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1. Introduction

Eisenbud, Popescu and Walter have constructed certain singular sextic hyper-
surfaces (EPW-sextics) in P5 (Example (9.3) of [4]) which come provided with a
natural double cover: we have shown [13] that the generic such double cover is a
deformation of the Hilbert square of a K3 and that the family of double EPW-
sextics is a locally versal family of projective deformations of (K3)[2]. Thus the
family of double EPW-sextics is similar to the family of Fano varieties of lines on
a cubic 4-fold (see [2]), with the following difference: the Plücker ample divisor
on the Fano variety of lines has square 6 for the Beauville-Bogomolov quadratic
form (see [1, 2]) while the natural polarization of a double EPW-sextic has square
2 (see [13]). Let Y ⊂ P5 be a generic EPW-sextic: we proved in [13] that the
dual Y ∨ ⊂ (P5)∨ is another generic EPW-sextic. Thus we may associate to the
natural double cover X of Y a “dual”variety X∨ namely the natural double cover
of Y ∨. This construction defines a (rational) involution on the moduli space of
double EPW-sextics. In [13] we showed that a generic EPW-sextic is not self-dual
and hence the involution on the moduli space of double EPW-sextics is not the
identity; in this paper we determine the relation between the periods of a double
EPW-sextic and its dual. Before stating the result we recall the definition of
EPW-sextics. Let V be a 6-dimensional C-vector space. Choose an isomorphism
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vol : ∧6 V
∼−→ C and let ω be the symplectic form on ∧3V defined by wedge

product followed by vol. Let P(V ) be the projective space of 1-dimensional sub
vector spaces of V ; then ω gives ∧3V ⊗OP(V ) the structure of a symplectic vector-
bundle of rank 20. Let F be the sub-vector-bundle of ∧3V ⊗ OP(V ) whose fiber
F[v] over [v] ∈ P(V ) consists of tensors divisible by v:

(1.0.1) F[v] := {v ∧ w| w ∈ ∧2V }.

As is easily checked F is a Lagrangian sub-bundle of ∧3V ⊗OP(V ). Let LG(∧3V )
be the symplectic Grassmannian parametrizing ω-Lagrangian subspaces of ∧3V .
For A ∈ LG(∧3V ) we let λA be the composition

(1.0.2) F −→ ∧3V ⊗OP(V ) −→ (∧3V/A)⊗OP(V )

and YA ⊂ P(V ) be the zero-scheme of det(λA); unless det(λA) is identically zero1

YA is a sextic hypersurface because det F ∼= OP(V )(−6). An EPW-sextic is a
hypersurface in P(V ) which is equal to YA for some A ∈ LG(∧3V ). In [13] we de-
scribed explicitly the non-empty Zariski-open LG(∧3V )0 ⊂ LG(∧3V ) parametriz-
ing A such that YA has no singularities other than those forced by its description
as a degeneracy locus; for A ∈ LG(∧3V )0 the singular locus of YA is a smooth
degree-40 irreducible surface and at a singular point YA is locally (in the clas-
sical topology) isomorphic to the product of sing(YA) and an A1-singularity. If
A ∈ LG(∧3V )0 there is a natural double cover fA : XA → YA ramified only over
sing(YA), with XA smooth. As shown in [13] the 4-fold XA is a deformation of
(K3)[2] - the Hilbert square of a K3. Let LA be the line-bundle on XA defined
by

(1.0.3) LA := f∗AOYA
(1);

then c1(LA) has square 2 for the Beauville-Bogomolov quadratic form. The
family of (XA, LA) for A varying in LG(∧3V )0 is a locally complete family of
polarized deformations of (K3)[2]. Now we recall the duality map. Let vol∨

be a trivialization of ∧6V ∨ and ω∨ be the symplectic form on ∧3V ∨ given by
wedge-product followed by vol∨: let LG(∧3V ∨) be the symplectic Grassman-
nian parametrizing ω∨-Lagrangian subspaces of ∧3V ∨. For A ∈ LG(∧3V ) the

1If A is the fiber of F over a fixed point then det(λA) is identically zero.
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annihilator A⊥ ⊂ ∧3V ∨ belongs to LG(∧3V ∨). Thus we have an isomorphism

(1.0.4)
δ : LG(∧3V ) ∼−→LG(∧3V ∨)

A 7→ A⊥.

Let

(1.0.5) LG(∧3V )00 := LG(∧3V )0 ∩ δ−1LG(∧3V ∨)0.

Thus LG(∧3V )00 is open dense in LG(∧3V ). Assume that A ∈ LG(∧3V )00. By
Proposition (3.1) of [13] YA⊥ is Y ∨

A (the dual of YA); we let

(1.0.6) X∨
A → Y ∨

A = YA⊥

be the natural double cover and we call X∨
A the dual of XA. We will show how

to obtain the Hodge structure on H2(X∨
A) from the Hodge structure on H2(XA).

First we describe the relevant period space. Let Λ̃ be the even lattice

(1.0.7) Λ̃ := U3⊕̂(−E8)2⊕̂(−2)

where ⊕̂ denotes orthogonal direct sum, U is the hyperbolic plane and (−2) is
the lattice generated by a single element of square −2; we will denote by (·, ·) the
symmetric bilinear form on Λ̃. Let U be one of the hyperbolic planes appearing
in Decomposition (1.0.7) and choose

(1.0.8) u ∈ U of square 2.

Let e1 ∈ U be a generator of u⊥∩U and e2 be a generator of the direct summand
(−2) appearing in Decomposition (1.0.7). Then

(1.0.9) Λ := u⊥ = U2⊕̂(−E8)2⊕̂Ze1⊕̂Ze2
∼= U2⊕̂(−E8)2⊕̂(−2)2.

The period domain of interest to us is

(1.0.10) D2 := {[v] ∈ P(Λ⊗ C)| (v, v) = 0, (v, v) > 0}.

Let Stab(u) < O(Λ̃) be the subgroup of isometries fixing u and ρ : Stab(u) →
O(Λ) be the restriction map - this makes sense because Λ = u⊥. Let

(1.0.11) Γ := Im(ρ) < O(Λ).

The period moduli space is the quotient

(1.0.12) Q2 := Γ\D2.
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We will prove in Subsection (2.2) that

(1.0.13) [O(Λ) : Γ] = 2.

An explicit r ∈ (O(Λ)\Γ) is the isometry which interchanges e1 with e2 and fixes
the elements of {e1, e2}⊥, see (2.2.12). By (1.0.13) the involution r descends to
a non-trivial involution

(1.0.14) r : Q2 → Q2.

Let A ∈ LG(∧3V )0: the isomorphism class of the Hodge structure on c1(LA)⊥ ⊂
H2(XA) is a point of Q2 (see Section (2)) that we denote by P(A) - this is the
period point of XA. The global period map is defined by

(1.0.15)
LG(∧3V )0 P−→ Q2

A 7→ P(A).

Of course we also have a global period map LG(∧3V ∨)0 → Q2; we denote it by
the same symbol P. If A ∈ LG(∧3V )00 we have two period points namely P(A)
and P(A⊥). The following is the main result of this paper.

Theorem 1.1. Keep notation as above. If A ∈ LG(∧3V )00 then

(1.0.16) P(A⊥) = r ◦ P(A).

The theorem may be stated informally as follows: the polarized Hodge struc-
tures on c1(LA)⊥ ⊂ H2(XA) and c1(LA⊥)⊥ ⊂ H2(XA⊥) (orthogonality is with
respect to the Beauville-Bogomolov quadratic form) are isomorphic while in
general there is no Hodge isometry between H2(XA) and H2(XA⊥). Theo-
rem (1.1) naturally raises the following question: are XA and XA⊥ Fourier-Mukai
partners ? We expand on this. Let T (XA) := H1,1

Z (XA)⊥ ⊂ H2(XA;Z) and
T (XA⊥) := H1,1

Z (XA⊥)⊥ ⊂ H2(XA⊥ ;Z) be the transcendental lattices of XA and
XA⊥ respectively. By Theorem (1.1) the polarized Hodge structures on T (XA)⊗C
and T (XA⊥)⊗ C are isomorphic: by analogy with the Orlov-Mukai Theorem on
K3 surfaces one may wonder whether this implies that the derived categories of
bounded complexes of coherent sheaves on XA and XA⊥ are equivalent, i.e. XA

and XA⊥ are Fourier-Mukai partners.

There are three steps in the proof of the above theorem. First of all there
exists a rational Hodge isometry

(1.0.17) H2(XA) ⊃ c1(LA)⊥ ∼= c1(LA⊥)⊥ ⊂ H2(XA⊥).
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In fact let ỸA, ỸA⊥ be the desingularizations of YA, YA⊥ respectively - they are
obtained by blowing up sing(YA) and sing(YA⊥) respectively. From the equality
Y ∨

A = YA⊥ one gets that

(1.0.18) ỸA
∼= ỸA⊥ .

Now H4(YA) is a subgroup of Sym2H2(XA) and similarly for H4(YA⊥); this fact
together with (1.0.18) gives (1.0.17) after some work. It follows from (1.0.17) that
locally (in the classical topology) there exists g ∈ O(Λ⊗Q) relating the periods
of XA and XA⊥ ; this means that we have

(1.0.19) PΦ(A⊥) = g ◦ PΨ(A)

where PΨ,PΦ are local liftings of the global period maps (Ψ,Φ are markings of the
weight-2 cohomology). The second step consists in showing that (1.0.16) holds
for A belonging to a certain locally closed codimension-1 submanifold ∆0∗(V ) ⊂
LG(∧3V )0. If A ∈ ∆0∗(V ) then XA is isomorphic to a moduli space of sheaves on
a K3 surface S ⊂ P6 of degree 10. On the other hand there is a map f : S[2] →
YA⊥ of degree 2 which contracts a certain plane P ⊂ S[2] and is finite over
YA⊥ \ f(P ). One shows that multf(P )YA⊥ = 3 and hence A⊥ /∈ LG(∧3V ∨)0

i.e. A /∈ LG(∧3V )00. Morally XA⊥ is the singular symplectic 4-fold obtained
from S[2] by contracting the plane P . We do not prove a precise version of this;
however we do prove that the local period map of LG(∧3V ∨)0 extends across
A⊥ and that its value is given by the periods of S[2]. This will allow us to check
that (1.0.16) holds for A ∈ ∆0∗(V ). Since the local period map sends ∆0∗(V ) to the
intersection of D2 and a hyperplane ζ⊥ it will follow that the rational isometry
g of (1.0.19) is (with suitable markings Ψ,Φ) either r or r ◦ rζ where rζ is the
reflection in the span of ζ. We rule out this second possibility by a monodromy
argument: this is the third step in the proof of Theorem (1.1).

The paper is organized as follows. In Section (2) we recall the definition of
local and global period maps and we prove (1.0.13). In the next section we prove
the results on ∆0∗(V ) that we described above. In the final section we prove
the existence of a rational Hodge isometry (1.0.17) and we give the monodromy
argument.

Notation: V will always be a complex vector-space of dimension 6.



432 Kieran G. O’Grady

2. The period map and the lattice Λ

2.1. The period map. Let X be a deformation of (K3)[2]. Let (·, ·)X be the
Beauville-Bogomolov symmetric bilinear form on H2(X). The restriction of (·, ·)X

to H2(X;Z) is a non-degenerate integral symmetric form; thus H2(X;Z) is a
lattice. As is well-known H2(X;Z) and Λ̃ are isometric. Now assume that we
are given a holomorphic line-bundle L on X such that (c1(L), c1(L))X = 2. Since
O(Λ̃) acts transitively on the set of vectors of square 2 there exists an isometry

(2.1.1) ψ : H2(X;Z) ∼−→ Λ̃

such that ψ(c1(L)) = u where u is as in (1.0.8); this is a marking of (X, L). Let
ψC : H2(X;C) ∼−→ Λ̃ ⊗ C be the map obtained from ψ by extension of scalars.
Let σ be a generator of H2,0(X); then

(2.1.2) (c1(L), σ)X = 0 = (σ, σ)X , (σ, σ)X > 0.

Thus

(2.1.3) Pψ(X, L) := ψC(H2,0(X)) ∈ D2.

This is the local period point of (X, L) associated to ψ (or periods of (X, L)).
Any other marking of (X, L) is given by γ ◦ ψ where γ ∈ Γ, thus the Γ-orbit of
Pψ(X, L) is a well-defined point of Q2; this is the global period point of (X, L),
we denote it by P(X, L). If A ∈ LG(∧3V )0 we let P(A) := P(XA, LA).

