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Abstract: Let (Xy, By) be the canonical limit of a one-parameter family of
stable pairs, provided by the log Minimal Model Program. We prove that
Xy is S92 and that | By| is S1, as an application of a general local statement:
if (X, B+e€D) is log canonical and D is Q-Cartier then D is Sy and |B|ND
is S1, i.e. has no embedded components.

When B has coefficients < 1, examples due to Hacking and Hassett show
that By may indeed have embedded primes. We resolve this problem by in-
troducing a category of stable branchpairs. We prove that the corresponding
moduli functor is proper for families with normal generic fiber.
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Let U = S\ 0 be a punctured nonsingular curve, and f : (Xy, By) — Y x U be
a family of stable maps (precise definitions follow). It is well understood, see e.g.
[KSB88, Ale96] that log Minimal Model Program leads to a natural completion
of this family over S, possibly after a finite ramified base change S’ — S. This,
in turn, leads to the construction of a proper moduli space of stable maps (called
stable pairs if Y is a point) once some standard conjectures, such as log MMP in
dimension dim X 4 1 and boundedness, and some technical questions have been
resolved.

The purpose of this paper is solve two such technical issues. The first one is
the Serre’s Sa-property for the one-parameter limits, which implies that the limit

is semi log canonical:

Theorem 0.1. Let (X, B) — S be the stable log canonical completion of a family
of log canonical pairs. Then for the central fiber one has:

(1) X() 18 SQ,
(2) |Bo] is S1, i.e. this scheme has no embedded components.

As a corollary, if B is reduced (i.e. all b; = 1) then the central fiber f :
(Xo, By) — Y is a stable map.

For surfaces with reduced B, Theorem 0.1 was proved by Hassett [Has01].
Even in that case, our proof is different. Whereas the proof in [Has01] is global,
i.e. it requires an actual semistable family of projective surfaces with relatively
ample K x + B, our proof is based on the following quite general local statement:

Lemma 0.2. Let (X, B) be a log canonical pair which has no zerodimensional
centers of log canonical singularities. Then for every closed point x € X, the local
ring Ox o 15 S3.

As a consequence, we obtain the following theorem from which (0.1) follows at

once.

Theorem 0.3. Let (X, B) be a log canonical pair and D be an effective Cartier
divisor. Assume that for some € > 0 the pair (X, B+ €D) is log canonical. Then
D is Sy and |B| N D is Sy.
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The second question we consider is the following. When the coefficients b; in
are less than one, Hacking and Hassett gave examples of families of stable surface
pairs in which the central fiber By of B indeed does have embedded primes. We
resolve this problem by introducing, following ideas of [AKO06], a new category,
that of stable branchpairs, which avoids nonreduced schemes. We define the
moduli functor in this category and check the valuative criterion of properness

for families with normal generic fiber.

With branchdivisors thus well-motivated, we define, in a straighforward way,
branchcycles of other dimensions as well.

Acknowledgements. It is a pleasure to acknowledge helpful conversations with
Florin Ambro, Paul Hacking, Brendan Hassett, Janos Kollar and Allen Knutson.
I also thank the referee for thoughtful comments. The research was partially
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Throughout most of the paper we work over an algebraically closed field of
characteristic zero, and relax this condition to an arbitrary field for the last

section.

1. BASIC DEFINITIONS

All varieties in this paper will be assumed to be connected and reduced but
not necessarily irreducible. A polarized variety is a projective variety X with
an ample invertible sheaf L. A pair (X, B) will always consist of a variety X
and a Q-divisor B = ) b;B;, where B; are effective Weil divisors on X, and
0<b; <1

We use standard definitions and notations of Minimal Model Program for dis-
crepancies a(X, B, E;), notions of log canonical pairs (abbreviated lc), kit pairs,
etc., as in [KM98]. We assume standard definitions from commutative algebra
for the Serre’s conditions S,,. We now list the slightly less standard definitions.

