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1. Global generation of coherent sheaves

In these notes we will mostly work with smooth projective varieties over an
arbitrary algebraically closed field, although in many applications we will restrict
to the case of characteristic zero.

Let X be a smooth projective variety. Many basic problems related to the
geometry of X can be expressed in terms of the global generation of appropriately
chosen coherent sheaves on X. For instance, we usually ask whether a given linear
series on X gives a morphism, or better an embedding, and if that is the case,
what are the equations cutting out the image of X in projective space.

Example 1.1. (1) Given a line bundle A, the question of whether the linear
series |A| is basepoint-free is tautologically a global generation question. Most
commonly, given an ample line bundle L on X, we wonder for what values of m

the linear series |mL|, |KX + mL|, or even |m(KX + L)| are basepoint-free.2

(2) A line bundle L on X is very ample if and only if L ⊗ Ix is globally
generated for all x ∈ X. Thus the very ampleness problem can be reduced to
global generation.

(3) If X ⊂ Pn, then the global generation of the twisted ideal sheaf IX(d)
implies that X is locally cut out by equations of degree d. Similarly, if X is a
subvariety of a polarized variety (Y, L), the global generation of the sheaf IX⊗Ld

gives information about the equations describing locally X inside Y .

The question then becomes how to check global generation of coherent sheaves
effectively. For sheaves on Pn, an important technique in this direction was intro-
duced by Mumford [Mu3], and later called Castelnuovo-Mumford regularity. A
coherent sheaf F on Pn is called m-regular in the sense of Castelnuovo-Mumford
if

H i(F(m− i)) = 0, for all i > 0.

The main result involving this concept is the following:

Theorem 1.2 (Castelnuovo-Mumford Lemma). Let F be a 0-regular coherent
sheaf on Pn. Then the following hold:

2 For the first two, the existence of such m follows by definition. For the last, we have to

assume some sort of positivity for KX + L – if it is nef, for instance, the existence of such an m

follows from Kawamata’s Basepoint-Free theorem.
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(1) F is globally generated.
(2) F is m-regular for all m ≥ 1.
(3) The multiplication map

H0(F)⊗H0(OPn(k)) −→ H0(F(k))

is surjective for all k ≥ 0.

As it is often possible to check the vanishing of cohomology, this result is one
of the most widely used tools for attacking the problems mentioned above – see
[Laz1] I.1.8 for a detailed discussion and applications.

One of the key observations of [Pa], [PP1] and [PP2] is that on abelian varieties
essentially all geometric problems related to linear series and defining equations
can be reduced to the global generation of suitable coherent sheaves. This goes
via the notion of skew-Pontrjagin product, an operation similar to basic opera-
tions performed on cohomology classes on complex tori, and via surjectivity for
multiplication maps on global sections.

Definition 1.3. Let X be an abelian variety of dimension g. Given two coherent
sheaves E and G on X, their skew-Pontrjagin product (see [Pa] §1) is defined as

E∗̂G := d∗(p∗1E ⊗ p∗2G),

where d : X ×X → X is the difference map (x, y) → x− y.

We will also use the following notation: given two sheaves E and G on X, we
denote by M(E ,G) the locus of x ∈ X where the multiplication map

mx : H0(t∗xE)⊗H0(G) → H0((t∗xE)⊗ G)

is not surjective. (Here tx : X → X denotes the morphism given by translation
by x.) The relationship between skew Pontrjagin products and multiplication
maps is provided by the following:

Proposition 1.4 ([Pa] Proposition 1.1). Let E and G be sheaves on X such that

H i(t∗xE ⊗ G) = 0, for all i > 0.

Then M(E ,G) is precisely the locus where E∗̂G is not globally generated.
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In other words, if the skew-Pontrjagin product E∗̂G is globally generated, then
all the multiplication maps mx are surjective. In particular this is the case for

H0(E)⊗H0(G) −→ H0(E ⊗ G).

It is to such multiplication maps that the geometric problems mentioned above
are reduced.

Example 1.5. (1) Let’s assume that the line bundle L on X is very ample. In
this case, the projective normality of X in the embedding given by L is known to
be equivalent to the surjectivity of

H0(L)⊗H0(Lk) −→ H0(Lk+1)

for all k ≥ 1. As ample line bundles on abelian varieties have no higher co-
homology, by the remarks above this is implied by the global generation of the
skew-Pontrjagin products L∗̂Lk.

(2) Going one step further, consider the vector bundle ML defined as the kernel
of the evaluation map on global sections of L:

0 → ML → H0(L)⊗OX → L → 0.

The global generation of the skew-Pontrjagin product L∗̂(ML ⊗ L) ensures that
the homogeneous ideal of X in the embedding given by L is generated by quadrics.
We will see this in §4, together with a similar – but gradually more complicated
– approach that can be adopted towards understanding the syzygies of X in this
embedding.

It becomes thus important to have criteria guaranteeing the global generation
of coherent sheaves on abelian varieties. Theorem 1.2 serves as a good guideline,
but we will see that on abelian varieties there is a more efficient notion of reg-
ularity. We will describe this in §3, after a brief reminder of the Fourier-Mukai
transform in §2.

2. The Fourier-Mukai transform

In what follows, unless otherwise specified, X will be an abelian variety of
dimension g over an algebraically closed field. We denote by X̂ the dual abelian
variety, which will often be identified with Pic0(X). By P we denote a Poincaré
line bundle on X × X̂, normalized such that P|X×{0} and P|{0}×X̂

are trivial.
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We briefly recall the Fourier-Mukai setting, referring to [Muk] for details. To
any coherent sheaf F on X we can associate the sheaf p2∗(p1

∗F⊗P) on X̂, where
p1 and p2 are the natural projections on X and X̂. This correspondence gives a
functor

Ŝ : Coh(X) → Coh(X̂).

