trivial, for any j.

Proof. Since n < `, there are no non-zero invariants in degree n for the natural
action of SL2(F`) on F`[x, y]. The determinant of the action of Gal(Q/Q) on E[`]
is the cyclotomic character, so this SL2(F`) (as a subquotient of Gal(Q/Q)) acts
trivially on F`(1), and so we get that any non-zero element of H0(Q, A′[`](j)) '
(Symn(E[`]))(j −n) would give a non-zero invariant in degree n for SL2(F`). ¤

6. Numerical examples–odd n

See §4.4 of [MW] for a description of the method by which all the L-value
approximations used below were obtained. The method gives an approximation
to the L-value, provided that the expected functional equation holds, but also
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gives a numerical check on that functional equation. (As already noted in the
introduction, the functional equation follows from recent work of Taylor et.al.,
whenever E has a prime of potentially multiplicative reduction.) Some of the
computations (for instance, the ninth symmetric power for 46A1 to 16 decimal
digits) needed almost 2 billion terms in the L-series, but this still only takes a
few hours.

6.1. Squares of large primes, and the Shafarevich-Tate group. Now look-
ing at Conjecture 2.3, in the case n = 2l+1, and using Lemmas 4.5 and 5.2, we see
that if ` - N is sufficiently large, any factor of ` in L(SymnE, l+1)/c+(SymnM(l+
1)) should be accounted for by X. The Weil pairing T`(E)× T`(E) → Z`(1) in-
duces a perfect, Gal(Q/Q)-equivariant pairing T ′`(l + 1) × T ′`(l + 1) → Z′`(1).
According to the main result of [Fl3], there is then a non-degenerate skew-
symmetric pairing on X, so its order is a perfect square (or twice a perfect
square). Hence these large primes should appear only in the numerators of the
computed values of L(SymnE, l + 1)/c+(SymnM(l + 1)), and always to an even
power. This is amply demonstrated in the table below. When n is even (say
n = 2l), X(l) and X(l + 1) are in duality with each other, hence have the
same order, not necessarily a square. The tables give apparent values for the L-
ratios: L(Sym5E, 3)(2π)3/((Ω+)6(Ω−)3), L(Sym7E, 4)(2π)6/((Ω−)10(Ω+)6) and
L(Sym9E, 5)(2π)10/((Ω+)15(Ω−)10), for selected examples. One can check that
in each case the ` in boldface does not divide any dp = ordp(∆) for p || N .

5th powers
116A1 21154432/293

123B1 275 · 72/(33413)
124B1 26532/313

132B1 2115272/(33113)
185C1 2145 · 192/(53373)

7th powers
61A1 211335 · 72132/616

63A1 217132/75

83A1 213325 · 72432/836

89A1 2173 · 5372192/896

91A1 2163 · 5 · 372/(74136)

9th powers
21A4 2205 · 592/(310710)
26B1 2 · 325 · 7319332/1310

30A1 26372/(3555)
33A2 2245 · 10721672/(3101110)
34A1 213355 · 72532/(1710)
37B3 220325 · 72532/(3710)
38A3 2 · 3145 · 192/1910

38B1 2 · 581092/1910

42A1 2155 · 22322412/(310710)
45A1 2167 · 132/(3 · 58)
46A1 2431053140712/2310
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Notice how well the denominators fit with Proposition 4.2; indeed, in our com-
putations we can often predict these (and possibly powers-of-2 in the numerator)
ahead of time, and then only need to recognise integers or rationals with small
denominator, which is significantly easier than using continued fractions on the
Bloch-Kato quotient in general.

In the remaining examples of this and the next section, we shall concern our-
selves with the `-part of the Bloch-Kato conjecture, where ` is a small prime (i.e.,
less than n). Our choice of examples is motivated by a desire to exhibit various
facets of what goes into the computations of the components in the Bloch-Kato
conjecture. It might be possible to automate some of our fiddling with Tama-
gawa numbers, etc., but we have not investigated this too deeply; as noted in the
introduction, construction of elements in the Shafarevich-Tate groups is at best
conjectural. We label elliptic curves as in Cremona’s tables [Cr].

6.2. n = 9.
Here we have n = 2l + 1, where l = 4, so l + 1 = 5 and l(l + 1)/2 = 10.

The equations (3) for a1, . . . , a9 have coefficient matrix



`a `2a `3a `4a `5a `6a `7a `8a `9a

0 2`a 3`2a 4`3a 5`4a 6`5a 7`6a 8`7a 9`8a

0 0 3`a 6`2a 10`3a 15`4a 21`5a 28`6a 36`7a

0 0 0 4`a 10`2a 20`3a 35`4a 56`5a 84`6a

0 0 0 0 5`a 15`2a 35`3a 70`4a 126`5a

0 0 0 0 0 6`a 21`2a 56`3a 126`4a

0 0 0 0 0 0 7`a 28`2a 84`3a

0 0 0 0 0 0 0 8`a 36`2a

0 0 0 0 0 0 0 0 9`a




.