Definition 1.1. Let (X, B) be an lc pair. A center of log canonical singular-
ities of (X, B) (abbreviated to a center of LCS(X, B)) is the image of a divisor
E; CY on aresolution f:Y — X that has discrepancy a(X, B, F;) = —1.

If f:Y — X is log a smooth resolution of (X, B) and E = )_ E; is the union
of all divisors with discrepancy —1 (some exceptional, some strict preimages of
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components of B with b; = 1) then the centers of LCS(X, B) are the images of
the nonempty strata NE;.

We will use the following important results of Florin Ambro, which were fur-
ther clarified by Osamu Fujino. The first is Ambro’s generalization of Kollar’s
injectivity theorem [Kol86], and the second describes properties of log centers.

Theorem 1.2 (Injectivity for varieties with normal crossings, simple form). Let
Y be a nonsingular variety, E+ S+ A be a normal crossing R-divisor onY , E, S

and A have no components in common, E + S is reduced, and |A] = 0.

Let f:Y — X be a proper morphism, A a Cartier divisor on E, and assume
that the divisor H ~g A — (Kg + S+ A) on E is f-semiample. Then every
nonzero section of R'f.Op(A) contains in its support the f-image of some strata
of (E,S+ A).

Here, Kg stands for the dualizing invertible sheaf wg, and the strata of (E, S+
A) are the intersections of the components of E and S.

Proof. This is a special case of [Amb03, 3.2(i)], see also [Amb07] for another

exposition. This theorem was also reproved in [Fuj07a, 5.7,5.15], see also [Fuj07b].
([

Theorem 1.3 (Properties of log centers). (1) Ewvery irreducible component of
the intersection of two centers is a center.
(2) For any x € X the minimal center containing x is normal.

(3) A union of any set of centers is seminormal.

Proof. (1) and (2) are contained in [Kaw97, Kaw98] in the case when there exists
a klt pair (X, B") with B’ < B. For the general case these are in [Amb03, 4.8].
(3) is [Amb98] and [Amb03, 4.2(ii),4.4(1)].

Also, a very easy, one-page proof of these properties, which uses only the above
injectivity theorem, is contained in [Amb07, §4]. O
Definition 1.4. A pair (X, B) is called semi log canonical (slc) if

(1) X satisfies Serre’s condition S,
(2) X has at worst double normal crossing singularities in codimension one,
and no divisor B; contains any component of this double locus,



Limits of Stable Pairs 771

(3) some multiple of the Weil Q-divisor Kx + B, well defined thanks to the
previous condition, is Q-Cartier, and

(4) denoting by v : XY — X the normalization, the pair
(X¥, (double locus) 4+ v~'B) is log canonical.

Definition 1.5. A pair (X, B = ) b;B;) (resp. amap f : (X,B) —Y) is called
a stable map if the following two conditions are satisfied:

(1) on singularities: the pair (X, B) is semi log canonical, and
(2) numerical: the divisor Kx + B is ample (resp. f-ample).

A stable pair is a stable map to a point.

Definition 1.6. A variety X is seminormal if any proper bijection X’ — X is
an isomorphism.

It is well-known, see e.g. [Kol96, 1.7], that every variety has a unique semi-
normalization X*" and it has a universal property: any morphism ¥ — X with
seminormal Y factors through X®".

2. S9 AND SEMINORMALITY

We collect some mostly well-known facts about the way the Ss property and

seminormality are related.

Definition 2.1. The Se-fication, or saturation in codimension 2 of a variety
X is defined to be

X' X =lim Speco, Oxz — X

in which the limit goes over closed subsets Z C X with codimy Z > 2. The

morphism 75 is finite: indeed, it is dominated by the normalization of Y.

More generally, for any closed subset D C X the saturation in codimension
2 along D
™ XPt— X
is defined by taking the limit as above that goes only over Z C D. Hence,

T = Wg?,tx
Lemma 2.2. 75, is an isomorphism iff for any subvariety Z C D the local ring

Ox.,z is So.
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Proof. Let Z C D be a subvariety with codimy Z > 2. By the cohomological
characterization of depth (see f.e. [Mat89, Thm. 28] or [Eis95, 18.4]) the local
ring Ox 7 has depth > 2 iff any short exact sequence

0—-0xz—F—-Q—0
of Ox z-modules with Supp ) = Z splits.