If we denote by D(X) and D(X̂) the (bounded) derived categories of Coh(X) and
Coh(X̂), then the derived functor RŜ : D(X) → D(X̂) is defined and called the
Fourier-Mukai functor, and one can consider RS : D(X̂) → D(X) in a similar
way. Mukai’s main result is the following:

Theorem 2.1 ([Muk], Theorem 2.2). The Fourier-Mukai functor establishes an
equivalence of categories between D(X) and D(X̂). More precisely there are
isomorphisms of functors:

RS ◦RŜ ∼= (−1X)∗[−g] and RŜ ◦RS ∼= (−1
X̂

)∗[−g].

Most important to us is the cohomological information encoded by this theo-
rem:

Corollary 2.2. If A and B are objects in D(X), then

Exti
D(X)(A,B) ∼= Exti

D(X̂)
(RŜA,RŜB).

One more piece of terminology is useful in what follows.

Definition 2.3. Let RjŜ(F) be the cohomologies of the derived complex RŜ(F).
Following [Muk], the sheaf F satisfies W.I.T. (the weak index theorem) with index
i if

RjŜ(F) = 0, for all j 6= i.

It satisfies the stronger I.T. (the index theorem) with index i if

H i(F ⊗ α) = 0, for all α ∈ Pic0(X) and all i 6= j.

By the Base Change theorem, in this last situation RjŜ(F) is locally free. If F
satisfies W.I.T. with index i, RiŜ(F) is denoted by F̂ and called the Fourier transform
of F . Note that then RŜ(F) ∼= F̂ [−i].
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3. The main results on M-regularity

Let X be an abelian variety of dimension g.

Definition 3.1. A coherent sheaf F on X is called M -regular (or Mukai-regular)
if

codimX̂(Supp(RiŜ(F))) > i for all i = 1, . . . , g

(where, for i = g, this means that Supp(RgŜ(F)) = ∅).

Remark 3.2. By Base Change we see that there is always an inclusion Supp(RiŜ(F))
⊂ V i(F), where V i(F) is the cohomological support locus (cf. [GL]):

V i(F) := {α | hi(F ⊗ α) 6= 0} ⊂ Pic0(X).

Consequently, M -regularity is achieved if in particular

codim(V i(F)) > i for all i = 1, . . . , g.

It is this property that one usually checks in applications.

The main theme of these notes is that M -regularity is precisely the cohomo-
logical condition to be checked in order to obtain geometric results via global
generation. Here is the main result:

Theorem 3.3 ([PP1], Theorem 2.4). Let F be a coherent sheaf and L an in-
vertible sheaf supported on a subvariety Y of the abelian variety X (possibly X

itself). If both F and L are M -regular as sheaves on X, then F ⊗ L is globally
generated.

Example 3.4. It is worthwhile noting that the statement does not hold if the
hypothesis that L be a line bundle is dropped, even if it is locally free. Consider
for instance a principally polarized abelian variety (X, Θ). (For simplicity we
identify it with its principally polarized dual via the polarization). Define

F := OX(Θ)⊗ ̂OX(nΘ) and L := ̂OX(−nΘ).

for some integer n > 1. By [Muk] 3.11 we have that φ∗n ̂OX(−nΘ) ∼= ⊕O(nΘ),
where φn denotes multiplication by n on X. This implies that both F and
L satisfy I.T. with index 0, the strongest form of M -regularity. However, by
applying the trace map to ̂OX(nΘ) ⊗ ̂OX(−nΘ) we see that OX(Θ) is a direct
summand of F ⊗ L, so the latter cannot be globally generated.
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We will describe briefly the ideas involved in the proof of Theorem 3.3. Some
of the intermediate results will also have independent applications. The main
point is to consider a modified notion of generation by global sections.

Definition 3.5. Let Y be a variety. A coherent sheaf F on Y is continuously
globally generated if for any non-empty open subset U ⊂ Pic0(Y ) the sum of
evaluation maps ⊕

α∈U

H0(F ⊗ α)⊗ α∨ −→ F

is surjective.

Theorem 3.3 follows immediately from the fact that the tensor product of a
continuously globally generated sheaf and a continuously globally generated line
bundle is globally generated3, once we have the following result.4

Proposition 3.6 ([PP1], Proposition 2.13). Any M -regular coherent sheaf is
continuously globally generated.

This result follows in turn in a standard way from a technical statement which
generalizes ideas that have already appeared in a more restrictive setting in work
of Mumford, Kempf and Lazarsfeld.

Theorem 3.7 ([PP1], Theorem 2.5). Let F and H be sheaves on X such that
F is M -regular and H is locally free satisfying IT with index 0. Then, for any
non-empty Zariski open set U ⊂ Pic0(X), the map

⊕

α∈U

H0(X,F ⊗ α)⊗H0(X, H ⊗ α−1) ⊕mα−→ H0(X,F ⊗H)

is surjective, where mξ denote the multiplication maps on global sections.

It is here that Mukai’s results on the Fourier functor are heavily used. Let’s
give a glimpse of how it comes into the picture. For example, by Serre duality
followed by Mukai’s duality, more precisely Corollary 2.2, we have that

H0(F ⊗H)∨ ∼= Extg
D(X)(F ,H∨) ∼= Extg

D(X̂)
(RŜF ,RŜH∨).