The equations (4) for a1, . . . , a9 have coefficient matrix



p4`c p3`2c p2`3c p`4c `5c p−1`6c p−2`7c p−3`8c p−4`9c

p4 − 1 2p3`c 3p2`2c 4p`3c 5`4c 6p−1`5c 7p−2`6c 8p−3`7c 9p−4`8c

0 p3 − 1 3p2`c 6p`2c 10`3c 15p−1`4c 21p−2`5c 28p−3`6c 36p−4`7c

0 0 p2 − 1 4p`c 10`2c 20p−1`3c 35p−2`4c 56p−3`5c 84p−4`6c

0 0 0 p− 1 5`c 15p−1`2c 35p−2`3c 70p−3`4c 126p−4`5c

0 0 0 0 0 6`cp−1 21p−2`2c 56p−3`3c 126p−4`4c

0 0 0 0 0 p−1 − 1 7p−2`c 28p−3`2c 84p−4`3c

0 0 0 0 0 0 p−2 − 1 8p−3`c 36p−4`2c

0 0 0 0 0 0 0 p−3 − 1 9p−4`c




,
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and a term (p5 − 1)a0 should be added to the first equation.

(1) E = 35A3 = [0, 1, 1,−1, 0]. We have ∆ = −35 < 0. One finds that
apparently L(Sym9E, 5)(2π)10/(Ω+)15(Ω−)10 = 22534/(59710). We shall
compare this rational number with what Conjecture 2.3 says it should be:

L(SymnE, l + 1)
c+(SymnM(l + 1))

=

(∏
p≤∞ cp

)
#X

(#H0(Q, A′(l + 1)))2
.

We work out as much as we can about the various terms on the right hand
side, and use Proposition 3.3 to relate L(Sym9E, 5)(2π)10/(Ω+)15(Ω−)10

to the left hand side (they differ at most by a power of 2).
By Proposition 21 of [Se1], the natural homomorphism from Gal(Q/Q)

to Aut(E[7]) is surjective. By §5.6, Example 5 of [Sm], the ring of invari-
ants of SL2(F7) on F7[x, y] is generated by elements of degrees ` + 1 = 8
and `2 − ` = 42, hence H0(Q, A′7(5)) is trivial. For the prime p = 5 of
non-split multiplicative reduction, dp = ordp(∆) = 1, and, in the nota-
tion of §4, a = c = 0 for ` = 7. Working back up the triangular set of
equations (3) gives

a8 = a9 = 0, 7a7 = 0, a2 = a3 = a4 = a5 = a6 = 0, a1 = −a7,

but the equations (4) (with + signs because n is odd and the reduction
is non-split) give also a7 = 0. The coefficient of a0 is (p5 + 1), so the
number of ways of choosing a0 (for each solution (a1, . . . , a9)) is the `-
part of the Euler factor (evaluated at 5), and does not contribute to c5.
Hence ord7(c5) = 0. According to Guess 4.3, ord7(c7) = −10, accounting
perfectly for the power of 7.

By Proposition 21 of [Se1], the natural homomorphism from Gal(Q/Q)
to Aut(E[5]) is surjective. By §5.6, Example 5 of [Sm], the ring of invari-
ants of SL2(F5) on F5[x, y] is generated by elements of degrees ` + 1 = 6
and `2 − ` = 20, hence H0(Q, A′5(5)) is trivial. For the prime p = 7 of
split multiplicative reduction, dp = ordp(∆) = 1, and a = c = 0 for ` = 5.
The equations (3) give

a6 = a7 = a8 = a9 = 0, 5a5 = 0, a2 = a3 = a4 = 0, a1 = −a5.

Since 5 | 0 and 5 | (74−1), the equations (4) do not impose any further
conditions on a1, . . . , a9. Hence ord5(c7) = 1. According to Guess 4.3,
ord5(c5) = −10, and 1−10 = −9, accounting perfectly for the power of 5.
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Note that E has a rational point of order 3. Let {x, y} be an F3-
basis for E[3], with x a rational point of order 3 and y representing
the F3(1) composition factor. The image of Gal(Q/Q) in Aut(E[3]) is
contained in a Borel subgroup, but is not diagonal. It is generated
by elements that are given by the maps g : x 7→ x, y 7→ y + x and
h : x 7→ x, y 7→ −y. Noting that Sym9E[3] ' A′[3](9), we then find inde-
pendent elements x9(−4), x3(y3 − x2y)2(−4) in H0(Q, A′[3](5)), so that
we get #H0(Q, A′3(5)) ≥ 32. For the prime p = 7 of split multiplicative
reduction, we have dp = ordp(∆) = 1, and a = c = 0 for ` = 3. The
equations (3) give

9a9 = 0, a8 = 0, a7 = −3a9, 3a6 = 0, a5 = 3a9, a4 = a6,

3a3 = −3a9, a2 = a6, a1 = −(a3 + a9).