If 755" is an isomorphism then for every exact sequence as above F5* = Ox 7,
and the canonical restriction morphism F — F3% provides the splitting. If 75"

is not an isomorphism over some Z C D then the localization of
0— Ox — Oyt - Q — 0
at Z does not split and @ # 0. (]

Lemma 2.3. Assume that X is seminormal and ﬂg?fD is a bijection. Then for

any subvariety Z C D the local ring Ox 7 is Sa.

Proof. Since X is seminormal, 752%, is an isomorphism, so the the previous lemma
b

applies. O

Lemma 2.4. Assume X is Sy and is seminormal in codimension 1. Then X 1is

seminormal.

Proof. We have (X®7)%3t = X%t and X% = X hence X*" — X is an isomor-
phism. O

Corollary 2.5. Semi log canonical = seminormal.

3. SINGULARITY THEOREMS

Let X be a normal variety, which by Serre’s criterion implies that X is So. Let
f:Y — X be a resolution of singularities. Then we have:

Lemma 3.1. Assume dim X > 2. Then X is S3 at every closed point x € X iff
R'f.0Oy has no associated components of dimension 0, i.e. the support of every
section of R'f,Oy has dimension > 0.

Proof. By considering an open affine neighborhood of x and then compactifying,
we can assume that X is projective with an ample invertible sheaf L. (Since
the property of being S3 at closed points is open, one can compactify without
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introducing “worse” points.) Then by the proof of [Har77, Thm.IIL.7.6], X is S
at every closed point iff for all r > 0 one has H> ((’)X(—rL)) =0.

The spectral sequence
EYY = HP(R1f,Oy(—rL)) = H"* YOy (—rf*L))

together with the fact that H* 2»d 2(Oy(—=rf*L)) = 0 by Generalized Kodaira’s
vanishing theorem [KM98, 2.70], imply that

dy' - H'(R'f.Oy(~rL)) — H*(Ox(—rL))

is an isomorphism. Further, H° (Rl f*Oy(—rL)) = 0 for 7 > 0 precisely when
the sheaf R!f,Oy has no associated components of dimension 0. U

Log terminal pairs have rational singularities, and hence are Cohen-Macaulay,
see [KM98, Thm.5.22] for a simple proof. Log canonical singularities need not
be S3. The easiest example is a cone over an abelian surface S. Indeed, in this
case R f.0y = H! ((95) is non-zero and supported at one point. However, we

will prove the following:

Lemma 3.2. Let (X, B) be a log canonical pair which has no zerodimensional
centers of log canonical singularities. Then for every closed point x € X the local
ring Ox g 15 S3.

Proof. As in the previous proof, we can assume that (X, L) is a polarized variety,
and we must prove that for r > 0 one has H*(Ox(—rL)) = 0. Let f : Y — X be
a resolution of singularities of (X, B) such that f~!B U Exc(f) is a divisor with

global normal crossings. Then we can write
Ky ~Q f*(Kx—‘rB)—E—l-A—A,
where

(1) E =) Ej is the sum of the divisors B; with b; = 1 and the exceptional
divisors of f with discrepancy —1,

(2) A is effective and integral,

(3) A is effective and |A] = 0.

Since the pair (X, B) is log canonical and the coefficients of B satisfy 0 <
b; <1, it follows that A is f-exceptional, E/ has no components in common with
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Supp A and with A, and the union F U Supp A U Supp A is a divisor with global

normal crossings.

