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Abstract: This paper addresses weak approximation for rationally con-
nected varieties defined over the function field of a curve, especially at places
of bad reduction. Our approach entails analyzing the rational connectivity
of the smooth locus of singular reductions of the variety. As an application,
we prove weak approximation for cubic surfaces and Fano hypersurfaces of
dimension at least three, with square-free discriminant.
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1. Introduction

In number theory, many results and techniques rely on approximating adelic
points by rational points. In this paper, we study geometric versions of these
notions for rationally connected varieties over the function field of a curve. In this
context, rational points correspond to sections of rationally-connected fibrations
over the curve. We are looking for sections with prescribed jet data in finitely
many fibers.

Let k be an algebraically closed field of characteristic zero, B a smooth curve
over k with function field F = k(B). Let B be the smooth projective model of
F and put S := B \B.

Theorem 1. Let X be a smooth proper rationally connected variety over F , and
π : X → B a proper model of X. (A model of X is an algebraic space flat over
B with generic fiber X.) Let X sm be the locus where π is smooth and X • ⊂ X sm

be an open subset such that

(1) there exists a section s : B → X •;
(2) for each b ∈ B and x ∈ X •

b , there exists a rational curve f : P1 → X •
b

containing x and the generic point of X •
b .

Then sections of X • → B satisfy approximation away from S (see Section 2).

We shall actually prove a stronger result, Theorem 15, that is applicable in
positive characteristic. Rationally-connected fibrations over curves have sections
by [8]. The existence of a section through a finite set of prescribed points is
addressed in [16] 2.13 and [15] IV.6.10.1. Weak approximation is known in fibers
of good reduction [10], so we take simultaneous resolutions of singular fibers
of X whenever possible. (For example, for rational double points on surfaces,
simultaneous resolution is possible provided the local monodromy is trivial [3, 4].)
Consequently, when X → B admits a simultanteous resolution over some étale
neighborhood of b, we replace X by this resolution. However, the resolved family
may be an algebraic space, rather than a scheme, over B. This is why Theorem 1
is stated in this generality.

There are very few instances where weak approximation over function fields is
known at all places: stably rational varieties; connected linear algebraic groups
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and their homogeneous spaces; homogeneous space fibrations over varieties that
satisfy weak approximation, including conic bundles over rational varieties; and
Del Pezzo surfaces of degree at least four [5]. Recently, the case of smooth hy-
persurfaces of degree d in Pn with d2 ≤ n has been resolved [6], as an application
of the notion of ‘rational simply connectedness’. Even the case of cubic surfaces
remains open, in general. Madore established weak approximation for cubic sur-
faces at places of good reduction [18]. His proof uses the abundance of distinct
unirational parametrizations, and builds on ideas of Swinnerton-Dyer [21].

When is Theorem 1 applicable? Let X be a smooth projective rationally
connected variety over F = k(B), with B projective. There exists a regular
proper model π : X → B, and any section s : B → X is contained in X sm. For
each singular fiber Xb, fix an irreducible component X •

b ⊂ X sm
b ; these determine

an open subset X • ⊂ X sm. To prove weak approximation for X, it suffices to
prove approximation for each X • obtained in this way. We do not know how
to verify (1) in general: Is there any section meeting a prescribed irreducible
component of X sm

b ? Further, there is no general result giving a regular proper
model X → B such that each irreducible component of X sm

b has the property
(2).

Section 5 is devoted to applications to cubic surfaces:

Theorem 2. Let X be a smooth cubic surface over F and π : X → B a proper
model whose singular fibers are cubic surfaces with rational double points. Sup-
pose there exists a section s : B → X sm. Then sections of X sm → B satisfy
approximation away from S.

When the model is regular all sections are contained in the smooth locus, so
we conclude:

Corollary 3. Let X be a smooth cubic surface over F . Suppose X admits a
regular proper model π : X → B whose singular fibers are cubic surfaces with
rational double points. Then weak approximation holds for X away from S =
B \B.

There exist cubic surfaces which do not admit models with at most rational
double points in a given fiber, e.g., the isotrivial family

x3 + y3 + z3 = tw3
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over the t-line. Nonetheless, Corollary 3 proves weak approximation for ‘generic’
cubic surfaces.

Corollary 4. Let Hi lb = P(Γ(OP3(3))) ' P19 denote the Hilbert scheme of cubic
surfaces, U → Hi lb the universal family, and D ⊂ Hi lb the discriminant divisor.
Let B ⊂ Hi lb be a smooth curve transverse to each branch of D and

X := U ×Hi lb B → B

the corresponding family. Then X = U×Hi lbSpec(F ) satisfies weak approximation
away from S = B \B.

Note that meeting the discriminant transversally is an open condition on the
classifying map to the Hilbert scheme. This can be expressed in number-theoretic
terms: The discriminant of X → B is square-free. Generalizations to degree-two
del Pezzo surfaces have been proven by Knecht [12].

