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1. Introduction

Let Rg be the moduli space of genus g curves together with a non-trivial 2-
torsion divisor class ε. In this paper we shall prove that the moduli spaces R2

and R3 are rational varieties. The rationality of R4 was proven by F. Catanese
[3]. He also claimed the rationality of R3 but the proof was never published. The
first published proof of rationality of R3 was given by P. Katsylo in [10]. Some
years earlier A. Del Centina and S. Recillas [5] constructed a map of degree 3
from R3 to the moduli space Mbe

4 of bi-elliptic curves of genus 4 and claimed
that it could be used for proving the rationality of R3 based on the rationality of
Mbe

4 proven by F. Bardelli and Del Centina in [1]. In an unpublished preprint of
1990 I had shown that it is indeed possible. The present paper is based on this
old preprint and also includes a proof of rationality of R2 which I could not find
in the literature.

The relation between the moduli spaces R3 and Mbe
4 is based on an old con-

struction of P. Roth [13] and, independently, A. Coble [4]. Much later it had been
rediscovered and generalized by S. Recillas [11], and nowadays is known as the
trigonal construction. To each curve C of genus g together with a g1

4 it associates
a curve X of genus g + 1 together with a g1

3 and a non-trivial 2-torsion divisor
class η. The Prym variety of the pair (X, η) is isomorphic to the Jacobian variety
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of C. When g = 3 and g1
4 = |KC + ε|, the associated curve X turns out to be

a canonical bi-elliptic curve of genus 4, the bi-elliptic involution τ switches the
two g1

3 on X, and the 2-torsion class η is coming from a 2-torsion divisor class
on the elliptic quotient X/(τ). To make this paper self-contained we remind the
construction following A. Coble.

The author is grateful to the referee for some valuable comments on the paper.

2. Rationality of R2

Let C be a genus 2 curve and x1, . . . , x6 be its six Weierstrass points. A non-
trivial 2-torsion divisor class on C is equal to the divisor class [xi − xj ] for some
i 6= j. The hyperelliptic series g1

2 defines a degree 2 map C → P1 and the images
of the Weierstrass points are the zeroes of a binary form of degree 6. This defines
a birational isomorphism between the moduli space M2 of genus 2 curves and the
GIT-quotient P(V (6))//SL(2), where V (m) denotes the space of binary forms of
degree m. A non-trivial 2-torsion divisor class is defined by choosing a degree 2
factor of the binary sextic. Thus the moduli space R2 is birationally isomorphic
to the GIT-quotient (P(V (4)) × P(V (2)))//SL(2) and the canonical projection
R2 →M2 corresponds to the multiplication map V (4) × V (2) → V (6). At this
point we may conclude by referring to Katsylo’s result on rationality of fields
of invariants of SL(2) in reducible representations [9]. However, we proceed by
giving a more explicit proof.

Let M2(2) be the moduli space of genus 2 curves together with a 2-level struc-
ture of its Jacobian (i.e. a choice of a symplectic basis in the space of 2-torsion
points of the Jacobian). It is well-known that a 2-level structure is equivalent
to an order of the set of the Weierstrass points and hence M2(2) is birationally
isomorphic to the GIT-quotient P 6

1 = (P1)6//SL(2) (see, for example, [8]). The
forgetful map M2(2) → M(2) corresponds to the quotient map P 6

1 → P 6
1 /S6,

where the symmetric group S6 acts naturally by permuting the factors. Under
the natural isomorphism Sp(4,F2) → S6 the stabilizer of a non-trivial 2-torsion
point is conjugate to the subgroup S4 × S2 of S6. Thus we obtain a birational
isomorphism

R2 → P 6
1 /(S4 × S2).
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It is well-known that the variety P 6
1 is isomorphic to the Segre cubic threefold V3

defined in P5 by equations

F1 =
5∑

i=0

ti = 0, F3 =
5∑

i=0

t3i = 0,

where the group S6 acts by permuting the coordinates (see [8]). Let C[t0, . . . , t5]
be the projective coordinate ring. We have

P 6
1
∼= Proj(C[t0, . . . , t5]/(F1, F3))S4×S2 .