Then —E 4+ A ~qg Ky + A — f*(Kx + B). The Generalized Kodaira Theorem
(Kawamata-Viehweg theorem) gives RYf.Oy(—E+A) = 0 for ¢ > 0. Therefore,
by pushing forward the exact sequence

0—-0y(—E+A) — Oy(A) — Opg(A) =0
we obtain R'f,Oy(A) ~ R'f,Or(A). Now, on E one has
ANQ Kg+ A — f*(Kx + B),

where K stands for the (invertible) dualizing sheaf wg. Therefore, by Ambro’s
injectivity theorem 1.2, applied here with H = —f*(Kx + B) and S = 0, the
support of every nonzero section of the sheaf R!f,Ogp(A) contains a center of
LCS(X, B), hence has dimension > 0.

Now consider the following commutative diagram

H?*(Oy(—rf*L)) H?*(Oy(A—rf*L))

! %

(f*Oy —rf*L )) HQ(f*Oy(A—T’f*L))

12 (Ox (~rL)) ——— H*(Ox(~rL))

Since by Generalized Kodaira’s vanishing theorem H? (Oy(—?" f*L)) = 0, this
implies H? (OX(—’I“L)) = 0 if we could prove that ¢ is injective. Finally, the

spectral sequence
EY? = HP(Rf,Oy(A)(—rL)) = EPt? = HP*9(Oy (A —rf*L))
in a standard way produces the exact sequence
EO 1 dy E2 0__, g2

In our case, Eg’l = H°(R'f.Oy(A)(—rL)) = 0 by what we proved above (the
sheaf R!f,Oy (A) has no associated components of dimension 0), and the second
homomorphism is ¢. Hence, ¢ is injective. This completes the proof. ([
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Remark 3.3. One has to be careful that (3.2) does not imply that X is Ss.
Indeed, let X’ be a variety which is Sy but not S3, for example a cone over
an abelian surface, and let X be the cartesian product of X’ with a curve C.
Then X is S5 at every closed point but not at the scheme point corresponding to
(vertex)xC.

Theorem 3.4. Let (X, B) be an lc pair and D be an effective Cartier divisor.
Assume that for some € > 0 the pair (X, B + €D) is lc. Then D is Sa.

Proof. Suppose that for some subvariety Z C D the local ring Op 7 is not 5o,
then Ox 7 is not S3. Let

(XD By = (X,BynH,N---NHy

be the intersection with d = dim Z general hyperplanes such that Z(4 = Zn
HiN---NHy#0. Then

(1) the pair (X@, B(9)) is lc by the general properties of lc (apply Bertini
theorem to a resolution), and

(2) X is not S3 at a closed point P € Z@ (by the semicontinuity of depth
along Z on fibers a morphism; applied to a generic projection X — IP’d).

Let W be a center of LCS(X, B). Since (X, B + €D) is lc, W is not contained
in D. Then the corresponding centers, irreducible components of W@ = W N
HyN---N Hy are not contained in D@ . Hence, by shrinking a neighborhood of
D@ in X@ we can assume that (X4, B(@) has no zerodimensional centers of
LCS. But then X@ is S3 at P by (3.2), a contradiction. O

Theorem 3.5. Under the assumptions of (3.4), the scheme |[B| N D is S;.

Proof. Note that |B| is a union of several centers of LCS(X, B). As such, it is
seminormal by Theorem 1.3.

We claim that the saturation = = WT?_‘;MB jnp ©f [B] in codimension 2 along
| B] N D is a bijection. Otherwise, there exists a subvariety Z C | B| intersecting
D such that 7 : 771(Z) — Z is several-to-one along Z. Then cutting by generic
hyperplanes, as above, we obtain a pair (X (@), B(d)) such that Z(@ is a point P
and | B|(? has several analytic branches intersecting at P.
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After going to an étale cover, which does not change the lc condition, we can
assume that P is a component of the intersection of two irreducible component
of the locus of LCS(X (4, B(@),

But then P is a center of LCS itself, by Theorem 1.3(1). This is not possible,
again because (X4 B  ¢D) is Ic; contradiction.

The saturation morphism 7 : LBJSCEJ,LBJmD — | B] is a bijection, and |B] is
seminormal. By Lemma 2.3 this implies that |B] is Sy along any subvariety
Z C D. Therefore |[B] N D is S;. O

4. ONE-PARAMETER LIMITS OF STABLE PAIRS

Let U = (S,0) be a punctured nonsingular curve and let fy : (Xy,By) —
Y x U be a family of stable maps with normal X, so that (Xy, By) is lc.

