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0. Introduction

0.1. Overview. Let X be a nonsingular projective variety over C. The stack
Mg,n(X, β) parameterizes stable maps

f : C → X

from genus g, n-pointed curves to X representing the class β ∈ H2(X,Z). The
Gromov-Witten invariants of X are defined by integration against the virtual
class of the moduli space,

(1)
〈
τa1(γ1) · · · τan(γn)

〉X

g,β
=

∫

[Mg,n(X,β)]vir

n∏

i=1

ψai
i ∪ ev∗i (γi),

where ψi is the Chern class of the ith cotangent line,

evi : Mg,n(X, β) → X

is the ith evaluation map, and γi ∈ H∗(X,Q).

Over the past 10 years, there has been great deal of success in calculating
Gromov-Witten invariants if either the domain genus is 0 or the target X carries
a strong torus action — a torus action with finitely many 0 and 1 dimensional
orbits.
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Domain genus 0

Strong torus action on target

The goal of our paper is to use the methods of [30] for Gromov-Witten calculations
outside of the above regions.

We study the higher genus Gromov-Witten invariants of two target geometries:
surfaces of general type and compact Calabi-Yau 3-folds. In the surface case, the
calculations suggest exact solutions. For Calabi-Yau 3-folds, our results provide
the first mathematical encounter with the holomorphic anomaly equation for
topological strings.

0.2. Genus 0. There are several mathematical approaches to Gromov-Witten
theory in genus 0. A wide class of target varieties has been successfully studied via
WDVV-equations, Frobenius structures, and quantum Lefschetz formulas. Quan-
tum Schubert calculus is well developed for classical homogeneous spaces. Mirror
symmetry relations between genus 0 invariants of Calabi-Yau hypersurfaces and
Picard-Fuchs systems have been proven in many cases. The bibliography of [8]
is a good source for genus 0 references before 2000.

An example of recent progress in genus 0 is the calculation of the quantum
cohomology of the Hilbert scheme of points of C2 [35].

Genus 0 computation for orbifold targets, however, is a largely open subject
[2, 3, 6].
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0.3. Strong torus actions. The situation in higher genus is substantially more
difficult. If X carries a strong torus action, then the Gromov-Witten theory of
X is reduced to Hodge integrals on Mg,n via localization of the virtual class
[16]. Hodge integrals can be reduced to descendent integrals by Gromov-Witten
operators based on a Grothendieck-Riemann-Roch calculation of Mumford [11].
A formalism for expressing the higher genus invariants of X in terms of genus
0 Frobenius structures via [11, 16] has been developed by Givental [15, 22]. An
outcome, for example, is Givental’s proof of the Virasoro constraints for the
Gromov-Witten theory of Pn.

If the dimension of X is 3, calculations in higher genus can be made much
more effective. The required Hodge integrals have been treated with increasing
sophistication. The culmination has been the topological vertex [1] in the local
Calabi-Yau toric case and the equivariant vertex [28, 29] for arbitrary 3-folds with
strong torus actions. Neither vertex evaluation of 3-fold Gromov-Witten theory
has yet a complete mathematical proof, see [1, 26, 28, 29, 37].

0.4. New directions. If we leave the genus 0 or strong torus action realm, very
few calculations have been completed.

The Gromov-Witten invariants of all 1-dimensional targets have been fully
determined in [32, 33, 34]. The method uses a mix of localization, degeneration,
and exact evaluations. Similarly, the local theory of curves in 3-folds has been
solved in [5]. The results of [30] present a topological view of Gromov-Witten
calculations in all dimensions: the familiar cutting and pasting strategies in the
topological category are shown to yield effective Gromov-Witten techniques.

The Virasoro constraints of Eguchi-Hori-Yang [9] and S. Katz are conjectured
to hold for the descendent theories of all target varieties X. Expositions can be
found in [13, 39]. We find the Virasoro constraints to be useful and non-trivial
tools. The results here which depend on the Virasoro constraints are clearly
indicated.

0.5. Plan. The paper starts with a discussion of our topological view of Gromov-
Witten theory in Section 1. Applications to surfaces of general type are considered
first. The universal framework of Taubes and Lee-Parker [21] is summarized in
Section 2.2. Our conjectural formulas based on calculations of the Gromov-
Witten theory of branched double covers of P2 are presented in Section 2.4.
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Section 3 is devoted to Enriques geometries. The rich Gromov-Witten theory of
the Enriques surface is used to study the holomorphic anomaly equation for the
Enriques Calabi-Yau 3-fold.
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played an important role in our surface calculations. Many of these occurred
during a workshop on holomorphic curves at the Institute for Advanced Study in
Princeton in June of 2005.
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D. M. was partially supported by an NSF graduate fellowship. R. P. was
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1. Topological view

1.1. Mayer-Vietoris. Let X be a nonsingular projective variety. We would like
to study Gromov-Witten theory by decomposing X into simpler pieces.

Degeneration may be viewed as an algebraic version of cutting and pasting.
Let

ε : X → ∆

be a flat family over a disk ∆ ⊂ C at the origin satisfying:

(i) X is nonsingular,
(ii) ε is smooth over the punctured disk ∆∗ = ∆ \ {0},
(iii) ε−1(1) ∼= X,
(iv) ε−1(0) = X1 ∪Y X2 is a normal crossings divisor in X .

The family ε defines a canonical map

H∗(X1 ∪Y X2,Q) → H∗(X,Q)

with image defined to be the nonvanishing cohomology of X.
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Let GW(X) denote the descendent Gromov-Witten theory of the target X —
the complete set of integrals (1) — and let GW(X)ε denote the Gromov-Witten
theory of descendents of the nonvanishing cohomology. A Mayer-Vietoris result
in Gromov-Witten theory is proven for the family X in [30].

Theorem 1. GW(X)ε can be uniquely and effectively reconstructed from

GW(X1), GW(X2), GW(Y ),

and the restriction maps

H∗(X1,Q) → H∗(Y,Q) ← H∗(X2,Q).

A degeneration ε : X → 4 satisfying conditions (i)-(iv) above will be called
good. Theorem 1 requires a good degeneration.