Later on we will study global and local period maps for certain families of
double EPW-sextics. Let

(2.1.4) π : X → T

be a proper submersive map between complex manifolds such that each fiber is
a deformation of (K3)[2]. For t ∈ T we let Xt := π−1(t). We assume that we are
given a (holomorphic) line-bundle L on X such that c1(L|Xt) has square 2 for
every t ∈ T ; we let Lt := L|Xt . The global period map of (X ,L) is given by

(2.1.5)
T

P−→ Q2

t 7→ P(t) := P(Xt, Lt)

Griffiths proved that P is a holomorphic map. Let π : X → LG(∧3V )0 be the
tautological family of double EPW-sextics and L be the tautological relatively
ample line-bundle on X which restricts to LA (see (1.0.3)) on XA; then P is the
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period map of (1.0.15), in particular the map of (1.0.15) is holomorphic. Let’s
go back to a general family (2.1.4): it is not always possible to lift the global
period map P to a map T → D2, in fact a necessary and sufficient condition
is that R2π∗Z is trivial. Suppose that R2π∗Z is trivial. Then there exists a
trivialization Ψ: R2π∗Z

∼−→ T × Λ̃ sending the section corresponding to c1(L) to
the section given by u - this is a marking of (X ,L). Given such a marking we
let Ψt : H2(Xt;Z) ∼−→ Λ̃ be the fiber of Ψ over t. The local period map of (X ,L)
associated to Ψ is given by

(2.1.6) T
PΨ−→ D2

t 7→ PΨ(t) := PΨt(Xt, Lt).

Griffiths proved that PΨ is holomorphic.

2.2. Proof of (1.0.13). We start by recalling the definition of discriminant
group and discriminant quadratic form of an even lattice (L, (·, ·)L), i.e. a free
finitely generated abelian group L equipped with a symmetric integral even non-
degenerate bilinear form (·, ·)L. We follow [10]. The bilinear form (·, ·)L extends
to a Q-valued bilinear form on L ⊗ Q; abusing notation we denote by (·, ·)L the
extended form. Let L∨ := Hom(L,Z); by non-degeneracy of (·, ·)L we have a
natural chain of inclusions

(2.2.1) L ⊂ L∨ ⊂ L⊗Q.

The discriminant group of L is AL := L∨/L; it comes provided with the discrim-
inant bilinear-form

(2.2.2) AL ×AL
bL−→ Q/Z

([α], [β]) 7→ [(α, β)L]

and the discriminant quadratic-form

(2.2.3)
AL

qL−→ Q/2Z
[α] 7→ [(α, α)L].

The formula

(2.2.4) qL([α + β]) ≡ qL([α]) + qL([β]) + 2bL([α], [β]) (mod 2Z)

shows that qL determines uniquely bL. An index-i overlattice of L consists of a
lattice M and an inclusion of lattices L ⊂ M (the restriction of (·, ·)M to L is
equal to (·, ·)L) of index i. Two overlattices M1 ⊃ L ⊂ M2 are equivalent if there
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exists an isometry M1
∼−→ M2 which is the identity on L, i.e. if the inclusions

Mi ↪→ L∨ for i = 1, 2 have the same image. Suppose that L ⊂ M is an index-i
overlattice of L; the inclusion M ⊂ L∨ defines an inclusion M/L ⊂ AL with
image a subgroup of cardinality i which is qL-isotropic. This construction defines
a one-to-one correspondence between the set of equivalence classes of indexi-i
overlattices of L and the set of qL-isotropic subgroups of AL of cardinality i. The
correspondence is equivariant for the natural actions of O(L) on both sets. Now
consider the lattice L = Zu⊕̂Λ where u and Λ are as in Section (1): we will
describe the discriminant group and discriminant form of L. Let e1, e2 ∈ Λ be as
in Section (1). A straightforward computation gives that

(2.2.5) AL = Z/(2)
[u

2

]
⊕ Z/(2)

[e1

2

]
⊕ Z/(2)

[e2

2

]

and that

(2.2.6) qL

(
x

[u

2

]
+ y1

[e1

2

]
+ y2

[e2

2

])
≡ 1

2
(x2 − y2

1 − y2
2) (mod 2Z).

The set I ⊂ AL of non-zero isotropic vectors is given by

(2.2.7) I =
{[u

2

]
+

[e1

2

]
,
[u

2

]
+

[e2

2

]}
.

The group O(L) acts naturally on AL and hence also on I; thus we have a
homomorphism

(2.2.8) O(L) ε−→ Aut(I) ∼= Z/(2).

The overlattice Λ̃ ⊃ L is of index 2 because L is the kernel of the surjection

(2.2.9)
Λ̃−→ Z/(2)
v 7→ (v, u) (mod 2).

The correspondence described above defines an O(L)-equivariant bijective map
between I and the set of equivalence classes of index-2 overlattices of L; thus

(2.2.10) Im(O(Λ̃) → O(L)) = ker(ε).

The subgroup of O(L) consisting of isometries which are the identity on Zu is
naturally identified with O(Λ); thus O(Λ) < O(L). By (2.2.10) and the definition
of Γ (see (1.0.11)) we get that

(2.2.11) Γ = ker(ε|O(Λ)).
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Let r ∈ O(Λ) be the involution characterized by the following properties:

(2.2.12) r(e1) = e2, r(e2) = e1, r|{e1,e2}⊥ = identity.

Then ε(r) is the non-trivial permutation of I and hence ε|O(Λ) is surjective.
Thus (1.0.13) follows from (2.2.11).

3. Explicit dual couples

Let F 3
5 ⊂ P6 be the intersection of Gr(2,C5) ⊂ P(∧2C5) ∼= P9 with a transver-

sal 6-dimensional linear subspace of P9. Let T ⊂ |OP6(2)| be the open dense
subset parametrizing quadrics which are transversal to F 3

5 . For t ∈ T let Qt be
the quadric corresponding to t and

(3.0.1) St := F 3
5 ∩Qt.

Then St is a degree-10 linearly normal K3 surface; in fact the generic such surface
is projectively equivalent to St for some t ∈ T by Mukai [8]. Let Dt be the
hyperplane divisor class on St and Mt be the moduli space of Dt-semistable
rank-2 sheaves F on St with c1(F) = c1(Dt) and c2(F) = 5. Suppose that

(3.0.2) for all divisors E on St we have E ·Dt ≡ 0 (mod 10).

Then (see Section (5) of [13]) there exists At ∈ LG(∧3V )0 such that

(3.0.3) XAt
∼= Mt.

Furthermore YAt is explicitely described as follows. Let Σt be the divisor on
|ISt(2)| parametrizing singular quadrics, since all quadrics parametrized by |IF 3

5
(2)|

are singular we have

(3.0.4) Σt = |IF 3
5
(2)|+ Σ′t.

Then

(3.0.5) YAt
∼= Σ′t.

(Formally Σ′t is a degree-6 divisor; in the above equation we are implicitely stating
that Σ′t is a reduced divisor and hence we may view it as a degree-6 hypersurface.)
The set of t for which (3.0.2) holds is the complement of a countable union of
proper algebraic subvarieties of T however a straightforward argument shows that
there is an open dense T ′′′ ⊂ T such that for t ∈ T ′′′ there exists At ∈ LG(∧3V )0

for which both (3.0.3) and (3.0.5) hold; we give the argument in Subsection (3.1).
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We let ∆0(V ) ⊂ LG(∧3V )0 be the set of A such that XA is isomorphic to Mt for
some t ∈ T ′′′; this is a locally closed subset of LG(∧3V )0. Computing the periods
of XA for A ∈ ∆0(V ) we will show that ∆0(V ) has codimension 1 in LG(∧3V )0.
Let A ∈ ∆0(V ), thus XA

∼= Mt for some t ∈ T : the dual Y ∨
A is described as

follows. The Hilbert scheme S
[2]
t contains a copy of P2, call it Pt, parametrizing

Z ⊂ St which span a line contained in F 3
5 . Let S

[2]
t → Nt be the contraction of

Pt - thus Nt is a singular symplectic variety. There is an involution on Nt whose
quotient is isomorphic to Y ∨

A . From this it will follow that A /∈ LG(∧3V )00 and
hence apparently it will not make sense to compute P(A⊥). The main point of
this subsection is to prove that the period map extends across A⊥, in fact the
local period map extends and its value at A⊥ is given by the periods of (S[2]

t , Dt).

3.1. The locus ∆0(V ). We recall that the Mukai vector v(F) of a sheaf F on
St is

(3.1.1) v(F) := ch(F)
√

Td(St) = ch(F)(1 + ηt) ∈ H∗(St;Z),

where ηt ∈ H4(St;Z) is the orientation class. If [F ] ∈ Mt (we let [F ] ∈ Mt be the
equivalence class of the semistable sheaf F - we recall that if F is stable this is
the same as the isomorphism class of F) the class v(F) is independent of F , we
denote it by vt; explicitly

(3.1.2) vt = 2 + c1(Dt) + 2ηt.

Proposition 3.1. Keep notation as above. There is an open dense subset T ′′′ ⊂
T such that the following holds. Let t ∈ T ′′′; then there exists At ∈ LG(∧3V )0

such that both (3.0.3) and (3.0.5) hold. In particular we have a canonical iden-
tification P(V ) ∼= |ISt(2)|.

Proof. By Maruyama [7] there exists a projective map ρ : M→ T with (schematic)
fiber Mt over t ∈ T . Let t ∈ T ; we say that St is unsuitable if there exists a divisor
class C on St such that

(3.1.3) C ·Dt = 0, −10 ≤ C · C < 0.

The set of unsuitable t is a proper closed subset of T , thus the complement T ′

is an open dense subset of T . Let M′ := ρ−1(T ′) and ρ′ : M′ → T ′ be the
restriction of ρ. It is known that if t ∈ T ′ then every sheaf parametrized by Mt

is slope-stable and Mt is a smooth 4-dimensional scheme (Main Theorem (0.1.2)
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and Proposition (2.1) of [11] - notice that t ∈ T ′ if and only if Dt is |vt|-generic).
Let’s show that there is an open dense T ′′ ⊂ T ′ such that for t ∈ T ′′ the Mukai
reflection (see (4.2.2) of [12]) is a regular involution φt on Mt - we recall that
in general the Mukai reflection acts on the derived category of coherent sheaves
on St. In order for φt to be a regular involution on Mt it suffices that for all
[F ] ∈ Mt the following hold:

(a) h0(F) = χ(F) = 4,
(b) F is globally generated away from (at most) a zero-dimensional subset of

St,
(c) the kernel of the evaluation map H0(F) ⊗ OSt → F , call it E , is a Dt-

slope-stable sheaf.

If (a)-(b)-(c) are satisfied for all [F ] ∈ Mt then the generic sheaf F parametrized
by Mt is globally generated and for such a sheaf φt([F ]) = [E∨] where E is as
in (c) above. Let T ′′ ⊂ T ′ be the set of t such that (a)-(b)-(c) hold for every
[F ] ∈ Mt. Let’s prove that T ′′ is open. First we show that the subset Ta ⊂ T of
t ∈ T ′ such that (a) holds for every [F ] ∈ Mt is open. Let t ∈ T ′: if [F ] ∈ Mt then
by stability h2(F) = 0 and hence h0(F) ≥ 4, thus by the upper-semicontinuity
Theorem the set of [F ] ∈ Mt that violate (a) is closed. By properness of the map
ρ′ : M′ → T ′ it follows that (T ′ \Ta) is closed i.e. Ta is open. A similar argument
shows that the set of t ∈ Ta such that (b)-(c) hold for every [F ] ∈ Mt is open;
thus T ′′ is open. By Lemmas (4.10)-(4.11) of [12] we know that T ′′ contains the
subset of t such that (3.0.2) holds; since the latter set is dense in T we get that
T ′′ is dense in T . Let T ′′′ ⊂ T ′′ be the set of t such that

(3.1.4) St contains no effective non-zero divisor E with E ·Dt ≤ 5.

Thus T ′′′ is open and dense in T . We claim that if t ∈ T ′′′ then

(3.1.5) Mt/〈φt〉 ∼= Σ′t ⊂ |ISt(2)| ∼= P5.