3 This is seen by simply mimicking the use of translations to see that the tensor product of

two ample line bundles has no base locus.
4 Though not presented as such because of the new terminology, this should in fact be

considered the main result of the section.
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Note that H∨ satisfies W.I.T. with index g, and so RŜH∨ ∼= Ĥ∨[−g]. Via
a geometric reduction, the statement of the theorem eventually follows from a
study of the standard spectral sequence

Eij
2 = Exti(RjŜF , Ĥ∨) ⇒ Exti−j

D(X̂)
(RŜF , Ĥ∨),

where the M -regularity of F ensures by definition the vanishing of Eij
2 for 0 <

i ≤ j. It is worth noting that there is a ”preservation of vanishing” statement,
important for deducing the index theorem from M -regularity.

Proposition 3.8 ([PP1], Proposition 2.9). Let F be an M -regular coherent sheaf
on X and H a locally free sheaf satisfying I.T. with index 0. Then F⊗H satisfies
I.T. with index 0.

A related, but deeper property of M -regularity, in analogy with Castelnuovo-
Mumford regularity in projective space, is preservation under tensor product
when one of the factors is locally free. This is proved in [PP6], based on the
connection with Generic Vanishing mentioned below in this section.

Theorem 3.9. Let E and F be M -regular coherent sheaves on X, with E locally
free. Then E ⊗ F is M -regular.

First examples. To have a first look at how this works, here are some very
basic examples.

Example 3.10. (1) For a line bundle L on an abelian variety X:

L is M− regular ⇐⇒ L satisfies I.T. with index 0 ⇐⇒ L is ample.

Indeed, ample line bundles on abelian varieties have no higher cohomology, so
the two implications from right to left are immediate. On the other hand, if L is
M -regular, by definition and Proposition 3.6 we see that for general α ∈ Pic0(X)
we have hi(L⊗ α) = 0 for i > 0, and h0(L⊗ α) 6= 0. In Mumford’s terminology
(cf. [Mu1] §16) this means that L⊗α is a non-degenerate line bundle of index 0,
which is equivalent to its ampleness (cf. loc. cit., p.60). This in turn is equivalent
to the ampleness of L itself. (Cf. Lemma 5.1 and Proposition 7.1 for much more
general statements.)

(2) A line bundle L on a smooth curve C of genus g ≥ 1 is M -regular (via an
Abel-Jacobi embedding C ⊂ J(C)) if and only if d = deg L ≥ g. Indeed, the
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M -regularity of L is equivalent by Riemann-Roch and base-change to the fact
that the Brill-Noether locus W d−g+1

d has codimension at least 2 in Picd(C). But
this is easily seen to be equivalent to d ≥ g. A similar result holds for the image
of a box-product of d line bundles via the desymmetrized Abel-Jacobi mapping
Cd → Wd ⊂ J(C) (cf. [PP1] Example 3.2).

(3) If L is an ample line bundle on the abelian variety X, then:

L⊗ I{x} is M− regular, ∀ x ∈ X ⇐⇒ codim Bs|L| ≥ 2,

i.e. if |L| has no base divisor. This follows from the standard cohomology sequence

0 −→ L⊗ I{x} −→ L → L⊗Ox −→ 0

by passing to cohomology, combined with the fact that twisting L with line
bundles in Pic0(X) is equivalent to translating.

Applied to these examples, Theorem 3.3, together with Example 1.1 (2), im-
plies the following well-known starting points in the study of linear series on
curves and abelian varieties.

Corollary 3.11. Let X be an abelian variety and C a smooth projective curve.
Then:
(i) Let L be a line bundle of degree d on C. If d ≥ 2g, then L is globally generated,
and if d ≥ 2g + 1, then L is very ample.
(ii)(Lefschetz Theorem) If L is an ample line bundle on X, then L2 is globally
generated and L3 is very ample.
(iii)(Ohbuchi’s Theorem) If L is an ample line bundle on X with no base divisor,
then L2 is very ample.

Theta regularity. M -regularity is not an immediately obvious analogue of
the usual notion of Castelnuovo-Mumford regularity on Pn. There is however a
particular instance of the general theory, depending on a fixed polarization Θ,
where one clearly sees a similarity – this is called Theta regularity in [PP1] and
[PP3].

Definition 3.12. A coherent sheaf F on a polarized abelian variety (X, Θ) is
called m-Θ-regular if F((m − 1)Θ) is M -regular. If F is 0-Θ-regular, we will
simply call it Θ-regular.
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Example 3.13. If C is a smooth projective curve and Wd ⊂ J(C) is the image
of the d-th symmetric product of C in the Jacobian, then OWd

is 2-Θ-regular and
IWd

is 3-Θ-regular (cf. §6, Theorem 6.1 and its proof).

With this language we have an abelian analogue of the Castelnuovo-Mumford
Lemma:

Theorem 3.14 ([PP1], Theorem 6.3). Let F be a Θ-regular coherent sheaf on
X. Then:
(1) F is globally generated.
(2) F is m-Θ-regular for any m ≥ 1.
(3) The multiplication map

H0(F(Θ))⊗H0(O(kΘ)) −→ H0(F((k + 1)Θ))

is surjective for any k ≥ 2.

Remark 3.15. The statement in (3) is optimal, as it follows for example by
considering F equal to O(2Θ) (when we cannot make k = 1). This particular
example is the well-known projective normality result for multiples of ample line
bundles treated by Koizumi [Ko] and Mumford [Mu2].

WIT-regularity. This is a very useful alternative to M -regularity – or, maybe
more correctly said, to the Index Theorem with index 0 condition – when we are
not looking for full global generation, but rather just a good control of the locus
where the sheaf in question is not globally generated. Its use is most significant
in the syzygy questions described in §4.