The stable limit of this family is constructed as follows. Pick some extension
family f : (X,B) — Y x S. Take a resolution of singularities, which introduces
some exceptional divisors F;. Apply the Semistable Reduction Theorem to this
resolution together with the divisors, as in [KM98, Thm.7.17]. The result is that
after a ramified base change (S’,0) — (5,0) we now have an extended family
f': (X', B') such that X' is smooth, the central fiber )?(’] is a reduced normal
crossing divisor, and, moreover, )A(:(’) U Supp B'U EZ/ is a normal crossing divisor.
Let us drop the primes in this notation for simplicity, and write X, .S, etc. instead
of X', 5" etc.

It follows that the pair ()? , B+ )Z'g +> E’z) has log canonical singularities and
is relatively of general type over Y x S. Now let f: (X, B+ Xy) — Y x S be its
log canonical model, guaranteed by the log Minimal Model Program. The divisor
Kx + B+ Xj is f-ample and the pair (X, B + X() has canonical singularities.

Theorem 4.1. The central fiber X is Sa, and the scheme | B] N X is S.

Proof. Immediate from (3.4) and (3.5) by taking D = Xy and € = 1. O
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5. BRANCHPAIRS

In [Has03] Hassett constructed moduli spaces of weighted stable curves, i.e.
one-dimensional pairs (X, ) b;B;) with 0 < b; < 1. It is natural to try to extend
this construction to higher dimensions.

However, in the case of surfaces Hacking and Hassett gave examples of one-
parameter families of pairs (X,bB) — S with irreducible B such that By has an
embedded point. Such examples are constructed by looking at families (X, B) —
S in which B is not Q-Cartier. Recall that by the definition of a log canonical
pair Kx + B must be Q-Cartier but neither Kx nor B are required to be such.
The following explicit example was communicated to me by Brendan Hassett,
included here with his gracious permission.

Example 5.1. Let F,, denote the Hirzebruch ruled surface with exceptional sec-

tion s, (s2 = —n) and fiber f,; in particular Fy = P! x P! with two rulings

denoted by fy and so.

Let [ ~ sg+2fp be a smooth curve in Fy and let X be the blowup of Fy x .S along
[ x 0 in the central fiber. Then X is the union of two irreducible components
Xél) = Fy and Xé2) = I, intersecting along [, and | ~ s4 in Fy.

Let EO = Eél) U E((f) be a curve in the central fiber such that Eél) ~ 2sq is the
union of two generic lines and E(()Q) ~ 4(sq + 4f4) + 4f4, intersecting at 4 points
P, P, P3, Py. Then EO is a nodal curve of genus 35. Let B be a family of curves
obtained by smoothing By.

Denote by f : X — X the morphism blowing down the divisor )?él), and
B = f(B). One easily computes that Kx is not Q-Cartier (because so + 2fo is
not proportional to K)’Eél)) but Kx + 1/2B is, and that (X,1/2B) has canonical
singularities.

After the blowdown, the curve (Bp)req in the central fiber is obtained from
§é2) by gluing the four points P; together. The curve By and its smoothings
have arithmetic genus 35. The curve (Bg)eq has genus 36. Hence, By has an
embedded point.

So, if one wants to work with arbitrary coefficients, which is very natural, one
must enlarge the category of pairs in some way, or use some other trick to solve
the problem. There are at least two ways to proceed:
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(1) One can work with floating coefficients. This means that we must require
the divisors B; to be Q-Cartier, and the pairs (X, ) (b; + €;)B;) to be semi
log canonical and ample for all 0 < ¢; <« 1. Hacking did just that in [Hac04]
for planar pairs (P2, (3/d + €)D). And the moduli of stable toric, resp. abelian
pairs in [Ale02] can be interpreted as moduli of semi log canonical stable pairs
(X,A+¢€B), resp. (X,eB).