More precisely Proposition (5.1) of [12] holds for Mt = M(vt). In order to prove
this it suffices to show that for every t ∈ T ′′′ the following holds:

(1) If [F ] ∈ Mt and σ ∈ H0(F) = Hom(OSt ,F) is non-zero then the quotient
F/Im(σ) is locally-free in codimension 1 (σ has isolated zeroes) - this is
used in the proof of Lemma (5.4) of [12].
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(2) If G is a globally generated rank-2 vector bundle on St with detG ∼=
OSt(Dt) and c2(G) = 5 then G is Dt-slope stable - this is used in the
proof of Lemma (5.7) of [12].

Let’s show that (1) above holds. Suppose that σ does not have isolated zeroes:
then it vanishes along a non-zero effective divisor E and by slope stability of
F we have E · Dt < slope(F) = 5 contradicting (3.1.4). Let’s show that (2)
above holds. Suppose that G is not Dt-slope stable; since G has rank 2 there is
a destabilizing sequence G → IZ ⊗OSt(E) where Z ⊂ St is zero-dimensional and
E is a divisor with E ·Dt ≤ slope(F) = 5. Since G is globally generated there is
a non-zero section of IZ ⊗OSt(E) and hence E is effective; by (3.1.4) we get that
E = 0. Thus we have an exact sequence

(3.1.6) 0 −→ OSt(Dt) −→ G −→ IZ −→ 0.

Since `(Z) = c2(G) = 5 the zero-dimensional subscheme Z ⊂ St is non-empty and
hence h0(IZ) = 0; this contradicts the hypothesis that G is globally generated.
We have proved that (3.1.5) holds for t ∈ T ′′′. By Theorem (1.1) of [13] we get
that there exists At ∈ LG(∧3V )0 such that both (3.0.3) and (3.0.5) hold. ¤

The proof of the above proposition together with Claim (5.18) of [12] gives the
following result.

Corollary 3.2. Let t ∈ T ′′′ and let At ∈ LG(∧3V )0 be such that both (3.0.3)
and (3.0.5) hold. The map fAt : XAt → YAt is identified with the quotient map
Mt → Mt/〈φt〉.

Definition 3.3. Let ∆0(V ) ⊂ LG(∧3V )0 be the locus of A such that XA is
isomorphic to Mt for some t ∈ T ′′′.

We will show that ∆0(V ) is a locally closed subset of codimension 1. First we
recall how one describes H2(Mt) for t ∈ T ′. Let u,w ∈ H∗(St) and let uq, wq be
the degree-q components of u,w respectively. One sets u∨ := u0 − u2 + u4 and

(3.1.7) 〈u,w〉 :=
∫

St

(u2 ∧ w2 − u0w4 − u4w0) = −
∫

St

u∨ ∧ w.
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This is Mukai’s bilinear symmetric form. One defines a positive2 weight-two
Hodge structure on H∗(St) by defining the Hodge filtration as

(3.1.8) F 1H∗(St) := H0(St)⊕ F 1H2(St)⊕H4(St), F 2H∗(St) := F 2H2(St).

Let vt be the Mukai vector (3.1.2), then vt is integral of type (1, 1) and hence v⊥t
is an integral Hodge substructure of H∗(St) and furthermore the restriction of
Mukai’s bilinear symmetric form to v⊥t is integral. Mukai defined (see [9, 11]) a
map

(3.1.9) θt : v⊥t −→ H2(Mt)

by taking Künneth components of the Chern character of a tautological sheaf on
St ×Mt (if such a sheaf does not exist one considers a quasi-tautological sheaf).
In [11] we proved that θt is an isomorphism of Hodge structures and an isometry
of lattices - of course the bilinear form on v⊥t is the restriction of the Mukai
pairing. Now assume that t ∈ T ′′′ and let At be as in Proposition (3.1) and LAt

be as in (1.0.3); then by Corollary (3.2) and Proposition (5.1) of [12] we have

(3.1.10) c1(LAt) = θt(ηt − 1).

We let ht := θt(ηt − 1).

Proposition 3.4. Keep notation as above. Then ∆0(V ) is a PGL(V )-invariant
subset of LG(∧3V )0 which is locally (in the classical topology) a codimension 1
submanifold.

Proof. The subset ∆0(V ) is PGL(V )-invariant by definition. Let π : X → LG(∧3V )0

be the tautological family of double EPW-sextics and L be the tatutological rel-
atively ample line-bundle on X ; thus the restriction of L to XA is isomorphic
to LA. Let Ap ∈ ∆0(V ). Thus there exists p ∈ T ′′′ such that XAp

∼= Mp.
Let U ⊂ LG(∧3V )0 be a small open ball contining Ap. Let XU := π−1(U)
and LU := L|XU

. Since U is contractible there is a marking Ψ of (XU ,LU );
let PΨ : U → D2 be the corresponding local period map. We notice that (5 +
2c1(Dp) + 5ηp) ∈ v⊥p and hence θp(5 + 2c1(Dp) + 5ηp) ∈ H2(Mp). Furthermore
since 〈ηp − 1, 5 + 2c1(Dp) + 5ηp〉 = 0 we have (hp, θp(5 + 2c1(Dp) + 5ηp))Mp = 0;

2This means that hp,q = 0 if p < 0.
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since hp = c1(LAp) we get that Ψp(θp(5 + 2c1(Dp) + 5ηp)) ∈ u⊥ where u is our
fixed vector of square 2 - see (1.0.8). Let’s prove that

(3.1.11) PΨ(∆0(V ) ∩ U) = PΨ(U) ∩Ψp ◦ θp(5 + 2c1(Dp) + 5ηp)⊥.

First we prove that

(3.1.12) PΨ(∆0(V ) ∩ U) ⊂ PΨ(U) ∩Ψp ◦ θp(5 + 2c1(Dp) + 5ηp)⊥.

Let M′′′ := ρ−1(T ′′′) and ρ′′′ : M′′′ → T ′′′ be the restriction of ρ. Then θt(5 +
2c1(Dt) + 5ηt) is a flat section of R2ρ′′′∗ Z and for all t ∈ T ′′′ we have

(3.1.13) (θt(5 + 2c1(Dt) + 5ηt),H2,0(St))Mt = 0

because θt(5+2c1(Dt)+5ηt) ∈ H1,1(Mt); the above equality gives (3.1.12). Next
we prove that

(3.1.14) PΨ(∆0(V ) ∩ U) ⊃ PΨ(U) ∩Ψp ◦ θp(5 + 2θp(c1(Dp) + 5ηp)⊥.

First we notice that

(3.1.15) {vp, ηp − 1, 5 + 2c1(Dp) + 5ηp}⊥ = H2(Sp)prim

where the primitive cohomology H2(Sp)prim ⊂ H2(S) is the orthogonal to c1(Dp).
Since hp = θp(ηp − 1) we get that

(3.1.16) H2(Mp) ⊃ {hp, θp(5 + 2c1(Dp) + 5ηp)}⊥ = θp(H2(Sp)prim).

Let K10 be the period space for K3 surfaces with a polarization of degree 10;
Equality (3.1.16) defines an isomorphism

(3.1.17) D2 ∩Ψp ◦ θp(5 + 2c1(Dp) + 5ηp)⊥
∼−→ K10

which is compatible with local period maps defined by the family ρ′′′ : M′′′ → T ′

and the family ζ : S ′′′ → T ′′′ with fiber St over t ∈ T ′′′. Let S ′′′U := ζ−1(U).
Since S ′′′ contains the generic K3 of degree 10 the local period map of the family
S ′′′U → U is a submersive map from U to an open ball in K10; since (3.1.17) is an
isomorphism this proves (3.1.14). We also get that PΨ is submersive and hence
in order to show that ∆0(V ) ∩ U is a codimension 1 submanifold it suffices to
prove that

(3.1.18) D2 ∩Ψp ◦ θp(5 + 2c1(Dp) + 5ηp)⊥
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is smooth. The period domain D2 is an open subset of the quadric of isotropic
lines for the non-degenerate quadratic form (, )|Λ⊗C and hence if Ψp ◦ θp(5 +
2c1(Dp) + 5ηp) is not isotropic then (3.1.18) is smooth. Since

(3.1.19) (Ψp ◦ θp(5 + 2c1(Dp) + 5ηp),Ψp ◦ θp(5 + 2c1(Dp) + 5ηp)) =

= 〈5 + 2c1(Dp) + 5ηp, 5 + 2c1(Dp) + 5ηp〉 = −10

the intersection (3.1.18) is indeed smooth. ¤

3.2. The dual of YA for A ∈ ∆0(V ). If A ∈ LG(∧3V )00 then Y ∨
A = YA⊥ by

Proposition (3.1) of [13]. As we will see ∆0(V ) ∩ LG(∧3V )00 = ∅ and hence in
order to show that Y ∨

A = YA⊥ for A ∈ ∆0(V ) we need to improve on the result
of [13].

Proposition 3.5. Let A ∈ LG(∧3V ) and P(W ) ∈ P(V ∨). Then P(W ) ∈ YA⊥ if
and only if

(3.2.1) ∧3W ∩A 6= ∅.

Proof. Let φ ∈ V ∨ be a linear function such that W = ker(φ): then

(3.2.2) Fφ := {φ ∧ ψ| ψ ∈ ∧2V ∨} =
(∧3W

)⊥
.

By definition P(W ) ∈ YA⊥ if and only if

(3.2.3) {0} 6= Fφ ∩A⊥ = (∧3W + A)⊥.

Since 10 = dim(∧3W ) = dim A and dim(∧3V ) = 20 we get that (3.2.3) holds if
and only if (3.2.1) holds. ¤

Corollary 3.6. Let A ∈ LG(∧3V )0. Then YA⊥ is a hypersurface and Y ∨
A = YA⊥.

Proof. Let P(W ) ∈ YA⊥ ; by Proposition (3.5) this is equivalent to (3.2.1). Let
0 6= α ∈ (∧3W ∩A): since dim W = 5 there exists v ∈ W such that α is divisible
by v and hence [v] ∈ YA. We decompose W = Cv⊕W0 and write α = v∧w where
w ∈ ∧2W0; by Definition (2.5) of [13] the rank of w is 4, thus W = span(v, w).
Furthermore if dim(F[v] ∩ A) = 1 then YA is smooth at [v] and P(W ) is the
projective tangent space to YA at [v] - see the proof of Proposition (3.1) of [13].
By Proposition (2.8) of [13] we know that dim(F[v]∩A) = 1 unless [v] ∈ sing(YA)
and in this case dim(F[v] ∩A) = 2. Since sing(YA) is a surface a straightforward
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dimension count gives that P(W ) /∈ YA⊥ for generic P(W ) ∈ P(V ∨), thus YA⊥ is
a hypersurface. The same dimension count gives that the generic P(W ) ∈ YA⊥ is
tangent to YA at one of its smooth points; this proves the corollary. ¤

We will describe explicitly Y ∨
A = YA⊥ for A ∈ ∆0(V ); essentially we will give a

refinement of Proposition (5.20) and Corollary (5.21) of [12]. Let t ∈ T ′′′ and St

be the K3 surface corresponding to t; in order to simplify notation we temporarily
drop the subscript t. Let R be the Fano variety of lines on F 3

5 . If [`] ∈ R then
` 6⊂ S by (3.1.4) and hence `∩Q is a 0-dimensional scheme of length 2 contained
in S: thus we have a regular map

(3.2.4)
R−→ S[2]

` 7→ ` ∩Q.

Let P ⊂ S
[2]
t be the image of the above map: then (3.2.4) defines a regular map

R → P with inverse given by

(3.2.5)
P −→ R

[Z] 7→ span(Z)

and hence P is isomorphic to R. It is known [5] that R ∼= P2, thus P ∼= P2. Since
S[2] is a symplectic variety it follows that we can contract P :

(3.2.6) c : S[2] → N.

A priori N is a complex space, we will show soon that it is projective. Let
p := c(P ); thus p is the unique singular point of N . On S[2] there is an interesting
map to |IS(2)|∨, see (4.3) of [12]; we recall the definition. The K3 surface S is
cut out by quadrics and it contains no lines by (3.1.4); thus we have a regular
map

(3.2.7)
S[2]−→ |IS(2)|∨ ∼= P5

[Z] 7→ {Qλ ∈ |IS(2)| | span(Z) ⊂ Qλ}.

Let W ⊂ |IS(2)|∨ be the image of the above map; thus (3.2.7) defines a map
f : S[2] → W . If [Z] ∈ P then f([Z]) = |IF 3

5
(2)| hence f is constant on P ; we will

see that the point

(3.2.8) f(P ) = |IF 3
5
(2)| ∈ W
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is quite special. Since f is constant on P and N is normal the map f descends
to a regular map

(3.2.9) f : N → W.