Since 7 ≡ 1 (mod 3) but 72 6≡ 1 (mod 9), the equations (4) impose the
further condition 3a3 = 0 (hence 3a9 = 0), so ord3(c7) = 3. For the
prime p = 5 of non-split multiplicative reduction, dp = ordp(∆) = 1, and
a = c = 0 for ` = 3. The equations (3) again give

9a9 = 0, a8 = 0, a7 = −3a9, 3a6 = 0, a5 = 3a9, a4 = a6,

3a3 = −3a9, a2 = a6, a1 = −(a3 + a9).

Labouring through the equations (4) (with + signs because n is odd and
the reduction is non-split), we eventually arrive at the net result

a1 = a3 = a5 = a7 = a8 = a9 = 0, a2 = a4 = a6, 3a6 = 0,

so ord3(c5(5)) = 1. There is still a factor of 34 to be accounted for by the
3-parts of #X and/or c3, which we are unable to deal with.

Since #E[2](Q) = 1 and ∆ is not a square, Proposition 5.1 implies
that #H0(Q, A′2(5)) ≥ 22. For the prime p = 7 of split multiplicative
reduction, dp = ordp(∆) = 1, and a = c = 0 for ` = 2. The equations (3)
give

a9 = 0, 8a8 = 0, a7 = 4a8, 2a6 = 4a8, a5 = a6 − 2a8, 4a4 = 4a8,

a3 = −(2a4 + a6), 2a2 = 2(a4 − a8), a1 = −a2 + a4 − a6 − 3a8.

Working (backwards) through equations (4) leads eventually to a net
result

2a2 = 2a4 = 2a6 = 2a8 = 0, a7 = 0,
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a3 = a5 = a6, a1 = a2 + a4 + a6 + a8.

Hence ord2(c7) = 4. For the prime p = 5 of non-split multiplicative
reduction, dp = ordp(∆) = 1, and a = c = 0 for ` = 2. The equations
(3) and (4) (with + signs) lead to exactly the same set of relations for
a1, . . . , a9 as in the case p = 7, with the result that ord2(c5) = 4. We get
210 from Proposition 3.3 (combined with c− = 2iΩ−), while we get that
c∞ = 25 from Lemma 3.4. We have scraped together 210+5+4+4−4 = 219,
a little short of the target.

7. Numerical examples—even n

7.1. n = 6, E semi-stable.
Here we have n = 2l, where l = 3, so that l + 1 = 4 and l(l + 1)/2 = 6.

The equations (3) become

`aa1 +`2aa2 +`3aa3 +`4aa4 +`5aa5 +`6aa6 = 0
2`aa2 +3`2aa3 +4`3aa4 +5`4aa5 +6`5aa6 = 0

3`aa3 +6`2aa4 +10`3aa5 +15`4aa6 = 0
4`aa4 +10`2aa5 +20`3aa6 = 0

5`aa5 +15`2aa6 = 0
6`aa6 = 0

while the equations (4) become

(p4 − 1)a0 +p3`ca1 +p2`2ca2 +p`3ca3 +`4ca4 +p−1`5ca5 +p−2`6ca6 = 0

(p3 − 1)a1 +2p2`ca2 +3p`2ca3 +4`3ca4 +5p−1`4ca5 +6p−2`5ca6 = 0

(p2 − 1)a2 +3p`ca3 +6`2ca4 +10p−1`3ca5 +15p−2`4ca6 = 0

(p− 1)a3 +4`ca4 +10p−1`2ca5 +20p−2`3ca6 = 0

5p−1`ca5 +15p−2`2ca6 = 0

(p−1 − 1)a5 +6p−2`ca6 = 0

(1) E = 11A1 = [0,−1, 1,−10,−20]. We have ∆ = −115. One finds that
apparently L(Sym6E, 4)(2π)2/(Ω+Ω−)6 = 2457/116. According to Con-
jecture 2.3, we have that

L(SymnE, l + 1)
c+(SymnM(l + 1))

=

(∏
p≤∞ cp

)
#X

#H0(Q, A′(l))#H0(Q, A′(l + 1))
.

The 116 is accounted for by the 11-part of c11, as in Proposition 4.2.
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Now let us try to account for the power of 2 using Conjecture 2.3. We
get 26 from (2) (just after Proposition 3.3), which says that

c+(SymnM(l + 1)) = 2l(l+1)/2(Ω+Ω−)l(l+1)/2/(2π)(l
2−l−2)/2,

and c∞ = 23 from Lemma 3.4. (Please note that when this example
was used in §7.1 of [Du1], the period was out by a power of 2.) Both
factors #H0(Q, A′2(3)) and #H0(Q, A′2(4)) are bounded below by 22, by
Proposition 5.1, since #E[2](Q) = 1 and ∆ is not a square.

For the prime p = 11 of multiplicative reduction, we have dp = 5, and
with ` = 2 we have a = c = 0. Working backwards up the triangular set
(3) of equations gives

2a6 = 0, a5 = a6, 4a4 = 0, a3 = 2a4 + a6, 2a2 = a3 + a5 = 2a4,

a1 = −(a2 + a3 + a4 + a5 + a6) = a6 + (a2 − a4).

