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Abstract: The braid monodromy factorization of the branch curve of a sur-
face of general type is known to be an invariant that completely determines
the diffeomorphism type of the surface (see [2]). Calculating this factor-
ization is of high technical complexity; computing the braid monodromy
factorization of branch curves of surfaces uncovers new facts and invariants
of the surfaces. Since finding the branch curve of a surface is very difficult,
we degenerate the surface into a union of planes. Thus, we can find the
braid monodromy of the branch curve of the degenerated surface, which is
a union of lines. The regeneration of the singularities of the branch curve,
studied locally, leads us to find the global braid monodromy factorization
of the branch curve of the original surface. So far, only the regeneration of
the BMF of 3,4 and 6-point (a singular point which is the intersection of
3 / 4 / 6 planes; see [6],[8]) were done. In this paper, we fill the gap and
find the braid monodromy of the regeneration of a 5-point. This is of great
importance to the understanding of the BMT (braid monodromy type) of
surfaces [2].
This braid monodromy will be used to find the global braid monodromy fac-
torization of different surfaces; in particular - the monodromy of the branch
curve of the Hirzebruch surface F2,(2,2).
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1. Introduction

Let X ⊂ CPN be a smooth algebraic surface of degree n. One may obtain
information on X by considering it as a branched cover of another surface. If
the base surface is CP2 and if the map X → CP2 is a generic projection, then
the branch locus is a plane curve S ⊂ CP2 which is, in general, singular. If the
projection is generic, the singularities are nodes and cusps. Let S ⊂ C2 ⊂ CP2

denote a generic affine portion of S. A general problem is the study of the
fundamental groups of the complement of the branch curve: π1(C2 − S) and
π1(CP2 − S).

It has been proven that these fundamental groups (derived from braid mon-
odromy factorizations) are invariants that distinguish between diffeomorphic sur-
faces (see [2]); that is, if two surfaces have equivalent braid monodromy factor-
izations (and thus isomorphic fundamental groups), then they are diffeomorphic.
However, the converse is not true, that is, the diffeomorphism type does not de-
termine the equivalence class of the factorization. In [3] a pair of diffeomorphic
surfaces was constructed such that the braid monodromy factorizations are not
equivalent.

The above fundamental groups cannot be found directly, since finding the
branch curve explicitely is very difficult. Therefore, one has to degenerate the
surface X into a union of planes, where in this case, the branch curve is easy
to find – it is an arrangment of lines. It is known, by the Zariski-Van Kam-
pen Theorem that the braid monodromy factorization (BMF ; see Section 2 for
its definition) of the branch curve determines the desired fundamental groups.
Note that the BMF of any curve is given by a product of the local BMF in the
neighborhood of the singular points of the branch curve. Thus, the BMF of any
line arrangement can be found explicitly (see [5]). By applying the regeneration
techniques on the singularities of the arrangement of lines, one can find the BMF
of the original branch curve.

So it is very important to find out what are the local BMF that are obtained
from regenerating different line arrangements (or line and conic arrangement).

Till now, most of the arrangements that include one line and one conic (or
two lines) were treated. In [6] the BMFs of the regeneration of a tangent / node
/ branch point are given. However, for more complicated arrangements, only a
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few results are known. The BMF of the regeneration of a standard 3-point (that
is, a singular point which is the intersection of 3 planes), 4-point and 6-point
are presented in [8]. Figure I.1 is a depiction of the arrangement of planes (that
correspond to the regions delimited by the edges of the diagram) and edges (that
correspond to lines of intersection between two planes).

3-point 4-point 6-point

(figure I.1)

Notice that in the cases in which the line arrangements include more than two
lines, the order of the regeneration effects how the factorization will look.

In this article we compute two important braid monodromy factorizations,
which were not known till now – the BMF of a 5-point, and a general formula of
a certain type of (k + 1)-point where k ≥ 2.

This article is organized as follows: In Section 2 we give the main definitions
(BMF and regeneration techniques), and then we compute the BMF of the two
main cases that were mentioned above. Section 3 shows the importance of these
factorizations by introducing an example which uses one of them.

Acknowledgment: The authors wish to thank Prof. Eugenii Shustin for his
help and for fruitful discussions.

2. 5-point regeneration

This section introduces the main result of the article – the local braid mon-
odromy factorization induced from the regeneration of a neighborhood of a 5-
point; that is, a point which is the intersection of 5 planes. Our result deals with
two specific cases for which this situation can appear, though there are other con-
figurations of 5-planes passing through a point. Note that we actually consider
this point to be a singular point of the branch curve of a degenerated surface,
when considering its generic projection to CP2. But first we need to recall a few
definitions, related to the braid monodromy factorization and to the regeneration
techniques.
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2.1. Preliminaries: BMF and regeneration techniques. Computing the
braid monodromy is the main tool to compute fundamental groups of comple-
ments of curves. In this subsection we define the braid monodromy.

Let D be a closed disk in R2, K ⊂ Int(D), K finite, n = #K. Recall that
the braid group Bn[D, K] can be defined as the group of all equivalent diffeomor-
phisms β of D such that β(K) = K , β|∂D = Id |∂D .

Definition: H(σ), half-twist defined by σ

Let a, b ∈ K, and let σ be a smooth simple path in Int(D) connecting a with
b s.t. σ ∩K = {a, b}. Choose a small regular neighborhood U of σ contained in
Int(D), s.t. U ∩ K = {a, b}. Denote by H(σ) the diffeomorphism of D which
switches a and b by a counterclockwise 180 degree rotation and is the identity on
D \U . Thus it defines an element of Bn[D, K], called the half-twist defined by σ

.

Assume that all of the points of K are on the X-axis (when considering D in
R2). In this situation, if a, b ∈ K, and za,b is a path that connects them, then we
denote it by Za,b = H(za,b). If za,b is a path that goes below the x-axis, then we
denote it by Za,b, or just Za,b. If za,b is a path that goes above the x-axis, then
we denote it by Za,b. See [6], Section 2 for additional notations.

Definition: The braid monodromy w.r.t. S, π, u

Let S be a curve, S ⊆ C2 Let π : S → C1 be defined by π(x, y) = x. We denote
deg π by m. Let N = {x ∈ C1

∣∣ #π−1(x) < m}. Take u /∈ N, s.t. <(x) ¿ u

∀x ∈ N. Let C1
u = {(u, y)}. There is a natural defined homomorphism

π1(C1 −N, u)
ϕ−→ Bm[C1

u,C1
u ∩ S]

which is called the braid monodromy w.r.t. S, π, u, where Bm is the braid group.
We sometimes denote ϕ by ϕu. In fact, denoting by E – a big disk in C1 s.t.
E ⊃ N , we can also take the path in E \N not to be a loop, but just a non-self-
intersecting path; this induces a diffeomorphism between the models (D, K) at the
two ends of the considered path, where D is a big disk in C1

u, and K = C1
u∩S ⊂ D.
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Definition: ψT , Lefschetz diffeomorphism induced by a path T

Let T be a path in E \ N connecting x0 with x1, T : [0, 1] → E \ N . There
exists a continuous family of diffeomorphisms ψ(t) : D → D, t ∈ [0, 1], such
that ψ(0) = Id, ψ(t)(K(x0)) = K(T (t)) for all t ∈ [0, 1], and ψ(t)(y) = y for all
y ∈ π1D. For emphasis we write ψ(t) : (D, K(x0)) → (D, K(T (t)). Lefschetz
diffeomorphism induced by a path T is the diffeomorphism

ψT = ψ(1) : (D, K(x0)) →∼ (D, K(x1)).

Since ψ(t) (K(x0)) = K(T (t)) for all t ∈ [0, 1], we have a family of canonical
isomorphisms

ψν
(t) : Bp [D, K(x0)] →∼ Bp [D, K(T (t))] , for all t ∈ [0, 1].

see the following figure for illustration of the above definitions:

p

C1
u

u

s

N

T

C1
u

H(s)
2 

= y
T 

= j(T)

s

lifting the loop T and
going along it, the two
upper point of the fiber

make a full 360
degree rotation

We recall Artin’s theorem on the presentation of the Dehn twist of the braid
group as a product of braid monodromy elements of a geometric-base (a base of
π1 = π1(C1 −N, u) with certain properties; see [5] for definitions).
Theorem: Let S be a curve transversal to the line in infinity, and ϕ is a braid
monodromy of S, ϕ : π1 → Bm. Let δi be a geometric (free) base (g-base) of π1,

and ∆2 is the generator of Center(Bm). Then:

∆2 =
∏

ϕ(δi).
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This product is also defined as the braid monodromy factorization (BMF) related
to a curve S.

So in order to find out what is the braid monodromy factorization of ∆2
p, we

have to find out what are ϕ(δi), ∀i. We refer the reader to the definition of a skele-
ton (see [6]) λxj , xj ∈ N , which is a model of a set of paths connecting points
in the fiber, s.t. all those points coincide when approaching Aj =(xj , yj)∈ S,
when we approach this point from the right. To describe this situation in greater
detail, for xj ∈ N , let x′j = xj + α. So the skeleton in xj is defined as system of
paths connecting the points in K(x′j) ∩D(Aj , ε) when 0 < α ¿ ε ¿ 1, D(Aj , ε)
is a disk centered in Aj with radius ε.

For a given skeleton, we denote by ∆〈λxj 〉 the braid by rotates by 180 degrees
counterclockwise a small neighborhood of the given skeleton. Note that of λxj is
a single path, then ∆〈λxj 〉 = H(λxj ).

We also refer the reader to the definition of δx0 , for x0 ∈ N (see [6]), which
describes the Lefschetz diffeomorphism induced by a path going below x0, for
different types of singular points (tangent, node, branch; for example, when going
below a node, a half-twist of the skeleton occurs. When going below a tangent
point, a full-twist occurs).