Lemma 3.7. Keep notation as above. There exist a non trivial involution φ : N →
N and a birational morphism ε : N/〈φ〉 → W with finite fibers such that f is the
composition

(3.2.10) N
π−→ N/〈φ〉 ε−→ W.

In particular deg f = 2, N is projective and deg W = 6.

Proof. Let’s show that f has finite fibers of cardinality at most 2 and that the
generic fiber has cardinality 2. The fiber of f over |IF 3

5
(2)| ∈ |IS(2)|∨ consists of

the unique singular point p of N . Now let Λ ∈ (W \ {|IF 3
5
(2)|}), i.e.

(3.2.11) Λ = f([Z]), [Z] /∈ P.

Then f
−1(Λ) = f−1(Λ). Let Λ0 := Λ ∩ |IF 3

5
(2)| and choose λ0 ∈ (Λ \ |IF 3

5
(2)|).

One has

(3.2.12)
⋂

λ∈Λ0

Qλ = F 3
5 ∪AΛ

where AΛ is a plane such that AΛ ∩ F 3
5 = CΛ is a conic. (See the proof of

Lemma (4.20) of [12].) We claim that Qλ0 6⊃ AΛ: in fact if Qλ0 ⊃ AΛ then
CΛ ⊂ S contradicting (3.1.4). Thus Qλ0 ∩AΛ is a conic C ′

Λ. By (3.2.11) the line
span(Z) is contained in C ′

Λ. Thus C ′
Λ is degenerate and f−1(Λ) consists of the

set of lines contained in C ′
Λ. This shows that f−1(Λ) = f

−1(Λ) has cardinality
at most 2. It also follows easily that the generic fiber of f consists of 2 distinct
points. Since N is normal there is a regular covering involution φ such that f

factors through the quotient map N → N/〈φ〉. Since f has finite fibers so does
ε, since the generic fiber of f consists of 2 points the map ε is birational. The
line-bundle f

∗OW (1) is ample because f : N → W has finite fibers, thus N is
projective. We know (see (4.3) of [12]) that

(3.2.13)
∫

S[2]

c1(f∗OW (1)) = 12.

Since f : S[2] → W has generic fiber of cardinality 2 we get that deg W = 6. ¤
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We will show that the map ε of Lemma (3.7) is an isomorphism. Since (S[2] \
P ) ∼= (N \ {p}) the involution φ defines a birational involution

(3.2.14) φ : S[2] 99K S[2].

(This is the birational involution of Proposition (4.21) of [12].) Let

(3.2.15) β : BlP (S[2]) → S[2]

be the blow-up of P : since P is Lagrangian the symplectic form on S[2] induces
an isomorphism NP/S[2]

∼= Ω1
P and hence the exceptional divisor of β is identified

with the incidence variety Γ ⊂ P ×P∨ and the restriction of β to the exceptional
divisor is identified with the projection Γ → P . We abuse notation and view Γ
as the exceptional divisor in BlP (S[2])

Lemma 3.8. The map φ of (3.2.14) is not regular along P . There is a regular
involution φ̃ : BlP (S[2]) → BlP (S[2]) which is equal to φ on (S[2]\P ) ⊂ BlP (S[2]).
There is an identification P ∼= P∨ such that φ̃|Γ is induced by the involution on
P × P∨ which interchanges the factors.

Proof. The eigenspaces of the isometry H2(φ) on H2(S[2]) induced by φ are given
by (see (4.3) of [12])

(3.2.16) H2(φ)+ = Cf∗OW (1), H2(φ)− = f∗OW (1)⊥.

Suppose φ is regular along P : if D is an ample divisor on S[2] then c1(D + φ∗D)
is an ample φ-invariant class, this contradicts (3.2.16) because f∗OW (1) is not
ample. Let ψ : S[2] 99K X be the flop of P : thus ψ is the inverse of the blowup
BlP (S[2]) → S[2] followed by the morphism BlP (S[2]) → X which contracts Γ
along the “other”fibration Γ → P∨. In particular X contains P∨. Let ` ⊂ P

and `∨ ⊂ P∨ be lines. The isometry H2(ψ) identifies (`∨)⊥ with `⊥. In fact
we have contractions c : S[2] → N and c∨ : X → N which give identifications
`⊥ = H2(N) = (`∨)⊥. In particular H2(ψ) sends a nef divisor class in (`∨)⊥ to a
nef divisor class. On the other hand H2(ψ) maps the half-space `∨>0 to the half-
space `<0. By (3.2.16) we get that (ψ ◦ φ)∗ maps an ample divisor to an ample
divisor: since (ψ ◦ φ) defines a regular map between the complements of subsets
of codimension 2 it follows that (ψ ◦ φ) is regular and hence an isomorphism. It
follows also that φ induces a regular involution φ̃ : BlP (S[2]) → BlP (S[2]). Let’s
show that the restriction of φ̃ to Γ is as stated. Any automorphism of Γ sends
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the projection Γ → P to itself composed with an automorphism of P or to the
projection Γ → P∨ composed with an automorphism of P∨. Since φ is not regular
the latter holds and it follows that φ̃|Γ is as stated. ¤

Corollary 3.9. The map ε : N/〈φ〉 → W of Lemma (3.7) is an isomorphism.

Proof. The quotient BlP (S[2])/〈φ̃〉 is a projective birational model of N/〈φ〉
and hence it is birational to W by Lemma (3.7). The Kodaira dimension of
BlP (S[2])/〈φ̃〉 is 0 hence also the Kodaira dimension of W is 0. By Lemma (3.7)
we know that deg W = 6 and hence by adjunction W is smooth in codimension
1. Thus W is normal: since ε is birational with finite fibers we get that ε is an
isomorphism. ¤

Now we reintroduce the subscript t; thus we have St, ft, Nt, Wt etc.

Proposition 3.10. Keep notation as above. Let A ∈ ∆0(V ) and let t ∈ T ′′′

such that XA
∼= Mt - such a t exists by Definition (3.3). Notice that by Propo-

sition (3.1) and Corollary (3.6) we have YA⊥ ⊂ |ISt(2)|∨. The following equality
holds:

(3.2.17) YA⊥ = Wt.

Proof. Proposition (5.20) of [12] gives that the reduced scheme (YA⊥)red is equal
to Wt (the hypothesis of that Proposition is that (3.0.2) holds, however the same
proof goes through because all that is needed is the validity of (3.0.5)). Now YA⊥

is a degree-6 hypersurface because YA⊥ 6= P(V ∨) and on the other hand Wt is
a degree-6 hypersurface by Lemma (3.7) and hence from (YA⊥)red = Wt we get
that YA⊥ is reduced and equal to Wt. ¤

Let A ∈ ∆0(V ) and let t ∈ T ′′′ such that XA
∼= Mt. Then |IF 3

5
(2)| ∈ Wt -

see (3.2.8) - and hence by the above proposition |IF 3
5
(2)| ∈ YA⊥ ; we denote this

point by qA⊥ .

Proposition 3.11. Let A ∈ ∆0(V ) and let t ∈ T ′′′ such that XA
∼= Mt. Then

(3.2.18) multq
A⊥YA⊥ = 3.

Let y ∈ (YA⊥ \ {qA⊥}) and hence ft
−1(y) = f−1

t (y) consists of two points or of
one point.
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(a) If f−1
t (y) consists of two points then YA⊥ is smooth at y.

(b) If f−1
t (y) consists of a single point then the analytic germ (YA⊥ , y) is

isomorphic to the product of a smooth 2-dimensional germ and the germ
of an A1-singularity.

Proof. By Proposition (6.2) of [13] Y ∨
A has multiplicity 3 in |IF 3

5
(2)|; this proves

(3.2.18). In order to prove (a)-(b) we notice that YA⊥ = Wt and by Proposi-
tion (3.9) the map f t : Nt → Wt is identified with the quotient map Nt → Nt/〈φ〉.
Since pt = f

−1(qA) is the unique singular point of Nt this gives Item (a). In
order to prove Item (b) we notice that (Nt \ {pt}) = (S[2]

t \ Pt) and that the
quotient map (Nt \ {pt}) → (Nt \ {pt})/〈φ〉 is identified with the quotient map
(S[2]

t \ Pt) → (S[2]
t \ Pt)/〈φ〉. By Proposition (4.21) of [12] the restriction of φ

to (S[2]
t \ Pt) is an anti-symplectic involution and hence its fixed point set is a

Lagrangian surface; this proves (b). ¤

Let A ∈ ∆0(V ); then by (3.2.18) the sextic YA⊥ has a point of multiplicity 3
and hence A⊥ /∈ LG(∧3V ∨)0 because if B ∈ LG(∧3V ∨)0 then YB has points of
multiplicity at most 2. Thus

(3.2.19) ∆0(V ) ∩ LG(∧3V )00 = ∅.

Let ∆0∗(V ) ⊂ ∆0(V ) be the set of points which are smooth points of the projective
variety

(
LG(∧3V ) \ LG(∧3V )00

)
. By Proposition (3.4) we know that ∆0(V ) is

locally (in the classical topology) a codimension 1 submanifold of LG(∧3V ); since
∆0(V ) ∩ LG(∧3V )00 = ∅ it follows that ∆0∗(V ) is open dense in ∆0(V ). We let
T∗ ⊂ T ′′′ be the set of t such that Mt

∼= XA for some A ∈ ∆0∗(V ); since ∆0∗(V ) is
open dense in ∆0(V ) also T∗ is open dense in T ′′′. Let

(3.2.20) LG(∧3V )0∗ := LG(∧3V )00 ∪∆0
∗(V ).

Proposition 3.12. Keep notation as above. Then LG(∧3V )0∗ is open in LG(∧3V )
(for the classical topology) and ∆0∗(V ) is a non-empty codimension-1 submanifold
of LG(∧3V )0∗.

Proof. Let A ∈ ∆0∗(V ). By definition of ∆0∗(V ) there exists an open U ⊂
LG(∧3V ) such that U ∩∆0∗(V ) = U ∩ (

LG(∧3V ) \ LG(∧3V )00
)

and hence U ⊂
LG(∧3V )0∗; this proves that LG(∧3V )0∗ is open. We have already proved that
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∆0∗(V ) is a non-empty locally closed codimension-1 submanifold of LG(∧3V );
this gives the second statement of the proposition. ¤

We let

∆∞
∗ (V ∨) := δ(∆0

∗(V )),(3.2.21)

LG(∧3V ∨)∞∗ := δ(LG(∧3V )0∗).(3.2.22)

(3.2.23)

Of course every definition above has a “dual ”definition obtained by substituting
V ∨ to V ; thus we have ∆0∗(V ∨) ⊂ LG(∧3V ∨)0, ∆∞∗ (V ) ⊂ LG(∧3V ) etc. Let

(3.2.24) LG(∧3V ∨)] := LG(∧3V ∨)0∗ ∪ LG(∧3V ∨)∞∗ =

= LG(∧3V ∨)00 ∪∆0
∗(V

∨) ∪∆∞
∗ (V ∨).

Let Y(V ∨) ⊂ LG(∧3V ∨)]×P(V ∨) be the tautological EPW-sextic; thus Y(V ∨)∩
{B}×P(V ∨) = YB. If B ∈ ∆∞∗ (V ∨) then by Proposition (3.11) there is a unique
point qB ∈ YB of multiplicity strictly greater than 2; let

Q(V ∨) := {(B, qB)| B ∈ ∆∞
∗ (V ∨)},(3.2.25)

Y(V ∨)] := Y(V ∨) \ Q(V ∨).(3.2.26)

Proposition 3.13. There exists a double cover f : X (V ∨) → Y(V ∨)] with the
following properties.

(1) Let π : X (V ∨) → LG(∧3V ∨)] be the composition of f and the projection
Y(V ∨)] → LG(∧3V ∨)]; then π is a submersion of smooth manifolds.

(2) Let B ∈ LG(∧3V ∨)0∗; then π−1(B) ∼= XB and the map π−1(B) → YB

defined by f is isomorphic to the natural double cover XB → YB.
(3) Let B ∈ ∆∞∗ (V ∨) and A := B⊥. Since A ∈ ∆0∗(V ) there exists t ∈ T∗

such that XA
∼= Mt and YA

∼= Σ′t. Then π−1(B) ∼= (S[2]
t \ {Pt}) and the

map π−1(B) → (YB \{qB}) defined by f is isomorphic to the double cover
(S[2]

t \ {Pt}) → (Wt \ |IF 3
5
(2)|) given by the restriction of (3.2.7). (Recall

that (YB \ {qB}) ∼= (Wt \ |IF 3
5
(2)|) by Proposition (3.10)).