1.2. Surfaces branched over P2. Let S be a nonsingular projective surface
which admits a good degeneration to S1∪C S2. Since GW(C) has been completely
determined in [34], Theorem 1 is particularly applicable.

Surfaces constructed as branched double covers of P2 provide a basic class of
examples. Let

S2n → P2

be a double cover branched along a nonsingular curve B of degree 2n. If n ≥ 4,
then S2n is of general type.

Let C be a nonsingular plane curve of degree n generic with respect to B.
By degenerating the branch curve B to the square of C, we can construct a
1-parameter family F of surfaces:

F → P2 × C
is the double cover along

(tB − C2) ⊂ P2 × C
where t is the parameter on C. The total space F has double point singular-
ities above the 2n2 points of B ∩ C. Taking the small resolution, we obtain a
nonsingular space

ε : S → C

which provides a degeneration of S2n to

P̃2 ∪C P2
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where P̃2 is the blow-up of P2 along B ∩ C.

The cohomology of S2n pulled-back from P2 is certainly nonvanishing for ε.
Since the descendent theories GW(P̃2) and GW(P2) are accessible via various
methods (localization, Virasoro, Frobenius structures), Theorem 1 provides an
effective approach to GW(S2n)ε.

1.3. The Enriques surface. Let σK3 be a fixed point free involution of a K3
surface. By definition, the quotient

X = K3/〈σK3〉
is an Enriques surface. Alternatively, Enriques surfaces arise as elliptic fibrations

(2) X → P1

with 12 singular fibers and 2 double fibers.

Let E × P1 be the product of an elliptic curve and a projective line. Let tE
denote translation on E by a 2-torsion point, and let invP1 denote an involution
on the projective line. Then,

τ : E × P1 → E × P1

acting by (tE , invP1) is a fixed point free involution. Let

X1 =
(
E × P1

)
/〈τ〉

denote the quotient. By projecting left,

X1 → E/〈tE〉
is a projective bundle over the elliptic curve E/〈tE〉. Hence GW(X1) is determined
by localization and [34]. By projecting right,

X1 → P1/〈invP1〉
is an elliptic fibration with no singular fibers and 2 double fibers.

Let E(1) be the rational elliptic surface isomorphic to the blow-up of P2 in 9
points. The surface E(1) admits an elliptic fibration

E(1) → P1

with 12 singular fibers and no double fibers.
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By degenerating the elliptic fibration (2), we find a good degeneration of the
Enriques surface X to

X1 ∪E E(1)

where the intersection E is a common elliptic fiber. Since all the cohomology of
X is nonvanishing for the degeneration, Theorem 1 provides an effective approach
to the Gromov-Witten theory of the Enriques surface.

Since the K3 surface is holomorphic symplectic, GW(K3) is essentially trivial∗

with nonvanishing invariants only for constant maps in genus 0 and 1. The
Enriques surface, however, will be seen to have a very rich Gromov-Witten theory.

1.4. The Enriques Calabi-Yau. Let σ act freely on the product K3×E by an
Enriques involution σK3 on the K3 and by -1 on the elliptic curve. By definition,
the quotient

Q = (K3× E) /〈σ〉
is an Enriques Calabi-Yau 3-fold. Since K3 × E carries a holomorphic 3-form
invariant under σ,

KQ = 0.

By projection on the right,

(3) Q → E/〈−1〉 = P1

is a K3 fibration with 4 double Enriques fibers.

Let τ act freely on the product K3× P1 by (σK3, invP1). Let

R =
(
K3× P1

)
/〈τ〉

denote the quotient. By projecting left,

R → K3/〈σK3〉 = X

is a projective bundle over the Enriques surface X. Hence GW(R) is determined
by localization and GW(X). By projecting right,

R → P1/〈invP1〉
is a K3 fibration with 2 double Enriques fibers.

∗The K3 surface has a rich modified Gromov-Witten theory. The investigation of the modified

Gromov-Witten theory of the K3 surface should also be considered to be outside of the genus

0 and toric realm. Calculations in primitive and twice primitive classes can be found in [4, 20].

At present, the modified virtual class is not amenable to the techniques discussed here.
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By degenerating the K3 fibration (3), we find a good degeneration of the
Enriques Calabi-Yau Q to

R ∪K3 R

where the intersection K3 is a common fiber. Since all the cohomology of Q is
nonvanishing, Theorem 1 provides an effective approach to the Gromov-Witten
theory of the Enriques Calabi-Yau.

1.5. Absolute/Relative. Relative Gromov-Witten theory plays an essential role
in Theorem 1. We review standard notation for relative invariants.

Let (V, W ) be a nonsingular projective variety V containing a nonsingular
divisor W . Let β ∈ H2(V,Z) be a curve class satisfying

∫

β
[W ] ≥ 0.

Let
→
µ be an ordered partition,

∑

j

µj =
∫

β
[W ],

with positive parts. The moduli space Mg,n(V/W, β,
→
µ) parameterizes stable

relative maps from genus g, n-pointed curves to V of class β with multiplicities
along W determined by

→
µ .

The relative conditions in the theory correspond to partitions weighted by
the cohomology of W . Let δ1, . . . , δmW be a basis of H∗(W,Q). A cohomology
weighted partition ν consists of an unordered set of pairs,

{
(ν1, δs1), . . . , (ν`(ν), δs`(ν)

)
}

,

where
∑

j νj is an unordered partition of
∫
β [W ]. The automorphism group,

Aut(ν), consists of permutation symmetries of ν.

The standard order on the parts of ν is

(νi, δsi) > (νi′ , δsi′ )

if νi > νi′ or if νi = νi′ and si > si′ . Let
→
ν denote the partition (ν1, . . . , ν`(ν))

obtained from the standard order.
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The descendent Gromov-Witten invariants of the pair (V, W ) are defined by
integration against the virtual class of the moduli of maps. Let γ1, . . . , γmV be a
basis of H∗(V,Q), and let

(4)
〈
τk1(γl1) · · · τkn(γln)

∣∣∣ ν
〉V/W

g,β
=

1
|Aut(ν)|

∫

[Mg,n(V/W,β,
→
ν )]vir

n∏

i=1

ψki
i ev∗i (γli) ∪

`(ν)∏

j=1

ev∗j (δsj ).