We define, for x0 ∈ N , the following number: εx0 = 1, 2, 4 when (x0, y0) is a
branch / node / tangent point (respectively). So we have the following statement
(see [6], prop. 1.5):

Let γj be a path below the real line from xj to u, s.t. `(γj) = δj . So -

ϕu(δj) = ϕ(δj) = ∆ < (λxj )(
1∏

m=j−1

δxm) >εxj .

When denoting ξxj = (λxj )

(
1∏

m=j−1
δxm

)
we get –

ϕ(δj) = ∆〈(ξxj )〉εxj .

Note that the last formula gives an algorithm to compute the wanted factoriza-
tion.



The Regeneration of a 5-point 389

For a detailed explanation of the braid monodromy, see [5].

We recall now the regeneration methods.

The regeneration methods are actually, locally, the reverse process of the de-
generation method. When regenerating a singular configuration consisting of lines
and conics, the final stage in the regeneration process involves doubling each line,
so that each point of K corresponding to a line labelled i is replaced by a pair
of points, labelled i and i′. The purpose of the regeneration rules is to explain
how the braid monodromy behaves when lines are doubled in this manner. We
denote by Zi,j = H(zi,j) where zi,j is a path connecting points in K.

The rules are (see [8], pg. 336-7):

(1) First regeneration rule: The regeneration of a branch point of hyper-
bola:
A factor of the braid monodromy of the form Zij is replaced in the re-

generation by Zi′j ·
(j)

Z ij′

(2) Second regeneration rule:The regeneration of a node:
A factor of the form Z2

ij is replaced by a factorized expression Z2
ii′,j :=

Z2
i′j · Z2

ij , Z2
i,jj′ := Z2

ij′ · Z2
ij or by Z2

ii′,jj′ := Z2
i′j′ · Z2

ij′Z
2
i′j · Z2

ij .
(3) Third regeneration rule:The regeneration of a tangent point:

A factor of the form Z4
ij in the braid monodromy factorized expression is

replaced by Z3
i,jj′ := (Z3

ij)
Zjj′ · (Z3

ij) · (Z3
ij)

Z−1
jj′ .

As a result, we get a factorized expression, which, by [2], determines the diffeo-
morphism type of our surface, and, by [13], determines π1(CP2 − S).

2.2. The first case. In this subsection we will look at the case where, locally, we
have 5 planes corresponding to the angular sectors of the figure, intersecting each
other along a line whenever they have a common edge. The lines Li, 1 ≤ i ≤ 5
are numerated as following:
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1

2

4 5

3

(figure 1)

The lines are numerated in a way such that it describes the respective positions
of the points where they intersect C1

u. We know that a 5-point of this sort can be
generated during the process of a degeneration of a surface into a union of planes.
Thus, when we examine the local braid monodromy factorization of this 5-point,
before degenerating, we know it is ∆2〈1, 5〉. So by knowing what the regeneration
process will do to this factorization, we will know part of the relations which are
in the local fundamental group of C2 (or CP2) minus the branch curve in this
local neighborhood. Note that in the regeneration process, line 4 is regenerated
first, then lines 2 and 3 and then lines 1 and 5.

In order to compute the desired factorization, we need a few corollaries. The
first is cited from [8], and deals with the result of the regeneration process under
certain conditions.

Corollary 2.1. Let V be a projective algebraic surface, D′ – a curve in V . Let
f : V → CP2 be a generic projection. Let S ⊆ CP2, S′ ⊆ V be the corresponding
branch / ramification curve of f . Assume S′ intersects D′ in α′. Let D =
f(D′), α = f(α′). Assume that there exist neighborhoods of α and α′ s.t. f |S′
and f |D′ are isomorphic. Then D is tangent to S at α.

Proof: see [8].

The second corollary deals with the computation of a few braids, which are
induced from loops going around a complex intersection of a conic and a line. We
need this lemaa, since this situation appears during the regeneration process. So
consider the following model.

Let C = {(y2−x)(y +x+1) = 0}, π1, π2 : C → C, π1(x, y) 7→ x, π2(x, y) 7→ y.
Denote by p1, p2 the points of intersection of y2 = x and y = −x − 1. So –
xp1 = −1

2 +
√

3i
2 , xp2 = −1

2 −
√

3i
2 . Denote – x0 = −1

4 , A = π2(π−1
1 (x0)) =

{±1
2 i,−3

4}, x1 = −3
4 , A′ = π2(π−1

1 (x1)) = {±
√

3
2 i,−1

4} (see figure 2).
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Re(C)
y

x

y2=x
y=-x-1

A

-0.75

-0.5i

0.5i

Im(y)

Re(y)

Im(X)

Re(X)

xp1

xp2

-0.75 -0.25

[1] [2] [3]

(figure 2)

Remark: Note that A′ and A (which are on the Y -axis) are equivalent in the sense
that if a ∈ A, a′ ∈ A′ and <(a),<(a′) 6= 0 (or =(a),=(a′) > 0 or =(a),=(a′) < 0)),
then a and a′ come from the same component of C. Let D be a disk on the Y-axis
s.t. A,A′ ⊂ D. Thus we can define a continuous diffeomorphism β : D → D s.t.
β(−3

4 ) = −1
4 , β(±i

2 ) = ±√3i
2 , β(∂D) = ∂D, β(=(Y ) ∩ D) = =(Y ) ∩ D, β(<(Y ) ∩

D) = <(Y )∩D, and outside a small neighborhood of the =(Y )– and <(Y )–axis,
β = Id.

Denote:
σ1 – the segment connecting −3

4 and i
2 in A;

σ2 – the segment connecting −3
4 and −i

2 in A; See figure 3.[1]
σ′1 – the segment connecting −1

4 and
√

3i
2 in A′;

σ′2 – the segment connecting −1
4 and −

√
3i
2 in A′.

Let l1(t), l2(t), (0 ≤ t ≤ 1) be two loops starting (and ending) at x0, s.t. li is
around xpi . Lifting li(i = 1, 2) to C and projecting it to D, we get a motion:
(D, A) → (D, A), which induces a braid; let l3(t), (0 ≤ t ≤ 1) be a curve starting
at x1, ending at x0 and surrounding xp2 from below (see figures 3.[2], 3.[3]).

A

-0.75

-0.5i

0.5i

Im(y)

Re(y)

Im(X)

Re(X)
-0.75 -0.25

[1] [2]

σ
1

σ
2

l
1
(t)

l
2
(t)

Im(X)

Re(X)
-0.75 -0.25

[3]

l
3
(t)

(figure 3)
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As above, we get a motion (D, A) → (D, A′). Denote:
ψl1 , ψl2 – the motions induced from l1, l2 (that is, the Lefschetz isomorphisms
induced by the paths; we omit the superscript, as mentioned in the introduction).
ψl3 – the motion induced from l3 (after composing β on the resulting disk).

Corollary 2.2. ψl1 = H(σ2)2, ψl2 = H(σ1)2, ψl3 = H(σ′1)
2, where H(σ) is the

halftwist induced from the path σ.

Proof: For ψl1 , ψl2 we can look at a small neighborhood of p1 (p2). Since in
this small neighborhood the intersection of the branch of the conic, which p1 (p2)
lies on, and the line can be treated as the intersection of 2 lines, it is obvious that
when we perform a full loop around xp1 or around xp2 , the induced motion of the
above points (points 0.5i and −0.75 or points −0.5i and −0.75) is a rotation of
360 degrees, and the induced braid is H(σ)2 where σ is the path connecting the
points (σ2 or σ1; see figure 3.[1]). Indeed, the line is y = −x−1, so when x moves
along l1, the corresponding value of y is in the lower half-plane; both end-points
of σ2 approach −1

2 −
√

3
2 i as x approaches xp1 ; And similarly for l2.

We shall now compute ψl3 . Observe that the union of the straight line from x0

to x1 with the arc l3 is a closed loop from x0 to itself, homotopic to l2. Moving x

along the real axis from x0 to x1 induces the diffeomorphism β : (D, A) → (D, A′)
introduced earlier, so (up to isotopy) ψl3 ◦ β = ψl2 , which gives ψl3 . ¤

So we now look at a point v, which is the intersection of 5 lines (see figure 1),
which are (part of a) branch curve of a degenerated surface. Since we consider
that this branch curve is a result of a degeneration process, we can apply Corollary
2.1 when we are trying to find out what will happen when we first regenerate line
4.

Denote V =
5⋃

i=1
Li. Define Zi j

{k}
= H(zi j

{k}
), where zi j

{k}
is the path from point i to

point j, when the part of the path which is between i and j is below the X-axis,
and it surrounds point k from the left (if k < i) or from the right (if j < k). For
example, see the following figures:

z2 5
{7}

1 2 5 7
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z2 5
{1}

1 2 5 7

Corollary 2.3. After regenerating V in a small neighborhood U of v, L4 turns
into a conic Q4, s.t. Q4 is tangent to L2 and L5. Denote the resulting branch
curve, after this regeneration, by Ṽ . Thus, the singularities of T = Ṽ ∩U are as
in the figure below:

1
2 3

5

p
7

4`

4
p

1

p
2

p
3

p
5

p
4

p
6

p
6’

(figure 4)

Then the local braid monodromy of the above configuration is

ϕ̃ = Z2
3 4 Z4

4′ 5Z
4
2 4

(4)

Z2
3 4′
{5}

ˆ̂
Z4 4′ Z

2
1 4′
{5}

Z2
1 4 (∆2 <1, 2, 3, 5>)Z−2

4 5 ,

where ˆ̂
Z4 4′ = H(ˆ̂z4,4′) (

(4)

Z2
3 4
{5}

= H(
(4)

z2
3 4
{5}

)) is the half-twist corresponding to the fol-

lowing path :

ˆ̂z4,4′ (figure 5.[1]),
(4)

z2
3 4
{5}

(figure 5.[2]):

1 2 3 4 54’

[1]

1 2 3 4 54’

[2]

(figure 5)
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Proof: Let {pj}7
j=1 ∪ {p6′} be the singular points of a small neighborhood