Proof. Let B ∈ LG(∧3V ∨)]. Then YB 6= P(V ∨) by Corollary (3.6); thus the map
λB defined in Section (1) (with V ∨ replacing V ) is non-zero and YB is the zero-
scheme of det(λB). Since YB is a Lagrangian degeneracy locus there exists locally
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in P(V ∨) a symmetric map of vector-bundles giving a resolution of coker(λB),
i.e. we can cover P(V ∨) by open sets U such that on each U we have a locally-free
resolution

(3.2.27) 0 → EU
αU−→ E∨

U −→ coker(λB)|U → 0

where αU is a symmetric map of vector-bundles. Furthermore if F ↪→ ∧3V ∨ ⊗
OP(V ∨) is the Lagrangian sub-vector-bundle defined in Section (1) (with V ∨ re-
placing V ) then there is an isomorphism Fp ∩ B ∼= ker(αp) for all p ∈ U . Thus
if dim(Fp ∩ B) ≥ r then multp(YB) ≥ r. Let p 6= qB. Then multp(YB) ≤ 2 by
Proposition (3.11) and hence dim(Fp ∩B) ≤ 2. Furthermore one of the following
holds:

(1) If dim(Fp ∩ B) = 1 then locally around p we have coker(λB) ∼= i∗OYB

where i : YB ↪→ P(V ∨) is the inclusion.
(2) If dim(Fp ∩ B) = 2 there exist an open (in the classical topology) U ⊂

P(V ∨) containing p, holomorphic functions x, y, z on U vanishing at p

with linearly independent differentials and an exact sequence

(3.2.28) 0 → O2
U

M−→O2
U−→coker(λB)|U → 0

where M is the map defined by the matrix

(3.2.29)

(
x y

y z

)
.

In particular we see that there exists a sheaf ζB on (YB \ {qB}) such that outside
qB we have coker(λB) = i0∗ζB where i0 : (YB \ {qB}) ↪→ (P(V ∨) \ {qB}) is the
inclusion. From the local description of coker(λB) given above we also get a
canonical isomorphism of sheaves on (P(V ∨) \ {qB}):

(3.2.30) Ext1(coker(λB),OP(V ∨))|P(V ∨)\{qB} ∼= i0∗(ζ
∨
B ⊗NYB/P(V ∨)).

(See Proposition (4.3) of [13].) Let B∨ ⊂ ∧3V ∨ be a Lagrangian subspace com-
plementary to B; thus we have a direct sum decomposition

(3.2.31) ∧3V = B ⊕B∨.

Then λB can be identified with the map of vector-bundles F → B∨ ⊗OP(V ∨) as-
sociated to Decomposition (3.2.31). Let µB : F → B⊗OP(V ∨) be the “other”map
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associated to Decomposition (3.2.31). The diagram

(3.2.32)

F
λB−→B∨ ⊗OP(V ∨)yµB

yµ∨B

B ⊗OP(V ∨)

λ∨B−→ F∨

is commutative because F
(µB ,λB)−→ (B ⊕ B∨) ⊗ OP(V ∨) is a Lagrangian embed-

ding. The map λB is an injection of sheaves because YB 6= P(V ∨) and hence
also λ∨B is an injection of sheaves. Thus there is a unique βB : coker(λB) −→
Ext1(coker(λB),OP(V ∨)) making the following diagram commutative with exact
horizontal sequences:

(3.2.33)

0→ F
λB−→B∨ ⊗OP(V ∨)−→ coker(λB) → 0yµB

yµ∨B

yβB

0→B ⊗OP(V ∨)

λ∨B−→ F∨ −→Ext1(coker(λB),OP(V ∨))→ 0

By Isomorphism (3.2.30) we get that the restriction of βB to (P(V ∨) \ {qB})
defines a map of sheaves on (YB \ {qB})
(3.2.34) ζB → ζ∨B(6).

Since F
(µB ,λB)−→ (B ⊕ B∨) ⊗ OP(V ∨) is an injection of vector-bundles the above

map is an isomorphism - this follows from Claim (4.5) of [13]. Let ξB := ζB(−3);
then (3.2.34) defines an isomorphism ξB

∼−→ ξ∨B which is symmetric and hence it
gives O(YB\{qB}) ⊕ ξB the structure of a commutative finite O(YB\{qB})-algebra.
Let XB := Spec(O(YB\{qB}) ⊕ ξB) and fB : XB → (YB \ {qB}) be the structure
map: clearly fB is finite of degree 2. The above construction is the analogue of
the construction of the natural double cover XB → YB for B ∈ LG(∧3V ∨)0; thus
we have a double cover f : X (V ∨) → Y](V ∨) such that Item (2) holds and such
that for B ∈ ∆∞∗ (V ∨) we have π−1(B) = XB and the map π−1(B) → (YB \{qB})
is the structure map fB defined above. It remains to prove that Items (1) and (3)
hold. Let

CB :={p ∈ (singYB \ qB)| dim(Fp ∩B) = 1}(3.2.35)

DB :={p ∈ (singYB \ qB)| dim(Fp ∩B) = 2}.(3.2.36)

Thus (singYB \ qB) = CB
∐

DB. The local description given above of coker(λB)
near p ∈ (YB \ qB) shows that both CB and DB are smooth and closed (in
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(YB \ qB)). Let p ∈ (YB \ qB); the map fB behaves differently depending on
whether p ∈ CB or p ∈ DB: in fact (see [13])

(α) If p ∈ CB then fB is unramified over p.
(β) If p ∈ DB then fB is ramified over p and XB is smooth at f−1

B (p).

Let’s prove that

(3.2.37) XB
∼= (S[2]

t \ Pt).

Let B′ ∈ LG(∧3V ∨)0∗ and define DB′ as above. Then DB′ is not empty in fact it
is a surface; it follows that DB 6= ∅ and by Item (β) above we get that the étale
covering

(3.2.38)
(
XB \ f−1

B (singYB)
) −→ (YB \ singYB)

is not trivial. On the other hand let t ∈ T∗ such that XA⊥
∼= Mt and YA⊥

∼= Σ′t.
Let ft : S

[2]
t → YB be the map defined by (3.2.7); then ft defines an étale double

cover

(3.2.39) (S[2]
t \ f−1

t (singYB)) −→ (YB \ singYB).

Now S
[2]
t is simply connected and f−1

t (singYB) has codimension 2 in S
[2]
t hence

(S[2]
t \ f−1

t (singYB)) is simply connected. Thus π1(YB \ singYB) ∼= Z/(2) and
hence there is a unique non-trivial double cover of (YB \ singYB) and it is given
by (3.2.39). Since (3.2.38) is a non-trivial double cover it follows that CB = ∅
and that (3.2.37) holds. This proves Items (1)-(3) of the proposition. ¤

3.3. Extension of the local period map across ∆∞∗ (V ∨). We will prove that
the local period map extends across ∆∞∗ (V ∨). Let π0 : X (V ∨)0∗ → LG(∧3V ∨)0∗
be the tautological family of double EPW-sextics i.e. the restriction of the map
π of Proposition (3.13) to π−1(LG(∧3V ∨)0∗). Since π0 is proper it defines the
variation of Hodge structures

(3.3.1) (R2π0
∗Z, F p)

where F 0 ⊃ F 1 ⊃ F 2 is the Hodge filtration of (R2π0∗Z) ⊗ OLG(∧3V ∨)0∗ i.e. the
fiber of F p over A is

(3.3.2) F p
A = F pH2(XA) :=

⊕

p′≥p

Hp′,2−p′(XA).
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Furthermore we have the symmetric section

(3.3.3) B ∈ H0((R2π0
∗Q)⊗ (R2π0

∗Q))

which gives the Beauville-Bogomolov bilinear form on H2(XA) for every A ∈
LG(∧3V ∨)0∗.

Proposition 3.14. There exist

(1) a local system H(V ∨) on LG(∧3V ∨)],
(2) a decreasing filtration of H(V ∨)⊗OLG(∧3V ∨)] by holomorphic sub-bundles

F̃ 0 ⊃ F̃ 1 ⊃ F̃ 2,
(3) a symmetric section B̃ ∈ H0((H(V ∨)⊗H(V ∨))⊗Q))

such that the following hold:

(a) (H(V ∨), F̃ p) extends the variation of Hodge structures (3.3.1).
(b) Let B ∈ ∆∞∗ (V ∨) and t ∈ T∗ such that Mt

∼= XB⊥; then there exists an
isomorphism of Hodge structures

(3.3.4) (H(V ∨)B, F̃ p
B) ∼= H2(S[2]

t ).

(c) The restriction of B̃ to LG(∧3V ∨)0∗ is equal to B.
(d) Let B ∈ ∆∞∗ (V ∨) and t ∈ T∗ such that Mt

∼= XB⊥; then Isomor-
phism (3.3.4) is an isometry between (H(V ∨)B, B̃B) and H2(S[2]

t ) equipped
with the Beauville-Bogomolov symmetric bilinear form.

Proof. Let U ⊂ LG(∧3V ∨)] be an open ball. We assume that U is small: then
there exists a hyperplane H ⊂ P(V ∨) such that qB /∈ H for all B ∈ U ∩∆∞∗ (V ∨).
Let π and f be as in Proposition (3.13); we let

X (V ∨)U :=π−1(U),(3.3.5)

Z(U ,H) :=X (V ∨)U ∩ f−1H.(3.3.6)

Let ρ : Z(U ,H) → U be given by the restriction of f . By our choice of H

the map ρ is proper submersive with fibers smooth 3-folds. Thus we have a
variation of Hodge structures (R2ρ∗Z, F p); we denote it by (H(U ,H), F p(U ,H)).
Let B ∈ (U \∆∞∗ ); then rho−1(B) is an ample divisor on XB and hence we have
a canonical isomorphism

(3.3.7) (H(U ,H), F p(U ,H))|(U\∆∞∗ )
∼= (R2ρ∗Z, F p)|(U\∆∞∗ ).
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This shows that (H(U ,H), F p(U ,H)) does not depend on the choice of H and
that the collection of (H(U ,H), F p(U ,H)) gives an extension (H(V ∨), F̃ p) of the
variation of Hodge structures (3.3.1). Now let’s prove Item (b). Let B ∈ (U ∩
∆∞∗ (V ∨)) and let t be as in Item (b). Let ft : S

[2]
t → Wt = YB be the map given

by (3.2.7). Then ρ−1(B) = f−1
t H and since ft is semi-small the restriction map

H2(S[2]
t ) → H2(f−1

t H) is an isomorphism of (integral) Hodge structures; this
proves Item (b) because (H(V ∨)B, F̃ p) is isomorphic to the Hodge structure on
H2(f−1

t H) by definition. We define B̃ as follows. Let U and ρ : Z(U ,H) → U be
as above; let ZB := ρ−1(B). For B ∈ U we have the Lefschetz decomposition

(3.3.8) H(V ∨)B = H2(ZB;Q) = Qc1(LB)|ZB
⊕H2(ZB;Q)prim

where LB is the tautological ample line-bundle on XB. We let B̃(U ,H)B be the
symmetric bilinear form on H(V ∨)B characterized by the following requirements:

(α) Decomposition (3.3.8) is orthogonal for B̃(U ,H)B.
(β) B̃B(c1(LB)|ZB

, c1(LB)|ZB
) = 2.

(γ) If x, y ∈ H2(ZB;Q)prim then B̃(U ,H)B(x, y) = 1
2

∫
ZB

c1(LB) ∧ x ∧ y.

Since the Lefscethz decomposition is flat for the Gauss-Manin connection we have
a well-defined section B̃(U ,H) ∈ H0(H(V ∨)|U ) with value B̃(U ,H)B at B ∈ U .
Let B ∈ (U\∆∞∗ (V ∨) and let ι : ZB ↪→ XB be the inclusion. If ξ1, ξ2, ξ3 ∈ H2(XB)
then
(3.3.9)∫

ZB

ι∗ξ1∧ι∗ξ2∧ι∗ξ3 =
∫

XB

c1(LB)∧ξ1∧ξ2∧ξ3 =
1
2

∑

σ∈S3

(c1(LB), ξσ(1))·(ξσ(2), ξσ(3)).