Finally, in Section 6 we offer extensions of these Corollaries. We generalize
Corollary 3 to the case where the fibers have isolated complete-intersection ter-
minal singularities. Corollary 4 extends to generic hypersurfaces X ⊂ Pn of
degree d ≤ n provided n ≥ 4.

In our approach to approximation, we require precise control over proper ra-
tional curves in the smooth locus of a singular variety. One focus of this paper is
to extend standard results on smooth proper rationally connected varieties to the
non-proper case (see Section 4). The application to cubic surfaces and higher-
dimensional hypersurfaces involves refining rational connectivity results of [11]
(see Sections 5 and 6).

Acknowledgments: We are grateful to J. L. Colliot-Thélène for numerous dis-
cussions about the problems considered here; the ideas here were developed dur-
ing visits to Orsay by both authors. J. McKernan suggested the extensions to
higher-dimensional hypersurfaces. We also benefitted from conversations with S.
Keel, A. Knecht, and J. Kollár. The first author was partially supported by the
Sloan Foundation and NSF Grants 0134259 and 0196187. The second author was
partially supported by National Science Foundation Grants 0554280 and 0602333.
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2. Notions of approximation

Let F be a global field, i.e., a number field or the function field of a curve
B defined over an algebraically closed field k. Let S a finite set of places of F

containing the archimedean places, oF,S the corresponding ring of integers, and
AF,S the restricted direct product over all places outside S.

Let X be an algebraic variety over F , X(F ) the set of F -rational points and
X(AF,S) ⊂ ∏

v/∈S X(Fv) the set of AF,S-points of X. The set X(AF,S) carries a
natural direct product topology. One says that weak approximation holds for X

away from S if X(F ) is dense in this topology.

The set X(AF,S) also carries a natural adelic topology: The basic open subsets
are ∏

v∈S′
uv ×

∏

v/∈(S∪S′)

X (ov),

where S′ is a finite set of nonarchimedean places disjoint from S, X → Spec(oF,S)
is a model of X (i.e., flat with generic fiber X), ov is the completion of oF,S at v,
and uv ⊂ X(Fv) an open subset in the v-adic analytic topology on X(Fv). This
depends only on X not on the choice of model. Strong approximation holds for
X away from S if X(F ) is dense in X(AF,S). Note that strong approximation
implies weak approximation. Conversely, for X → Spec(oF,S) flat and proper,
weak approximation implies strong approximation, since X (ov) = X(Fv); in these
cases, we will use the term weak approximation for the sake of consistency.

Finally, there is a formulation which is sensitive to the choice of model. Con-
sider the topology on

∏
v/∈S X (ov) with basic open subsets

∏

v∈S′
uv ×

∏

v/∈(S∪S′)

X (ov),

with uv ⊂ X (ov) an open subset. We say that approximation holds for S-integral
points of X if X (oF,S) is dense in this product. This is a version of strong
approximation for integral points.

We now focus on the function field case: Let B be a smooth projective model
of B with S = B \ B; places v correspond to points b ∈ B. Let X be a smooth
variety proper over F = k(B), π : X → B a model proper and flat over B (which
exists by [20]), and X • ⊂ X sm an open subset surjecting onto B. Since π is
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proper, F -rational points of X correspond to sections s : B → X . If X is regular
s factors through X sm.

Definition 5. An admissible section of π : X → B is a section s : B → X sm. An
admissible N -jet of π at b is a section of

X sm ×B Spec(OB,b/mN+1
B,b ) → Spec(OB,b/mN+1

B,b ).

An approximable N -jet of π at b is a section of

X ×B Spec(OB,b/mN+1
B,b ) → Spec(OB,b/mN+1

B,b )

that may be lifted to a section of X̂b → B̂b, with B̂b = Spec(ÔB,b) and X̂b =
X ×B B̂b.

Hensel’s lemma guarantees that every admissible N -jet is approximable. Let
{bi}i∈I be a finite set of points and ji an admissible N -jet of π at bi. We write
J = {ji}i∈I for the corresponding collection of admissible N -jets.

The notions of weak and strong approximation introduced above have geomet-
ric interpretations

• Weak and strong approximation hold for X away from S if any finite
collection of approximable jets of π can be realized by a section s : B → X .

• This is equivalent to weak approximation holding for X• (the generic
fiber of X •) away from S: Every jet in X at b can be realized by a section
X ×B B̂b → B̂b meeting X̂ •

b .
• If X is regular these are equivalent to the condition that any collection of

admissible jets of π can be realized by a section s : B → X sm.

There is an analogous formulation of approximation for integral points:

• Approximation holds for sections of X • → B away from S if each collec-
tion of jet data in X • can be realized by a section s : B → X •.