There are 16 solutions (a1, . . . , a6) to these equations. Working backwards
up the triangular set (4) of equations gives nothing new, until we reach
the equation for a0, but since the coefficient of a0 is (p4− 1), the number
of ways of choosing a0 (for each solution (a1, . . . , a6)) is the 2-part of the
Euler factor evaluated at 4, and does not contribute to c11(4). Hence
ord2(c11) = 4. We have now got a contribution of 26+3+4−2−2, that is 29.
We only wanted 24, but perhaps the global torsion factors are significantly
bigger than our crude lower bounds. We get an upper bound of 25 for
#H0(Q, A′2(4)), from #H0(Q5, A

′
2(4)).

The power of 5 is difficult to deal with directly, requiring the construc-
tion of elements of X, so we do it by looking at a 5-isogenous curve
instead.

(2) E = 11A3 = [0,−1, 1, 0, 0]. We have ∆ = −11 < 0. This curve is isoge-
nous to 11A1, and apparently L(Sym6E, 4)(2π)2/(Ω+Ω−)6 = 245/116.
The Bloch-Kato conjecture is invariant under “isogeny”, i.e., different
choices of Gal(Q/Q)-stable T ′` inside V ′

` . Here, 11A1 and 11A3 are 5-
isogenous, and it is only at ` = 5 that there is a difference. This is in
keeping with the fact that, in the rational number apparently coming
from the L-value, only the power of 5 has changed. In the example 11A1,
it would have been difficult to account for the power of 5. We can do
much better by exploiting the isogeny invariance and using 11A3 instead.
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For p = 11 and ` = 5 we have a = c = 0. The equations (3) give

a6 = 0, 5a5 = 0, a4 = 0, a3 = 0, a2 = 0, a1 + a5 = 0,

and since 11 ≡ 1 (mod 5), the equations (4) do not impose any further
conditions on a1, . . . , a6, so ord5(c11) = 1. Let {x, y} be an F5-basis
for E[5], with x a rational point of order 5 and y representing the F5(1)
composition factor. The image of Gal(Q/Q) in Aut(E[5]) is contained in a
Borel subgroup, but is not diagonal. It contains elements g : x 7→ x, y 7→
y+x and h : x 7→ x, y 7→ ζy, where ζ is some primitive fourth root of unity
in F5. In Sym6(E[5]), the invariants of g are spanned by x6 and xy5−x5y,
but, noting that h acts on F5(1) by ζ and that Sym6(E[5]) = A′[5](6),
we find that there are no elements of A′[5](3) or A′[5](4) invariant under
both g and h. Hence H0(Q, A′5(3)) and H0(Q, A′5(4)) are both trivial. So
we have accounted perfectly for the power of 5 in the L-value, without
having to assume the existence of any elements of order 5 in X.

(3) E = 15A1 = [1, 1, 1,−10,−10]. We have ∆ = 3454 > 0. One finds that
apparently L(Sym6E, 4)(2π)2/(Ω+Ω−)6 = 222/(3656). The 36 and 56 are
accounted for by the p-part of cp(4), according to Guess 4.3. We must
also check that ord5(c3) and ord3(c5) are both zero. The former may be
done as in the example 19A1 below. For the latter, with ` = 3, p = 5 and
a = c = 0, the equations (3) give

3a6 = 0, a5 = 0, a4 = a6, 3a3 = 0, a2 = a4, a1 = −a3.

These equations have 9 solutions. But since 3 - p − 1, the equations (4)
impose a3 = 0 (and nothing else on a1, . . . , a6, since p2 ≡ 1 (mod 3)).
Hence, in fact, ord3(c5) = 1. But we can balance this against a factor of
3 in one of the global torsion terms in the denominator of Conjecture 2.3.
An easy application of Proposition 21 of [Se1] shows that the natural
map from Gal(Q/Q) to Aut(E[3]) is surjective. The ring of invariants
for the natural action of GL2(F3) on F3[x, y] is generated by elements of
degrees `2 − 1 = 8 and `2 − ` = 6, see §5.6, Example 5 of [Sm]. Hence
#H0(Q, A′[3](6)) = 3. Since Gal(Q/Q) acts on F3(1) via square roots
of unity, also #H0(Q, A′[3](4)) = 3, so #H0(Q, A′3(4)) ≥ 3. The Euler
factor method gives an upper bound of 32 for #H0(Q, A′3(4)). The ring
of invariants for the natural action of SL2(F3) on F3[x, y] is generated by
elements of degrees ` + 1 = 4 and `2 − ` = 6, so H0(Q, A′3(3)) is trivial.
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We should just check that the global torsion terms for ` = 5 are trivial.
By Proposition 21 of [Se1] the natural map from Gal(Q/Q) to Aut(E[5])
is surjective. The ring of invariants for the natural action of SL2(F5) on
F5[x, y] is generated by elements of degrees ` + 1 = 6 and `2 − ` = 20,
see §5.6, Example 5 of [Sm]. The invariants of degree 6 are spanned by
xy5−x5y, on which Gal(Q/Q) acts via the cyclotomic character (consider
diag(ζ, 1)). It follows that (xy5 − x5y)(−3) and (xy5 − x5y)(−2) are not
fixed by Gal(Q/Q), so H0(Q, A′5(3)) and H0(Q, A′5(4)) are indeed trivial.

