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From Solitons to Many–Body Systems

David Ben-Zvi and Thomas Nevins

Abstract: We present a bridge between the KP soliton equations and the
Calogero–Moser many-body systems through noncommutative algebraic ge-
ometry. The Calogero-Moser systems have a natural geometric interpreta-
tion as flows on spaces of spectral curves on a ruled surface. We explain
how the meromorphic solutions of the KP hierarchy have an interpretation
via a noncommutative ruled surface. Namely, we identify KP Lax operators
with vector bundles on quantized cotangent spaces (formulated technically
in terms of D-modules). A geometric duality (a variant of the Fourier–Mukai
transform) then identifies the parameter space for such vector bundles with
that for the spectral curves and sends the KP flows to the Calogero–Moser
flows. It follows that the motion and collisions of the poles of the rational,
trigonometric and elliptic solutions of the KP hierarchy, as well as of its mul-
ticomponent analogs, are governed by the (spin) Calogero–Moser systems on
cuspidal, nodal and smooth genus one curves. This provides geometric expla-
nations and generalizations of results of Airault–McKean–Moser, Krichever
and Wilson. The present paper is an overview of work to appear in [BN2].

1. Introduction

Our purpose in this paper is to introduce a geometric viewpoint (developed
in detail in [BN2]) on a much-explored, puzzling phenomenon of the theory of
integrable systems: the description of the motion of poles of meromorphic solu-
tions of soliton equations by simple many-body systems. Our viewpoint provides
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a conceptual framework for this phenomenon within noncommutative algebraic
geometry. As an application we obtain direct geometric proofs of results that
complete the work of Airault–McKean–Moser [AMM], Krichever [Kr1, Kr2] and
Wilson [W3] on the motions and collisions of poles of meromorphic KP solutions.

1.1. Historical Overview. Before reviewing the Calogero–Moser system (CM),
the Kadomtsev–Petviashvili hierarchy (KP), and their relation, we sketch an in-
complete historical overview of the problem—see the review articles [Be, GW] for
more complete history and bibliography. In the seminal work [AMM], Airault,
McKean and Moser wrote down rational, trigonometric and elliptic solutions of
the Korteweg–deVries equation and discovered that the motion of their poles is
governed by the Calogero–Moser classical many-body systems of particles on the
line, cylinder and torus (respectively) with inverse square potentials. Krichever
[Kr1, Kr2] and the Chudnovskys [CC] extended this correspondence to the mero-
morphic solutions of the KP equation, where it becomes an isomorphism between
the phase spaces of generic rational (decaying at infinity), trigonometric and el-
liptic KP solitons and the corresponding Calogero–Moser systems.

Krichever derived this result (in the elliptic case) from a relation between
an auxiliary linear problem associated to a KP potential and the Calogero–
Moser systems. More precisely, to an elliptic KP potential one associates a non-
stationary Schrödinger operator with elliptic potential, and Krichever proved that
this auxiliary Schrödinger operator has meromorphic solutions if and only if the
poles of the potential move as particles in the elliptic CM system. In particular,
this showed that the elliptic CM system can be written in terms of spectral curves
(using a Lax operator with spectral parameter), and showed that the generic ellip-
tic solutions of KP are finite gap solutions—they come from applying Krichever’s
general geometric construction of solutions to KP to these spectral curves, known
as tangential covers of the elliptic curve. A detailed algebro-geometric study of
tangential covers was undertaken by Treibich and Verdier [TV1, TV2], leading to
a complete classification of elliptic solutions of the KdV equation. This geomet-
ric description of the elliptic CM systems may be used to identify them with a
meromorphic version of the Hitchin system [GN, Ne1, DW, DM]—for the rational
and trigonometric systems, the corresponding Hitchin systems live on cuspidal or
nodal (rather than smooth) genus one curves [Ne1] (see also [Kr5] for a different
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point of view on this identification, closer in spirit to the current work, as part
of the theory of meromorphic Lax operators on curves).

Other work on the KP/CM correspondence includes generalizations to some
cases of multicomponent KP hierarchy and spin Calogero–Moser systems [BBKT,
T1], an analog for difference equations relating the 2D Toda hierarchy and Rui-
jsenaars-Schneider systems [KrZ, T2, Kr3, Kr4], and extensions to other related
systems (see e.g. [Kr3, Kr4, GW, BB, BrH]). The KP/CM correspondence is also
applied in the study of the bispectral phenomenon [DG, W1, W2, W3, W4, BW1,
W5] and relates to Seiberg–Witten integrability of supersymmetric Yang–Mills
theory (see [BrK] for a collection of reviews).