• If X is regular and X • = X sm this is equivalent to weak approximation
for X.
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3. Curves, combs, and deformations

The dual graph associated with a nodal curve C has vertices are indexed by the
irreducible components of C and its edges indexed by the intersections of these
components. A projective nodal curve C is tree-like if

• each irreducible component of C is smooth;
• the dual graph of C is a tree.

Definition 6. A comb with m reducible teeth is a projective nodal curve C with
m + 1 subcurves D, T1, . . . , Tm such that

• D is smooth and irreducible;
• Tl ∩ Tl′ = ∅, for all l 6= l′;
• each Tl meets D transversally in a single point; and
• each Tl is a chain of P1’s.

Here D is called the handle and the Tl the reducible teeth.

Let C be a nodal curve and h : C → W an immersion into a smooth algebraic
space with nodal image. (In particular, h is an embedding at nodes of C.) Let Nh

denote the normal bundle (or sheaf), i.e., the dual to the kernel of the restriction
h∗Ω1

W → Ω1
C .

We will use the following lemma, which has the same proof as Proposition 24
of [10]:

Lemma 7. Let C be a tree-like curve, W a smooth algebraic space, h : C → W

an immersion with nodal image. Suppose that for each irreducible component Cl

of C, H1(Cl,Nh⊗OCl
) = 0 and Nh⊗OCl

is globally generated. Then h deforms
to an immersion of a smooth curve into W .

Suppose furthermore that w = {w1, . . . , wM} ⊂ C is a collection of smooth
points such that for each component Cl, H1(Nh ⊗ OCl

(−w)) = 0 and the sheaf
Nh ⊗OCl

(−w) admits a section nonvanishing at each point of the support of

(Nh ⊗OCl
)/Nh|Cl

.

Then h : C → W deforms to an immersion of a smooth curve into W containing
h(w).
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4. Strong rational connectivity

Definition 8. A variety X is rationally connected (resp. separably rationally
connected) if there is a family of proper irreducible rational curves g : U → Z

(resp. π2 : U = P1 × Z → Z) and a cycle morphism u : U → X such that

u2 : U ×Z U → X ×X

is dominant (resp. smooth over the generic point)).

Intuitively, two generic points of X can be joined by an irreducible projective
rational curve. Over fields of characteristic zero, rational connected varieties are
also separably rationally connected [15] IV.3.3.1.

The notion of rational connectedness is a bit subtle over countable fields [2].
For convenience, we work over an uncountable algebraically closed field. Over
such a field, rational connectivity is equivalent to the condition that two very
general points of X can be joined by such a rational curve.

Definition 9. Let X be a smooth algebraic space of dimension d and f : P1 → X

a nonconstant morphism, so we have an isomorphism

f∗TX ' OP1(a1)⊕ . . .⊕OP1(ad)

for suitable integers a1, . . . , ad. Then f is free (resp. very free) if each ai ≥ 0
(resp. ai ≥ 1).

We refer the reader to [15] IV.3 for further facts about rationally connected
varieties.

One technical result will play a prominent rôle in our analysis.

Proposition 10 ([15] IV.3.9.4). Let V be a smooth separably rationally connected
(not necessarily proper) variety. Then there exists a nonempty subset V 0 ⊂ V

characterized as the largest open subset such that if v1, . . . , vm ∈ V 0 are distinct
closed points, then there is a very free curve in V 0 containing these as smooth
points. Moreover, any rational curve C ⊂ V that meets V 0 is contained in V 0.

No example where V 0 6= V is known.

Remark 11. Let V2 be a smooth variety, V1 ⊂ V2 a rationally connected dense
open subvariety, and V 0

2 ⊂ V2 the largest open set satisfying the conditions of
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Proposition 10 . Then V 0
1 ⊂ V 0

2 . Thus a point v ∈ V2 is in V 0
2 provided there is

a rational curve f : P1 → V2 through v and meeting V 0
1 .

Proposition 12. Let V be a smooth separably rationally connected variety, and
β : W → V an iterated blow-up of V along smooth subvarieties. Then β−1(V 0) =
W 0.

Proof. The inclusion W 0 ⊂ β−1(V 0) is straightforward: Given points w1, . . . , wm ∈
W 0, there is a very free curve g : P1 → W 0 containing them; we may choose this
to be transversal to the exceptional divisor of β. The inclusion of sheaves

TW ↪→ β∗TV

remains an inclusion after pull-back via g, as the support of the cokernel does
not contain g(P1). The positivity of g∗TW implies the positivity of (β ◦ g)∗TV ,
which means that β ◦ g : P1 → V is also very free.

For the reverse direction, we may restrict to the case where W is the blow-up of
V along a smooth subvariety Z of codimension r > 1, with exceptional divisor E.
It is clear that β−1(V 0 \Z) ⊂ W0, so consider some w ∈ β−1(z) with z ∈ Z ∩V 0.
It suffices to construct a rational curve containing w and the generic point of W .