It follows from this that B̃(U ,H) does not depend on H and that the collection
of B̃(U ,H)’s defines an extension of B. Item (d) holds because Formula (3.3.9)
holds if we replace XB by S

[2]
t . ¤

The map δ defines an isomorphism

(3.3.10)
LG(∧3V )] ∼−→ LG(∧3V )]

A 7→ δ(A) = A⊥.

From now on we will denote by δ what is actually the restriction of δ to LG(∧3V )].
Let U ⊂ LG(∧3V ∨)] be an open set: then we have two local systems, namely

(3.3.11) H(V )|U , H(V ∨)|δ(U).
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Definition 3.15. Assume that both local systems (3.3.11) are trivial. A marking
of H(V )|U is an isomorphism Ψ: H(V )|U ∼−→ U × Λ̃ such that:

(1) B̃A(x, y) = (Ψ(x),Ψ(y)) for every A ∈ U and x, y ∈ H(V )A, and
(2) Ψ sends the flat section A 7→ c1(LA)|Z(U ,H) (notation as in the proof of

Proposition (3.14)) to U × u where u is given by (1.0.8).

We define similarly a marking Ψ of H(V ∨)|δ(U).

Of course if U is a small open ball then both local systems (3.3.11) are trivial.
Let Φ and Ψ be markings of H(V )|U and H(V ∨)|δ(U) respectively. Then we have
holomorphic local period maps

(3.3.12) U PΨ−→ D2

A 7→ ΦC(F 2
A)

δ(U) PΦ−→ D2

B 7→ ΦC(F 2
B).

The restrictions of PΨ and PΦ to U \ ∆∞∗ (V ) and δ(U) \ ∆∞∗ (V ∨) respectively
are local period maps for the families of double EPW-sextics parametrized by
LG(∧3V )0 and LG(∧3V ∨)0 respectively. We will be interested in comparing
PΨ(A) and PΦ(A⊥) for A ∈ ∆0∗(V ) - thus A⊥ /∈ LG(∧3V ∨)0. Let t ∈ T∗
be such that Mt

∼= XA. By (3.3.4) the marking Φ defines a marking ΦA⊥ of
(S[2]

t , f∗t OYB
(1)) and

(3.3.13) PΦ(A⊥) = PΦ
A⊥ (S[2]

t , f∗t OYB
(1)).

4. Proof of Theorem (1.1)

If A ∈ LG(∧3V )00 we have smooth double covers fA:XA →YA and fA⊥:XA⊥→
YA⊥ : we will show that XA and XA⊥ are “isogenous”. Given a small open
U ⊂ LG(∧3V )] we may consider markings Ψ and Φ of H(V )|U and H(V ∨)|δ(U)

respectively and the associated local period maps PΨ and PΦ. We will show that
locally near ∆0∗(V ) we may choose Ψ and Φ so that PΦ ◦ δ is either r ◦ P or the
composition of r ◦ P with a certain specific reflection. In the final subsection we
will rule out the latter case by considering the monodromy action; by analytic
continuation this will prove Theorem (1.1).



454 Kieran G. O’Grady

4.1. Isogeny between XA and XA⊥. Let A ∈ LG(∧3V )00 and set LA :=
f∗AOYA

(1), LA⊥ := f∗
A⊥OY

A⊥ (1). Let

H2(XA)prim :=c1(LA)⊥ ⊂ H2(XA),(4.1.1)

H2(XA⊥)prim :=c1(LA⊥)⊥ ⊂ H2(XA⊥).(4.1.2)

Proposition 4.1. Let A ∈ LG(∧3V )00. There exists an isomorphism of rational
Hodge structures

(4.1.3) gA : H2(XA)prim
∼−→ H2(XA⊥)prim

well-defined up to ±1 and such that for γ ∈ H2(XA)prim

(4.1.4) (γ, γ)XA
= (gA(γ), gA(γ))X

A⊥ .

Proof. We recall that YA⊥ = Y ∨
A , see Corollary (3.6). Let ΓA ⊂ YA × YA⊥ be the

closure of the Gauss maps:

(4.1.5) ΓA := {(p, TpYA)| p ∈ Y sm
A } = {(TqYA⊥ , q)| q ∈ Y sm

A⊥ }.

Since A ∈ LG(∧3V )0 the germ of YA at each of its singular points is isomorphic
to the product of (C2, 0) and an A1-singularity (see Proposition (2.8) of [13]) and
similarly for YA⊥ . Thus the projection ΓA → YA is identified with the blow-up
ỸA → YA of sing(YA). Similarly the projection ΓA → YA⊥ is identified with the
blow-up ỸA⊥ → YA⊥ of sing(YA⊥). Thus ΓA defines an isomorphism ỸA

∼−→ ỸA⊥

and hence it gives an isomorphism of integral Hodge structures

(4.1.6) H4(ỸA) ∼−→ H4(ỸA⊥).

The cohomology groups H4(ỸA) and H4(XA) are related as follows. Let φA : XA →
XA be the involution covering fA : XA → YA. Let FA ⊂ XA be the fixed locus
of φA: this is a Lagrangian smooth surface in XA because φA is anti-symplectic.
Let X̃A → XA be the blow-up of FA; we have an isomorphism of integral Hodge
structures

(4.1.7) H4(X̃A) ∼= H4(XA)⊕H2(FA)(−1).

The involution φA lifts to an involution φ̃A : X̃A → X̃A and ỸA
∼= X̃A/〈φ̃A〉. Thus

we have an isomorphism of rational Hodge structures

(4.1.8) H4(ỸA) ∼= H4(X̃A)〈φ̃A〉 ∼= H4(XA)〈φA〉 ⊕H2(FA)(−1).
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Since XA is a deformation of (K3)[2] we have an isomorphism of rational Hodge
Structures Sym2H2(XA) ∼−→ H4(XA) defined by cup-product. The action of φA

on H2(XA) has (+1)-eigenspace generated by c1(LA) and (−1)-eigenspace equal
to H2(XA)prim thus we get an isomorphism of rational Hodge structures

(4.1.9) H4(XA)〈φA〉 = Cc1(LA)2 ⊕ Sym2H2(XA)prim.

The right-hand side of the above equality contains a rational (2, 2) class q∨A defined
by “inverting”the Beauville-Bogomolov bilinear form (see Section (3) of [14]);
let WA := H2(XA)prim ∩ (q∨A)⊥. One has a decomposition of rational Hodge
Structures (Claim (3.1) of [14])

(4.1.10) Cc1(LA)2 ⊕ Cq∨A ⊕WA.

Of course we have analogous notions for XA⊥ and hence (4.1.6) defines an iso-
morphism of rational H.S.’s

(4.1.11) Cc1(LA)2 ⊕ Cq∨A ⊕WA ⊕H2(FA)(−1) ∼=
Cc1(LA⊥)2 ⊕ Cq∨A⊥ ⊕WA⊥ ⊕H2(FA⊥)(−1).

If A is very general (outside a countable union of proper analytic subsets of
LG(∧3V )0 ∩ δ−1LG(∧3V ∨)0) then WA and WA⊥ are both indecomposable ratio-
nal Hodge Structures - see Section (3) of [14]: since they contain the non-zero
components H4,0(XA) and H4,0(XA⊥) the above isomorphism defines an isomor-
phism of rational H.S.’s

(4.1.12) hA : WA
∼−→ WA⊥ .

Let QA ⊂ H2(XA)prim and QA⊥ ⊂ H2(XA⊥)prim be the cones of isotropic classes
(with respect to the Beauville-Bogomolov bilinear form). Let

(4.1.13)
H2(XA)prim

νA−→Sym2H2(XA)prim

α 7→ α2

be the (affine) Veronese map; we define similarly νA⊥ . Then

(4.1.14) WA = spanνA(QA), WA⊥ = spanνA⊥(QA⊥).

We claim that

(4.1.15) hA(νA(QA)) = νA⊥(QA⊥).
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In fact let U ⊂ LG(∧3V )0 ∩ δ−1LG(∧3V ∨)0 be an open ball containing A. The
Gauss-Manin connection gives identifications

(4.1.16) H2(XB) ∼= H2(XA), H2(XB⊥) ∼= H2(XA⊥)

for every B ∈ U . Gauss-Manin gives also identifications WB
∼= WA and WB⊥

∼=
WA⊥

∼= sending νB(QB) to νA(QA) and νB⊥(QB⊥) to νA⊥(QA⊥) respectively.
The isomorphism hB is flat for the Gauss-Manin connection hence it is identified
with a (constant) map h : WA → WA⊥ . For B ∈ U let σB, σB⊥ be symplectic
forms on XB and XB⊥ respectively. Since hB is an isomorphism of H.S.’s we
have

(4.1.17) h[σ2
B] = [σ2

B⊥ ].

Now σB ∈ QA and σB⊥ ∈ QA⊥ - here we make the identifications (4.1.16) - and as
B varies in U both [σB] and [σB⊥ ] fill out non-empty open (in the classical topol-
ogy) subsets of P(QA) and P(QA⊥) respectively. Since P(QA) and P(QA⊥) are non
singular quadrics any non-empty open subset is Zariski-dense and hence (4.1.17)
proves (4.1.15). It follows from (4.1.15) that there exists a linear map (4.1.3) well-
defined up to ±1 such that for α ∈ QA we have hA(α2) = gA(α)2. By (4.1.15) we
have

(4.1.18) gA(α) ∈ QA⊥ if and only if α ∈ QA.

The rationality of gA follows from the fact that hA is defined over Q, and
νA, νA⊥ give bijective maps between P(QA)(Q), νA(P(QA))(Q) and P(QA⊥)(Q),
νA⊥(P(QA⊥))(Q) respectively. Finally let’s prove that Equation (4.1.4) holds.
First we show that

(4.1.19) (α, β)XA
= (gA(α), gA(β))X

A⊥ , α, β ∈ QA.

Since (4.1.11) respects the intersection forms we have

(4.1.20)
∫

XA

α2 ∧ β2 =
∫

X
A⊥

hA(α2) ∧ hA(β2) =
∫

X
A⊥

gA(α)2 ∧ gA(β)2.
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On the other hand α, β are isotropic and by (4.1.15) gA(α), gA(β) are isotropic
as well; thus

∫

XA

α2 ∧ β2 =2(α, β)2XA
(4.1.21)

∫

X
A⊥

gA(α)2 ∧ gA(β)2 =2(gA(α), gA(β))2X
A⊥

(4.1.22)

(4.1.23)

(See Section (2) of [14].) Equations (4.1.20), (4.1.21) and (4.1.22) prove that
either (4.1.19) holds or else

(4.1.24) (α, β)XA
= −(gA(α), gA(β))X

A⊥ , α, β ∈ QA.

Assume that (4.1.24) holds. Let σA ∈ H2,0(XA) be the class of a symplectic forms
on XA; since gA is an isomorphism of Hodge structures gA(σA) is represenyted
by a symplectic form on XA⊥ . Then

(4.1.25) (σA, σA)XA
= −(gA(σA), gA(σA))X

A⊥ .

This is absurd because the Beaville-Bogomolov (, )X of an irreducible symplectic
manifold X has the property that (σ, σ)X > 0 for every symplectic form σ on
X. This finishes the proof of Equation (4.1.19). Now let γ ∈ H2(XA)prim, then
γ = α + β for certain α, β ∈ QA; by Equations (4.1.18) and (4.1.19 we get

(4.1.26) (γ, γ)XA
= 2(α, β)XA

= 2(gA(α), gA(β))X
A⊥ = (gA(γ), gA(γ))X

A⊥ .

This proves (4.1.4). ¤

Proposition (4.1) implies that locally there exists g ∈ O(Λ⊗Q) which relates
the periods of XA⊥ to those of XA and furthermore g normalizes the subgoup of
monodromy operators in O(Λ) . We introduce some notation to formalize this
observation. Let U ⊂ LG(∧3V )] be a small open ball and let Ψ,Φ be markings
of H(V )|U and H(V ∨)|δ(U) respectively - see Definition (3.15). Let A ∈ U be a
reference point: the monodromy representation of π1(LG(∧3V )], A) on H(V ) de-
termines via ΨA a monodromy representation π1(LG(∧3V )], A) → Stab(u) where
Stab(u) < O(Λ̃) is the subgroup fixing the element u given by (1.0.8). An element
of the image of the monodromy representation is a ΨA-monodromy operator. Sim-
ilarly we have a monodromy representation of π1(LG(∧3V ∨), A) on H(V ∨); this
determines via Φ

A
⊥ a monodromy representation π1(LG(∧3V ∨)], A

⊥) → Stab(u).
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An element of the image of this second monodromy representation is a Φ
A
⊥-

monodromy operator. Here and in the rest of the paper we will adopt the fol-
lowing conventions. First we view both O(Λ) and O(Λ ⊗ Q) as subgroups of
O(Λ ⊗ C). Secondly if γ ∈ O(Λ ⊗ C) we denote by γ̃ ∈ O(Λ̃ ⊗ C) the isometry
which fixes u and equals γ on Λ. As a rule letters decorated by a tilde denote
elements of O(Λ̃⊗ C), letters with no tilde denote elements of O(Λ⊗ C).