(that is - U) of v (see figure 4) with respect to π1 (the projection to the X-axis)
as follows:
p2, p3 – the tangent points of Q4 and L2, L5.
{p1, p4}, {p6, p6′} – the intersection points of Q4 with L3, L1.
p5 – the branch point of Q4.
p7 – the intersection point of {Li}i=1,2,3,5.
Let E (resp. D) be a closed disk on the X-axis (resp. Y -axis). Let N = {x(pj) =
xj | 1 ≤ j ≤ 7 or j = 6′}, s.t. N ⊂ E − ∂E. Let M be a real point on the x-axis,
s.t. xj ¿ M, ∀xj ∈ N, 1 ≤ j ≤ 7 or j = 6′. There is a g-base `(γj)7j=1 ∪ `(γ6′) of
π1(E −N, u), s.t. each path γj is below the real line and the values of ϕM with
respect to this base and E×D are the ones given in the proposition. We look for
ϕM (`(γj)) for j = 1, . . . , 7 or j = 6′. Choose a g-base `{γj}7

j=1 ∪ `(γ6′) as above
and put all the data in the following table:

j λxj εxj δxj

1 < 3, 4 > 2 ∆ < 3, 4 >

2 < 4′, 5 > 4 ∆2 < 4′, 5 >

3 < 2, 3 > 4 ∆2 < 2, 3 >

4 < 4, 4′ > 2 ∆ < 4, 4′ >

5 < 3, 4 > 1 ∆
1
2
IR < 2 >

6,6’ < 1, 3 >,< 1, 4 > 2 ∆2 < 1, 3 >

7 < 1, 2, 4′, 5 > 2 −

Note: A short description of λxj , εxj , δxj , ξxj appears in section 2.1. For a full
description and examples - see [6].
ξx1 = z3,4

ϕM (`(γ1)) = Z2
3,4

ξx2 = z4′,5 ( ∆<3, 4> does not affect this path)
ϕM (`(γ2)) = Z4

4′,5

ξx3 = 1 2 3 4 4’ 5
∆2<4′,5>−−−−−−→
∆<3,4>

1 2 3 4 4’ 5= z2 4

ϕM (`(γ3)) = Z4
2 4
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ξx4 = 1 2 3 4 4’ 5
∆2<2,3>−−−−−−→
∆2<4′,5>

1 2 3 4 4’ 5
∆<3,4>−−−−−→ 1 2 3 4 4’ 5 =

(4)

z2
3 4′
{5}

ϕM (`(γ4)) =
(4)

Z2
3 4′
{5}

ξx5 = 1 2 3 4 4’ 5
∆<4,4′>−−−−−−→
∆2<2,3>

1 2 3 4 4’ 5
∆2<4′,5>−−−−−−→ 1 2 3 4 4’ 5

∆<3,4>−−−−−→

1 2 3 4 4’ 5 = ˆ̂z4 4′

ϕM (`(γ5)) = ˆ̂
Z4 4′

ξx6 , ξx6′ = 1 2 4’

3

4
5

∆
1
2
IR<2>−−−−−→

∆<4,4′>
∆2<2,3>

1 2 3 4 4’ 5
∆2<4′,5>−−−−−−→
∆<3,4>

1 2 3 4 4’ 5

So - ξx′6 = z1 4, ξx6 = z1 4′
{5}

,

and by Corollary 2.2 - ϕM (`(γ6)`(γ6′)) = Z2
1 4′
{5}

Z2
1 4

ξx7 = 1 2 4’

3

4
5

∆2<1,3>−−−−−−→ 1 2 4’

3

4
5

∆
1
2
IR<2>−−−−−→ 1 2 3 4 4’ 5

∆<4,4′>−−−−−→ 1 2 3 4 4’ 5

∆2<2,3>−−−−−−→1 2 3 4 4’ 5
∆2<4′,5>−−−−−−→1 2 3 4 4’ 5

∆<3,4>−−−−−→, 1 2 3 4 4’ 5=∆<1, 2, 3, 5>Z−2
4,5.

Note that in the first computation of ξx7 we used Corollary 2.2; therefore,

ϕM (`(γ7)) = ∆2 <1, 2, 3, 5>Z−2
4,5 . ¤

The next relevant regeneration which affects the neighborhood of v occurs
when we regenerate lines 2 and 3. Note that in a small neighborhood of

⋃
i=1,2
3,5

Li

the regeneration process was already treated in [8], since the local configuration
of the lines is as in figure 6, and this is exactly the situation described in [8].
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5

1

32

(figure 6)

Corollary 2.4. After the described regeneration, the local braid monodromy of a
neighborhood of v is given by-

˜̃ϕ = Z2
3 4 Z

(3)
4′,5 5′Z

4
2 4

(4)

Z2
3 4′
{5′}

ˆ̂
Z4 4′ Z

2
1′ 4′
{5′}

Z2
1 4′
{5′}

Z2
1′ 4 Z2

1 4 (B)Z−2
4 5 Z−2

4 5′

where ˆ̂
Z4 4′ = H(ˆ̂z4 4′), and ˆ̂z4 4′ is the path represented by:

1’ 2 3 4 54’ 5’

(figure 7)

and B := F (F )ρ−1 where-

F = Z4
1′,2 Z4

3 5 Z̃2 3

(2)

Z2
1′,5 Z̄2

1′,5′
(4−4′)

ρ = Z1 1′Z5 5′ and Z̃2,3 is represented by

1’ 2 3 4 54’ 5’1

(figure 8)

Proof: After regenerating
⋃

i=1,2
3,5

Li in a small neighborhood U ′ of v, L2 and

L3 turn into conics: Q2, Q3 and L1, L5 double themselves into parallel lines
L1, L1′ , L5, L5′ , s.t. L1, L1′ is tangent to Q3, and L5, L5′ are tangent to Q3.
So by [8], Lemma 6, when examining what happens in the process of the regen-
eration to ∆2〈1, 2, 3, 5〉 (in ϕ̃), its local braid monodromy is B. Therefore, in the
expression which represents the local braid monodromy of our current situation
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around v, ∆2〈1, 2, 3, 5〉 is replaced by B. The other changes follow from the re-
generation rules, as L1 and L5 are doubled. Therefore we get ˜̃ϕ, by replacing in
ϕ̃ the following:

(1) Z4
4′ 5 into Z

(3)
4′,5 5′ (third regeneration rule)

(2) Z2
1,4 into Z2

1′,4 Z2
1,4 (second regeneration rule)

(3) Z2
1, 4′
{5}

into Z2
1′, 4′
{5}

Z2
1, 4′
{5}

(second regeneration rule) ¤

In the final regeneration that affects the neighborhood of v , the conics Q2, Q3

are doubled. Therefore, we have the following proposition:

Corollary 2.5. The local braid monodromy after the final regeneration around v

is given by

˜̃̃ϕ = Z2
3′ 4 Z2

3 4 Z
(3)
4′,5 5′Z

(3)
2 2′,4

(4)

Z2
3′ 4′
{5′}

(4)

Z2
3 4′
{5′}

ˆ̂
Z4 4′ Z

2
1′ 4′
{5′}

Z2
1 4′
{5′}

Z2
1′ 4 Z2

1 4 (B̃)••

where ˆ̂
Z4 4′ corresponds to the path

2 3 3’ 4 54’ 5’2’

(figure 9)

( )•• is conjugation by Z−2
4,5Z−2

4,5′

and B̃ = F̃ (F̃ )ρ−1 where

F̃ = Z
(3)
1′,2 2′ Z

(3)
3 3′,5 Ž2′ 3 Ž2 3′

(2−2′)
Z2

1′,5 Z̄2
1′,5′

(4−4′)
ρ = Z1 1′Z5 5′

and Ž2 3′ , Ž2′ 3 are:

1’ 2 2’ 4 54’ 5’1 3 3’

(figure 10)

Proof: All the changes follow from the regeneration rules.
We get ˜̃̃ϕ by replacing in ˜̃ϕ the following:
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(1) Z2
3,4 (

(4)

Z2
3 4′
{5′}

) by Z2
3′,4Z

2
3,4 (resp.

(4)

Z2
3′ 4′
{5′}

(4)

Z2
3 4′
{5′}

) (second regeneration rule)

(2) Z4
2,4 by Z

(3)
2 2′,4 (third regeneration rule);

and we get B̃ (F̃ ) by replacing in B (resp.F ) the following:

(1) Z4
1′,2 (Z4

3,5) by Z
(3)
1′,2 2′ (resp. Z

(3)
3 3′,5) (third regeneration rule)

(2) Z̃2,3 by Ž2′ 3 Ž2 3′ (first regeneration rule) ¤

2.3. The second case. The second case of the 5–point regeneration that we
deal with is the braid monodromy factorization that we get from regenerating
the following arrangement of 5 planes corresponding to the angular sectors of the
figure:

1 2 43

(figure 11)

when first we regenerate line number 4, then line 3, etc. But instead of looking at
a particular case, we examine the general case where we have a line arrangement
of k lines, as in the following figure:

1 2 3 k

(figure 12)

when first we regenerate line number k (i.e., `k), then line k − 1, etc. We denote
v to be the point of the intersection of all the lines.

When we regenerate `k, this line turns into a conic p̃k,k′ (by Corollary 2.1)
which is tangent to `k−1. In a local neighborhood of v, the real part of this
configuration of the lines `1, ..., `k−1 and the conic p̃k,k′ is as in the following
figure:
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l
1

l
k-2

l
k-1

l
k

l
k`

p
k

p
3

p
3`

p
2

p
1

(figure 13)

Note that if we denote the slope of `i by si, then for two lines - `i, `j (1 ≤ i <

j ≤ k − 2 and thus si < sj) we have <(`i ∩ p̃k,k′) < <(`j ∩ p̃k,k′).

We shall now compute the braid monodromy factorization of figure 13.