Now let us try to account for the large power of 2 using Conjecture
2.3. We get 26 from (2), and c∞ = 1 from Lemma 3.4. Both factors
#H0(Q, A′2(3)) and #H0(Q, A′2(4)) are bounded below by 27, by Propo-
sition 5.1, since #E[2](Q) = 4. Actually, #H0(Q, A′2(4)) is bounded
below by 28, as a consequence of E having a rational point of order 4.
For the prime p = 3 of multiplicative reduction, we have dp = 4, and with
` = 2 we have a = c = 2, since 34j(E) ≡ 1 (mod 3), hence q/34 ≡ 1
(mod 3) and is a 4th power in Q3. The equations (3) give

8a6 = 4a5 = 16a4 = 4a3 = 8a2 = 4a1 = 0.

The equations (4) impose the further conditions 2a5 = 2a3 = 2a1 = 0,

so there are 23+1+4+1+3+1 = 213 solutions for (a1, . . . , a6). As before, the
equation for a0 may be ignored, and ord2(c3) = 13.

For the prime p = 5 of multiplicative reduction, we have again dp = 4,
and a = c = 2 for ` = 2. Again the equations (3) give

8a6 = 4a5 = 16a4 = 4a3 = 8a2 = 4a1 = 0,

but this time the equations (4) give nothing further (the difference is that
5 ≡ 1 (mod 4)), so ord2(c5) = 3 + 2 + 4 + 2 + 3 + 2 = 16. We have
accounted for 26+0−8−7+13+16 = 220, not far off target.

(4) E = 26B1 = [1,−1, 1,−3, 3]. We have ∆ = −2713 < 0. One finds that
apparently L(Sym6E, 4)(2π)2/(Ω+Ω−)6 = 2 · 3 · 7323/136. The 136 is
accounted for by the 13-part of c13, as in Proposition 4.2.

Compared to 15A1, this time the power of 2 is much smaller. Let us
see if we can explain this. According to Guess 4.3, ord2(c2) = −6. We get
26 from (2), and c∞ = 23 from Lemma 3.4. Both factors #H0(Q, A′2(3))
and #H0(Q, A′2(4)) are bounded below by 22, by Proposition 5.1, since
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#E[2](Q) = 1 and ∆ is not a square. For the prime p = 13 of multi-
plicative reduction we have dp = 1 and a = c = 0 for ` = 2. As for 11A1
we get ord2(c13) = 4. We have gathered 2−6+6+3+4−2−2 = 23. An upper
bound for #H0(Q, A′2(4)) is #H0(Q3, A

′
2(4)) = 25.

Calculating somewhat as for 15A1, one finds easily that ord3(c2) =
1 and ord3(c13) = 2. Just as for 15A1, #H0(Q, A′3(3)) is trivial and
#H0(Q, A′3(4)) ≥ 3. An upper bound for #H0(Q, A′3(4)) is given by
#H0(Q5, A

′
3(4)) = 32. It would need to be attained for the power of 3 to

be as expected (assuming Guess 4.1).
Using Proposition 4.4 we find that ord7(c2) = 2 and ord7(c13) = 0.

Somewhat as in the analysis of global 5-torsion for 11A3 (but now ζ is a
primitive 6th-root of unity and the space of invariants of g is spanned by x6

alone), we find that H0(Q, A′7(4)) and H0(Q, A′7(3)) are both trivial. That
leaves just one factor of 7 to be accounted for by X. For L(Sym5E, s),
the local root number at 2 is w5

2 = (−1)5 = −1, while that at 13 is
w5

13 = 1. By the table in §5.3 of [De], the local root number at infinity
is 1. Hence the sign in the functional equation is −1, and L(Sym5E, s)
vanishes at the central point s = 3. The order of vanishing is conjecturally
the dimension of H1

f (Q, V ′′
7 (3)), where V ′′

7 := Sym5V7, etc. From this we
would easily get a non-zero element of H1(Q, A′′[7](3)), which maps to
H1(Q, A′[7](4)) using the map induced by multiplication by a rational
point of order 7, and using E[7] ' A[7](1). The image of this element in
H1(Q, A′7(4)) is non-zero, since H0(Q, A′7(4)) is trivial. The Bloch-Kato
local condition at p = 7 can be proved as in Proposition 9.2 of [Du2],
and those at p 6= 7, 2, 13 can be proved as in Proposition 9.1 of [Du1]. In
fact, that at p = 13 can be proved the same way, since we need only the
divisibility of A′7

Ip , which follows from 7 - d13 and 7 > 6, bearing in mind
the equations for inertia invariants in §4. Assuming also the condition at
p = 2, and the expected finiteness of H1

f (Q, A′7(4)), we would have the
desired element of order 7 in X.

7.2. n = 6, E not semi-stable.