Here, the second evaluations,

evj : Mg,n(V/W, β,
→
ν ) → W.

are determined by the relative points. The brackets (4) denote integration over
the moduli of maps with connected domains.

Gromov-Witten invariants are defined (up to sign) for unordered weighted par-
titions ν. To fix the sign, the integrand on the right side requires an ordering.
The ordering is corrected by the automorphism prefactor.

Given a good degeneration of X to X1∪Y X2, the degeneration formula [10, 18,
23, 24] expresses GW(X)ε in terms of the relative Gromov-Witten theories of the
pairs (X1, Y ) and (X2, Y ). Hence, Theorem 1 is a consequence of the following
result of [30].

Theorem 2. The relative Gromov-Witten theory of the pair (V, W) can be uniquely
and effectively reconstructed from GW(V ), GW(W ), and the restriction map
H∗(V,Q) → H∗(W,Q).

2. Surfaces of general type

2.1. Seiberg-Witten theory. Let S be a nonsingular, projective, minimal sur-
face of general type with pg(S) > 0. Let KS ∈ H2(S,Z) be the canonical class of
S, and let

gK = K2
S + 1

be the adjunction genus in the canonical class. The moduli space MgK (S,KS)
has virtual dimension 0. Taubes has obtained the evaluation

(5) 〈1〉SgK ,KS
= (−1)χ(OS).
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by a connection to Seiberg-Witten theory [17, 31, 40, 41, 42, 43]. Here, χ(OS)
denotes the holomorphic Euler characteristic.

We will call a nonsingular, irreducible, canonical divisor C ⊂ S a Taubes curve.
If a Taubes curve exists, formula (5) has a simple geometric interpretation. By
adjunction, the normal bundle of C in S is a square root of the canonical bundle
of C,

OC(2C) = KS(C)|C(6)

= KC .

The normal bundle is thus a theta characteristic of C and has a deformation
invariant parity equal to h0(C,OC(C)) mod 2. The sign of the Taubes curve is
defined by the parity of the normal bundle,

σ(C) = (−1)h0(C,OC(C)).

Lemma 1. If C ⊂ S is a Taubes curve, then 〈1〉SgK ,KS
equals the sign of C.

Proof. The cohomology sequence associated to the short exact sequence

0 → OS → OS(C) → OC(C) → 0

starts as

0→H0(S,OS) → H0(S,OS(C)) → H0(C,OC(C)) →
H1(S,OS)

φ→ H1(S,OS(C)) → . . . .

Since C is a Taubes curve,

h0(S,OS(C)) = h0(S,KS) = h2(S,OS).

Hence, the parity of the normal bundle equals the parity of

χ(OS) + dim(Im(φ)).

The image Im(φ) has dimension equal to the rank of the skew-symmetric form
on H1(S,OS) defined by

H1(S,OS)×H1(S,OS)
(φ,id)→ H1(S,KS)×H1(S,OS) ∪→ H2(S,KS) ∼= C.

The rank of a skew-symmetric form is even. ¤

Lemma 1 is well-known in various forms. Our purpose is to emphasize the
connection to the theta characteristic.
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2.2. Vanishing and universality. The Gromov-Witten invariants of S of Sev-
eri type are

〈
τn
0 ([pS ])

〉S

g,β 6=0
,

where [pS ] ∈ H4(S,Z) is the point class. By results of Taubes, Gromov-Witten
invariants of Severi type vanish in the adjunction genus

2gβ − 2 = (KS + β) · β

if β 6= KS . The universal evaluation

〈
1
〉S

gK ,KS

= (−1)χ(OS)

is an example of nonvanishing.

Let S be a minimal surface of general type. If a Taubes curve C ⊂ S exists, a
stronger vanishing result is proven by J. Lee and T. Parker in [21]. The methods
of [21] do not use Seiberg-Witten theory.

I. Vanishing: The Gromov-Witten invariants

〈
τα1(γ1) . . . ταn(γn)

〉S

g,β 6=0

vanish if either β /∈ ZKS or there exists an insertion satisfying

γi ∈ H≥3(S,Q).

Constant maps are avoided in the vanishing statement. A complete discussion
of β = 0 invariants of a surface can be found in [14].

II. Universality: GW(S) is uniquely determined by the sign of the Taubes curve
and the restriction map H∗(S,Q) → H∗(C,Q).

The universality II is slightly stronger than the result of [21] where the precise
spin structure (6) is required. Since the sign is the only deformation invariant of
a spin structure, we conjecture the stronger universality II.
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2.3. Local theory of surfaces. We will assume the existence of a Taubes curve
C ⊂ S. A sharper universality statement can be made for descendents of the
even cohomology

H0(S,Q)⊕H2(S,Q) ⊂ H∗(S,Q).

of S. By vanishing, descendents of H4(S,Q) need not be considered.

II′. Universality: For d > 0,

〈 n∏

i=1

ταi(Di)
m∏

j=1

τα̃j (1)
〉S

g,dKS

=

dn
n∏

i=1

(KS ·Di) ·
〈 n∏

i=1

ταi([pC ])
m∏

j=1

τα̃j (1)
〉C,σ(C)

g,d
,

where Di ∈ H2(S,Q) and [pC ] ∈ H2(C,Q) is the point class.

The brackets 〈, 〉C,±
g,d refer to a local Gromov-Witten theory of curves in surfaces

for which no explicit algebraic construction yet exists. The universality equation
II′ may be taken to conjecturally define the local theory on the right.

2.4. Conjectures. We conjecture evaluations of the local theory of curves in
surfaces

(7)
〈 n∏

i=1

ταi([pC ])
m∏

j=1

τα̃j (1)
〉C,±

g,d

for degrees d = 1, 2. The dimension constraint for the local theory (7) is

g − 1− d(gC − 1) + m =
n∑

i=1

αi +
m∑

j=1

α̃j .