Corollary 2.6. After regenerating `k, the braid monodromy factorization in a
local neighborhood of v is:

Bk = Z4
k−1,k Z̄k,k′

{k−1}

k∏

i=3

(Z2
k−i+1,k′Z

2
k−i+1,k)∆

2〈1, k − 1〉

Proof: After the regeneration, `k turns into a conic p̃k,k′ and thus, by figure
8, we have the following singular points with respect to π1 (the projection to the
X-axis):
p1: tangent point of `k−1 and p̃k,k′ .
p2: branch point of p̃k,k′ .
pi, pi′ : ∀3 ≤ i ≤ k the (complex) intersection points (nodes) of `k−i+1

and p̃k,k′ .
pk+1: the intersection point of the lines `1, ...`k−1.

We condense the needed data in the following table:
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j λxj εxj δxj

1 < k − 1, k > 4 ∆2 < k − 1, k >

2 < k, k′ > 1 ∆IR < k − 1 >

3,3’ < k − 2, k >, < k − 2, k′ > 2 ∆2 < k − 2, k >

4,4’ < k − 3, k >, < k − 3, k′ > 2 ∆2 < k − 3, k >
...

...
...

...
k,k’ < 1, k >, < 1, k′ > 2 ∆2 < 1, k >

k+1 < 1, k − 1 > 2 −

Therefore
ξx1 = zk−1,k

ϕM (`(γ1)) = Z4
k−1,k

ξx2 = k-1 k k’
∆2<k−1,k>−−−−−−−−→ k-1 k k’ = z̄k,k′

{k−1}

ϕM (`(γ2)) = Z̄k,k′
{k−1}

ξx3 = k-2 k-1
∆IR<k−1>−−−−−−−→ k-2 k-1 k k’

∆2<k−1,k>−−−−−−−−→ k-2 k-1 k k’

ϕM (`(γ3)`(γ3′)) = Z2
k−2,k′Z

2
k−2,k

ξx4 = k-2 k-1k-3

k

∆2<k−2,k>−−−−−−−−→ k-2 k-1k-3

k

∆IR<k−1>−−−−−−−→ k-2 k-1k-3 k k’
∆2<k−1,k>−−−−−−−−→

k-2 k-1k-3 k k’

ϕM (`(γ4)`(γ4′)) = Z2
k−3,k′Z

2
k−3,k.

Thus, for 3 ≤ i ≤ k:

ξxi = k-2 k-1k-3k-i+2k-i+1

k

∆2<k−i+2,k>−−−−−−−−−→ k-2 k-1k-3k-i+2k-i+1

k

· · ·

∆2<k−3,k>−−−−−−−−→ k-2 k-1k-3k-i+2k-i+1

k

∆2<k−2,k>−−−−−−−−→ k-2 k-1k-3k-i+2k-i+1

k

∆IR<k−1>−−−−−−−→

k-2 k-1k-3k-i+2k-i+1 k k’
∆2<k−1,k>−−−−−−−−→ k-2 k-1k-3k-i+2k-i+1 k k’

ϕM (`(γi)`(γ′i)) = Z2
k−i+1,k′Z

2
k−i+1,k



The Regeneration of a 5-point 401

ξxk+1
= k-2 k-11 2 3

k

∆2<1,k>−−−−−−→ k-2 k-11 2 3

k

∆2<2,k>−−−−−−→ k-2 k-11 2 3

k

· · · ∆2<k−2,k>−−−−−−−−→

k-2 k-11 2 3

k

∆IR<k−1>−−−−−−−→ k-2 k-11 2 3 k k’
∆2<k−1,k>−−−−−−−−→ k-2 k-11 2 3 k k’

ϕM (`(γk+1)) = ∆2 <1, k − 1>

Note when computing the braid monodromy factorization in the neighborhood
of the complex points we used Corollary 2.2. ¤

The next step is to regenerate `k−1 into a conic: p̃(k−1),(k−1)′ . So we have the
following:

Corollary 2.7. After the regeneration of `k−1, the braid mondromy factorization
in a local neighborhood of v is:

B
(1)
k = Tk

k∏

i=3

(Z2
k−i+1,k′Z

2
k−i+1,k)Bk−1

where

Tk = Z
(3)
((k−1),(k−1)′),k Z̄k,k′

{k−1}
.

Proof: All the changes follow from the regeneration rules.

We get B
(1)
k by replacing in Bk the following:

(1) Z4
k−1,k by Z

(3)
((k−1),(k−1)′),k (by the third regeneration rule)

(2) ∆2 < 1, k − 1 > by Bk−1 (This is implementation of corollary 2.6, where
we have only k − 1 lines). ¤

The next step is the regeneration of `k−2 (which turns into a conic p̃(k−2),(k−2)′).

So

Corollary 2.8. After the regeneration of `k−2, the braid mondromy factorization
in a local neighborhood of v is:

B
(2)
k = Tk

3∏

i=3

Z2
k−i+1,(k−i+1)′,k,k′

k∏

i=4

(Z2
k−i+1,k′Z

2
k−i+1,k)B

(1)
k−1

where

Z2
α,α′,β,β′ = Z2

α′,β′Z
2
α′,βZ2

α,β′Z
2
α,β .
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Proof: We get B
(2)
k by replacing in B

(1)
k the following:

(1) Z2
k−2,k′Z

2
k−2,k by Z2

k−2,(k−2)′,k,k′ (by the second regeneration rule)

(2) Bk−1 by B
(1)
k−1 (By implementation of corollary 2.7). ¤

From now on, the braid monodromy factorization after regenerating `k−3 (and
then `k−4 etc.) can be found by a recursive formula, as we apply the regeneration
rules. Thus, the braid monodromy factorization after regenerating `k−n is

B
(n)
k = Tk

n+1∏

i=3

Z2
k−i+1,(k−i+1)′,k,k′

k∏

i=n+2

(Z2
k−i+1,k′Z

2
k−i+1,k)B

(n−1)
k−1 .

Naturally, the process ends when there are no lines to regenerate, that is, after
the regeneration of `1. For example, we examine the braid monodromy factoriza-
tion of the 5–point (when k = 4):

∆2 <1, 4>
regenerating `4−−−−−−−−−→ B4 = Z4

3,4Z̄4,4′
{3}

4∏

i=3

(Z2
5−i,4′Z

2
5−i,4)∆

2 <1, 3>

regenerating `3−−−−−−−−−→

B
(1)
4 = T4

4∏

i=3

(Z2
5−i,4′Z

2
5−i,4)Z

4
2,3Z̄3,3′

{2}
Z2

1,3′Z
2
1,3∆

2 <1, 2>

regenerating `2−−−−−−−−−→

B
(2)
4 = T4Z

2
2,2′,4,4′Z

2
1,4′Z

2
1,4T3Z

2
1,3′Z

2
1,3Z

4
1,2Z̄2,2′

{1}

regenerating `1−−−−−−−−−→

B
(3)
4 = T4Z

2
2,2′,4,4′Z

2
1,1′,4,4′T3Z

2
1,1′,3,3′T2

Thus, B
(4)
5 is the braid monodromy factorization of the fully regenerated neigh-

borhood of the 5-point.
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Remark: It is easy to prove (using the recursive formula) that the braid mon-
odromy factorization of the fully regenerated neighborhood of the k + 1-point in
figure 12 is:

B
(k−1)
k =

2∏

j=k

(
Tj

1∏

m=j−2

Z2
m,m′,j,j′

)

where

Tj = Z
(3)
((j−1),(j−1)′),j Z̄j,j′

{j−1}
.

3. Using the 5-point regeneration:

the Hirzebruch surface F2,(2,2)

In this section we give an example of using the special braid monodromy fac-
torization of the 5-point, described in subsection 2.2, in order to find the global
braid monodromy factorization of the branch curve of a generic projection of
F2,(2,2).
Remark: The second case of the regeneration (considered in subsection 2.3,
for arbitrary k) appears when we compute, for example, the global braid mon-
odromy factorization of the branch curve of a generic projection of Fk,(a,b) when
k > 2. Note that finding the global braid monodromy of the Hirzebruch surface
Fk,(a,b), ∀k, ∀a, b > 1 can be handled using only the classical 3- and 6-points, the
5-point studied in subsection 2.2, and the k + 1-point studied in subsection 2.3.

3.1. Braid monodromy of the degenerated curve. The configurations be-
low describe the projective degeneration of F2,(2,2) = Z(0) Ã Z(1) Ã . . . Ã Z(9)
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Z(0) Z(1)

F
2,(2,2)

Z(2)
Z(3) Z(4)

Z(5) Z(6)

Z(7) Z(8) Z(9)

(figure 14)

So F2,(2,2) is degenerated into a union of 16 planes (see [4] for a detailed de-
scription of the degeneration of Hirzebruch surfaces), where the lines represent
the intersection of the planes, and the order of the vertices is chosen to be lexi-
cographic. See figure 15:

10 11 12 13

14

15

16

17

18

3 6 8 9

1 4 5

7

2

1

4 5 6 7 8

2 3

9 10 1211 13

14

(figure 15)
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We denote the numeration of the intersection lines on Z(9) by {L̂i}18
i=1 by the

following method: Let L̂1, L̂2 be two edges, where L̂i has vertices αi < βi. Set
L̂1 < L̂2 iff β1 < β2 or β1 = β2 and α1 < α2. Denote also by {ṽi}14

i=1 the
intersection points. The appearance of the point numbered 14, which is an extra
branch point, will be explained in subsection 3.2.5. Take a generic projection
π(i) : Z(i) → CP2, 0 ≤ i ≤ 9. Let S(i) be the branch curve in CP2, ϕ(i) their
braid monodromy, S(i+1) be a degeneration of S(i) (for 0 ≤ i ≤ 9). Let Lj =

π(9)(L̂j), j = 1 . . . 18. So S(9) =
18⋃

j=1
Lj ; and vj = π(9)(ṽj), j = 1 . . . 14, so vj are

the singular points of S(9). Let C be the union of all lines connecting pairs of the
vj-s. S(9) is a subcurve of C. Theorem IX, 2.1, in [5] gives a full description of

the braid monodromy of C: ∆2
C =

14∏
i=1

Ci∆2
vi

with an appropriate description of

L.V.C. We use this formula to obtain a description of ϕ(9) by deleting all factors

that involve lines which do not appear in S(9). Thus, we get ∆2
S(9) =

14∏
i=1

C̃i∆̃2
vi

.