(1) E = 52A2 = [0, 0, 0,−4,−3]. We have ∆ = 2413 > 0. One finds that
apparently we have L(Sym6E, 4)(2π)2/(Ω+Ω−)6 = 2511 · 61/136. The
prime p = 2 is one where E has bad, but potentially good reduction. As
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in (3) of Lemma 4.5, ord`(c2) = 0 for any ` > 3 (which also forces ` 6= p).
Even had p been greater than n, we would have no way of calculating
ordp(cp). However, we can calculate ord3(c2).

Lemma 7.1. ord3(c2) = 0.

Proof. According to Table 4 in §3.4 of [MW] (among other places), the
image in Aut(T3(E)) of the inertia subgroup I2 of Gal(Q2/Q2) is cyclic of
order 3, and the image of Gal(Q2/Q2) is non-abelian. Let τ be a generator
of the image in Aut(E[3]) of I2. Then τ has order 3. Let σ be the image
in Aut(E[3]) of a Frobenius element of Gal(Q2/Q2). Then στσ−1 = τ−1.

Since τ has order 3 and F×3 has order 2, τ cannot be a scalar trans-
formation, so it effects a non-trivial permutation of the four elements
{a, b, c, d} of P1(F3). This is necessarily a 3-cycle, (a, b, c) without loss of
generality. Let x be a generator of the line a in E[3], and let y = τ(x).
From the fact that τ has order 3, one deduces easily that τ(y) = −(x+y).

Let z =
∑n

i=0 aix
n−iyi ∈ A′[3](6), where for us n = 6. Then τ(z) =∑n

i=0(−1)iaiy
n−i(x + y)i. The element z(−2) ∈ A′[3](4) is fixed by τ if

and only if, for all i such that 0 ≤ i ≤ n,

ai =
∑

k≥n−i

(−1)kak

(
k

n− i

)
.

Working through this set of equations for n = 6 (and also remembering
that 3ai = 0), one finds that a4, a5 and a6 are independent, but

a0 = a6, a1 = −a5, a2 = a4 + a5, a3 = −a4 + a5 + a6.

Hence (A′[3](4))I2 (of course, the twist is invisible to I2) is 3-dimensional
over F3. Since V ′

3(4)I2 is also 3-dimensional (over Q3: this is easily checked
by diagonalising τ over an extension field), we find that the natural map
from V ′

3(4)I2/T ′3(4)I2 to A′3(4)I2 is surjective, hence ord3(c2) = 0. ¤

As with 26B1, we have ord3(c13) = 2. The curve E is not 3-isogenous
to another curve, so the image of Gal(Q/Q) in Aut(E[3]) is not contained
in a Borel subgroup. But it has a cyclic subgroup of order 3 (the image of
I2), so it must be the whole of Aut(E[3]), using Proposition 15 of [Se1].
Then, as with 26B1, #H0(Q, A′3(3)) is trivial and #H0(Q, A′3(4)) ≥ 3.
An upper bound for #H0(Q, A′3(4)) is #H0(Q5, A

′
3(4)) = 32. It would
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need to be attained for the power of 3 to be as expected (assuming Guess
4.1).

Since #E[2](Q) = 2, from Proposition 5.1 we get 23 as a lower bound
for both H0(Q, A2(3)) and H0(Q, A2(4)). As with 26B1, we have that
ord2(c13) = 4. Since ∆ > 0, we get c∞ = 1. From (2) we get 26. Since
6 + 4 + 0 − 3 − 3 = 4, the powers of 2 seem to be balancing pretty well
without much help from the 2-parts of X or c2.

(2) E = 184C1 = [0, 0, 0, 5, 6]. We have ∆ = −21023 < 0. One finds that
apparently L(Sym6E, 4)(2π)2/(Ω+Ω−)6 = 2103 · 11 · 317/236. We will
focus on the power of 3 here. The prime p = 2 is one where E has
bad, but potentially good reduction. Since ord2(N) = 3, we find from
Table 4 in §3.4 of [MW] that the image in Aut(T3(E)) of the inertia
subgroup I2 of Gal(Q2/Q2) is isomorphic to SL2(F3). This arises in the
natural way from the action on E[3]. Since the invariants of SL2(F3)
acting on F3[x, y] are generated by an element in degree 4 and an element
in degree 6, dimF3((A

′[3](4))I2) = 1. By Table 1 in §3.1 of [MW] (or by a
direct character calculation), we also have dimQ3((V

′
3(4))I2) = 1. Hence

the natural map from (V ′
3(4))I2 to (A′3(4))I2 is surjective. Put another

way, (A′3(4))I2 is divisible. Consequently ord3(c2) = 0. Calculating as
for 15A1, we find that ord3(c23) = 1. As with 52A2, #H0(Q, A′3(3)) is
trivial and #H0(Q, A′3(4)) ≥ 3. An upper bound for #H0(Q, A′3(4)) is
#H0(Q5, A