By the Virasoro conjecture for the Gromov-Witten theory of surfaces,† the inser-
tions τα̃(1) can be removed by universal relations.

We will restrict our attention to the insertions τα([pC ]). In degree 1, we con-
jecture

(8)
〈 n∏

i=1

ταi([pC ])
〉• C,±

g,1
= ±

n∏

i=1

αi!
(2αi + 1)!

(−2)−αi .

†The Virasoro conjecture is open, but partial results for the local theory of surfaces have

been obtained by A. Gholampour.
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In degree 2, we conjecture

(9)
〈 n∏

i=1

ταi([pC ])
〉• C,±

g,2
= ± 2gC+n−1

n∏

i=1

αi!
(2αi + 1)!

(−2)αi .

The superscripted bullet here denotes Gromov-Witten invariants with possibly
disconnected domains with no degree 0 components. The heuristic origins of for-
mulas (8) and (9) are based on relationships to exact evaluations in the Gromov-
Witten theory of P1. A discussion will be presented in [27].

Our main evidence for the degree 1 and 2 formulas is obtained from calculations
in the Gromov-Witten theory of S2n based on the strategy of Section 1.2. The
computations are rather labor intensive — very similar to the quintic surface
computations of [30] — and will be omitted here.

For readers seeking worked examples of the method of [30], the 3-fold calcula-
tions of Section 3 will be explained in detail.

2.5. Speculations. The full evaluation of the local theory
〈

,
〉C,±

g,d

of curves in surfaces is not yet known. The Gromov-Witten theory of curves is
related to gauge theory for the symmetric group via the Gromov-Witten/Hurwitz
correspondence of [32]. The local Gromov-Witten theory of curves in 3-folds is
related to U(1)-gauge theory via the Gromov-Witten/Donaldson-Thomas corre-
spondence [5, 36]. The local Gromov-Witten theory of curves in surfaces sits
in between. We expect the local theory of curves in surfaces to be related to a
descendent Donaldson theory of sheaves on surfaces.

3. The Enriques Calabi-Yau 3-fold

3.1. Fiber classes.

3.1.1. 2-torsion. Let X be the Enriques surface. The middle homology of X has
a 2-torsion factor. The torsion-free quotient,

H2(X,Z)′ ∼= H2(X,Z)/Z2,
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has rank 10. The intersection pairing 〈, 〉 on H2(X,Z)′ is isomorphic to the
quadratic form U ⊕ E8(−1), where

U =

(
0 1
1 0

)

and

E8(−1) =




−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2




.

is the (negative) Cartan matrix. A good reference for the classical geometry of
X is [7].

We will view the curve classes of X as lying in H2(X,Z)′. More precisely, the
integral

(10)
〈
τa1(γ1) · · · τan(γn)

〉X

g,β

with β ∈ H2(X,Z)′ is defined to be the sum of the integrals associated to the two
lifts of β to H2(X,Z).

Let Q be the Enriques Calabi-Yau 3-fold defined in Section 1.4,

(11) Q = (K3× E) /〈σ〉
Projection to the first factor,

πX : Q → X,

is an elliptic fibration (with all fibers isomorphic to E). The homology mod
torsion also projects,

πX∗ : H2(Q,Z)′ → H2(X,Z)′.

Since πX has a 0 section s0, there is decomposition

H2(Q,Z)′ = H2(X,Z)′ ⊕ Z[E],

where [E] is class of the fiber of πX . The Gromov-Witten invariant

Ng,(β,d) = 〈1〉Qg,(β,d)
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is defined by summation over all lifts of (β, d) ∈ H2(Q,Z)′ following the conven-
tion of (10).

The curve class 0 invariants Ng,(0,0) vanish in genus 0 and 1 since the associated
moduli spaces of stable maps are empty.

3.1.2. The projection πP1. Projection to the second factor of (11),

πP1 : Q → P1,

is a K3 fibration with 4 double Enriques fibers. The homology classes (β, 0) of
Q project to 0 under πP1∗. The invariants Ng,(β,0) are the fiber class invariants of
Q with respect to πP1 .

Lemma 2. The fiber class invariants of Q are Hodge integrals in the Gromov-
Witten theory of the Enriques surface X,

Ng,(β,0) = 4
〈
(−1)g−1λg−1

〉X

g,β
.

Proof. We use the good degeneration of Q to R ∪K3 R discussed in Section 1.4.
By the degeneration formula,

(12) Ng,(β,0) = N
R/K3
g,(β,0) + N

R/K3
g,(β,0),

where the superscript R/K3 denotes the relative invariants of the pair.

By degeneration to the normal cone of K3 ⊂ R,

(13) NR
g,(β,0) = N

R/K3
g,(β,0) + N

K3×P1/K3

g,(β̃,0)
,

where the relative divisor

K3 ⊂ K3× P1

is a section. Here, β̃ stands for all classes pushing forward to β. By the Leray-
Hirsch result of [30] and the triviality of GW(K3),

N
K3×P1/K3

g,(β̃,0)
= 0.

By localization,

(14) NR
g,(β,0) = 2

〈
(−1)g−1λg−1

〉X

g,β
.

The Lemma is obtained by combining (12)-(14). ¤
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Lemma 2 yields a vanishing result for the fiber class invariants of Q,

(15) N0,(β,0) = 0,

in genus 0.

3.1.3. Heterotic string. Klemm and Mariño have determined the fiber class in-
variants Ng,(β,0) in terms of modular forms by heterotic string calculations [19].
Precise formulas will be discussed in Section 3.2.5. By Lemma 2, the fiber class
results of [19] may be viewed as computing λg−1 Hodge integrals in the Gromov-
Witten theory of the Enriques surface X.

3.2. Hodge integrals on the Enriques surface for g ≤ 2.

3.2.1. Overview. We will study here the fiber class invariants of Q,

N0,(β,0), N1,(β,0), N2,(β,0),

via Gromov-Witten theory X. In genus 0, vanishing has already been obtained
(15). In genus 1,

N1,(β,0) = 4〈1〉X1,β

by Lemma 2, and Hodge insertions on X do not arise. In genus 2,

N2,(β,0) = −4〈λ1〉X2,β ,

The required genus 1 and 2 invariants of X will be calculated by a combination
of techniques.