We can weaken the condition of continuous global generation (Definition 3.5)
as follows (cf. [PP2], Definition 2.1):

Definition 3.16. Given a sheaf F , we define its Fourier jump locus as the locus
J(F) ⊂ Pic0(X) consisting of α ∈ Pic0(X) where h0(F ⊗ α) jumps, i.e. it is
different from its minimal value over Pic0(X). F is said to be weakly continuously
generated if the map ⊕

α∈U

H0(F ⊗ α)⊗ α−1 −→ F

is surjective for any non-empty Zariski-open set U ⊂ X̂ containing J(F).
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Theorem 3.17 ([PP2], Theorem 4.1). Let F be a locally free sheaf on X such
that F∨ satisfies W.I.T. with index g and the torsion part of F̂∨ is a torsion-free
sheaf on a reduced subscheme Y of X. Then the following hold:
(a) F is weakly continuously generated.
(b) Let morever A be a continuously globally generated line bundle on Y . Then

(i) F ⊗A is generically globally generated.
(ii) If the Fourier-jump locus J(F ) is finite then

B(F ⊗A) ⊂
⋃

ξ∈J(F )

B(A⊗ Pξ),

where B(·) denotes the locus where the sheaf is not globally generated.

The underlying point here is that locally free sheaves satisfying I.T. with index
0 have duals satisfying the W.I.T. with index g, but the converse is not true, and
so Theorem 3.3 does not necessarily apply.

Example 3.18. Typical such behavior is exemplified already by the structure
sheaf OX , which satisfies W.I.T. with index g. It is not M -regular, and its dual
also satisfies W.I.T. with index g, since it is the same sheaf. The Fourier jump
locus is the point-set {0} on X̂, which obviously has to appear among the elements
of U in order to have continuous generation.

Generic Vanishing. If F is a locally free sheaf on X satisfying the hypothesis
of Theorem 3.17, it is explained by Hacon in [Hac] that F satisfies a Green-
Lazarsfeld-type [GL] Generic Vanishing condition, namely

codim(V i(F )) ≥ i, for all i.

(One can show that this is in fact equivalent to codim Supp(RiŜF ) ≥ i for all i

– thus it is uniformly one step “worse” than M -regularity.)

In the forthcoming [PP5] it is shown that the converse is also true (quite gen-
erally, in the derived category of coherent sheaves on X). Thus a posteriori weak
continuous generation is essentially a property naturally associated to sheaves
satisfying Generic Vanishing, just like continuous generation is associated to the
stronger M -regularity. We also show in [PP6] that, if a sheaf F satisfies Generic
Vanishing, then F is M -regular if and only if F̂∨ is torsion-free. One obtains a
natural commutative algebra interpretation of the M -regularity condition, which
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helps with identifying new properties like Theorem 3.9 above. In brief, we have
that

RiŜF ∼= Exti(F̂∨,OX) for all i,

and the support of the i-th such Ext-sheaf of a torsion-free sheaf always has
codimension greater than i by the Syzygy Theorem. These results are particular
consequences – in the context of abelian varieties – of a systematic analysis of
Generic Vanishing conditions with respect to arbitrary Fourier-Mukai functors
on projective varieties, which is the main theme of [PP5].

4. Equations and syzygies of abelian varieties

To every ample line bundle on an abelian variety one can associate an invariant
called the M -regularity index, defined below. This invariant governs the higher
order properties of embeddings of abelian varieties by powers of ample line bun-
dles, and also the equations and the syzygies of such embeddings (here though
for the most part conjecturally). For high values, the M -regularity index is still
quite mysterious, however for small values it has nice geometric interpretation.

Definition 4.1 ([PP2], §3). The M -regularity index of an ample line bundle A

is defined as

m(A) := max{l | A⊗mk1
x1
⊗ . . .⊗m

kp
xp is M−regular for all distinct

x1, . . . , xp ∈ X with Σki = l}.
Example 4.2. (Small values of m(A).) By Example 3.10(1), having m(A) ≥
0 is equivalent to the ampleness of A, with no restrictions. Furthermore, by
Example 3.10(3), m(A) ≥ 1 if and only if A does not have a base divisor. One
can similarly see that if A gives a birational map which is an isomorphism outside
a codimension 2 subset, then m(A) ≥ 2.

Definition 4.3. A line bundle L is called k-jet ample, k ≥ 0, if the restriction
map

H0(L) −→ H0(L⊗OX/mk1
x1
⊗ . . .⊗m

kp
xp)

is surjective for any distinct points x1, . . . , xp on X such that Σki = k + 1. (In
particular 0-jet ample means globally generated, 1-jet ample means very ample.)

A natural generalization of the classical theorem of Lefschetz and of its exten-
sions by Ohbuchi [Oh] and Bauer-Szemberg [BS] is the following:
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Theorem 4.4 ([PP2], Theorem 3.8). If A and M1, . . . , Mk+1−m(A) are ample
line bundles on X, k ≥ m(A), then A⊗M1⊗ . . .⊗Mk+1−m(A) is k-jet ample. In
particular A⊗(k+2−m(A)) is k-jet ample.

A simple corollary of this result is a lower bound for the Seshadri constant of
an ample line bundle on an abelian variety in terms of the M -regularity index
and its asymptotic version.

Corollary 4.5 ([PP3], Theorem 3.4). If L is an ample line bundle on the abelian
variety X and ε(L) denotes its Seshadri constant5, then

ε(L) ≥ ρ(L) := sup
n

m(Ln)
n

≥ max{m(L), 1}.

Equations and syzygies. Given a variety X embedded in projective space by
a complete linear series |L|, the line bundle L is said to satisfy property Np if the
first p steps of the minimal graded free resolution of the algebra RL =

⊕
H0(Ln)

over the polynomial ring SL =
⊕

SymnH0(L) are linear, i.e. of the form

SL(−p− 1)⊕ip → SL(−p)⊕ip−1 → · · · → SL(−2)⊕i1 → SL → RL → 0.