′
3(4)) = 34. Anyway, assuming Guess 4.1, we need an element

of order 3 in X. A tentative construction follows.
Let A′′3 etc. be for Sym2h1(E). The minimal degree of a non-zero

morphism from X0(184) to E is known to be 12. Since this is divisible
by 3, it follows from Theorem 3.7 of [DFG] that there is an element of
order 3 in H1

f (Q, A′′3(1)). We need to check several things to justify this
application of their theorem (the case Σ = ∅). Firstly (A′′3(1))I2 = 0,
and using 3 - ord23(∆) we find that (A′′3(1))I23 is also divisible. It fol-
lows that the local conditions defining the Selmer group in Theorem 3.7
of [DFG] are the usual Bloch-Kato local conditions that we have been
using. (See the discussion preceding Lemma 2.1 of [DFG], and the proof
of Theorem 3 of [Fl3].) The condition ` - Nk! holds, where here ` = 3
and k = 2. The natural homomorphism from Gal(Q/Q) to Aut(E[3])
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is surjective (the image of I2 already fills up SL2(F3)) so the representa-
tion of Gal(Q/Q) on E[3] is absolutely irreducible. In fact it remains so
upon restriction to Gal(Q/Q(

√−3)). Any line in E[3] ⊗F3 F3 invariant
under Gal(Q/Q(

√−3)) cannot be invariant under Gal(Q/Q) (by absolute
irreducibility), so its image under Gal(Q(

√−3)/Q) would be another line
invariant under Gal(Q/Q(

√−3)). Using generators of these two lines as a
basis for E[3]⊗F3F3, the image of Gal(Q/Q(

√−3)) would lie in a diagonal
subgroup of GL2(F3), contrary to the fact that it contains an element of
order 3 (because SL2(F3) does). The local conductor at 2 of the represen-
tation of Gal(Q/Q) on E[3] must be 23 (rather than less), since E[3] is
wildly ramified at 2. Hence T3(E) is minimally ramified at 2 (unlike 52A2
above, which appears to be congruent (mod 3) to 26B, away from p = 2).
Lastly, using 3 - ord23(∆), we see T3(E) is also minimally ramified at 23.

Now that we have obtained an element of order 3 in H1
f (Q, A′′3(1)),

we let c ∈ H1(Q, A′′[3](1)) be an element mapping to it. Using the di-
visibility of (A′′3(1))Ip , for all p 6= 3 the local condition implies that the
restriction of c to Ip is trivial. Because we are working with vector spaces
over F3, there is a Galois-equivariant cubing map from Sym2(E[3]) to
Sym6(E[3]), hence φ : A′′[3](1) → A′[3](5) ' A′[3](3). As a representa-
tion of GL2(F3), Sym6(F2

3) has composition factors Sym2(F2
3), its dual,

and the trivial representation. Hence H0(Q, A′[3](3)/φ(A′′[3](1))) is triv-
ial. (Because of the odd twist, the SL2(F3)-invariants are not GL2(F3)-
invariant.) It follows that H1(Q, A′′[3](1)) injects into H1(Q, A′[3](3)), so
φ∗(c) 6= 0. Let d be the image of φ∗(c) in H1(Q, A′3(3)). Then d 6= 0, since
H0(Q, A′3(3)) is trivial. Clearly, for all primes p 6= 3 the restriction of d

to Ip is trivial, hence (using the divisibility of (A′3(3))Ip), the restriction
of d to Gal(Qp/Qp) lies in H1

f (Qp, A
′
3(3)), for all primes p 6= 3. We might

hope that the same holds for p = 3, but are unable to prove it using inte-
gral p-adic Hodge theory, because 3 is less than the length of the Hodge
filtration of the de Rham realisation of Sym6(h1(E)). If this wish were
granted (and if, as expected, H1

f (Q, A′3(3)) is finite), then d would give
an element of order 3 in X(3), and by [Fl3] we would get the existence
of an element of order 3 in X(4), as desired.
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The example 184D1 = [0, 0, 0,−55,−157], for which apparently we
have that L(Sym6E, 4)(2π)2/(Ω+Ω−)6 = 27335 · 1451/236, may be dealt
with similarly.

7.3. n = 10.
Here we have n = 2l, where l = 5 so l + 1 = 6 and l(l + 1)/2 = 15.

The equations (3) for a1, . . . , a10 have coefficient matrix




`a `2a `3a `4a `5a `6a `7a `8a `9a `10a

0 2`a 3`2a 4`3a 5`4a 6`5a 7`6a 8`7a 9`8a 10`9a

0 0 3`a 6`2a 10`3a 15`4a 21`5a 28`6a 36`7a 45`8a

0 0 0 4`a 10`2a 20`3a 35`4a 56`5a 84`6a 120`7a

0 0 0 0 5`a 15`2a 35`3a 70`4a 126`5a 210`6a

0 0 0 0 0 6`a 21`2a 56`3a 126`4a 252`5a

0 0 0 0 0 0 7`a 28`2a 84`3a 210`4a

0 0 0 0 0 0 0 8`a 36`2a 120`3a

0 0 0 0 0 0 0 0 9`a 45`2a

0 0 0 0 0 0 0 0 0 10`a




.