3.2.2. Isotropic classes. Let X be an Enriques surface presented as an elliptic
fibration

f : X → P1

with 12 singular fibers and 2 double fibers. Let

Ff ∈ H2(X,Z)′

denote half the class of the general fiber of f . A class β ∈ H2(X,Z)′ is positive if
either

〈Ff , β〉 > 0

or β is a positive multiple of Ff .

The classes of H2(X,Z)′ represented by algebraic curves are effective. Effective
classes must be positive.



New Calculations in Gromov-Witten Theory 485

A primitive class in H2(X,Z)′ is nonzero and not divisible. Let F ∈ H2(X,Z)′

be a positive, primitive, isotropic class. By the classical theory of Enriques sur-
faces [7], the class 2F is the fiber of an elliptic pencil

fF : X → P1

with 12 singular fibers and 2 double fibers.‡ We will compute the invariants
〈λg−1〉Xg,nF via the good degeneration of fF to X1 ∪E E(1) discussed in Section
1.3.

There are two cases to consider. If n is odd, the degeneration formula yields

〈λg−1〉Xg,nF = 〈λg−1〉X1/E
g,nF

since nF is not represented on E(1). If n is even, then

〈λg−1〉Xg,nF = 〈λg−1〉X1/E
g,nF + 〈λg−1〉E(1)/E

g,nF .

There is a good degeneration of an elliptically fibered K3 surface to E(1)∪E E(1).
Hence, for n even,

〈λg−1〉K3
g,nF = 〈λg−1〉E(1)/E

g,nF + 〈λg−1〉E(1)/E
g,nF .

By the vanishing of Gromov-Witten invariants of the K3 surface,

〈λg−1〉E(1)/E
g,nF = 0.

We conclude

〈λg−1〉Xg,nF = 〈λg−1〉X1/E
g,nF

for all n

By degeneration to the normal cone of E ⊂ X1,

(16) 〈λg−1〉X1
g,nF = 〈λg−1〉X1/E

g,nF + 〈λg−1〉E×P
1/E

g,nF .

As in the previous paragraph, the second term on the right of (16) is absent in
the n odd case.

Localization may be applied to the Gromov-Witten invariants of X1,

〈λg−1〉X1
g,nF = 2〈(−1)g−1λg−1〉Eg,n

= 2σ−1(n) δg,1.

‡We assume here X is generic in the moduli of Enriques surfaces.
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Here,

σ−1(n) =
∑

i|n

1
i
.

Similarly, if n is even,

〈1〉E×P1/E
1,nF = σ−1(n/2) δg,1.

Equation (16) then yields the following results.

Lemma 3. The Gromov-Witten invariants of X in positive isotropic classes are
determined by:

〈1〉X1,nF = 2σ−1(n) n odd,

〈1〉X1,nF = 2σ−1(n)− σ−1(n/2) n even.

Lemma 4. The fiber class invariants Ng,(β,0) of Q vanish for nonzero isotropic
classes β if g ≥ 2.

3.2.3. Genus 1 invariants of the Enriques surface. We derive a relation which
determines all genus 1 invariants of X using localization equations and the (as
yet unproven) Virasoro constraints for X.

Consider the 3-fold Y = X × P1. The torus C∗ acts on Y via P1. Let

[X0], [X∞] ∈ H∗
C∗(Y,Q)

denote the classes of the fibers of X over the C∗-fixed points of P1 with tangent
weights 1 and −1 respectively. Let β ∈ H2(X,Z)′ be a nonzero class. Certainly,

(17)
〈
τ1([X0]2)

〉Y

2,(β,1)
= 0

Calculation of (17) via localization will yield a nontrivial equation in the Gromov-
Witten theory of X.

A straightforward application of the virtual localization formula [16] yields

〈
τ1([X0]2)

〉Y

2,(β,1)
= 2

〈
τ2

〉X

2,β
− 4

〈
λ1

〉X

2,β

−
∑

β1+β2=β

〈
1
〉X

1,β1

〈
1
〉X

1,β1

〈β1, β2〉.
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The second term on the right side can be evaluated via the Hodge removal equa-
tion of [11],

〈
λ1

〉X

2,β
=

1
12

〈
τ2

〉X

2,β
+

1
24

〈
1
〉X

1,β
〈β, β〉

+
1
24

∑

β1+β2=β

〈
1
〉X

1,β1

〈
1
〉X

1,β2

〈β1, β2〉.

The first term on the right side can be evaluated by the Virasoro constraints,

3
4

〈
τ2

〉X

2,β
=

1
8

〈
1
〉X

1,β
〈β, β〉+

1
8

∑

β1+β2=β

〈
1
〉X

1,β1

〈
1
〉X

1,β2

〈β1, β2〉,

see [9, 13, 39]. Equation (17) then implies the following result.§

Proposition 1. For all nonzero β ∈ H2(X,Z)′,
〈
1
〉X

1,β
〈β, β〉 = 8

∑

β1+β2=β

〈
1
〉X

1,β1

〈
1
〉X

1,β2

〈β1, β2〉.

The sum on the right in Proposition 1 is taken over all nontrivial decomposi-
tions of β into effective classes βi on X. Effective decomposition defines a partial
ordering on the set of effective classes which has no infinite descending chains.
Proposition 1 therefore uniquely determines the genus 1 Gromov-Witten theory
of X in terms of the isotropic invariants

〈
1
〉X

1,nF

calculated in Lemma 3.

Lemma 5. If 〈β, β〉 < 0, then 〈1〉X1,β = 0.

Proof. Let β be an effective curve class on X satisfying 〈β, β〉 < 0. Let

β1 + β2 = β

be a decomposition into effective classes. Let H be an ample class on X. Since the
intersection form on H2(X,R) has signature (1, 9), the form is negative definite
on H⊥. Let

β1 = h1H + N1, β2 = h2H + N2

§The derivation depends upon the conjectural Virasoro constraints for X.
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where Ni ∈ H⊥. Since the classes βi are effective, hi > 0. Since β has negative
square,

(h1 + h2)
√
〈H, H〉 <

√
−〈N1 + N2, N1 + N2〉.