Thus N0 means that the embedded variety is projectively normal (normal gener-
ation in Mumford’s terminology), N1 means that the homogeneous ideal is gen-
erated by quadrics (normal presentation), N2 means that the relations among
these quadrics are generated by linear ones and so on.

Koizumi [Ko] proved that in the first embedding suggested by the Lefschetz
theorem, namely that given by L3, the variety is projectively normal, i.e. it
satisfies N0. In Mumford’s fundamental work on the equations defining abelian
varieties [Mu2] and on varieties cut out by quadratic equations [Mu4], and in
improvements by Kempf [Ke1], it is shown that in the embedding given by L4

the variety X is cut out by quadrics, i.e. it satisfies N1. The first author proved in
[Pa] the following conjecture of Lazarsfeld, improving on further work by Kempf
[Ke2] and generalizing the above results to arbitrary syzygies.

Theorem 4.6 ([Pa], Theorem 4.3). Let X be an abelian variety and A a line
bundle on X. If char(k) does not divide (p + 1) and (p + 2), then for k ≥ p + 3
the line bundle Ak satisfies property Np.

5 The definition and properties of Seshadri constants are explained for example in [Laz1],

Ch.V. The particular case of abelian varieties is treated in loc. cit. §5.3.
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As in the well-known Green-Lazarsfeld picture for curves, this is not the end
of the story, and finer regularity properties of the line bundle should imply better
and better syzygy properties. In [PP2] the following conjecture is formulated:

Conjecture 4.7. Let p ≥ m be non-negative integers. If A is ample and m(A) ≥
m, then A⊗k satisfies Np for any k ≥ p + 3−m.

The main result of [PP2] is a proof of the conjecture above in the case m(A) =
1, i.e. the case when |A| has no base divisor – this is the generic behavior of
an ample line bundle on an irreducible abelian variety, and it is well understood
that in this situation one should already have better results than in the case of
arbitrary ample line bundles.

Theorem 4.8 ([PP2], Theorem 6.2). In the previous setting, assume in addition
that the linear system |A| has no base divisor. Then for k ≥ p+2 the line bundle
Ak satisfies property Np.

We give a rough sketch of the proof of the theorem in the N1 case – this already
contains all of the main ideas involved. The statement is simply the following:

• If L is an ample line bundle with no base divisor, then the ideal of X in
the embedding given by L3 is generated by quadrics.

Denote A := L3. We have the usual evaluation sequence:

(1) 0 → MA → H0(A)⊗OX → A → 0.

Since H1(A) = 0, by work of Green and Lazarsfeld (cf. e.g. [Laz2]) it is well
known that property N1 is implied by the vanishing H1(∧2MA ⊗Ak) = 0 for all
k ≥ 1. We will further restrict to the hardest case, namely k = 1. In addition,
since we are in characteristic different from 2, the vanishing we’re after is implied
by the stronger

H1(⊗2MA ⊗A) = 0.

By twisting the sequence above by MA⊗A and passing to cohomology, this is in
turn equivalent to the surjectivity of the multiplication map

H0(A)⊗H0(MA ⊗A) −→ H0(MA ⊗A2).

By the discussion in §1, this surjectivity (and more) is implied by the global
generation of the skew-Pontrjagin product A∗̂(MA ⊗A).
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This is where M -regularity comes into play. We use the hypothesis on the base
locus of |A| in order to prove the following:

Claim. The sheaf [A∗̂(MA ⊗A)]⊗ L−1 is M -regular.

Theorem 3.3 implies then that the skew-Pontrjagin product is globally gener-
ated, and so our result. For the Claim, it is enough to prove that the cohomo-
logical support loci

V i := { α ∈ Pic0(X) | hi((A∗̂(MA ⊗A))⊗ L−1 ⊗ α) > 0}
have codimension > i for all i > 0. A simple result of ”exchange of Pontrjagin
and tensor product” via the base change theorem ([PP2], Proposition 5.5(b))
implies that the support loci above are the same as

V i = {α ∈ Pic0(X) | hi((A∗̂(L−1 ⊗ α))⊗MA ⊗A) > 0}.
After twisting the evaluation sequence (1) by (A∗̂(L−1 ⊗ α))⊗A and passing to
cohomology, it is easily seen that V i = ∅ for i ≥ 2, and one is left with showing
that codim V 1 ≥ 2. The same exact sequence (1) shows that

• V 1 coincides with the locus where the multiplication map

H0(A)⊗H0((A∗̂(L−1 ⊗ α))⊗A) → H0((A∗̂(L−1 ⊗ α))⊗A2)

is not surjective.

Applying Proposition 1.4 one more time, it is enough to show that the locus

B
(
A∗̂((A∗̂(L−1 ⊗ α))⊗A)

)

where the double skew-Pontrjagin product in the brackets is not globally gener-
ated has codimension at least 2. For this one needs to use a version of the main
global generation criterion which allows for base loci. This is provided by Theo-
rem 3.17. A combination of this and explicit calculus with Pontrjagin products
shows eventually (cf. [PP2], p.17–18) that in fact6

B
(
A∗̂((A∗̂(L−1 ⊗ α))⊗A)

) ⊂
⋃

η∈X̂3

B(L⊗ η ⊗ α−1),

where X̂3 denotes the locus of 3-torsion points on the dual of X. The initial
hypothesis on the codimension of the base locus of L implies then what is needed.

6 up to some harmless translation which we skip for simplicity
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5. Vanishing theorems and varieties of maximal Albanese dimension

In this section we present some applications to the study of linear series on
varieties with generically finite Albanese maps. The main tool is the use of
vanishing theorems as input for M -regularity. We start with a simple remark.