There exists a very free curve f ′ : P1 → V 0 with the following properties:

(1) f ′(P1) meets Z only at z (we can always deform a very free curve to a
curve passing through z and disjoint from a codimension ≥ 2 subset [15,
II.3.7]);

(2) f ′(P1) is smooth at z and transverse to Z.

Let g′ : P1 → W denote the lift to W , which is free in W , and w′ = g′(0). If
w′ = w then we are done. Otherwise, let ` ⊂ β−1(z) ' Pr−1 denote the line
joining w and w′. Since g′ is free, it admits a small deformation to a free curve
g′′ : P1 → W with w′′ := g′′(0) ∈ `, w′′ 6= w′. (See Figure 1.)

We construct a comb h : C → W with handle ` ⊂ Pr−1 ⊂ W and two teeth
g′, g′′ : P1 → W . Since E is exceptional, we compute

N`/E ' Odim(V )
P1 ⊕OP1(1)r−2

and

NE/W ⊗O` ' OP1(−1).
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w

w’

w"

β −1(z) = Pr−1
g"(P  )1

l

g’(P  )1

Figure 1. Constructing the comb

The exact sequence of normal bundles

0 → N`/E → N`/W → NE/W ⊗O` → 0

splits because

Ext1(OP1(−1),OP1(n)) = 0, n ≥ −2.

Thus we deduce

N`/W ' Odim(V )−r
P1 ⊕OP1(1)r−2 ⊕OP1(−1)

where the negative summand is in the normal direction to E. Since g′(P1) and
g′′(P1) are transverse to E, we can apply Proposition 23 of [10]. The key point is
that the only negativity in the normal bundle of ` is due to the negativity of the
normal bundle of E ⊂ W ; however, the components g′(P1) and g′′(P1) overcome
this. Precisely, we have

Nh ⊗O` ' Odim(V )−r
P1 ⊕OP1(1)r−2 ⊕OP1(1);

the quotient (Nh ⊗O`)/N`/W lies in the image of the last summand.

Lemma 7 implies that h : C → W admits a deformation to a rational curve
containing w. ¤

A similar argument gives the following strengthening of Proposition 10 (cf.
Theorem 2.2 of [7])

Proposition 13. Let V be a smooth separably rationally connected variety and
V 0 ⊂ V be the distinguished open subset characterized in Proposition 10. Then
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for any finite collection of jets

ji : Spec
(
k[ε]/

〈
εN+1

〉)
↪→ V 0, i = 1, . . . , m

supported at distinct points v1, . . . , vm, there exists a very free rational curve
smooth at v1, . . . , vm with the prescribed jets.

Proof. There is an iterated blow-up

β : W = WN → . . . → Wj → . . . → W1 → V

and points w1, . . . , wm ∈ W so that if g : C → W is a morphism whose image
contains w1, . . . , wm then the image of f := β ◦ g : C → V contains the given
collection of jets. Here is the description: Over each point vi, we blow up V

successively at N points. Given any smooth curve germ C with the prescribed
N -jet at vi, Wj is the blowup of Wj−1 at the points of the proper transform of
C lying over the vi. Proposition 12 then implies there exists a very free curve
g : P1 → W through w1, . . . wm. However, the image of this curve in V will be
singular at vi if g(P1) meets β−1(vi) in more than one point.

We claim there exists a very free curve gi : P1 → W meeting β−1(vi) only at
wi, transversally. We choose this curve so that it is disjoint from β−1(vj) when
j 6= i. (Again, we are using the fact that a very free curve can be deformed away
from any codimension ≥ 2 subvariety while passing through a prescribed point in
the complement.) Fix generic points xi ∈ gi(P1) and let g0 : P1 → W be a very
free curve intersecting gi(P1) transversely at xi but not meeting any β−1(vi). (For
example, take g0 = (β−1 ◦ f0), where f0 : P1 → V is a very free curve through
β(x1), . . . , β(xm).) Consider the comb h : C → W with handle g0(P1) and m-
teeth gi(P1). This deforms to a very free curve h′ : P1 → W meeting each β−1(vi)
only at wi, transversally.