Corollary 4.2. Let U ⊂ LG(∧3V )] be a small open ball and let Ψ,Φ be markings
of H(V )|U and H(V ∨)|δ(U) respectively. Let PΨ,PΦ be the local period maps (3.3.12).
There exists g ∈ O(Λ⊗Q) well-determined up to ±1 such that

(4.1.27) PΦ(A⊥) = g ◦ PΨ(A)

for all A ∈ U . Let γ̃ ∈ Stab(u) be a ΨA-monodromy operator; then g̃ ◦ γ̃ ◦ g̃−1 is
a Φ

A
⊥-monodromy operator, in particular g ◦ γ ◦ g−1 ∈ O(Λ).

Proof. Equation (4.1.27) holds on U ∩ LG(∧3V )00 by Proposition (4.1) and flat-
ness of gA; by continuity Equation (4.1.27) holds on all of U . The statement
about monodromy operators holds by flatness of gA. ¤

4.2. Restriction to ∆0∗(V ) of the local period maps. Our next task is to
analyze the restriction to ∆0∗(V ) of the local period maps PΨ and PΦ.

Proposition 4.3. Let U ⊂ LG(∧3V )] be a small open ball. There is a choice of
markings Ψ and Φ of H(V )|U and H(V ∨)|δ(U) respectively such that

(4.2.1) PΨ(∆0
∗(V ) ∩ U) = (e1 + 2e2)⊥ ∩ PΨ(U)

where e1, e2 ∈ Λ are as in Section (1). Furthermore

(4.2.2) PΦ(A⊥) = r ◦ PΨ(A), A ∈ ∆0
∗(V )

where r is the involution defined by (2.2.12).

Proof. First we embed the lattice Λ̃ in a unimodular lattice as follows. Let
Λ̂ := U4⊕̂(−E8)2. Let U1 < Λ̂ be one of the hyperbolic lattices, let z ∈ U1 be a
vector of square 2 and e2 be a generator of z⊥∩U1. Then we have an isomorphism

(4.2.3) z⊥ ∼= Λ̃

and we can choose it so that it matches the present e2 with the vector e2 appearing
in (1.0.9): we fix such an isomorphism once for all. Let u, e1 ∈ Λ̃ = z⊥ be as



Dual Double EPW-sextics and Their Periods 459

in Section (1); then {(u ± e1)/2, (z ± e2)/2} ⊂ Λ̂. Furthermore the sublattices
〈(u + e1)/2, (u − e1)/2〉 and 〈(z + e2)/2, (z − e2)/2〉 are orthogonal hyperbolic
planes. Thus we have an orthogonal decomposition

(4.2.4) Λ̂ = 〈(u + e1)/2, (u− e1)/2〉⊕̂〈(z + e2)/2, (z − e2)/2〉⊕̂U2⊕̂(−E8)2.

Now we pass to the geometry. Let T∗ be as in Subsection (3.2). Let A ∈ ∆0∗(V )∩
U ; by definition there exists t ∈ T∗ such that

(4.2.5) Mt
∼= XA.

Since U is a small open ball there exists a small open ball V ⊂ T∗ such that if
t ∈ V then (4.2.5) holds for some A ∈ ∆0∗(V )∩U and conversely if A ∈ ∆0∗(V )∩U
then there exists t ∈ V such that (4.2.5) holds. Let κ : S → T∗ be the tautological
family of K3 surfaces parametrized by T∗. Let t ∈ T∗. Let St = κ−1(t), Dt

etc. be as in Subsection (3.1) and At ∈ ∆0∗(V ) ∩ U such that Mt
∼= XAt . Let

ft : Mt → YAt be the double cover. Let vt, wt ∈ H∗(St) be given by

(4.2.6) vt := 2 + c1(Dt) + 2ηt, wt := 1− ηt

where ηt ∈ H4(St;Z) is the orientation class. The Mukai map

(4.2.7) θvt : v⊥t → H2(Mt)

is an isometry of Hodge structures - see Subsection (3.1). Furthermore one has

(4.2.8) c1(f∗t LAt) = θvt(ηt − 1) = θvt(−w∨t ).

(See the line preceding (3.1.7) for the definition of w∨t .) The local system R2κ∗Z|V
is trivial because V is a small open ball. Thus there exist sections α, β ∈
Γ(R2κ∗Z|V) such that c1(Dt) = αt + 5βt for all t ∈ V. We define a trivialization

(4.2.9) Rκ∗Z|V = (R0κ∗Z⊕R2κ∗Z⊕R4κ∗Z)|V Υ−→ V × Λ̂

as follows. For t ∈ V let

(4.2.10)

Υt(1) :=− u/2 + e1/2− z + e2

Υt(ηt) := u/2 + e1/2− z + e2

Υt(αt) := − 2e1 + 5z/2− 3e2/2
Υt(βt) := z/2 − e2/2

and let

(4.2.11) Υt|{1,ηt,αt,βt}⊥ : {1, ηt, αt, βt}⊥ ∼−→ {(u± e1)/2, (z ± e2)/2}⊥
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be an arbitrary isometry - notice that {1, ηt, αt, βt}⊥ ∼= U2⊕̂(−E8)2 is isometric
to {(u±e1)/2, (z±e2)/2}⊥ by (4.2.4). A straightforward computation shows that
Υt is an isometry. The trivialization (4.2.9) is defined to have value Υt at t ∈ V.
Now notice that Υt(vt) = z and hence we have an isometry Υt ◦θ−1

vt
: H2(Mt)

∼−→
z⊥ = Λ̃. Since Υt(−w∨t ) = u Equation (4.2.8) gives that

(4.2.12) Υt ◦ θ−1
vt

(c1(f∗t LAt)) = u.

Hence Υt ◦ θ−1
vt

defines a marking of (Mt, f
∗
t LAt) for every t ∈ V; since H(V )|U is

trivial there exists a marking Ψ: H(V )|U −→ U × Λ̃ such that

(4.2.13) ΨAt = Υt ◦ θ−1
vt

, t ∈ V.

Equation (4.2.1) follows from Equation (3.1.11) and the equality

(4.2.14) ΨAt(θvt(5 + 2c1(Dt) + 5ηt)) = Υt(5 + 2c1(Dt) + 5ηt) = e1 + 2e2.

Next we define a marking Φ for H(V ∨)|δ(U). By (3.3.4) this will be equivalent

to a marking of S
[2]
t , hence we first recall the description of H2(S[2]

t ). We notice
that wt is the Mukai vector (see (3.1.1)) of any ideal sheaf IZ where [Z] ∈ S

[2]
t ;

Mukai’s map

(4.2.15) θwt : w⊥t → H2(S[2]
t )

is an isomorphism of polarized Hodge structures and an isometry. Let gt : S
[2]
t →

YA⊥t
be the map defined by (3.2.7); by Subsection (5.3) of [12]

(4.2.16) c1(g∗tOY
A⊥t

(1)) = θwt(−2 + c1(Dt)− 2ηt) = θwt(−v∨t ).

We define a trivialization

(4.2.17) Rκ∗Z|V = (R0κ∗Z⊕R2κ∗Z⊕R4κ∗Z)|V Θ−→ V × Λ̂

as follows. For t ∈ V let

(4.2.18)

Θt(1) := u − e1 + z/2− e2/2
Θt(ηt) := u − e1 − z/2− e2/2
Θt(αt) := 5u/2− 3e1/2 − 2e2

Θt(βt) := u/2 − e1/2

and let the restriction of Θt to {1, ηt, αt, βt}⊥ be equal to the restriction of Υt.
A straightforward computation shows that Θt is an isometry. The trivializa-
tion (4.2.17) is defined to have value Θt at t ∈ V. Now notice that Θt(wt) = z
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and hence we have an isometry Θt◦θ−1
wt

: H2(S[2]
t ) ∼−→ z⊥ = Λ̃. Since Θt(−v∨t ) = u

Equation (4.2.16) gives that

(4.2.19) Θt ◦ θ−1
vt

(c1(g∗tOY
A⊥t

)) = u.

Hence Θt ◦ θ−1
wt

defines a marking of (S[2]
t , g∗tOY

A⊥t
(1)) for every t ∈ V; by (3.3.4)

and triviality of H(V ∨)|δ(U) there exists a marking Φ: H(V ∨)|δ(U) −→ U× Λ̃ such
that

(4.2.20) ΦAt = Θt ◦ θ−1
wt

, t ∈ V.

Now let’s prove (4.2.2). Equation (4.2.2) is equivalent to

(4.2.21) PΘt◦θ−1
wt

(S[2]
t , g∗tOY

A⊥t
(1)) = r ◦ PΥt◦θ−1

vt
(Mt, f

∗
t LA), t ∈ V

by Equation (3.3.13). Since θvt and θwt are isomorphism of Hodge structures the
above equation may be rewitten as

(4.2.22) Θt(H2,0(St)) = r ◦Υt(H2,0(St)), t ∈ V.

For t ∈ V let

(4.2.23)
H∗(St;Q) Ξt−→ H∗(St;Q)

γ 7→ −γ∨ + 1
2(γ∨, vt + wt)(vt + wt)

i.e. the composition of the isometry γ 7→ γ∨ and the reflection which is (+1)
on Q(vt + wt) and (−1) on (vt + wt)⊥; thus Ξt is a rational (not integral !)
Hodge isometry. A straightforward computation shows that Θt = r ◦ Υt ◦ Ξt.
Thus (4.2.22) follows at once from Ξt(H2,0(S)) = H2,0(S). ¤

If γ ∈ Λ⊗Q is non-isotropic we let

(4.2.24)
Λ⊗Q rγ−→ Λ⊗Q

x 7→ −x + 2
(γ,γ)(x, γ)γ

be the reflection with (+1)-eigenspace Qγ and (−1)-eigenspace γ⊥. Let

(4.2.25) ζ := e1 + 2e2.

Corollary 4.4. Keep notation and assumptions of Proposition (4.3). Let Ψ, Φ
be the markings of Proposition (4.3). Then:

(1) PΦ(A⊥) = r ◦ PΨ(A) for all A ∈ U or
(2) PΦ(A⊥) = r ◦ rζ ◦ PΨ(A) for all A ∈ U .
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Proof. By Corollary (4.2) there exists g ∈ O(Λ⊗Q) such that PΦ(A⊥) = g◦PΨ(A)
for all A ∈ U . By Proposition (4.3) r−1 ◦ g fixes the points of ζ⊥ ∩D2: it follows
that r−1 ◦ g fixes ζ⊥ ⊂ P(Λ ⊗ C). Since r ∈ O(Λ) we have r−1 ◦ g ∈ O(Λ ⊗ Q):
thus we get that that

(4.2.26) r−1 ◦ g|ζ⊥ = ±Idζ⊥ .

Since ζ is non-isotropic (in fact (ζ, ζ) = −10) and r−1 ◦ g ∈ O(Λ⊗Q) we get that
r−1 ◦ g(ζ) = ±ζ. It follows that r−1 ◦ g = ±Id or r−1 ◦ g = ±rζ . Since −Id acts
trivially on D2 ⊂ P(Λ) the corollary follows. ¤

4.3. The proof. We will apply the monodromy statement of Corollary (4.2) in
order to show that Item (2) of Corollary (4.4) can not hold. We will use the
following result.

Claim 4.5. Let

(4.3.1) ξ = a1e1 + a2e2 + ν ∈ Λ

be a (−2)-vector i.e. (ξ, ξ) = −2 and assume that rζ ◦ rξ ◦ rζ ∈ O(Λ). Then

(4.3.2) (ξ, ζ) ≡ 0 (mod 5).

Proof. A tedious straightforward computation gives that

(4.3.3) rζ ◦ rξ ◦ rζ(e1) =
1
25

(18a2
1 − 48a1a2 + 32a2

2 − 25)e1−

− 1
25

(24a2
1 − 14a1a2 − 24a2

2)e2 − 2
5
(3a1 − 4a2)ν.