Lemma 5.1. Let F be a non-zero coherent sheaf on an abelian variety X. If F
is M -regular, then it is nef 7, h0(F) > 0, and χ(F) > 0.

Proof. By Proposition 3.6, F is continuously globally generated. Since any α ∈
Pic0(X) is nef, this means F is a quotient of a nef vector bundle, so it is itself
nef. It also means that for α ∈ Pic0(X) general we have H0(F ⊗ α) 6= 0, which
implies h0(F) > 0 by semicontinuity. By the definition of M -regularity, we have

H i(F ⊗ α) = 0, for all i > 0 and α ∈ Pic0(X) general.

Thus for α ∈ Pic0(X) general we have

χ(F) = χ(F ⊗ α) = h0(F ⊗ α) > 0,

as the Euler characteristic is invariant under deformation. ¤

Remark 5.2. The nefness of F in the Lemma is easily proved, but is rather
weak. Debarre [De2] has in fact shown that every M -regular sheaf is ample – see
§7 for a nice application.

Let Y be a smooth projective complex variety whose Albanese map a : Y →
Alb(Y ) is generically finite onto its image, in other words a variety of maxi-
mal Albanese dimension. The well-known Generic Vanishing Theorem of Green-
Lazarsfeld, and a related result of Ein-Lazarsfeld, imply in the present language
the following:

Theorem 5.3 ([GL] Theorem 1, [EL] (proof of) Theorem 3). If Y is a variety
of maximal Albanese dimension, then either a∗ωY is M -regular, or the Albanese
image a(Y ) is ruled by subtori of Alb(Y ).

It is worth noting the conjecture of Kollár (cf. [Ko], 17.9) saying that if Y is
of maximal Albanese dimension and of general type, then χ(ωY ) > 0. By [EL]

7 Recall that to each coherent sheaf F one can associate the scheme P(F) :=

Proj(⊕mSymm(F)) over X, together with an invertible sheaf OP(F)(1). Then F is called nef if

OP(F)(1) is so.
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this is not always true, but the failure is accounted for by well-described special
behavior:

Corollary 5.4 ([EL], Theorem 3). If Y is a smooth projective variety of maximal
Albanese dimension with χ(ωY ) = 0, then the Albanese image a(Y ) is ruled by
tori.8

Proof. By the Theorem above, the only thing that needs to be said is that if
a∗ωY is M -regular, then χ(ωY ) > 0. But this follows immediately from Lemma
5.1 and Grauert-Riemenschneider vanishing. ¤

Combining Theorem 5.3 with the main M -regularity result, Theorem 3.3, we
obtain the following (cf. [PP3] Theorem 5.1):

Theorem 5.5. Let Y be a smooth projective complex minimal variety of general
type, of maximal Albanese dimension. If a(Y ) is not ruled by tori, then |2KY | is
basepoint-free and |3KY | is very ample outside of the exceptional locus of a (the
union of the positive dimensional fibers).

Remark 5.6. With extra work one can show that |3KY | separates general points
without the assumption that Y is minimal. This was proved by Chen and Hacon
in [CH3]. They (cf. e.g. [CH1], [CH2]) and Hacon-Pardini (cf. [HP]) also proved
many other very interesting results about the geometry of varieties of maximal
Albanese dimension, based on the use of generic vanishing theorems and the
Fourier-Mukai transform.

In the case of adjoint line bundles, vanishing of higher cohomology is provided
by the Kawamata-Viehweg vanishing theorem, and is preserved via generically
finite maps.

Lemma 5.7. If Y is a smooth projective variety of maximal Albanese dimension
and L is a big and nef line bundle on Y , then a∗O(KY + L) satisfies I.T. with
index 0 (so it is trivially M -regular).

Proof. By Kawamata-Viehweg vanishing

H i(O(KY + L)⊗ a∗α) = 0, for all i > 0 and all α ∈ Pic0(Y ).

8 The paper [EL] provides examples of such Y of general type and with χ(ωY ) = 0.
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On the other hand we have Ria∗O(KY +L) = 0 for all i > 0. This follows exactly
as in the proof of Grauert-Riemenschneider vanishing (cf. [Laz1] §4.3.B), which is
the same statement for KY . By the degeneration of the Leray spectral sequence
we have then

H i(a∗O(KY + L)⊗ α) = 0, for all i > 0 and all α ∈ Pic0(Y ).

¤

Combining this in the usual way with Theorem 3.3, one obtains the following
”generalized Lefschetz theorem” for adjoint line bundles.

Theorem 5.8 (cf. [PP1], Theorem 5.1). If Y is a smooth projective variety of
maximal Albanese dimension and L is a big and nef line bundle on Y , then

(1) |KY + L| 6= ∅.9
(2) |2(KY + L)| is basepoint-free outside of the exceptional locus of a.
(3) |3(KY + L)| is very ample outside of the exceptional locus of a.

Proof. The first statement follows combining Lemma 5.7 and Lemma 5.1. The
second follows since by Proposition 3.6 the sheaf a∗O(KY + L) is continuously
globally generated and, like global generation, this property holds if and only if
it holds after push-forward by a finite map. The third statement follows in a
similar way, by proving the global generation of OY (2(KY + L))⊗I{y} for every
y ∈ Y outside of the exceptional locus. ¤

This result was stated in [PP1] only for finite Albanese maps – however, as
explained above, since Grauert-Reimenschneider vanishing also holds for adjoint-
type bundles, the extension to generically finite Albanese maps is immediate.

For other applications of M -regularity to questions related to linear series on
special irregular varieties, cf. [PP1] §5 and [PP3] §5.