We describe each factor separately.
∆̃

2
vi

: In S(9), we have 3 points which are 6-point (points that arise from the
intersection of 6 planes), which are v5, v6, v7; 8 points which are 3-point, which
are {vj}, j=2,3,4,8,9,10,11,13 and two points which are 2-point, which are v1, v12.
We denote by v14 the extra branch point, which appears during the regeneration
of the line L7 (see subsection 3.2.5). Since it contributes a factor to the final braid
monodromy factorization, we mention now that the resulting braid monodromy

factorization will be denoted as ∆2 =
14∏
i=1

C ′
iϕi.

The local braid monodromies – ϕ
(9)
j ,which are ∆̃2

vi
, are introduced and regen-

erated in the following paragraphs.
C̃i: We get 18 lines in Z(10). Each line Li is represented as a pair of its two
end vertices. We define Li < Lj as above. Define Dt =

∏
p<t

Lp∩Lt=∅

Z̃2
pt, where Z̃pt

formulated in [5] (p. 526). Z̃2
pt are related to the parasitic intersections, since

they are lines which do not intersect in CP15 but may intersect in CP2. Note that
1 ≤ p, t ≤ 13, since we do not include v14 in this calculation (see explanation for
this in the following passage). Thus:

D1 = D2 = D3 = D6 = id,D4 = Z̄2
1 4Z̄

2
3 4, D5 =

3∏
p=1

Z̄2
p 5

(4)

, D7 =
6∏

p=1
p 6=5

Z̄2
p 7,
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D8 =
3∏

p=1
Z̄2

p 8
(7)

, D9 =
6∏

p=1
Z̄2

p 9, D10 =
9∏

p=1
p 6=3

Z̄2
p 10, D11 =

9∏
p=4
p 6=6

Z̄2
p 11

(10)

, D12 =
10∏

p=4
p 6=6

Z̄2
p 12,

D13 =
∏

p=1..3,
7,9..11

Z̄2
p, 13
(12)

, D14 =
∏

p=1..3,
7,9..12

Z̄2
p, 14, D15 =

∏
p=1..6,
10..13

Z̄2
p 15

(14)

, D16 =
∏

p=1..6,
10..14

Z̄2
p, 16,

D17 =
∏

p=1..6,
10..14

Z̄2
p, 17, D18 =

∏
p=1..8,
10..16

Z̄2
p 18

(17)

,

defining C̃j =
∏

Vj∈Lt

Dt, where Vj is the small vertex among the two vertices of

Lt, and we get

C̃1 = id, C̃2 = D4, C̃3 = D5 ·D7, C̃4 = D10, C̃5 = D11 ·D12,

C̃6 = D8 ·D13 ·D14, C̃7 = D9 ·D15 ·D16 ·D17, C̃8 = D18,

C̃i = id, where i = 9, 10, . . . , 13.

As was indicated, the factors C̃j correspond to parasitic intersections. For
each point we examine the lines that go through it, and compute the parasitic
intersections with the other lines. Since we have already looked at the lines
passing through v3, we can ignore the line on which the point v14 lies (which is
L7), and by abuse of notation we denote C̃14 = id.

3.2. Local braid monodromy of the regenerated curve.

3.2.1. Computation and regeneration of ∆̃2
vj

. We will deal with each type of point
separately.

3.2.2. The 3-point type.

Corollary 3.1. The local braid monodromies ϕ2, ϕ3, ϕ4, ϕ8, ϕ9, ϕ10, ϕ11, ϕ13 are:

ϕ2 = Z
(3)
2 2′,4 · Z̃4 4′(2) ϕ3 = Z

(3)
5 5′,7 · Z̃7 7′(5)

ϕ4 = Z
(3)
3 3′,10 · Z̃10 10′(3) ϕ8 = Z

(3)
9 9′,18 · Z̃18 18′(9)

ϕ9 = Z
(3)
10′,11 11′ · Z̃10 10′(11) ϕ10 = Z

(3)
12′,13 13′ · Z̃12 12′(13)

ϕ11 = Z
(3)
14′,15 15′ · Z̃14 14′(15) ϕ13 = Z

(3)
17′,18 18′ · Z̃17 17′(18),

where Z̃i i′(j) = H(z̃i i′(j)), and z̃i i′(j) is the following path:
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i < j

i i` j j`

i > j

i i`j j`

(figure 16)

Proof: See [8], lemma 1.

Remark: We will present the representing paths for the braid monodromy
factorization for ϕ2 (figures 17,18) , ϕ9 (figures 19,20). Note that this configu-
ration of the paths is the same (with a suitable change of indices) for ϕ3, ϕ4, ϕ8

(resp. ϕ10, ϕ11, ϕ13):

Z
(3)
2 2′,4:

1 1` 2 2` 3 3` 4 4`

(figure 17)

Z̃4 4′(2):

1 1` 2 2` 3 3` 4 4`

(figure 18)

Z
(3)
10′,11 11′ :
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10 10` 11 11`

(figure 19)

Z̃10 10′(11):

10 10` 11 11`

(figure 20)

3.2.3. The 6-point type. When regenerating F2,(2,2), a new kind of 6-point ap-
pears. Notice that the local numeration of the lines that intersect in v5, v6 is as
follows:

5

2

4

6

1

3

(figure 21)

We will call this kind of 6-point 6-PT1 (6-point type 1). Drawing (and numerat-
ing) the neighborhood of v7 locally, we get:
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5

1

32

64

(figure 22)

This kind of 6-point will be called 6-PT2 (6-point type 2). We will deal first with
the regeneration of 6-PT1, which is more familiar, and then with 6-PT2.

6-point type 1(6-PT1)

Looking at figure 21, we see that this configuration of lines was already investi-
gated in [8]. Therefore, we cite the main results from there:

Corollary 3.2. The local braid monodromies of ϕ5, ϕ6 are:
ϕ5 = Z

(3)
1′,2 2′Z̃12 12′Z

(2)
3 3′,12′(Z

(2)
2 2′,12′)

•Z̄(3)
6 6′,12(Z

(2)
3 3′,12)

•(Z(2)
2 2′,12)

•(F̂5,1(F̂5,1)ρ−1
5

)•Z(3)
11 11′,12

(
∏

i=12′,12,11′
11,6′,6

(Z2
1′,i)

)•
Z̄

(3)
1′,3 3′

∏
i=12′,12,11′

11,6′,6

(Z2
1 i)Z̃1,1′ ,

where ()• is the conjugation by the braid induced from the motion:

1 1` 2 2` 11 11` 12 12`

(figure 23)

and Z̃1 1′ , Z̃12 12′ are

1 1` 2 2` 3 3` 4 4` 5 5` 6 6` 7 7` 8 8` 9 9` 10 10` 11 11` 12 12`

(figure 24)
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ρ5 = Z2 2′Z11 11′

F̂5,1 = Z
(3)
2′,3 3′Z

(3)
6 6′,11Ž3′ 6Ž3 6′

(3−3′)
Z2

2′,11Z̄
2
2′,11′

(4−5′,
7−10′)

where Ž3 6′ , Ž3′ 6 are:

1 1` 2 2` 3 3` 4 4` 5 5` 6 6` 7 7` 8 8` 9 9` 10 10` 11 11` 12 12`

(figure 25)

ϕ6 = Z
(3)
4′,5 5′Z̃14 14′Z

(2)
6 6′,14′(Z

(2)
5 5′,14′)

••Z̄(3)
8 8′,14(Z

(2)
6 6′,14)

••(Z(2)
5 5′,14)

••(F̂6,1(F̂6,1)ρ−1
6

)••

Z
(3)
13 13′,14

(
∏

i=14′,14,13′
13,8′,8

(Z2
4′,i)

)••
Z̄

(3)
4′,6 6′

∏
i=14′,14,13′

13,8′,8

(Z2
4 i)Z̃4,4′ ,

where ()•• is the conjugation by the braid induced from the motion:

4 4` 5 5` 13 13` 14 14`

(figure 26)

and Z̃4 4′ , Z̃14 14′ are

4 4` 5 5` 6 6` 7 7` 8 8` 9 9` 10 10` 11 11` 12 12` 13 13` 14 14`

(figure 27)

ρ6 = Z5 5′Z13 13′

F̂6,1 = Z
(3)
5′,6 6′Z

(3)
8 8′,13Ž6′ 8Ž6 8′

(6−6′)
Z2

5′,13Z̄
2
5′,13′

(7−7′,
9−12′)

where Ž6 8′ , Ž6′ 8 are:
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5 5` 6 6` 7 7` 8 8` 9 9` 10 10` 11 11` 12 12` 13

(figure 28)

6-point type 2 (6-PT2)

We are now dealing with the point v7, that, when numerating the lines in a
local neighborhood of v7, S(9) is as in figure 24. The first regeneration that af-
fects this neighborhood of v7 is the regeneration from Z(9) to Z(8). The line L6,
is regenerated into a conic Q6, that is tangent to L3 and L5. So, in a small
neighborhood of v7, S(8) is as in the following configuration:

1

2

3

4

5
66`

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
9`

(figure 29)

As we can see, L4 does not intersect the conic in the real part, so the intersection
points of L4 and Q6, p9, p9′ ∈ C. By looking at a particular model (where the
conic is y2 = x, xp2 > 0), it is easy to see that <(xp9) = <(xp9′ ) < 0. So when
calculating the braid monodromy factorization, we will use Corollary 2.2.