Here S4 × {1} acts by permuting the first 4 coordinates t0, t1, t2, t3 and {1} × S2

permutes the remaining coordinates. The ring C[t0, . . . , t5]S4×S2 is freely gener-
ated by the symmetric functions

uα(t0, t1, t2, t3) =
3∑

i=0

tαi , α = 1, 2, 3, 4, u5 = t4 + t5, u6 = t4t5.

We have

F1 = u1 + u5, F3 = u3 + u3
5 − 3u5u6.

This allows us to eliminate u3 and u1 to obtain

(P 6
1 )/(S4 × S2) ∼= Proj(C[u2, u4, u5, u6]) ∼= P(2, 4, 1, 2).

This proves the rationality of R2.

Remark 2.1. According to G. Salmon [14], p.203, the algebra of SL(2)-invariant
polynomials on V (2)×V (4) is generated by 6 bi-homogeneous polynomials of bi-
degrees (0, 3), (0, 4), (3, 0), (2, 2), (1, 2) and (3, 3). The square of the last invariant
is a polynomial in the remaining invariants.

Let us give another proof of rationality of R2. Let (C, ε) ∈ R2. Consider the
map C → |2KC + ε|∗ ∼= P2 given by the linear system |2KC + ε|. Its image Y is a
plane singular quartic. It is easy to see that |KC + ε| consists of a unique divisor,
the sum of two distinct Weierstrass points xi + xj . The divisors 3xi + xj and
xi+3xj belong to 2KC +ε. The corresponding lines in P2 intersect at the singular
point of Y whose pre-image in C consists of the points xi, xj . The tangent lines
at the branches of the singular point intersect Y with multiplicity 4. This allows
one to find an equation of Y in the form

t20t1t2 + t0t1t2F1(t1, t2) + F4(t1, t2) = 0,
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where F1 and F4 are homogeneous polynomials of degree 1 and 4, respectively.
Replacing t0 by an appropriate linear form t0 + at1 + bt2, we may assume that
F1 = 0. Finally, by scaling the coordinates, we obtain that R2 is birationally
isomorphic to the quotient of V (4) ∼= C5 by a 2-dimensional torus. It is obviously
a rational variety.

3. The Coble-Roth map

Let K3 denote the moduli space of pairs (C, (a,−a)), where C is a curve of
genus 3 and a is a divisor class of degree 0 on C. The projection to C fibres K3

over M3 with fibres isomorphic to the Kummer varieties of curves of genus 3.
The Coble-Roth map is a rational map

cr : K3 →R4

defined as follows. Assume that a 6= 0 and C is not hyperelliptic. Consider the
natural map

(3.1) φ : |KC + a| × |KC − a| → |2KC |, (D1, D2) 7→ D1 + D2.

We can choose an isomorphism |KC ± a| ∼= P1 and an isomorphism |2KC | ∼=
|OP2(2)| , where P2 = |KC |∗. Let V3 be the determinant cubic parametrizing
reducible conics in the space of conics |OP2(2)|. Using projective coordinates
(u0, u1) and (v0, v1) on each copy of P1, we see that the map is given by a linear
system of divisors of bi-degree (1, 1). Thus the pre-image X of the cubic D3 is a
divisor of bi-degree (3, 3) on P1×P1. For C general enough it is a smooth canonical
curve of genus 4. It is also isomorphic to a section of V3 by the 3-dimensional
linear space, the linear span of the image of the map φ. As is well-known, the
cubic V3 admits a double cover ramified along its singular locus (parametrizing
the irreducible components of singular conics). The restriction of the cover to the
image of φ defines a non-ramified double cover of the curve X, hence a 2-torsion
divisor class η on X.