The proof of the claim is a refinement of the argument for Proposition 12.
We proceed by induction on N . The base case N = 1 is contained in the proof
of Proposition 12, which gives a very free curve smooth at vi with prescribed
tangency. Let Ei,N ' Pdim(V )−1 be the last exceptional divisor of β : W → V

over vi, i.e., the exceptional divisor of the N -th blow-up. For 1 ≤ j < N , let
Ei,j ⊂ WN denote the proper transform of the exceptional divisor of Wj → Wj−1

over vi; we have Ei,j ' Blwi,jPdim(V )−1, where wi,j is the intersection of the proper
transform of C with the exceptional divisor of Wj → Wj−1.
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Suppose that g′i : P1 → W is a very free curve such that β ◦ g′i is smooth
with the desired (N − 1)-jet at vi. Let w′i = g′i(P1) ∩ β−1(vi) denote the unique
point of intersection, which we assume is distinct from wi. Let `N denote the line
in Ei,N ' Pdim(V )−1 joining wi and w′i, and zN−1 its point of intersection with
Ei,N−1. Let `N−1 ⊂ Ei,N−1 ' Blwi,N−1Pdim(V )−1 denote the proper transform of
a line containing zN−1, and zN−2 its point of intersection with Ei,N−2. Continue
in this way, until we obtain `1 ⊂ Ei,1, the proper transform of a line containing
z1. Finally, let g′′i : P1 → W be a very free curve meeting the exceptional locus
transversally at a generic point of `1. (See Figure 2.)

l

1

w

w’

i

i

i

i

1

l
g’’ (P  )

g’ (P  )1

N

Figure 2. Constructing the comb with reducible teeth

Let h : C → W be the comb with handle `N and two reducible teeth:

(1) g′i : P1 → W ;
(2) the union of the lines `N−1, . . . , `1 and the curve g′′i : P1 → W ;

By a normal bundle computation similar to that of Proposition 12, we find that
Nh|`N is ample and Nh is nonnegative on each of the remaining components:
Again, Lemma 7 (or Proposition 24 of [10]) implies that h admits a deformation
to an immersed rational curve containg wi.

Here are the details of the computations (cf. [10] Section 5): The normal
bundle of a line in projective space is

N`N/Ei,N
= N`N/Pdim(V )−1 ' OP1(1)dim(V )−2
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and the normal bundle for an exceptional divisor is

NEi,N/W ' OPdim(V )−1(−1).

For each j we have

(4.1) 0 → N`j/Ei,j
→ N`j/W → NEi,j/W |`j

→ 0

which for j = N yields

N`N/W ' OP1(1)dim(V )−2 ⊕OP1(−1),

with the negative component in the direction normal to Ei,N . We also have an
extension

(4.2) 0 → N`j/W → Nh|`j
→ Q(`j) → 0,

where Q(`j) is a torsion sheaf supported at the points where `j meets the adjacent
components. For j = N these are g′i(P1) and `N−1, and since the tangent vectors
to these curves are normal to Ei,N , we find

Nh|`N
' OP1(1)dim(V )−2 ⊕OP1(1).

The normal bundle of the proper transform of a line in the blow-up of projective
space at a point of the line is

N`j/Ei,j
= N`j/Blwi,jPdim(V )−1 ' Odim(V )−2

P1

for j = 1, . . . , N − 1. Similarly, we can compute

NEi,h/W |`j
= OP1(−2)

so the exact sequence analogous to (4.1) yields

N`j/W ' Odim(V )−2
P1 ⊕OP1(−2),

with the negative component in the direction normal to Ei,j . Using (4.2) and the
fact that `j is adjacent to `j+1 and `j−1 (or g′′i (P1) when j = 1), we find

Nh|`j
' Odim(V )−2

P1 ⊕OP1 .

¤

Definition 14. A smooth separably rationally connected variety Y is strongly
rationally connected if any of the following conditions hold:

(1) for each point y ∈ Y , there exists a rational curve f : P1 → Y joining y

and a generic point in Y ;
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(2) for each point y ∈ Y , there exists a free rational curve containing y;
(3) for any finite collection of points y1, . . . , ym ∈ Y , there exists a very free

rational curve containing the yj as smooth points;
(4) for any finite collection of jets

Spec(k[ε]/
〈
εN+1

〉
) ⊂ Y, i = 1, . . . , m

supported at distinct points y1, . . . , ym, there exists a very free rational
curve smooth at y1, . . . , ym and containing the prescribed jets.

The implications
(4) ⇒ (3) ⇒ (2) ⇒ (1)

are obvious. By Proposition 10, assertions (1)-(3) are each equivalent to the
condition Y = Y 0. Property (4) is analogous to Theorem 2.2 of [7], which is
stated for proper varieties. It follows from (1) by Proposition 13.

With basic properties of strongly rationally connected varieties established,
Theorem 1 follows from the general result (cf. [15] IV.6.10.1):

Theorem 15. Let π : Y → B be a smooth morphism whose fibers are strongly
rationally connected. Assume that π has a section. Then sections of Y → B

satisfy approximation away from S.

Proof. Let π : Y → B be a proper model of Y → B, which exists by [20]. The
section extends to a section s of π. By a result of Artin and Néron [1] Corollary
4.6, there exists a blow-up with center supported in π−1(S)

Ỹ → Y
such that the proper transform of s(B) in Ỹ is contained in Ỹsm.