Corollary 3.3. In a neighborhood of v7, the local braid monodromy of S(8) around
v7 is given by
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ϕS(8) = Z4
5,6 (∆2 <1, 5>)Z2

5,6 Z̄2
1 6

(5)

Z̄2
2 6

(5)

Z̄4
3 6

(5)

Z̄2
1 6′ Z̄

2
2 6′ Z̃6,6′

˜̃Z2
4,6′ Z

2
4,6,

where the path representing the braid Z̃6,6′ is:

1 2 3 4 5 6 6`

(figure 30)

and the path representing the braid ˜̃Z2
4,6′ is

1 2 3 4 5 6 6`

(figure 31)

Proof: Let {pj}9
j=1 ∪ {p9′} be the singular points of a small neighborhood of

v7 (see figure 31) with respect to π
(8)
1 (the projection to the X-axis) as follows:

p1, p6 - tangent points of Q6.
{p3, p5}, {p4, p7}, {p9, p9′} are the intersection points of Q6 with L1/L2/L4 (resp.).
p2 - an intersection point of {Li}5

i=1.
p8 - the branch point of Q6.
Let E (resp. D) be a closed disk on the X-axis (resp. Y -axis). Let N = {x(pj) =
xj | 1 ≤ j ≤ 9 or j = 9′}, s.t. N ⊂ E − ∂E. Let M be a real point on the
x-axis, s.t. xj ¿ M, ∀xj ∈ N, 1 ≤ j ≤ 9 or j = 9′}. There is a g-base `(γj)

9,9′
j=1 of

π1(E −N, u), s.t. each path γj is below the real line and the values of ϕM w.r.t
this base and E×D are the ones given in the proposition. We look for ϕM (`(γj))
for j = 1, . . . , 9, 9′. Choose a g-base `{γj}9,9′

j=1 as above, and put all the data in
the following table:
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j λxj εxj δxj

1 < 5, 6 > 4 ∆2 < 5, 6 >

2 < 1, 5 > 2 ∆ < 1, 5 >

3 < 5, 6 > 2 ∆ < 5, 6 >

4 < 4, 5 > 2 ∆ < 4, 5 >

5 < 3, 4 > 4 ∆2 < 3, 4 >

6 < 6, 6′ > 2 ∆ < 6, 6′ >
7 < 5, 6 > 2 ∆ < 5, 6 >

8 < 4, 5 > 1 ∆
1
2
IR < 3 >

9 < 2, 6 > 2 -
9’ < 2, 6′ > 2 -

ξx1 = z5,6

ϕM (`(γ1)) = Z4
5,6

ξx2 = 1 2 3 4 5 6 6’
∆2<5,6>−−−−−−→ 1 2 3 4 5 6 6’ = ∆ < 1, 5 >Z2

5,6

ϕM (`(γ2)) = (∆2 < 1, 5 >)Z2
5,6

ξx3 = 1 2 3 4 5 6 6’
∆<1,5>−−−−−→ 1 2 3 4 5 6 6’

∆2<5,6>−−−−−−→ 1 2 3 4 5 6 6’ = z̄1 6
(5)

ϕM (`(γ3)) = Z̄2
1 6

(5)

ξx4 = 1 2 3 4 5 6 6’
∆<5,6>−−−−−→ 1 2 3 4 5 6 6’

∆<1,5>−−−−−→ 1 2 3 4 5 6 6’
∆2<5,6>−−−−−−→

1 2 3 4 5 6 6’ = z̄2 6
(5)

ϕM (`(γ4)) = Z̄2
2 6

(5)

ξx5 = 1 2 3 4 5 6 6’
∆<4,5>−−−−−→ 1 2 3 4 5 6 6’

∆<5,6>−−−−−→ 1 2 3 4 5 6 6’
∆<1,5>−−−−−→

1 2 3 4 5 6 6’
∆2<5,6>−−−−−−→ 1 2 3 4 5 6 6’ = z̄3 6

(5)

ϕM (`(γ5)) = Z̄4
3 6

(5)
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ξx6 = 1 2 3 4 5 6 6’
∆2<3,4>−−−−−−→
∆<4,5>
∆<5,6>

1 2 3 4 5 6 6’
∆<1,5>−−−−−→ 1 2 3 4 5 6 6’

(∆2 < 5, 6 > does not affect this path) = z̄1 6′

ϕM (`(γ6)) = Z̄2
1 6′

ξx7 = 1 2 3 4 5 6 6’
∆<6,6′>−−−−−→ 1 2 3 4 5 6 6’

∆2<3,4>−−−−−−→
∆<4,5>

1 2 3 4 5 6 6’
∆<5,6>−−−−−→

1 2 3 4 5 6 6’
∆<1,5>−−−−−→ 1 2 3 4 5 6 6’ = z̄2 6′

ϕM (`(γ7)) = Z̄2
2 6′

ξx8 = 1 2 3 4 5 6 6’
∆<6,6′>−−−−−→
∆<5,6>

1 2 3 4 5 6 6’
∆2<3,4>−−−−−−→ 1 2 3 4 5 6 6’

∆<4,5>−−−−−→

1 2 3 4 5 6 6’
∆<5,6>−−−−−→ 1 2 3 4 5 6 6’

∆<1,5>−−−−−→ 1 2 3 4 5 6 6’
∆2<5,6>−−−−−−→

1 2 3 4 5 6 6’ = z̃6,6′

ϕM (`(γ8)) = Z̃6,6′

ξx9 , ξx′9 = 1 2 3 4 5
6

6’

∆
1
2
IR<3>−−−−−→ 1 2 3 4 5 6 6’

∆<5,6>−−−−−→
∆<6,6′>
∆2<3,4>

1 2 3 4 5 6 6’
∆<4,5>−−−−−→
∆<5,6>

1 2 3 4 5 6 6’
∆<1,5>−−−−−→ 1 2 3 4 5 6 6’

∆2<5,6>−−−−−−→ 1 2 3 4 5 6 6’

so - ξx′9 = z4,6, ξx9 = ˜̃z4,6′

and by Corollary 2.2, ϕM (`(γ9)`(γ9′)) = ˜̃Z2
4,6′Z

2
4,6. ¤

Note that we are now dealing with a situation described in the Section 2. That
is, a local neighborhood of v7 will look like figure 1 (in subsection 2.2). Therefore,
we can use Corollary 2.5, which describes what happens to the braid monodromy
factorization after all the regenerations (that is, the local braid monodromy of
S(0)).
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Corollary 3.4. The local braid monodromy of S(0) around v7 is given by,

ϕ7 = Z
(3)
5 5′,6 (ϕ)•

∏
i=1,

1′,2,2′

Z̄2
i 6

(5−5′)

(4−4′)

Z
(3)
3 3′,6

∏
i=1,

1′,2,2′

Z̄2
i 6′ Z̃6,6′

˜̃Z2
4′,6′

˜̃Z2
4,6′ Z

2
4′,6 Z2

4,6,

where ˜̃Z4 6′ ,
˜̃Z4′ 6′ are as in the following figure

5 5` 6 6`4`4

(figure 32)

Z̃6 6′ corresponds to the path:

3 3’ 4’ 5 5` 64 6`

(figure 33)

( )• is conjugation by Z2
5′,6Z

2
5,6;

(4−4′)

Z
(3)
3 3′,6 is represented by the 3 following paths:

3 3’ 4’ 5 5` 64 6`

(figure 34)

and ϕ = Z2
3′ 4 Z2

3 4 Z
(3)
4′,5 5′Z

(3)
2 2′,4

(4)

Z2
3′ 4′
{5′}

(4)

Z2
3 4′
{5′}

ˆ̂
Z4 4′ Z

2
1′ 4′
{5′}

Z2
1 4′
{5′}

Z2
1′ 4 Z2

1 4 (B̃)••,

where ˆ̂
Z4 4′ is as in Corollary 2.5, ( )•• is conjugation by Z−2

4,5Z−2
4,5′ and

B̃ = F̃ (F̃ )ρ−1 where

F̃ = Z
(3)
1′,2 2′ Z

(3)
3 3′,5 Ž2′ 3 Ž2 3′

(2−2′)
Z2

1′,5 Z̄2
1′,5′

(4−4′)
ρ = Z1 1′Z5 5′

and Ž2 3′ , Ž2′ 3 are as in Corollary 2.5.

Proof: All the changes follow from the regeneration rules and from Corollary
2.5. Thus, we get ϕ7 by replacing in ϕS(8) the following:
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(1) By the third regeneration rule: Z4
5 ,6 → Z

(3)
5 5′,6, Z̄

4
3 6

(5)

→
(4−4′)

Z
(3)
3 3′,6

(2) By the second regeneration rule: ( )Z2
5,6 → ( )Z2

5′,6Z2
5,6 , Z̄2

1 6
(5)

Z̄2
2 6

(5)

→ ∏
i=1,

1′,2,2′

Z̄2
i 6

(5−5′)
,

Z̄2
1 6′Z̄

2
2 6′ →

∏
i=1,

1′,2,2′

Z̄2
i 6′ , Z

2
4,6 → Z2

4′,6 Z2
4,6,

˜̃Z2
4,6′ → ˜̃Z2

4′,6′
˜̃Z2
4,6′

(3) By Corollary 2.5: ∆2 <1, 5>→ ϕ. ¤

Note: ( )••, ( )• = conjugation by the braids induced from the motions:

4’ 5 5` 64 6`3’ 4’ 5 5` 6 6` 7

(figure 35)

Note: The above computation of ϕ7 was done before the embedding of B12

(the braid group with 12 strings, which in all of the above computation were
done) into B36 (the braid group with 36 strings, which in the braid monodromy
factorization is expressed). So we have the following:
Remark: the local braid monodromy of S(0) around v7, after embedding in B36,
is given by

ϕ7 = Z
(3)
16 16′,17 (ϕ̃)•

∏
i=7,

7′,8,8′

Z̄2
i 17

(10−14′
16−16′)