A remarkable fact is that the Coble-Roth map is birational. This is proved as
follows. Starting from a canonical curve X ⊂ P1×P1 of genus 4 and a non-trivial
2-torsion divisor class η on X we identify the |KX + η|∗ with P2. The image of
X under this linear system |KX + η| is the Wirtinger sextic model of X (see [3]).
For any point a = ((α0, α1), (β0, β1)) ∈ P1×P1 one defines the polar Pa(X) of X
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with respect to a by the formula:

Pa(X) =
1∑

i,j=0

αiβj
∂2F

∂ti∂τj
= 0,

where F = F (t0, t1; τ0, τ1) is a bi-homogeneous equation of X. The set of polars
of X generates a 3-dimensional linear system in |OX(2)|, where X is considered
to be embedded in P3 = |KX |∗. Now we can view any divisor D ∈ |OX(2)| as a
conic in the space P2 = |OX(KX + ε)|∗. This defines a map:

P : P1 × P1 → |OP2(2)|, a → Pa(F ).

It is given by a divisor W of type (1, 1, 2) on P1 × P1 × P2. The projection of W

to P2 is a conic bundle with the discriminant curve C of degree 4. The degree 2
cover of C parametrizing irreducible components of the fibres defines a non-trivial
2-torsion point ε on C. This defines the inverse map. We refer for the details to
a paper of S. Recillas [12].

Now let us identifyR3 with the closed subvariety of K3 contained in the locus of
singular points of the fibres of K3 →M3. For any (C, ε) ∈ R3 the corresponding
pair (X, η) ∈ R4 is invariant with respect to the involution σ induced by switching
the factors in the map P1 × P1 → P5 defined by the map (3.1), where a = ε,

|KC + ε| × |KC + ε| → |2KC |, (D1, D2) 7→ D1 + D2.

The quotient X/(σ) is an elliptic curve E and the 2-torsion class η, being σ-
invariant, is the pre-image of a 2-torsion divisor class on E. Let Rbe

4 denote the
moduli space of pairs (X, η), where X is a genus 4 curve together with a bi-elliptic
involution σ and η is a σ-invariant non-trivial 2-torsion divisor class on X. The
Coble-Roth map defines a rational map

R3 →Rbe
4 .

Let us show that it is a birational map (see also [5]). Let X be a canonical curve
of genus 4 on P1×P1. Suppose X has a bi-elliptic involution σ and E = X/(σ) is
an elliptic curve. The involution σ is induced by an automorphism σ̃ of P1 × P1

(since X is canonically embedded in P3 and all non-singular quadrics in P3 are
projectively isomorphic). Since the two g1

3’s of X induced by the rulings of P1×P1

are switched under σ, we obtain that σ̃ switches the two families of rulings of
the quadric. This easily implies that σ̃ is conjugate to the switch involution of
P1 × P1. Thus we may assume that σ̃ is this involution. Then the factor X/(σ)
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can be identified with a cubic curve E in P1 × P1/(σ̃) ∼= P2. Suppose η is a non-
trivial 2-torsion divisor class on X that comes from the elliptic curve E. Then
the pair (X, η) is invariant with respect to the involution σ̃, and the associated
conic bundle W ⊂ P1 × P1 × P2 is invariant with respect to the involution σ̃ × 1.
It follows from the construction that the two g1

4’s on the quartic discriminant
curve C coincide. Since they complement each other in the bi-canonical linear
system of C, each of them is equal to |KC + ε|, where 2ε = 0. This shows that
cr−1(Rbe

4 ) ⊂ R3. Thus the Coble-Roth map defines a birational isomorphism

R3
∼= Rbe

4 .

4. Rationality of R3

It remains to prove the rationality of Rbe
4 . It is a triple cover of the moduli

space Mbe
4 of bi-elliptic curves of genus 4. The latter has a simple description.