Recall the proof of weak approximation at places of good reduction in Section
5 of [10]. This is a bootstrap argument, using the existence of a section in the
smooth locus to construct sections with prescribed jets of successively higher
order. For the base case, suppose we are given an arbitrary section t : B → Y.
When Y → B is proper, Kollár-Miyaoka-Mori [16] first demonstrated how to get a
section with prescribed values y1, . . . , yr at b1, . . . , br ∈ B. The key is to construct
a comb with handle t(B) and teeth very free curves in the fibers Ybi

joining t(bi)
to yi, which deforms to a section passing through the yi. For the inductive step,
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suppose we have a section with prescribed jets to order ≤ N − 1 at a finite set of
points b1, . . . , br. Blow up the total space N times along the jet data at each of
b1, . . . , br to get a new model with (admittedly very special) reducible fibers over
b1, . . . , br. The Nth-order jet conditions in the original model translate into point
conditions in the new model. There we produce an explicit comb with reducible
teeth, based on the proper transform of the section obtained by the inductive
hypothesis, that deforms to the desired section. This only requires the existence
of very free curves in Ybi

passing through yi with prescribed tangency.

Properness is used twice. At the the zeroth-order step, it is used to exhibit
the very free fibral curves joining t(bi) to yi. In the inductive step, it is used
to find a very free fibral curve with prescribed tangency at yi. In our situation,
these are guaranteed by the hypothesis that the fibers are strongly rationally
connected. ¤

5. Cubic surfaces

We work over an algebraically closed field of characteristic zero.

Definition 16. A log Del Pezzo surface is a pair (X, ∆) consisting of a normal
projective surface X and an effective Q-divisor ∆ =

∑
ai∆i, 0 < ai ≤ 1 on

X, with log terminal singularities, such that −(KX + ∆) is ample. When ∆ is
empty, this is equivalent to saying that X has quotient singularities and ample
anticanonical class.

Theorem 17 ([11] 1.6). The smooth locus of a log Del Pezzo surface (X, ∆) is ra-
tionally connected, i.e., two generic points in Xsm can be joined by an irreducible
projective rational curve contained in Xsm.

Example 18 ([23]). There exist projective rational surfaces with rational double
points whose smooth locus is not rationally connected. Consider

X̃ = E × P1

where (E, 0) is an elliptic curve and the involution

ι : X̃ → X̃

(e, [x0, x1]) 7→ (−e, [x1, x0]).

The involution has eight isolated fixed points q ⊂ X̃. The quotient X = X̃/ 〈ι〉
has eight A1 singularities and is rational: X → E/ 〈ι〉 ' P1 is a conic bundle.
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Since X̃ − q → Xsm is a covering space, π1(Xsm) ⊂ π1(X̃ − q) with index two.
Thus

π(X̃ − q) ' π(X̃) ' π(E) ' Z× Z
and Xsm has infinite fundamental group. However, rationally connected varieties
(even non-proper ones) have finite fundamental groups (see Lemma 7.8 of [11]
and Proposition 2.10 of [14], for example).

The following conjecture would allow us to apply Theorem 1 to prove weak
approximation for many log Del Pezzo surfaces:

Conjecture 19. The smooth locus of a log Del Pezzo surface is strongly ratio-
nally connected.

We prove this for cubic surfaces:

Theorem 20. Let X ⊂ P3 be a cubic surface with rational double points. Then
Xsm is strongly rationally connected.

Proof. Let x1 ∈ Xsm be a point. We produce a rational curve R ⊂ Xsm joining
x1 and a generic point x2 ∈ Xsm.

We start with an elementary lemma:

Lemma 21. Let Y ⊂ Pn be an irreducible hypersurface such that the Gauss map

Y 99K P̌n

y 7→ [TY |y]
is generically finite. Then a generic tangent hyperplane section to Y has an
isolated singularity of multiplicity two with smooth projectivized tangent cone.

Proof. Since the Gauss map is generically finite, its differential is generically of
maximal rank. However, the differential at y ∈ Y can be identified with the dual
to the second fundamental form (see [9, 17.11])

Πy : Sym2(TY |y) → NY/Pn |y.
This is nondegenerate precisely when the quadratic term of the Taylor expansion
of the defining equation of the tangent hyperplane section Hy has maximal rank.

¤
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This is applicable to cubic surfaces X with rational double points. It is a
classical fact that X contains a finite number of lines. However, if the image of
the Gauss map of X is a curve C then X is dual to C and thus ruled by lines.

Now we will make explicit how x2 must be chosen. Applying the lemma, we
may assume

(1) The tangent hyperplane section H2 at x2 is irreducible and nodal.

In particular, H2 ⊂ Xsm and there are no lines ` ⊂ X containing x2.