By the triangle inequality,

hi

√
〈H, H〉 <

√
−〈Ni, Ni〉

must hold for either β1 or β2. Hence, either 〈β1, β1〉 < 0 or 〈β2, β2〉 < 0. The
Lemma is then obtained by induction on the partial ordering. ¤

By Lemma 5, we may rewrite Proposition 1 purely in terms of the intersection
form on H2(X,Z)′ — without regard to effectivity.

Proposition 1′. For all nonzero β ∈ H2(X,Z)′,
〈
1
〉X

1,β
〈β, β〉 = 8

∑

β1+β2=β

〈
1
〉X

1,β1

〈
1
〉X

1,β2

〈β1, β2〉

where the sum is over decompositions into positive classes satisfying 〈βi, βi〉 ≥ 0.

3.2.4. Genus 2 fiber classes. The Hodge removal and Virasoro equations of Sec-
tion 3.2.3 yield

〈
λ1

〉X

2,β
=

1
18

〈
1
〉X

1,β
〈β, β〉+

1
18

∑

β1+β2=β

〈
1
〉X

1,β1

〈
1
〉X

1,β2

〈β1, β2〉.

After applying Proposition 1,
〈
λ1

〉X

2,β
=

1
16

〈
1
〉X

1,β
〈β, β〉.

In terms of the invariants of Q,

(18) N2,(β,0) = − 1
16

N1,(β,0)〈β, β〉.

The Eisenstein series E2n is the modular form defined by the equation

−B2n

4n
E2n(q) = −B2n

4n
+

∑

k≥1

σ2n−1(k)qk,
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where σn(k) is the sum of the nth powers of the divisors of k,

σn(k) =
∑

i|k
in.

The natural regularization of σ1(0) is

σ1(0) = −B2

4
= − 1

24
.

We may rewrite (18) as

(19) N2,(β,0) =
3
2
σ1(0)N1,(β,0)〈β, β〉.

3.2.5. Modular forms. Let v1, . . . v10 ∈ H2(X,Z)′ be a basis with

v1, v2 ∈ U, v3, . . . , v10 ∈ E8(−1)

with respect to an identification

H2(X,Z)′ ∼= U ⊕ E8(−1).

Let

v(t) =
n∑

i=1

tivi

be coordinates in the basis. Since v1 is a primitive isotropic class, positivity can
be defined by intersection with v1. A vector

β =
n∑

i=1

bivi

is positive if b2 > 0 or if b2 = 0 and β is a positive multiple of v1.

The fiber class potential function of the Enriques Calabi-Yau 3-fold is defined
by

Fg(t) =
∑

β>0

Ng,(β,0)e
−〈β,v(t)〉.

The heterotic string evaluation of Fg by Klemm and Mariño is

Fg(t) =
∑

β>0

cg

(〈β, β〉)
(
23−2gLi3−2g(e−〈β,v(t)〉)− Li3−2g(e−2〈β,v(t)〉)

)
,

for g > 0.
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The terms on the right side are explained as follows. The coefficients cg(n) are
defined by

∑
n

cg(n)qn = −2
q

∞∏

n=1

(1− q2n)−12 · Pg(q).

Here, Pg(q) is the quasimodular form defined by

∑

g≥0

Pg(q) zg = exp




∞∑

g=1

|B2g|
(2g)!

E2g(q) zg


 .

For example,

P1 =
1
12

E2, P2 =
1

1440
(5E2

2 + E4).

The polylogarithm Lik is defined by

Lik(x) =
∞∑

n=1

xn

nk
.

Proposition 1′ should yield a coefficient relation for the various modular series
in F1(t). We have not yet fully checked the compatibility. Many parallel prop-
erties hold. For example, equation (19) is valid for the Klemm-Mariño formula,
see Section 4.1 of [19].

3.2.6. Donaldson-Thomas theory. By the GW/DT correspondence, we may in-
stead study the Donaldson-Thomas theory of Q. The fiber Donaldson-Thomas
theory of Q has a reduction to the classical cohomology of the Hilbert scheme
of points of X. We expect the resulting vertex algebra calculations to be very
closely related to the heterotic string results of [19].

3.3. Vanishing in genus 0 and 1. We now consider the Gromov-Witten theory
of Q for all classes (β, d) ∈ H2(Q,Z)′.

Proposition 2. N0,(β,d) = 0.

Proof. If d = 0, the vanishing (15) has already been been obtained. We assume
d > 0.

We use the good degeneration of Q to R ∪K3 R discussed in Section 1.4. By
the degeneration formula,

(20) N0,(β,d) =
∑

η

∑

β1+β2=β

〈
1

∣∣∣η
〉•R/K3

g1,(β1,d)

〈
η∨

∣∣∣ 1
〉•R/K3

g2,(β2,d)
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where η∨ is the partition with cohomology weights Poincaré dual to the coho-
mology weights of η.

The left side of (20) is a connected invariant. The superscript • on the right
side of (20) denotes disconnected invariants. After connecting the disconnected
domains via the gluing conditions specified by (η, η∨), a connected domain must
be obtained. Also, the genus condition

(21) g1 + g2 + `(η)− 1 = 0

must be satisfied.

The relative invariant
〈

1
∣∣∣η

〉•R/K3

0,(β1,d)
can be calculated from the absolute in-

variants of R and K3 by Theorem 2 [30]. Since the Gromov-Witten invariants
of R and K3 vanish in genus 0 for classes with nonzero push-forwards to X, we
conclude 〈

1
∣∣∣η

〉•R/K3

0,(β1,d)
= 0

unless β1 = 0. Hence, N0,(β,d) vanishes if β 6= 0.

If β = 0, the degeneration formula (20) yields a vanishing for a more subtle
reason. The relative divisor K3 ⊂ R intersects every fiber of

π : R → X

in exactly 2 points. Hence, `(η) must be at least twice the number of connected

components of the domain in a nonvanishing invariant
〈

1
∣∣∣η

〉•R/K3

0,(β1,d)
. Since each

connected domain component must be of genus 0, the genus condition (21) can
never be satisfied. ¤

In genus 1, a similar vanishing result holds for classes which are a proper mix
of fiber and base curves.