(15−15′)

Z
(3)
9 9′,17

∏
i=7,

7′,8,8′

Z̄2
i 17′

(10−14′)
Z̃17,17′

˜̃Z2
15′,17′

˜̃Z2
15,17′ Z

2
15′,17 Z2

15,17

where ˜̃Z15 17′ ,
˜̃Z15′ 17′ , Z̃17 17′ are as in the following figure:

16 16` 17 17`15`15
16 16` 17 17`15`1513 13` 1412`12 14`11 11`10`9’ 109

(figure 36)

( )• is conjugation by Z2
16′,17Z

2
16,17; and

ϕ̃ = Z2
9′ 15 Z2

9 15 Z
(3)
15′,16 16′Z

(3)
8 8′,15

(15)

Z2
9′ 15′
{16′}

(15)

Z2
9 15′
{16′}

ˆ̂
Z15 15′ Z

2
7′ 15′
{16′}

Z2
7 15′
{16′}

Z2
7′ 15 Z2

7 15 (B̃)••

where ˆ̂
Z15 15′ corresponds to the path:
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16 16`15`1513 13` 1412`12 14`11 11`10`9’ 1098’8

(figure 37)

( )•• is conjugation by Z−2
15,16Z

−2
15,16′ and

B̃ = F̃ (F̃ )ρ−1 where

F̃ = Z
(3)
7′,8 8′ Z

(3)
9 9′,16 Ž8′ 9 Ž8 9′

(8−8′)
Z2

7′,16 Z̄2
7′,16′

(10−15′)
ρ = Z7 7′Z16 16′ and
Ž8 9′ , Ž8′ 9 are:

16 16`15`1513 13` 1412`12 14`11 11`10`9’ 1098’87’7

(figure 38)

3.2.4. Regeneration of C̃i. Performing the regeneration affects also the parasitic
line intersection. Denote by C ′

i the braid, which is created from C̃i in the regen-
eration process. Every C̃i is a product of a 2-degree braid Z̄2

ij , which becomes,
as a consequence of the second regeneration rule (see also [6], Proposition 3.2),an
8-degree braid: Z̄2

i i′,j j′ (where we denote by Z̄2
i i′,j j′ = Z2

i jZ
2
i′ jZ

2
i j′Z

2
i′ j′). So

C ′
i = id, where i = 1, 3′, 9, 10, ..., 13 , C ′

2 = D′
4, C ′

3 = D′
5D

′
7, C ′

4 = D′
10,

C ′
5 = D′

11D
′
12, C

′
6 = D′

8D
′
13D

′
14, C ′

7 = D′
9D

′
15D

′
16D

′
17, C ′

8 = D′
18.

where

D′
4 = Z̄2

1 1′,4 4′Z̄
2
3 3′,4 4′ , D

′
5 =

3∏
p=1

Z̄2
p p′,5 5′
(4−4′)

, D′
7 =

6∏
p=1
p 6=5

Z̄2
p p′,7 7′ ,

D′
8 =

3∏
p=1

Z̄2
p p′,8 8′
(7−7′)

, D′
9 =

6∏
p=1

Z̄2
p p′,9 9′ , D

′
10 =

9∏
p=1
p 6=3

Z̄2
p p′,10 10′ , D

′
11 =

9∏
p=4
p 6=6

Z̄2
p p′,11 11′
(10−10′)

D′
12 =

10∏
p=4
p 6=6

Z̄2
p p′,12 12′ , D

′
13 =

∏
p=1..3,
7,9..11

Z̄2
p p′,13 13′
(12−12′)

,

D′
14 =

∏
p=1..3,
7,9..12

Z̄2
p p′,14 14′ , D

′
15 =

∏
p=1..6,
10..13

Z̄2
p p′,15 15′
(14−14′)

,

D′
16 =

∏
p=1..6,
10..14

Z̄2
p p′,16 16′ , D

′
17 =

∏
p=1..6,
10..14

Z̄2
p p′,17 17′ , D

′
18 =

∏
p=1..8,
10..16

Z̄2
p p′,18 18′
(17−17′)
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3.2.5. The 2-point type and extra branch points. There are two points v1, v12

which are 2-point. The regeneration around the point v1 yields a conic Q1 (resp.
Q16); that is because the pair of the two planes, that on their intersection the
point v1 (resp., and looking locally on the neighborhood of v12) lies, is created
in the degeneration process from a projective nonsingular quadric. But, in order
that these 2–points will contribute a factor to the braid monodromy factorization,
they should satisfy the condition of ”Extra branch points”, as described in [11],
Section 4. However, only v1 satisfies this condition. Thus v12 does not contribute
a factor to this factorization (note that one can check this condition only after
calculating the local factorization around v7). By Artin’s theorem, the induced
braid monodromy in the neighborhood of v1 is Z1 1′ , namely, a counterclockwise
halftwist of 1,1’ . Thus, the local braid monodromy around v1 is ϕ1 = Z1, 1′ .

However, there is another point v14 (which is not a 2-point) that is an extra
branch point which is created from the regeneration of the line L7. This extra
branch point contributes to our factorization the factor Z7,7′ .

We will now prove the mentioned statements, following the ideas presented
in [11]; we also follow its method of numeration, such that the numeration of

the extra branch point is done last. Let us denote by ∆̃ =
13∏
i=1

C ′
iϕi. If ∆̃ is a

braid monodromy factorization, then ∆̃ = ∆2 and deg(∆̃) = 36 · (36− 1) = 1260.
However, deg(∆̃) = 1259 (when assuming that ϕ1 = Z1,1′ , ϕ12 = id as will be
proved in the following lemma; the explicit calculation is made in subsection 3.3).
This, there is a missing factor of degree 1.

Define the forgetting homomorphisms:

fi : B36[D, {1, 1′, ..., 18, 18′}] → B2[D, {i, i′}], 1 ≤ i ≤ 18.

It is clear that ∀i, deg(fi(∆2)) = 2.

Lemma 3.1. (1) There exists an extra branch point v14 that contributes a factor
ϕ14 = Z7,7′ to the braid monodromy factorization.
(2) The regeneration of neighborhood of the point v12 does not contribute a factor
to braid monodromy factorization.
(3) The regeneration of neighborhood of the point v1 does contribute a factor
ϕ1 = Z1, 1′ to braid monodromy factorization.
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Proof: (1) By Lemma 3.3.3 (or Proposition 3.3.4) in [10] (see also [11], Sec-
tion 4), it is enough to prove that deg(f7(∆̃)) = 1. The braids coming from the
parasitic intersections are sent by f7 (and by any fi, in fact) to id, so it is enough
to look only at the factors ϕj , j ∈ {1, ..., 13}, j 6= 1, 12 that involve braids one of
whose end points are 7 or 7′ (we omit the factors ϕ1, ϕ12 since we do not know
yet what are they. In any case, they do not affect the result, since the do not
fulfill the condition mentioned). The only suitable j’s are j = 3 and j = 7. Since
v3 is a 3-point, by Lemma 2, [8], deg(f7(ϕ3)) = 1. Examining ϕ7, it is easy to
see that there exists no braid in the factorization of ϕ7 that is not sent to id by
f7 ; Thus deg(f7(ϕ7)) = 0. Therefore deg(f7(∆̃)) = 1.

(2) In order that the regeneration of the point v12 will not contribute a fac-
tor to the braid monodromy factorization, we note that v12 is only on the line

L16. So we actually have to check if
13∑
i=1

i6=12,1

deg(f16(ϕi)) = 2 to prove the lemma

(again, the braids coming from the parasitic intersections are sent to id by f16).
Examining ϕ7, and using Lemma 2,[8], we get that deg(f16(ϕi)) = 2 (since
deg(f16(Z

(3)
16 16′,17)) = deg(f16((Z

(3)
15′,16 16′))

Z2
16′,17Z2

16,17) = 1), where
∀1 ≤ i ≤ 13, i 6= 1, 7, 12, deg(f16(ϕi)) = 0.
(3) This is done using the same method as in (2), by confirming that
13∑
i=2

deg(f1(ϕi)) = 1. ¤

3.3. Global braid monodromy of the regenerated curve.

Corollary 3.5. ∆2
36 =

14∏
i=1

C ′
iϕ̃i is a braid monodromy factorization for S(0),

where ϕ̃i = (ϕi)hi
for some hi ∈ 〈Zjj′ | vi ∈ Lj〉.

Proof: Using Proposition VI.2.1 from [5] on S(0), we get that ∆2
36 =

14∏
i=1

C ′
iϕ̃i

∏
bi,

for some hi ∈ 〈Zjj′ | vi ∈ Lj〉 determined by the regeneration of the embed-
ding Bk ↪→ B18 to B2k ↪→ B36, where k = 1 when i = 1, 14, k = 2 when
i = 2, 3, 4, 8, 9, 10, 11, 13, and k = 6 if k = 5, 6, 7 (see the definition of regenera-
tion of an embedding in [8], section 1). And where bi are factors corresponding
to singularities that are not covered by

∏
C ′

iϕ̃i, and each bi is of the form Y ti
i , Yi

is a positive halftwist, 0 ≤ ti ≤ 3. Note that deg(ϕ̃i) = deg(ϕi).
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We shall compute deg

(
14∏
i=1

C ′
iϕi

)
=

14∑
(deg(C ′

i)+deg(ϕi)). So,
14∑

deg(C ′
i) = 800

(there are 100 factors; each factor - Z2
i i′,j j′ - has degree 8).

For i = 2, 3, 4, 8, 9, 10, 11, 13 − vi are 3-point (in S(9)); if vi is a 3-point, then
deg(ϕi) = 10 (by corollary 3.1); then

∑
i;viis

3−point

deg(ϕi) = 8 · 10 = 80.

For i = 1, vi is 2-point; the line L7 has an extra branch point (that is - in these
cases we have a contribution of a factor of the form Zi,i′), so by the description
in section 2.1, these factors contribute to the sum of degrees the addend 2.