Projection from x2 then gives a double cover

Blx2X → P2;

the covering transformation interchanges the exceptional divisor and the proper
transform. We obtain a birational involution

ιx2 : X 99K X

x 7→ x′,

where {x, x′, x2} are collinear. This factors as the blow-up of x2 followed by the
blow-down of the proper transform of H2. Note that ιx2 fixes the singularities of
X and thus takes Xsm to itself.

We also assume:

(2) H2 does not contain x1.

It follows that H2 does not contain x′1 = ιx2(x1). Moreover, x1 and x′1 are in the
open subset on which ιx2 is an isomorphism.

We assume furthermore:

(3) x2 is not contained in H1, the tangent hyperplane to X at x1.

It follows that x2 6∈ H ′
1, the tangent hyperplane section at x′1. Indeed, suppose

that x2 ∈ H ′
1. We know that x2 6= x′1 (because x′1 6∈ H2), so consider the line

joining x2 and x′1. This meets X only at x2 and x′1, so x′1 = x1 and x2 ∈ H1, a
contradiction.

Finally, we assume:

(4) H ′
1 is irreducible and nodal.
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In particular, H ′
1 ⊂ Xsm.

Since x2 6∈ H ′
1, ιx2 is regular along H ′

1. We verify that the rational curve
R = ιx2(H

′
1) has the desired properties. Since x2 6∈ H ′

1, H2 and H ′
1 intersect at a

point z 6= x2; thus the curve

R = ιx2(H
′
1) 3 ιx2(z) = x2.

We know H ′
1 ⊂ Xsm and ιx2(X

sm) ⊂ Xsm, hence R ⊂ Xsm. We have x′1 ∈ H ′
1,

so x1 = ιx2(x
′
1) ∈ R. Since H ′

1 meets H2 in a point z 6= x2, x2 = ιx2(y) ∈ R. ¤

We now prove Theorem 2: For each singular fiber Xb, X sm
b is strongly rationally

connected by Theorem 20. Approximation follows from Theorem 1.

Example 22. Here is another case where Conjecture 19 is easily verified. Let X

be a partial resolution of a cubic surface Σ with at most A1-singularities, i.e., we
have a factorization of the minimal resolution

Σ̃ → X
β→ Σ.

Then Xsm is strongly rationally connected.

Theorem 2 implies that Σsm is strongly rationally connected, hence β−1(Σsm) ⊂
(Xsm)0. The locus Xsm\β−1(Σsm) is a union of (−2)-curves {Ei}, corresponding
to the resolved singularities {pi} of Σ. If (Xsm)0 meets Ei, it must also contain
Ei. Hence it suffices to show that for each Ei there exists a rational curve in Xsm

meeting Ei and β−1(Σsm) (see Remark 11).

To find this rational curve, consider the projection from pi

πi : Σ 99K P2

which induces a morphism π′i : X → P2. The image of Ei is a plane conic and
the image of the singularities of X has codimension two in P2, so there exists a
rational curve

f : P1 → P2 \ π′i(Sing(X))

meeting the image of Ei.

The same argument applies if X is obtained from a cubic surface Σ with A1

and A2 singularities by resolving some subset of Sing(Σ).

Corollary 4 is an immediate consequence of Corollary 3 and the following:
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Lemma 23. Let Hi lb = P(Γ(OPn(d))) denote the Hilbert scheme of degree-d
hypersurfaces, U → Hi lb the universal family, and D ⊂ Hi lb the discriminant
divisor. Suppose B ⊂ Hi lb is a smooth curve with corresponding family

Y := U ×Hi lb B → B.

Then B is transversal to each branch of the discriminant iff Y is regular and the
fibers have ordinary double points.

Our transversality condition means that each branch of D at b is smooth and
transverse to B.

Proof. Let b ∈ B ∩D and y ∈ Yb a singularity corresponding to a branch D′ ⊂ D

at b. First suppose that y is an isolated singularity of Yb. Then we have the
formula [22, 2.8.3]

multb(B ∩D′) = µ(Yb, y) + µ(Y, y),

the sum of the corresponding Milnor numbers. Thus the multiplicity is one if
µ(Yb, y) = 1 and µ(Y, y) = 0, i.e., y ∈ Y is nonsingular and y ∈ Yb is an ordinary
double point.

Now suppose y fails to be isolated. If d = 2 then the quadratic form defining
Yb has rank ≤ n−1; the discriminant is defined by the determinant of an (n+1)×
(n + 1) symmetric matrix and thus is singular when the matrix has rank < n.
Otherwise, let Σ ⊂ Yb denote the irreducible component of the singular locus
containing y. Choose generic y′, y′′ ∈ Σ, y′ 6= y′′, and consider the hypersurfaces
singular at both y′ and y′′, which form a codimension-2(n + 1) linear subspace
L ⊂ Hi lb = P(Γ(OPn(d))). The generic hypersurface singular at y′ (or y′′) is
contained in D′ thus L is contained in the singular locus of D′. ¤

6. Higher-dimensional Fano hypersurfaces

Here we work over an uncountable algebraically closed field k of characteristic
zero.