6. Equations of curves and special varieties in Jacobians

Let C be a smooth curve of genus g ≥ 3, and denote by J(C) the Jacobian of
C. Let Θ be a theta divisor on J(C), and Cd the d-th symmetric product of C,

9 It is conjectured by Kawamata [Ka] that on every smooth projective variety Y , an adjoint

line bundle O(KY +L) with L nef and big should have sections, as long as it is nef – in our case

this last property is automatic by Lemma 5.1.
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for 1 ≤ d ≤ g − 1. Consider

ud : Cd −→ J(C)

to be an Abel-Jacobi mapping of the symmetric product (depending on the choice
of a line bundle of degree d on C), and denote by Wd the image of ud in J(C). The
ideas involved in the study of regularity provide basic results on the cohomology
of the ideal sheaves of these special subvarieties.

Theorem 6.1 ([PP1] Theorem 4.1, [PP3] Theorem 4.3). For any 1 ≤ d ≤ g− 1,
the twisted ideal sheaf IWd

(2Θ) satisfies I.T. with index 0 (i.e. IWd
is (strongly)

3-Θ-regular).

Corollary 6.2. For any 1 ≤ d ≤ g − 1, the ideal IWd
is cut out by divisors

algebraically equivalent to 2Θ. Moreover, IWd
is also cut out by divisors linearly

equivalent to 3Θ.

The Corollary follows immediately from Theorem 6.1, combined with Theorem
3.3 and Proposition 3.6 (cf. also Example 1.1 (3)).

Following the approach in [PP1], the proof of Theorem 6.1 goes roughly as
follows. From the standard cohomology sequence associated to the exact sequence

0 −→ IWd
(2Θ) −→ OJ(C)(2Θ) −→ OWd

(2Θ) −→ 0,

we see that the theorem follows as soon as we prove the following two statements,
where this time for simplicity we denote by Θ any of the translates of the principal
polarization:

(1) H i(OWd
(2Θ)) = 0, ∀ i > 0.

(2) The restriction map H0(OJ(C)(2Θ)) → H0(OWd
(2Θ)) is surjective.

On the other hand, it is possible to see that the restriction of the principal
polarization to Wd satisfies the following properties:

• The sheaf OWd
(Θ) is M -regular on J(C).

• We have h0(Wd,OWd
(Θ)⊗ α) = 1 for α ∈ Ĵ(C) general.

This is done by explicit computation (cf. [PP1], Proposition 4.4) – for example
one can see that the cohomological support loci are V i(OWd

(Θ)) ∼= Wg−d−1, for
all 1 ≤ d ≤ g−1. The M -regularity of OWd

(Θ) implies (1) above via Proposition
3.8.



606 G. Pareschi and M. Popa

For the second statement one uses Theorem 3.7. Note that for any open subset
U ∈ Ĵ(C) we have a commutative diagram as follows, where the vertical maps
are the natural restrictions.

⊕
α∈U H0(OJ(C)(Θ)⊗ α)⊗H0(OJ(C)(Θ)⊗ α−1) //

²²

H0(OJ(C)(2Θ))

²²⊕
α∈U H0(OWd

(Θ)⊗ α)⊗H0(OJ(C)(Θ)⊗ α−1) // H0(OWd
(2Θ))

Now Theorem 3.7 says that the bottom horizontal map is surjective. On the
other hand, by the second item above, we can choose the open set U such that
the left vertical map is an isomorphism.10 This in turn implies that the right
vertical map is surjective, i.e. (2) above.

These vanishing results on Jacobians can also be approached via a study of
Picard bundles associated to line bundles of high degree on C – the main tool is
still the Fourier-Mukai transform (cf. [PP3] §4). Finally Theorem 6.1, together
with a Grothendick-Riemann-Roch computation, implies also a precise formula
for the cohomology of pull-backs of 2Θ-line bundles to symmetric products, as
conjectured by Oxbury and Pauly in [OP]:

Corollary 6.3. In the notation above the following are true:
(1) h0(Cd, u∗dO(2Θ)) = Σd

i=0

(
g
i

)

(2) u∗d : H0(J(C),O(2Θ)) → H0(Cd, u∗dO(2Θ)) is surjective.

A geometric Schottky-type criterion following Castelnuovo’s Lemma.
One of the consequences of Theorem 6.1 above is the following statement about
points on Abel-Jacobi curves.

Corollary 6.4. Let Γ be an arbitrary set of n ≥ g + 1 points lying on a curve C

Abel-Jacobi embedded in its Jacobian. Then Γ imposes precisely g + 1 conditions
on the linear series |(2Θ)a| for a ∈ J(C) general.

Indeed the restriction map from 2θ-functions on the Jacobian to the points of
Γ factors through the restriction to the curve:

H0OJ(C)((2Θ)a) → H0OC((2Θ)a) → H0OΓ((2Θ)a).

10 This means considering the translates Θξ satisfying h0(OWd(Θξ)) = 1, plus the fact that

Wd is not contained in Θξ.
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By Theorem 6.1, the first map is surjective, while the second one is clearly injec-
tive for a general.

On the other hand – as a consequence of the Jacobi inversion theorem – a
collection of n ≥ g + 1 general points on an Abel-Jacobi curve is in theta general
position, an abelian varieties analogue of linear general position in Pn.

Definition 6.5. A collection Γ of n ≥ g + 1 distinct points on a principally
polarized abelian variety (X, Θ) is in theta general position if for any Y ⊂ Γ with
|Y | = g and for any p ∈ Γ − Y there is a theta-translate Θγ such that Y ⊂ Θγ

and p 6∈ Θγ .