However, it is very desirable to work with constant coefficients, and the co-
efficients appearing in the above-mentioned examples are fairly simple, such as
by =1/2.

(2) One can work with the pairs (X, )" b;B;), where B; are codimension-one
subschemes of X, possibly with embedded components. This can be done in two

ways:

(a) Natural. One should define (semi) log canonical pairs (X,Y’) of a variety
X with a subscheme Y. This was done for pairs with smooth variety X (see, e.g.
[Mus02]) and more generally when X is Q-Gorenstein. But: this is insufficiently
general for our purposes, especially if we consider the case of pairs of dimension
> 3.

(b) Unnatural. One can work with subschemes B; that possibly have embedded
components but then ignore them, by saturating in codimension 2. For example,
one should define the sheaf Ox(N(Kx + B)) as

Ox(N(KX + B)) = higl jU*OU(NKU + B),
U
where the limit goes over open dense subsets ji : U — X with codim(X \U) > 2
such that B N U has no embedded components and such that U is Gorenstein.
But this does feel quite artificial.

Building on [AKO06], I now propose a different solution which avoids nonreduced
schemes altogether.

Definition 5.2. Let X be a variety of pure dimension d. A prime branchdi-
visor of X is a variety B; of pure dimension d — 1 together with a finite (so, in
particular proper) morphism ¢; : B; — X.
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Let us emphasize again that by our definition of variety, B; is connected,
possibly reducible and, most importantly, reduced. Hence, a prime branchdivisor
is simply a connected branchvariety, as defined in [AKO06], of pure codimension 1.

Definition 5.3. A branchdivisor is an element of a free abelian group bZ;_1(X)
with prime branchdivisors B; as generators. If A is an abelian group (such as Q,
R, etc.) then an A-branchdivisor is an element of the group b7, 1(X) ® A.

The shadow of a branchdivisor ) b;B; is the ordinary divisor ) b;p;«(B;)
on X. We will use the shortcut ¢, B for the shadow of B.

We will be concerned with Q-branchdivisors in this paper, although R-coefficients
are frequently useful in other contexts.

Definition 5.4. A branchpair is a pair (X,) b;B;) of a variety and a Q-
branchdivisor on it, where Bj; are prime branchdivisors and 0 < b; < 1. This

pair is called (semi) log canonical (resp. terminal, log terminal, klt) if so is its
shadow (X, > b;wjx(B;))-

Definition 5.5. A family of branchpairs over a scheme S is a morphism
m: X — S and finite morphisms ¢; : B; — X such that

(1) m: X — S and all mog;: B; — S are flat, and
(2) every geometric fiber (X5, ) b;j(B;)s) is a branchpair.

Discussion 5.6. It takes perhaps a moment to realize that anything happened
at all, that we defined something new here. But consider the following example:
X = P2, Bis arational cubic curve with a node, and B’ ~ P! is the normalization
of B, and f : B’ — X is a branchdivisor whose shadow is B. Then the pairs
(X, B) and (X, B’) can never appear as fibers in a proper family with connected
base S. Indeed, p,(B) = 1 and p,(B’) = 0, and the arithmetic genus is locally
constant in proper flat families.

Definition 5.7. A branchpair (X, B) together with a morphism f : X — Y is
stable if (X, p.B) has semi log canonical singularities and Kx + ¢, B is ample
over Y.

Finally, we define the moduli functor of stable branchpairs over a projective
scheme Y.
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Definition 5.8. We choose a triple of positive integers numbers C =
(C1,Cq,C3) and a positive integer N. We also fix a very ample sheaf Oy (1) on Y.
Then the basic moduli functor M¢ n associates to every Noetherian scheme S over
a base scheme the set Mc n(S) of morphisms f: X — Y x S and ¢; : B; - X
with the following properties:

(1) X and By are flat schemes over S.

(2) Every geometric fiber (X, B); is a branchpair,

(3) The double dual Ly (X/S) = (w%%@OX(Ngo*B))** is an invertible sheaf
on X, relatively ample over Y x S.