We are grateful to James McKernan for pointing out the following amplification
of [11, 5.9]
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Proposition 24. Let X be a projective rationally connected variety with isolated
terminal local complete intersection singularities. Then Xsm is strongly rationally
connected.

Proof. Let ρ : X̃ → X denote a resolution of singularities of X, such that
ρ−1(Xsm) → Xsm is an isomorphism and X̃ \ ρ−1(Xsm) is a normal crossings
divisor with components E1, . . . , Em.

We first show that Xsm is rationally connected. Suppose that (x1, x2) ∈
Xsm ×Xsm is general, in the sense that it lies in the complement of a countable
union of proper subvarieties. (Here we are using the fact that the base field is
uncountable.) Then any morphism

h : P1 → X̃, h(0) = x1, h(∞) = x2

is necessarily very free (cf. [15, 3.11]).

Choose a very free imbedding f̃ : P1 → X̃ with f̃(0) = x1, f̃(∞) = x2, and
image meeting ρ−1(Xsm). The induced curve in X is denoted f = ρ◦ f̃ : P1 → X.
We may assume that f(P1) meets the singularities of X; otherwise there is nothing
to prove. Consequently, f̃(P1) meets at least one of the Ei.

We compare dimensions of deformation spaces

Def(f̃) := Hom(P1, X̃; 0 → x1,∞→ x2)

and

Def(f) := Hom(P1, X; 0 → x1,∞→ x2).

The first space has dimension

−deg f̃∗KX̃ − 2 dim(X)

at f̃ . By Theorem 2.10 of [13], the second space has dimension at least

−deg f∗KX − 2 dim(X);

the discrepancy formula

KX̃ = KX +
∑

i

biEi, bi > 0

then guarantees

dimDef(f̃) < dimDef(f).
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Composition by ρ gives a morphism of deformation spaces

ιρ : Def(f̃)→Def(f)
g̃ 7→ ρ ◦ g̃

which is not dominant by dimension considerations. Let gt : P1 → X be a
one-parameter deformation of f such that

lim
t→0

gt = f,

and gt(0) = x1, gt(∞) = x2 for each t. Assume that gt is generic on the maximal-
dimension irreducible component of Def(f) passing through f . For generic t,
write

g̃t : P1 → X̃

is the lift of gt to X̃, which is also very free.

We claim gt(P1) ⊂ Xsm. If not then we could repeat the argument above,
finding a component of Def(gt) with dimension strictly larger than the dimension
of Def(g̃t), contradicting our assumption.

We now prove that Xsm is strongly rationally connected, by exhibiting a free
curve in Xsm through each point x1 ∈ Xsm. As above, let f̃ : P1 → X̃ denote
a free curve with f̃(0) = x1 and passing through a general point of X̃. Write
f = ρ ◦ f̃ and repeat our dimension analysis, applied to the deformation spaces

Def(f̃) := Hom(P1, X̃; 0 → x1)

and
Def(f) := Hom(P1, X; 0 → x1).

If f(P1) is not contained in Xsm then

dimDef(f̃) < dimDef(f)

and we can choose gt : P1 → X generic on the component of maximal dimension.
The lift g̃t : P1 → X̃ remains free because it passes through a general point of
X̃. Thus if gt(P1) were not in Xsm then we could exhibit a component of Def(gt)
with dimension strictly larger than the dimension of Def(g̃t), a contradiction. ¤

Remark 25. The classification of terminal singularities in dimension three [19]
shows they are quotients of isolated complete intersection singularities by the
action of Z/rZ, where r is the index of the singularity. Thus the hypotheses of
Proposition 24 are quite natural.
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With further technical hypotheses, the proof of Proposition 24 can be extended
to r > 1.

Example 26. Examples of three-dimensional terminal singularities of index one
include ordinary threefold double points

w2 = x2 + y2 + z2.

For a complete list see [17, 6.4].

Theorem 1 then gives

Corollary 27. Let X be a smooth rationally connected variety over F = k(B).
Suppose X admits a regular proper model π : X → B whose singular fibers have
isolated terminal complete-intersection singularities. Then weak approximation
holds for X away from S = B \B.

Applying Lemma 23 we obtain

Corollary 28. Let Hi lb = P(Γ(OPn(d))) ' P(n+d
d )−1 denote the Hilbert scheme

of hypersurfaces of degree d ≤ n, n ≥ 4, U → Hi lb the universal family, and
D ⊂ Hi lb the discriminant divisor. Let B ⊂ Hi lb be a smooth curve transverse
to each branch of D and

X := U ×Hi lb B → B

the corresponding family. Then X = U×Hi lbSpec(F ) satisfies weak approximation
away from S = B \B.
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