Proposition 3. For β 6= 0 and d 6= 0, N1,(β,d) = 0.

Proof. Consider the degeneration formula

(22) N1,(β,d) =
∑

η

∑

β1+β2=β

〈
1

∣∣∣η
〉•R/K3

g1,(β1,d)

〈
η∨

∣∣∣ 1
〉•R/K3

g2,(β2,d)
.

If the connected components of the relative invariants all have domain genus 0,
then β = 0 as in the proof of Proposition 2. If a connected component of genus
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1 occurs, then the genus condition

g1 + g2 + `(η)− 1 = 1

can not be satisfied unless d = 0. ¤

Lemma 6. For d > 0, N1,(0,d) = 12σ−1(d).

Proof. The Lemma may be obtained by an elementary evaluation of the degenera-
tion formula (22) or from the Gromov-Witten theory of the fibration πX : Q → X.

For the latter derivation,

N1,(0,d) =
∫

[M1(Q,d[E])]virπ

c2(E∨ ⊗ TX)

= 12
∫

[M1(E,d[E])]vir

1

= 12σ−1(d).

Here, virπ is the relative virtual class of the morphism π, and E is the Hodge
bundle. ¤

Since the absolute Gromov-Witten theory of a target elliptic curve E with
trivial integrand vanishing in genus g ≥ 2, the above proof also yields the following
result.

Proposition 4. Ng,(0,d) = 0 for g ≥ 2 and d ≥ 0.

3.4. Holomorphic anomaly in genus 2.

3.4.1. Overview. Our last topic is the Gromov-Witten theory of Q in genus 2.
The strategy is to use again the good degeneration

Q → R ∪K3 R

discussed in Section 1.4. Remarkably, only genus 1 invariants occur on right side
of the degeneration formula.

The absolute genus 1 invariants of R are computed in Section 3.4.2. The
relative genus 1 invariants of R/K3 required for the degeneration formula are
then obtained from the absolute invariants in Section 3.4.3. The holomorphic
anomaly equation arises naturally in our geometric study in Section 3.4.4.
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3.4.2. Absolute invariants. We will require the explicit evaluations of several
genus 1 invariants of R. Let

ι : K3 → R

denote the inclusion of the relative divisor, and let

π : K3 → X

denote the induced projection. As in Section 3.2, the small brackets 〈, 〉 denote
the intersection pairing on X.

Lemma 7. For γ ∈ H2(K3,Q),
〈
τ2d−1(ι∗(γ))

〉R

1,(β,d)
=

2d

(d!)2
〈
1
〉X

1,β
〈β, π∗(γ)〉.

Proof. By parallel localization arguments, we find
〈
τ2d−1(ι∗(γ))

〉R

1,(β,d)
=

〈
τ2d−1(p)

〉E×P1

1,(1,d)

〈
1
〉X

1,β
〈β, π∗(γ)〉

where p is a point class on the surface E×P1. By degenerating the elliptic factor
E of the target to a nodal rational curve,

〈
τ2d−1(p)

〉E×P1

1,(1,d)
= 2

〈
(1, p′)

∣∣∣ τ2d−1(p)
∣∣∣ (1, 1)

〉P1×P1/P1
0∪P1∞

0,(1,d)

where p′ is a point class of the relative divisor P1
0. The exchange of relative for

absolute insertions takes a simple form here,
〈
(1, p′)

∣∣∣ τ2d−1(p)
∣∣∣ (1, 1)

〉P1×P1/P1
0∪P1∞

0,(1,d)
=

〈
τ0(p′)τ2d−1(p)τ0([P1

∞])
〉P1×P1

0,(1,d)
.

We apply topological recursion relations to the result,
〈
τ0(p′)τ2d−1(p)τ0([P1

∞])
〉P1×P1

0,(1,d)
=

〈
τ2d−2(p)τ0([1, 0])

〉P1×P1

0,(0,d)

〈
τ0([0, 1])τ0(p′)τ0([0, 1])

〉P1×P1

0,(1,0)

where [1, 0], [0, 1] ∈ H2(P1 × P1,Q) denote the classes of the 2 rulings. The
evaluations

〈
τ2d−2(p)τ0([1, 0])

〉P1×P1

0,(0,d)
= d

〈
τ2d−2(p)

〉P1

0,d

=
d

(d!)2
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and 〈
τ0([0, 1]τ0(p′)τ0([0, 1])

〉P1×P1

0,(1,0)
= 1

complete the derivation.

The well-known evaluation of the genus 0 descendent 〈τ2d−2(p)〉P1

0,d used above
can be found in [38]. ¤

Almost identical arguments yield the evaluations of the following 2-point in-
variants.

Lemma 8. Let a1 = 2m1 + 1 and a2 = 2m2 + 1 be odd integers satisfying
a1 + a2 = 2d. For γ1, γ2 ∈ H2(K3,Q),

〈
τa1−1(ι∗(γ1))τa2−1(ι∗(γ2))

〉R

1,(β,d)
=

2
(m1!)2(m2!)2

〈
1
〉X

1,β
〈β, π∗(γ1)〉〈β, π∗(γ2)〉.

Lemma 9. Let a1 = 2m1 and a2 = 2m2 be even integers satisfying a1 +a2 = 2d.
For γ1, γ2 ∈ H2(K3,Q),

〈
τa1−1(ι∗(γ1))τa2−1(ι∗(γ2))

〉R

1,(β,d)
=

2mn

(m1!)2(m2!)2
〈
1
〉X

1,β
〈β, π∗(γ1)〉〈β, π∗(γ2)〉.

3.4.3. Relative invariants. The degeneration to the normal cone of K3 ⊂ R can
be applied to determine relative invariants from absolute invariants, see Theorem
2 [30].

Lemma 10. For γ ∈ H2(K3,Q),
〈
1

∣∣∣ (2d, γ)
〉R/K3

1,(β,d)
= 2

〈
1
〉X

1,β
〈β, π∗(γ)〉.