(4) For every geometric fiber, (Lx)% = C1, (Ly)sHs = Oy, and H? = Cs,
where Ox(H) = f*Oy(l)

Theorem 5.9 (Properness with normal generic fiber). Every family in Mo n
over a punctured smooth curve S\ 0 with normal X, has at most one extension,

and the extension does exist after a ramified base change S’ — S.

Proof. Existence. The construction of the previous section gives an extension for
the family of shadows (Xy, ¢«By). The properness of the functor of branchvari-
eties [AKO06] applied over X/S gives extensions ¢; : B; — X.

The shadow pair (X, B + X() has log canonical singularities. We have es-
tablished that X is So. Now by the easy direction of the Inversion of Adjunction
(see, e.g. [Fli92, 17.3]) the central fiber (Xo, (¢+B)o) has semi log canonical
singularities, and so we have the required extension.

Uniqueness. We apply Inversion of Adjunction [Kaw06] to the shadow pair.
The conclusion is that (X, p.B) is le. But then it is the log canonical model
of any resolution of singularities of any extension of (X, p«By). Since the log
canonical model is unique, the extension of the shadow is unique. And by the
properness of the functor of branchvarieties [AK06] again, the extensions of the

branchdivisors ¢; : B; — X are unique as well. O

Remark 5.10. One can easily see what happens when we apply our procedure
in Example 5.1. The limit branchdivisor, call it B}, is the curve obtained from
E[()z) by identifying two pairs of the points P; separately. The morphism B}, — X
is 2-to-1 above the point P € X and a closed embedding away from P.
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Indeed, the surface B has rational double points, and each of the lines in B((]l) ~

250 is a (—2)-curve on the resolution of this surface. This implies that these curves

are contractible. Let B’ be the projective surface obtained by contracting them.

Thus, the central fiber By is obtained from B(gl) by identifying separately P, with
P, and P3 with Pj.

Then the curve (B()reqa is nodal and has arithmetic genus 35, the same as
the generic fiber. Therefore, B, = (B{)red. Hence, B’ — C is a family of

branchcurves.

Remark 5.11. Examples given by J. Kollar in [Kol07] show that the case of
nonnormal generic fiber requires extreme care. One key insight from [Kol07] is
that on a properly defined non-normal stable pair, for every component of the
double locus, the two ways of applying adjunction should match.

More precisely, let (X, B) be a non-normal stable pair and let C' be a component
of the double locus. Let v : X¥ — X be the normalization, C¥ = v~!(C), and
CY — C be the corresponding double cover. Then the divisor Diff, computed
from v*(Kx + B)|cv = K¢v + Diff, should be invariant under the involution.

We also note that M. A. van Opstall considered the case of nonnormal surfaces
with B = () in [vOO06].

6. BRANCHCYCLES

Once we have defined the branchdivisors, it is straightforward to define branch-
cycles as well: the prime k-branchcycles of X are simply k-dimensional branch-
varieties over X, and they are free generators of an abelian group bZy(X), resp.
a free A-module bZ(X, A) = bZ,(X) ® A.

Definition 6.1. The linear (resp. algebraic) equivalence between k-branchcycles
is generated by the following: for any family of k-dimensional branchvarieties
¢: B — X x C, where C = P! (resp. a smooth curve with two points 0, 00) the
fibers ¢ : By — X and ¢ : Boo — X are equivalent.

We denote the quotient modulo the linear (resp. algebraic) equivalence by
bAR(X) (resp. bBy(X)).



782 Valery Alexeev

Clearly, any function which is constant in flat families of branchvarieties de-
scends to an invariant of bBy(X). For example, there exists a natural homo-
morphism bBi(X) — K¢(X) to the K-group of X given by associating to a
branchvariety ¢ : B — X the class of the coherent sheaf ¢.Op. If we fix a very
ample sheaf Ox (1) then we can compose this homomorphism with taking the
Hilbert polynomial to obtain a homomorphism h : bB(X) — Z[t].
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