Thus 18a2
1 − 48a1a2 + 32a2

2 ≡ 0 (mod 25). Since

(4.3.4) 18a2
1 − 48a1a2 + 32a2

2 = 2(3a1 − 4a2)2

we get that 3a1 − 4a2 ≡ 0 (mod 5). This proves (4.3.2) because

(4.3.5) (ξ, ζ) = −2a1 − 4a2 ≡ 3a1 − 4a2 (mod 5).

¤

Proposition 4.6. Keep notation and assumptions of Proposition (4.3). Let Ψ,
Φ be the markings of Proposition (4.3) and A ∈ U ∩ ∆0∗(V ). There exists a
(−2)-vector ξ ∈ Λ such that −rξ is a ΨA-monodromy operator and

(4.3.6) (ξ, ζ) 6≡ 0 (mod 5).
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We grant the above proposition for the moment being and we proceed to prove
Theorem (1.1). Let notation and assumptions be as in Proposition (4.3) and Ψ,
Φ be the markings of Proposition (4.3). Then either (1) or (2) of Corollary (4.4)
holds. Suppose that (2) holds; we will arrive at a contradiction. Let ξ be as in
Proposition (4.6): by Corollary (4.2) we have −r ◦ rζ ◦ rξ ◦ rζ ◦ r ∈ O(Λ). Since
r ∈ O(Λ) we get that rζ ◦ rξ ◦ rζ ∈ O(Λ): this contradicts Claim (4.5) because
of (4.3.6). Thus (1) of Corollary (4.4) holds. Let U00 := U∩LG(∧3V )00; then U00

is an open (in the euclidean topology) non-empty subset of LG(∧3V )00. Since (1)
of Corollary (4.4) holds we have

(4.3.7) P ◦ δ|U00 = r ◦ P|U00 .

Both P ◦ δ and r ◦P are holomorphic maps with domain the connected manifold
LG(∧3V )00; by analytic continuation we get that Theorem (1.1) holds.

Proof of Proposition (4.6) Let F ⊂ P3 be a smooth quartic, thus F is a K3
surface. We have a regular map

(4.3.8)
F [2] g−→Gr(1,P3) ⊂ P5

[Z] 7→ span(Z)

and c1(g∗OGr(1,P3)(1)) has square 2 for the Beauville-Bogomolov form. If F does
not contain lines the above map is finite and hence g∗OGr(1,P3)(1) is an ample
line-bundle on F [2], if F contains a line R then g∗OGr(1,P3)(1) is big and nef but
it restricts to the trivial line-bundle on the P2 given by R(2) ⊂ F [2]. Assume that
F does not contain lines; we proved in Section (6) of [12] that

(4.3.9) (F [2], g∗OGr(1,P3)(1)) is deformation equivalent to (Mt, f
∗
t LAt)

where t ∈ T , i.e. there exists a polarized family of irreducible symplectic 4-
folds over a connected basis with one fiber isomorphic to (F [2], g∗OGr(1,P3)(1))
and another fiber isomorphic to (Mt, f

∗
t LAt). Using this result we will show

that the monodromy operator on F given by a suitable (−2)-class orthogonal
to c1(OF (1)) gives rise to a Ψ(A)-monodromy operator for which (4.3.6) holds.
Before proving this we must dive into the details of the proof of (4.3.9). Let
F0 ⊂ P3 be a smooth quartic surface containing a line R and with Picard number
2, i.e. Pic(F0) = Z[A0] ⊕ Z[R] where A0 is the (hyper)plane class. The divisor
(2A0 −R) is very ample and c1(2A0 −R)2 = 10; thus we have an embedding

(4.3.10) F0 ↪→ |2A0 −R|∨ ∼= P6
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as a linearly normal K3 surface of degree 10. Let

(4.3.11) w0 := 1 + c1(A0) + η0, v0 := 2 + c1(2A0 −R) + 2η0

where η0 ∈ H4(F0;Z) is the orientation class. Let Mw0 be the moduli space of
torsion-free sheaves G on F0 such that v(G) = w0; every such sheaf is equal to
IZ ⊗OF0(A0) for a unique [Z] ∈ F

[2]
0 and hence

(4.3.12) Mw0
∼= F

[2]
0 .

We let Lw0 := g∗0OGr(1,P3)(1). Let Mv0 be the moduli space of (2A0 − R)-
semistable sheaves F on F0 such that v(F) = v0. The moduli space Mv0 is
smooth because (2A0−R) is v0-generic (see Section (6) of [12]) and hence it is a
deformation of (K3)[2]. Mukai’s map gives isometries of Hodge structures

(4.3.13) θw0 : w⊥0
∼−→ H2(Mw0), θv0 : v⊥0

∼−→ H2(Mv0).

One has (see p.1241 of [12])

(4.3.14) c1(Lw0) = θw0(η0 − 1).

We let Lv0 be the line-bundle on Mv0 such that

(4.3.15) c1(Lv0) = θv0(η0 − 1).

In Lemma (6.2) of [12] we considered the birational map Mw0 99K Mv0 whose
inverse

(4.3.16) ϕ : Mv0 99K Mw0

is the Mukai reflection defined by the (−2)-vector

(4.3.17) u0 := (1 + c1(A0 −R) + η0)

(notice that −ru0(v0) = w0), see [16]. Since Mv0 and Mw0 are irreducible
symplectic manifolds the birational map ϕ induces an isomorphism of lattices
ϕ∗ : H2(Mw0) ∼= H2(Mv0). By Theorem (2.9) of [16] we have

(4.3.18) ϕ∗θw0(α) = θv0(−ru0(v0)),

in particular by (4.3.14)-(4.3.15) we have

(4.3.19) ϕ∗Lw0
∼= Lv0 .

The birational map ϕ is the flop of

(4.3.20) Πw0 := R(2) ⊂ F
[2]
0 = Mw0 .
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It follows that Mv0 contains Πv0 := Π∨w0
and from (4.3.19) we get that Lv0 is

big, nef and its restriction to Πv0 is trivial. Let X → Bv0 be a representative for
the deformation space of (Mv0 , Lv0), i.e. deformations of Mv0 that “keep c1(Lv0)
of type (1, 1)”. Similarly let X ′ → Bw0 be a representative for the deformation
space of (Mw0 , Lw0). We let 0 ∈ Bv0 and 0 ∈ Bw0 be the points corresponding
to (Mv0 , Lv0) and (Mw0 , Lw0) respectively. Thus for each q ∈ Bv0 the fiber Xq of
X → Bv0 over q has a line-bundle Lq which is a deformation of Lv0 . Similarly for
each s ∈ Bw0 the fiber X ′

s of X ′ → Bw0 over s has a line-bundle L′s which is a
deformation of Lw0 . We may and will assume that Bv0 , Bw0 are contractible and
hence Gauss-Manin gives identifications

(4.3.21) H2(Xq) ∼= H2(Mv0), H2(X ′
s) ∼= H2(Mw0), q ∈ Bv0 , s ∈ Bw0

which match c1(Lq) to c1(Lv0) and c1(L′s) to c1(Lw0). Let B(Πv0) ⊂ Bv0 be the
locus parametrizing deformations Xq which contain a deformation of Πv0 , and
similarly let B(Πw0) ⊂ Bw0 be the locus parametrizing deformations of X ′

s which
contain a deformation of Πw0 .

Claim 4.7. Keep notation as above. Then

cod(B(Πw0), Bw0) = 1,(4.3.22)

cod(B(Πv0), Bv0) = 1.(4.3.23)

Proof of the claim. Let’s prove (4.3.22). Let Def(Mw0) be a representative
of the deformation space of Mw0 with 0 ∈ Def(Mw0) corresponding to Mw0 .
The Kodaira-Spencer map followed by the isomorphism H1(ΘMw0

) ∼= H1(ΩMw0
)

defined by a symplectic form gives an isomorphism Θ0(Def(Mw0)) ∼= H1(ΩMw0
).

The codimension-1 subvariety Bw0 ⊂ Mw0 has tangent space given by

(4.3.24) Θ0(Bw0) = {α ∈ H1(ΩMw0
)| (α, c1(Lw0))Mw0

= 0}.

Let Def(Mw0 ,Πw0) ⊂ Def(Mw0) be the subset of deformations of Mw0 contain-
ing a deformation of Πw0 . Of course we have

(4.3.25) B(Πw0) = Bw0 ∩Def(Mw0 ,Πw0).

By Voisin [15] we know that Def(Mw0 ,Πw0) is smooth and

(4.3.26) Θ0(Def(Mw0 ,Πw0)) = {α ∈ H1(ΩMw0
)| α|Πw0

= 0}.
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By (4.3.20) we have Πw0
∼= P2 and hence Def(Mw0 ,Πw0) is a codimension-1

subvariety of Def(Mw0). We claim that

(4.3.27) Θ0(Bw0) 6= Θ0(Def(Mw0 ,Πw0)).

In fact c1(Lw0) ∈ Θ0(Def(Mw0 ,Πw0)) because Πw0 is contracted by the linear
system |Lw0 | while c1(Lw0) /∈ Θ0(Bw0) because (c1(Lw0), c1(Lw0))Mw0

= 2 6= 0.
Equation (4.3.22) follows from (4.3.25) and (4.3.27). The proof of (4.3.23) is
similar (notice that Πv0 is contracted by the linear system |Lv0 | because ϕ is the
flop of Πw0). ¤

There is a natural isomorphism of germs

(4.3.28) µ : (Bw0 , 0) ∼−→ (Bv0 , 0)

such that µ(B(Πw0)) = B(Πv0) and if s /∈ B(Πw0) then (Xµ(s), Lµ(s)) ∼= (X ′
s, L

′
s).

Let s ∈ Bw0 be such that (X ′
s, L

′
s) ∼= (F [2], g∗OGr(1,P3)(1)) where F is a quartic

containing no lines. Then s /∈ B(Πw0) and hence

(4.3.29) (Xµ(s), Lµ(s)) ∼= (X ′
s, L

′
s) ∼= (F [2], g∗OGr(1,P3)(1)).

On the other hand there exists q ∈ Bv0 such that (Xq, c1(Lq)) ∼= (Mt, θt(ηt − 1))
for t ∈ T∗ because the parameter space for linearly normal K3 surfaces of degree
10 (an open subset of the relevant Hilbert scheme) is irreducible - notice that
q /∈ B(Πv0) because θt(ηt − 1) is ample. Thus there exists A ∈ ∆0∗(V ) such that

(4.3.30) (XA, LA) ∼= (Xq, Lq).

Let γ ∈ H2(F ;Z) be a (−2)-class orthogonal to c1(OF (1)). Then γ determines
a monodromy operator on H2(F [2]); by (4.3.29) and (4.3.30) this monodromy
operator can be identified with a monodromy operator on XA because polarized
deformation spaces of irreducible symplectic manifolds are smooth. Given the
trivializations (4.3.21) the monodromy operator in question is equal to−rϕ∗θw0 (γ0)

- here γ0 ∈ H2(F0) is the class corresponding to γ (the second trivialization
of (4.3.21) defines an identification H2(F ) ∼= H2(F0)). The corresponding ΨA-
monodromy operator is equal to −rξ where

(4.3.31) ξ := ΨA(ϕ∗θw0(γ0)) ∈ Λ
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Claim 4.8. Keep notation as above. Let γ0 ∈ c1(A0)⊥ ⊂ H2(F0;Z) be a (−2)-
class such that

(4.3.32)
∫

F0

γ0 ∧ c1(R) 6≡ 0 (mod 5).

Then

(4.3.33) (ξ, ζ) 6≡ 0 (mod 5).

Proof of the claim. By (4.2.14) we must check that

(4.3.34) (ϕ∗θw0(γ0), θv0(5 + 2c1(2A0 −R) + 5η0)) 6≡ 0 (mod 5).

By (4.3.18) this is equivalent to

(4.3.35) (−ru0(γ0), 5 + 2c1(2A0 −R) + 5η0) 6≡ 0 (mod 5).

where u0 is given by (4.3.17). A straightforward computation gives that

(4.3.36) (−ru0(γ0), 5 + 2c1(2A0 −R) + 5η0) = −8
∫

F0

γ0 ∧ c1(R)

and hence we get (4.3.34). ¤

Certainly there exists a class γ0 satisfying the hypotheses of Claim (4.8): the
vector ξ ∈ Λ given by (4.3.31) satisfies the thesis of Proposition (4.6). ¤
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