It is easily checked that g + 1 is the minimal number of conditions possibly
imposed on the general linear series |(2Θ)a| by points in theta general position.
Thus general points on Abel-Jacobi curves impose the smallest possible number
of conditions on “2θ-functions”. The converse is also true, in the sense that this
condition identifies precisely curves in their Jacobians.

Theorem 6.6 ([PP4], Theorem 5.2). Let (X, Θ) be an irreducible principally
polarized abelian variety of dimension g, and let Γ be a set of n ≥ g +2 points on
X in theta general position, imposing only g + 1 conditions on the linear series
|(2Θ)a| for a ∈ X general. Then (X, Θ) is a canonically polarized Jacobian of a
curve C and Γ ⊂ C for a unique Abel-Jacobi embedding C ⊂ J(C).

This converse however does not use M -regularity, but rather results of Gunning
and Welters on the existence of families of trisecants to the Kummer embedding.
A related result has been obtained by Grushevsky in [Gr] using the analytic
theory of theta functions.

Theorem 6.6 is an abelian varieties analogue of the Castelnuovo Lemma (cf.
[GH] p.531) in projective space. Together with Theorem 6.1, it shows that the
unique type of nondegenerate curve of minimal degree in projective space (the
rational normal curve) behaves like the unique type of nondegenerate curve rep-
resenting the minimal class θg−1

(g−1)! in a ppav (the Abel-Jacobi curve). On the
other hand, it is well known that varieties of minimal degree in Pn are the only
2-regular subvarieties in the sense of Castelnuovo-Mumford. Thus the following:
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Conjecture 6.7 (cf. [PP4] §2). A non-degenerate subvariety Y of an irreducible
ppav (X, Θ) represents a minimal class θm

m! , for any m ≥ 1, if and only if IY (2Θ)
satisfies I.T. with index 0 (i.e. IY is strongly 3-Θ-regular).

Subvarieties of ppav’s representing the minimal classes θm

m! are believed (cf.
[De1]) to be – up to translation and multiplication by −1 – precisely the Wd’s in
Jacobians, together with the Fano surface of lines in the intermediate Jacobian
of the smooth cubic threefold.11 For more on the potential analogy with the
situation in Pn cf. [PP4] §2.

7. Other applications

Maps to simple abelian varieties [De2]. In [De2] Debarre proves a gen-
eral positivity result, which improves substantially the observation in Lemma 5.1
(1).12

Proposition 7.1. Every M -regular vector bundle on an abelian variety is ample.

Let now f : X → Y be a finite surjective morphism of smooth projective
complex varieties. The trace map Tr : f∗OY → OX splits, and this defines a
complement vector bundle by

f∗OY = OX ⊕ E∨
f .

Using the strong information provided by Generic Vanishing, Debarre shows in
loc. cit. the following:

Proposition 7.2. If Y is a simple abelian variety and the morphism f does
not factor through a non-trivial isogeny, then the vector bundle Ef is M -regular,
hence ample.

This is the analogue, for abelian varieties, of Lazarsfeld’s result on finite covers
of projective space, stating that if Y = Pn, then Ef is ample – it is also well-
known by Lazarsfeld’s work that the ampleness of Ef has strong topological
implications (cf. [Laz1], Theorem 6.3.55 and Example 6.3.56). As a consequence
of the results above, Debarre obtains the nice application:

11 The vanishing in the conjecture is Theorem 6.1 above for Wd’s, and is checked for the

Fano surface in [Ho].
12 The result is proved in [De2] more generally for any coherent sheaf, with an interpretation

of ampleness similar to that of nefness in Lemma 5.1.
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Theorem 7.3 ([De2], Theorem 1.1). Let f : X → Y be a finite morphism of
degree d from a smooth connected projective variety to a simple abelian variety of
dimension n. If f does not factor through a nontrivial isogeny, then the induced
morphism

H i(f,C) : H i(Y,C) −→ H i(X,C)

is bijective for i ≤ n− d + 1.

Remark 7.4. This application illustrates once more the fact that M -regularity
takes up the role played by Castelnuovo-Mumford regularity in projective space:
Lazarsfeld’s proof of the original result on finite maps to Pn is based precisely
on a study of the Castelnuovo-Mumford regularity of the bundle Ef .

Verlinde bundles on moduli spaces of vector bundles on curves. Let C

be a smooth projective complex curve of genus g ≥ 2. Let also UC(r, 0) be the
moduli space of semistable vector bundles of rank r and degree 0 on C and SUC(r)
the moduli space of semistable rank r vector bundles with trivial determinant.
The Verlinde bundles are push-forwards of pluritheta line bundles on UC(r, 0) to
the Jacobian of C via the determinant map det : UC(r, 0) → J(C):

Er,k := det∗O(kΘN ),

where ΘN is the generalized theta divisor associated to a line bundle N ∈
Picg−1(C) (cf. [Po] §1). Their fibers over L ∈ J(C) are precisely the Verlinde
vector spaces of level k theta functions H0(SUC(r, L),Lk), where L is the deter-
minant line bundle on SUC(r). The main technical result on these bundles is the
following:

Proposition 7.5 ([Po] Proposition 5.2 and Theorem 5.9). The vector bundle
Er,k is:

• globally generated if and only if k ≥ r + 1.
• normally generated if and only if k ≥ 2r + 1.

The result is proved as a simple application of Theorem 3.3: the pull-back of
Er,k by the map given by multiplication by r on J(C)is isomorphic to

⊕OJ(C)(krΘ),
and so it can be controlled cohomologically. It can also be seen as an example of
the general behavior of semihomogeneous vector bundles on abelian varieties (cf.
[PP3], §6). It is applied in [Po], and in a more refined form in [EP], in order to
obtain effective results on generalized theta linear series on UC(r, 0).
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