The equations (4) for a1, . . . , a10 have coefficient matrix




p5`c p4`2c p3`3c p2`4c p`5c `6c p−1`7c p−2`8c p−3`9c p−4`10c

p5 − 1 2p4`c 3p3`2c 4p2`3c 5p`4c 6`5c 7p−1`6c 8p−2`7c 9p−3`8c 10p−4`9c

0 p4 − 1 3p3`c 6p2`2c 10p`3c 15`4c 21p−1`5c 28p−2`6c 36p−3`7c 45p−4`8c

0 0 p3 − 1 4p2`c 10p`2c 20`3c 35p−1`4c 56p−2`5c 84p−3`6c 120p−4`7c

0 0 0 p2 − 1 5p`c 15`2c 35p−1`3c 70p−2`4c 126p−3`5c 210p−4`6c

0 0 0 0 p− 1 6`c 21p−1`2c 56p−2`3c 126p−3`4c 252p−4`5c

0 0 0 0 0 0 7p−1`c 28p−2`2c 84p−3`3c 210p−4`4c

0 0 0 0 0 0 p−1 − 1 8p−2`c 36p−3`2c 120p−4`3c

0 0 0 0 0 0 0 p−2 − 1 9p−3`c 45p−4`2c

0 0 0 0 0 0 0 0 p−3 − 1 10p−4`c




,

and a term (p6 − 1)a0 should be added to the first equation.

(1) E = 15A8 = [1, 1, 1, 0, 0]. We have ∆ = −15 < 0. One finds that ap-
parently L(Sym10E, 6)(2π)9/(Ω+Ω−)15 = 226541/(315514). According
to Guess 4.3, ordp(cp) = −15 for p = 3 or 5.
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For the prime p = 3 of multiplicative reduction, dp = 1 and a = c = 0
for ` = 5. The equations (3) give

5a10 = 0, a9 = a8 = a7 = 0, a6 = 3a10, 5a5 = 0,

a4 = a3 = 0, a2 = a10, a1 = −a5.

The equations (4) impose the additional condition a5 = 0, so that we have
ord5(c3) = 1. By Proposition 21 of [Se1] the natural map from Gal(Q/Q)
to Aut(E[5]) is surjective. The ring of invariants for the natural action
of SL2(F5) on F5[x, y] is generated by elements of degrees ` + 1 = 6
and `2 − ` = 20, so H0(Q, A′5(5)) and H0(Q, A′5(6)) are trivial, see §5.6,
Example 5 of [Sm]. We have successfully accounted for the correct power
of 5.

For the prime p = 5 of multiplicative reduction, dp = 1 and a = c = 0
for ` = 3. The equations (3) give

a10 = 0, 9a9 = 0, a8 = 0, a7 = 6a9, 3a6 = 0, a5 = 3a9,

a4 = a6, 3a3 = 6a9, a2 = a6, a1 = −(a3 + a9).

The equations (4) impose the extra conditions a9 = 0, a3 = a6, so that
ord3(c5) = 1. This can be balanced by a global torsion factor. The natu-
ral map from Gal(Q/Q) to Aut(E[3]) is surjective. The ring of invariants
for the natural action of SL2(F3) on F3[x, y] is generated by elements
of degrees ` + 1 = 4 and `2 − ` = 6, and the one-dimensional space of
invariants in degree 10 is spanned by xy9 − x9y, see §5.6, Example 5
of [Sm]. On xy9 − x9y Gal(Q/Q) acts via the cyclotomic character, so
H0(Q, A′3(6)) is trivial but (xy9 − x9y)(−5) is a Gal(Q/Q)-invariant ele-
ment of H0(Q, A′[3](5)), showing that #H0(Q, A′3(5)) ≥ 3.

Now let us try to account for the power of 2 using Conjecture 2.3.
We get 215 from (2), and c∞ = 25 from Lemma 3.4. Both factors
#H0(Q, A′2(3)) and #H0(Q, A′2(4)) are bounded below by 25, by Propo-
sition 5.1, since #E[2](Q) = 2. In fact #H0(Q, A′2(4)) is bounded below
by 26, as a consequence of E having a rational point of order 4. For the
prime p = 5 of multiplicative reduction, we have dp = 1, and with ` = 2
we have a = c = 0. The equations (3) give

2a10 = 0, a9 = a10, 8a8 = 0, a7 = 4a8, 2a6 = 4a8, a5 = a6 − 2a8, 4a4 = 4a8,

a3 = 2a4 + a6 + a10, 2a2 = 2a4 + a10, a1 = −a2 − 3a4 − a6 + a8 + a10.
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Examining these equations, one finds that 2ai = 0 whenever i is odd, and
always 8ai = 0. It follows from this that the equations (4) do not impose
any further conditions on a1, . . . , a10. Hence ord2(c5(6)) = 1 + 3 + 1 +
2 + 1 = 8. For the prime p = 3 of multiplicative reduction we have again
dp = 1, and a = c = 0 for ` = 2, and similarly ord2(c3(6)) = 8. We have
then accounted for 215+5−5−6+8+8 = 225.
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[P] PARI/GP, Université Bordeaux I, Bordeaux, France. Online at

pari.math.u-bordeaux.fr

[Se1] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent.

Math. 15 (1972), 259–331.

[Se2] J.-P. Serre, Facteurs locaux des fontions zêta des variétés algébriques (définitions et
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