Each generic X ∈ Mbe
4 is uniquely determined by the isomorphism class of the

following data: (E,L, s), where E is an elliptic curve, L is a degree 3 invertible
sheaf on E, and s ∈ H0(E,L⊗2). The isomorphism between triples (E,L, s) and
(E′,L′, s′) is induced by the isomorphisms between E and E′. If we use L to
embed E in P2, this data is equivalent to the data (E, Q), where E is a cubic
and Q is a conic on P2 that cuts out in E the divisor of zeroes of s. Here the
isomorphism is induced by a projective transformation of P2. In this way we
obtain a birational isomorphism

Mbe
4
∼= V = |OP2(3)| × |OP2(2)|/PGL(3),

where the group acts diagonally. Similarly, we have a birational isomorphism

(4.1) Rbe
4
∼= |OP2(3)| × |OP2(2)|/PGL(3),

where |OP2(3)| is the variety of pairs (E, η), E ∈ |OP2(3)|, η ∈ 2Pic(E) \ {0}.
There is a well-known birational PGL(3)-equivariant isomorphism

|OP2(3)| ∼= |OP2(3)|.
It is defined by assigning to a plane cubic the Hessian invariant of the net of polar
cubics (see [7] for details). This shows that

R3
∼= Rbe

4
∼= Mbe

4 .

It remains to use that the right-hand space is rational [1]. Recall that Mbe
4 is

isomorphic to the space of projective equivalence classes of pairs (F3, Q2), where



Rationality of R2 and R3 507

F3 is a plane cubic and Q2 is a plane conic. By fixing a conic, we see that
Mbe

4 is birationally isomorphic to the quotient P(S3(V (2)))//SL(2). The linear
representation S3(V (2)) of SL(2) decomposes as V (6) + V (2) and we may apply
Katsylo’s result [9] to conclude the rationality. In fact, Bardelli and Del Centina
prove the rationality directly by finding an appropriate subspace W of V (6)+V (2)
with stabilizer isomorphic to a subgroup H = C∗oZ/2 and computing explicitly
the field of invariants of H on W .

Another possible approach to rationality of Mbe
4 (as indicated by the referee)

consists of putting the cubic F3 in the Hesse form x3
0 + x3

1 + x3
2 + tx0x1x2 = 0.

In this way Mbe
4 becomes birationally isomorphic to the space P1×P5/G, where

G ∼= (Z/3)2 o SL(2,F3) is the Hesse group of order 216, the subgroup of PGL(3)
leaving the Hesse pencil invariant. The proof of rationality of Mbe

4 from [1] could
be based on the explicit computation of invariants of the Hesse group.

Remark 4.1. It is well-known that a non-trivial 2-torsion class ε on a canonical
curve C of genus 3 defines a family of everywhere tangent conics to C. This
family is a conic in the space of conics and the quartic equation of C is the
discriminant of this conic (see [4],§14 or [6], 6.2). In this way one obtains a
birational isomorphism from R3 to the space of conics in |2KC | ∼= P5 modulo
the group PGL(3) acting naturally on |2KC |. Since each conic lies in a unique
plane, we have a projection R3 → G(3, 6) to the Grassmannian G(3, 6) of planes
in P5 modulo the action of the group PGL(3) with fibres isomorphic to the 5-
dimensional space of conics in a given plane. By intersecting a plane with the
discriminant cubic V3 we obtain a birational isomorphism G(3, 6)/PGL(3) and
the space R1. This gives a fibration R3 → R1 with P5 as fibres. The rationality
of R3 would follow if one can prove that this fibration is a projective bundle. I
do not know how to prove it. Note that this fibration is birationally isomorphic
to the fibration

Rbe
4
∼= |OP2(3)| × |OP2(2)|/PGL(3) → |OP2(3)|/PGL(3) ∼= R1

(see (4.1)). However, the group PGL(3) acts on the first factor with non-trivial
stabilizer of a general point, so one cannot conclude that this fibration is a P5

bundle.
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