Proof. Let Id denote the relative invariants to be determined,

Id =
〈
1

∣∣∣ (2d, γ)
〉R/K3

1,(β,d)
.
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Degeneration to the normal cone of K3 ⊂ R yields

〈
τ2d−1(ι∗(γ))

〉R

1,(β,d)
= Id 2d

〈
(2d)

∣∣∣ τ2d−1(p)
〉P1

0,2d

+
d−1∑

r=1

Ir 2r
〈
(2r), (1)d−r

∣∣∣ τ2d−1(p)
〉P1

0,d+r
.

The K3× P1/K3 side has been written in terms of the relative Gromov-Witten
theory of a vertical P1 since GW(K3) is trivial. The coefficients

〈
(2d)

∣∣∣ τ2d−1(p)
〉P1

0,2d
=

1
(2d)!

,

〈
(2r), (1)d−r

∣∣∣ τ2d−1(p)
〉P1

0,d+r
=

1
(d + r)!(d− r)!

are easily evaluated by completed cycles [32]. We find

Id = 2
〈
1
〉X

1,β
〈β, π∗(γ)〉

is the unique solution to the recursion

2d

(d!)2
〈
1
〉X

1,β
〈β, π∗(γ)〉 =

Id

(2d− 1)!
+

d−1∑

r=1

2rIr

(d + r)!(d− r)!

obtained from Lemma 7. ¤

A parallel (though more complicated) derivation from the evaluations of Lem-
mas 8 and 9 yields a second result.

Lemma 11. For γ1, γ2 ∈ H2(K3,Q),

〈
1

∣∣∣ (d, γ1), (d, γ2)
〉R/K3

1,(β,d)
= 2

〈
1
〉X

1,β
〈β, π∗(γ1)〉〈β, π∗(γ2)〉.

Lemmas 10 and 11 have a remarkable property — the relative evaluations are
independent of d.
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3.4.4. Holomorphic anomaly. Since the invariant N2,(β,d) has been determined by
Lemma 4 if β = 0 and by (19) if d = 0, we assume β 6= 0 and d > 0.

We calculate N2,(β,d) via the degeneration of Q to R ∪K3 R,

(23) N2,(β,d) =
∑

η

∑

β1+β2=β

〈
1

∣∣∣η
〉•R/K3

g1,(β1,d)

〈
η∨

∣∣∣ 1
〉•R/K3

g2,(β2,d)
.

If a connected component of genus 2 occurs on the right side of degeneration
formula, then all other components must be genus 0 vertical classes. Since each
genus 0 vertical class must intersect the relative divisor at least twice, the genus
condition

g1 + g2 + `(η)− 1 = 2

can not be satisfied.

Since β 6= 0, a connected component of genus 1 must occur on the right side
of degeneration formula (23). There are exactly two possibilities:

(i) the degeneration graph has a single genus 1 component with a self node,
(ii) the degeneration graph has two genus 1 components.

Genus reduction is the hallmark of the holomorphic anomaly equation.

Consider first the degeneration terms of type (i). The elliptic component may
occur on either side of R ∪K3 R. All other components must be genus 0 vertical
curves fully ramified at the intersection points with the relative divisor. Once the
side of the elliptic component is specified, the geometric configurations are easily
seen to be in bijective correspondence with divisors of d. The term corresponding
to the divisor r contributes

∑

i

r

2

〈
1

∣∣∣ (r, γi), (r, γ∨i )
〉R/K3

1,(β,d)
=

∑

i

r
〈
1
〉X

1,β
〈β, π∗(γi)〉〈β, π∗(γ∨i )〉

= 2r
〈
1
〉X

1,β
〈β, β〉,

where the sum is over a basis {γ1, . . . , γ22} of H2(K3,Q). Lemma 11 is used for
the first equality.

The full type (i) contribution to the degeneration formula (23) is

(24) 4σ1(d)
〈
1
〉X

1,β
〈β, β〉,

counting both sides for the elliptic component.
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The degeneration terms of type (ii) have a similar treatment. Again, a bijective
correspondence with divisors of d is found. The full type (ii) contribution to (23)
is

(25)
∑

β1+β2=β

16σ1(d)
〈
1
〉X

1,β1

〈
1
〉X

1,β2

〈β1, β2〉

using the evaluation of Lemma 10.

Summing the contributions and writing the result in terms of the fiber class
Gromov-Witten invariants of Q by Lemma 2 yields the following result.

Theorem 3. For d > 0,

N2,(β,d) = σ1(d)
(
N1,(β,0)〈β, β〉+

∑

β1+β2=β

N1,(β1,0)N1,(β2,0)〈β1, β2〉
)
.

Our proof of Theorem 3 does not invoke Proposition 1 and is thus not depen-
dent upon the Virasoro constraints for the Enriques surface.

Theorem 3 may be interpreted as the holomorphic anomaly equation in genus
2 for the Enriques Calabi-Yau 3-fold. A discussion can be found in Sections 6.2.2
- 6.2.4 of [19]. In fact, Theorem 3 is used in [19] to fix the holomorphic ambiguity.

We may rewrite Theorem 3 using the fiber class results in genus 1 and 2 of
Section 3.2. By Proposition 1,

N2,(β,d) =
3
2
σ1(d)N1,(β,0)〈β, β〉

for d > 0. By (19),

N2,(β,0) =
3
2
σ1(0)N1,(β,0)〈β, β〉.

We obtain the following result.¶

Corollary 1. We have
∑

d≥0

N2,(β,d)q
d =− 1

16
E2(q)N1,(β,0)〈β, β〉

= E2(q)N2(β,0).

We have calculated the Gromov-Witten theory of Q in genus g ≤ 2. We expect
the Gromov-Witten theory is exactly solvable in all genera.

¶The derivation depends upon the conjectural Virasoro constraints for X.
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The Enriques Calabi-Yau 3-fold may be the most tractable compact Calabi-
Yau with nontrivial Gromov-Witten theory. Certainly the higher genus study of
the quintic 3-fold in P4 appears more difficult, see [12, 25, 30].
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