For i = 5, 6, 7, vi is 6-PT1 (for i = 5, 6) or a 6-PT2 (for i = 7). In any case, ϕi

includes:
6 factors with degree 1 ⇒ degree = 6,
24 factors with degree 2 ⇒ degree = 48,
24 factors with degree 3 ⇒ degree = 72.
So, for a 6-point vi, deg(ϕi) = 126 and

∑
i;viis

6−point

deg(ϕi) = 3 · 126 = 378.

Therefore - deg(
14∏
i=1

C ′
iϕi) = 800 + 80 + 2 + 378 = 1260. Since the degree of

deg(
14∏
i=1

C ′
iϕi) is 36 · 35 = 1260 = ∆2

36 we have deg(
∏

bi) = 1, since ∀i, bi is a

positive power of a positive halftwist , we get bi = 1 ∀i. So we have ∆2
36 =

14∏
i=1

C ′
iϕ̃i.

3.3.1. Invariance rules. The aim of this subsection is to prove that indeed ∆2
36 =

14∏
i=1

C ′
iϕi. For this, we need to define a few definitions. We start by defining a

Hurwitz move on G× · · · ×G (G is a group) or on a set of factorizations.

Definition: Hurwitz moves:

Let ~t = (t1, . . . , tm) ∈ Gm . We say that ~s = (s1, . . . , sm) ∈ Gm is obtained
from ~t by the Hurwitz move Rk (or ~t is obtained from ~s by the Hurwitz move
R−1

k ) if
si = ti for i 6= k , k + 1 , sk = tktk+1t

−1
k , sk+1 = tk .
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Definition: Hurwitz move on a factorization

Let G be a group t ∈ G. Let t = t1 · . . . · tm = s1 · . . . · sm be two factorized
expressions of t. We say that s1 · . . . · sm is obtained from t1 · . . . · tm by a Hurwitz
move Rk if (s1, . . . , sm) is obtained from (t1, . . . , tm) by a Hurwitz move Rk .
Definition: Hurwitz equivalence of factorization

Two factorizations are Hurwitz equivalent if they are obtained from each other
by a finite sequence of Hurwitz moves.
Definition: A factorized expression invariant under h

Let t = t1 · . . . · tm be a factorized expression in a group G. We say that t is
invariant under h ∈ G if (t1)h · . . . · (tm)h is a Hurwitz equivalent to t1 · . . . · tm.

We cite now two lemmas that we will need below.

Lemma 3.2. (see [5]) If a braid monodromy factorization of ∆2
36 =

∏
ϕ(Γi)

(where Γi is a g-base: a free base of π1(C1 − N, u) with certain properties;
see [5] for definition) is invariant under h, then the equivalent factorization∏

(ϕ(Γi))h =:
∏

Zi is also a braid monodromy factorization. That is, ∃ a g-base
Γ′i of π1(C1 −N, u) s.t. Zi = ϕ(Γ′i).

Lemma 3.3 (Chakiri’s Lemma). Let t = t1 · . . . · tm be a factorized expression in
a group G. Then t1 · . . . · tm is invariant under tk, ∀k ∈ Z.

We now look at all the invariance relations that are related to any kind of
point.

Lemma 3.4. ∀i,∀(mj)1≤j≤18 ∈ Z, C ′
i is invariant under ε =

18∏
i=1

Z
mj

j j′ .

Lemma 3.5. ∀i, s.t. vi is a 3-point, vi = Lα ∩ Lβ , ϕi is invariant under ε.

Proof: [8], Corollary 14.

Lemma 3.6. ∀i, s.t. vi is a 2-point or an extra branch point, ϕi is invariant
under ε.

Proof: the 2-points are v1, v12; consider v1 (recall that v12 does not con-
tribute a factor to our factorization). We have to check if Z1, 1′ is invariant under
Zj, j′ ∀j. For j 6= 1, Z1, 1′ is invariant under Zj, j′ (since the paths corresponding
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to the braids are disjoint; thus the braids commute). For j = 1 we have invariance
by Chakiri’s Lemma. For v14, we apply the same procedure. ¤

Corollary 3.6. ϕ5 is invariant under (Z1, 1′Z12, 12′)p1(Z2, 2′Z11, 11′)q1(Z3, 3′Z6, 6′)r1,
ϕ6 is invariant under (Z4, 4′Z14, 14′)p2(Z5, 5′Z13, 13′)q2(Z6, 6′Z8, 8′)r2,
∀pi, qi, ri ∈ Z, i = 1, 2.

Proof: This is the same as Lemma 15 in [8].

We shall prove now the invariance property for the 6-PT2.

Lemma 3.7. ϕ7 =
∏

i=8,9
15,17

Z−1
i, i′Z

−2
7, 7′∆

2
12.

Proof: Let
L = {i, i′ | 1 ≤ i ≤ 18, i 6= 7, 8, 9, 15, 16, 17}

G = {b ∈ B36[D, {i, i′ | i = 1, . . . , 18}] | b{L} = {L}}.
Denote ν : G → B12[D, {i, i′ | i = 7, 8, 9, 15, 16, 17}] the forgetting homomor-
phism. Thus - ν(∆2

36) = ∆2
12; each factor in C ′

i contains one of the indices in L,
so ν(C ′

i) = 1 ∀i.
For i = 1, 2, 4, 5, 9, 10, 11 all of the indices in ϕ̃i are in L, and so ν(ϕ̃i) = 1 for
i = 1, 3, 8, 11, 13 vi is a 3-point, when only one index of ϕ̃i is in L. So we have
(by [8], lemma 2)

ν(ϕ̃3) = Z7, 7′ , ν(ϕ̃8) = Z9, 9′ , ν(ϕ̃11) = Z15, 15′ , ν(ϕ̃13) = Z17, 17′

. For i = 12, vi is a 2-point that does not contribute a factor to the factorization.
For i = 14, vi is an extra branch point, so ν(ϕ̃14) = Z7, 7′ . v6 is a 6-PT1. All of
the factors outside F̂6,1 contain indices in L. So ν(ϕ̃6) = ν(F̂6,1(F̂6,1)ρ−1

6
) = Z8, 8′ .

Thus ∆2
12 = ν(ϕ̃7)

∏
i=8,9
15,17

Zi, i′ Z
2
7, 7′ , and so h7 commutes with ∆2

12

∏
i=8,9
15,17

Z−1
i, i′ Z

−2
7, 7′ ;

Therefore, ν(ϕ̃7) = ν(ϕ7); and since the indices in L do not appear in ϕ7, ν(ϕ7) =
ϕ7. Thus,
ϕ7 =

∏
i=8,9
15,17

Z−1
i, i′ Z

−2
7, 7′∆

2
12. ¤

Corollary 3.7. ϕ7 is invariant under I1(p) = (Z8, 8′Z9, 9′)p(Z15, 15′Z17, 17′Z
2
7, 7′)

p

∀p ∈ Z.
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Proof: We know that ϕ7 =
∏

i=8,9
15,17

Z−1
i, i′ Z

−2
7, 7′∆

2
12. By Chakiri’s Lemma, ϕ7 is

invariant under

(
∏

i=8,9
15,17

Z−1
i, i′ Z

−2
7, 7′∆

2
12

)−p

. Since ∆2
12 is a central element, ϕ7 is

invariant under (Z8,8′Z9,9′)p(Z15,15′Z17,17′Z
2
7, 7′)

p. ¤

Denote - ϑ = Z−2
15,16Z

−2
15,16′Z

2
16′,17Z

2
16,17.

Corollary 3.8. ϕ7 is invariant under I2(p) = ρp = (Z7,7′Z16,16′)p

Proof: Looking at the factors outside (F̃ (F̃ )ρ−1)ϑ, we can see, using the in-
variance rules 2 and 3 ([8]), that outside (F̃ (F̃ )ρ−1)ϑ, the factorization is indeed
invariant under Z7,7′ and Z16,16′ , and by the invariance remark (v) [8], is invariant
under ρ. So it is enough to check that (F̃ (F̃ )ρ−1)ϑ is invariant under ρ. But this
is proven exactly in the same way as in Lemma 15, case 2.2,[8] (since in our case
the point v7 and in the standard case of the 6–point at [8], the regeneration of
the 4–point are the same). ¤

Corollary 3.9. ϕ7 is invariant under I3(p) = (Z8,8′Z9,9′)p.

Proof: We use the invariance rules ([8]) when passing on all the factors of ϕ7.
We use invariance rules 2 and 3 when passing on the factors outside (F̃ (F̃ )ρ−1)ϑ

(for example, by invariance rule number 3, (Z(3)
8,8′,15)

Z2
16′,17Z2

16,17 is invariant under
Z8,8′ ; by invariance rule number 2, Z2

9′,15Z
2
9,15 is invariant under Z9,9′). When

passing on the factors of (F̃ (F̃ )ρ−1)ϑ, we use invariance rule 3 (for factors of the
form Z(3)

... ) and invariance rule 1 (for the factors Z8′,9Z8,9′ and (Z8′,9Z8,9′)ρ−1).¤

Corollary 3.10. ϕ7 is invariant under (Z8, 8′Z9, 9′)q(Z15, 15′Z17, 17′Z
2
7, 7′)

p

(Z7,7′Z16,16′)r, ∀p, q, r ∈ Z.

Proof: By invariant remark (v) ([8]), ϕ7 is invariant under
I3(q − p) · I1(p) · I2(r), which is the desired expression. ¤
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The Main Result: As a consequence of the invariance rules, we can apply

them as in [8] and get that ε(36) :=
14∏
i=1

C ′
iϕi is also a braid monodromy factor-

ization.

Note, that although that the invariance rules for v7 are different from the
invariance rules of the standard 6-point, what matters, as can be seen in [8],
Section 4, is that the invariance rule regarding the horizontal lines in the 6-point
(the two lines that are regenerated last) remains the same both in v7 and in the
standard 6-point.
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