1.2. Some Recent Developments. The KP/CM correspondence in the ra-
tional case was greatly deepened by Wilson [W3] (see [W5] for a review), who
extended it to allow collisions of particles. More precisely, the rational Calogero–
Moser phase space possesses a natural completion that is constructed as a space
of pairs of matrices whose commutator lies in a particular conjugacy class. In
this description, the positions of the particles correspond to the eigenvalues of
one of the matrices, which are now allowed to coincide. Wilson had (see [W1])
identified the completed phase space of the rational KP hierarchy with an adelic
Grassmannian that parametrizes certain subspaces of C[x]. In [W3], Wilson
gives an explicit formula that defines a point of the adelic Grassmannian from
a CM pair of matrices and then proves by direct calculations that this map ex-
tends continuously to the completed phase spaces and takes the CM flows to the
KP flows. (In the generic rational case, Shiota [Shi] has previously extended the
KP/CM correspondence to all the higher flows of the KP hierarchy and the higher
CM hamiltonians, establishing a bijection between generic rational solutions of
the KP hierarchy and the Calogero–Moser hierarchy; see also the related work
[AKV]).

Wilson’s adelic Grassmannian appears independently in the work of Cannings
and Holland [CH1] classifying (right) ideals in the Weyl algebra of differential
operators on the affine line, indicating that there might be an interesting re-
lationship between the KP/CM correspondence and objects of noncommutative
algebra/geometry. In [BW1] (see [W4] for a review), Berest and Wilson show that
the decomposition of the rational KP phase space into the union of n-particle CM
spaces can be described as the orbit decomposition under the action of the group
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of automorphisms of the Weyl algebra, “half” of which is matched up with the
KP flows. This decription is then used to identify Wilson’s bispectral involu-
tion [W1] (see [W2] for a review) on the rational KP solutions with the Fourier
transform on the Weyl algebra.

Inspired by ideas of Le Bruyn [LB], Berest and Wilson [BW2] explored a direct
relation, which was extended by Baranovsky, Ginzburg, and Kuznetsov [BGK1],
between the Calogero–Moser pairs of matrices and the classification of right ideals
in the Weyl algebra through a calculation in noncommutative geometry. Namely,
by interpreting the ideals as sheaves on a noncommutative projective plane, one
can apply the techniques of Koszul duality and the Beilinson spectral sequence to
classify ideals (up to isomorphism as modules) by cohomological data (monads),
which turns out to reproduce precisely the Calogero–Moser matrices.

However, a direct relation between KP and ideals in the Weyl algebra (or non-
commutative geometry) was missing, as were a conceptual explanation of the
relation between KP and Calogero–Moser systems and an extension of the cor-
respondence to completed phase spaces in the trigonometric, elliptic and multi-
component cases. These goals are achieved in [BN2], and described in the present
paper.

1.3. The Current Work. As we have already indicated, the present work is
devoted to to introducing a geometric approach to the KP/CM correspondence
that is developed in detail in [BN2]. Accordingly, we begin with a review (Section
2) of the (rational, trigonometric and elliptic) Calogero–Moser systems and their
concrete construction (by pairs of matrices, in the rational case). We then de-
scribe the formulation [TV2] of the Calogero–Moser systems as flows on the space
of pairs (Σ,L) of a line bundle L on a curve Σ (the spectral curve), embedded in
a ruled surface E\ over a (cuspidal, nodal or smooth) genus 1 curve E. To pass
between this geometric picture and the concrete Calogero–Moser particles, we
recall the identification of both with a special case of the meromorphic Hitchin
system on E.

In Section 3 we discuss the KP hierarchy, its Lax formulation in terms of for-
mal microdifferential operators, and Sato’s reformulation of KP Lax operators in
terms of D-modules. Sato identifies Lax operators with a quotient of an open
subset (the big cell Gr◦) of an infinite-dimensional Grassmannian Gr. We in-
troduce a coordinate-free reformulation of meromorphic KP Lax operators, the
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micro-opers, by generalizing the D-modules appearing in Sato’s theory. We then
extend (Theorem 4.7) Sato’s identification between a quotient of the big cell of
the Grassmannian and the set of Lax operators on the disc to an identification of
a quotient of the entire Grassmannian with the space of micro-opers on the disc.
Micro-opers on a general curve X define meromorphic Lax operators on X, whose
poles correspond to the points where the “local data” lie outside the big cell of the
Sato Grassmannian. Thus micro-opers are well-suited to describing the poles of
Lax operators and their collisions. The formulation of the KP hierarchy in terms
of (regular) micro-opers is closely analogous to the Drinfeld–Sokolov formulation
of the KdV hierarchies in terms of connections—indeed, micro-opers are the KP
analogues of the opers of Beilinson–Drinfeld ([BD1]) (or more precisely of the
affine opers of [BF]).

It is at this stage that noncommutative algebraic geometry enters the picture:
we explain in Section 4 how a micro-oper on a curve X may be interpreted as a
line bundle or rank one torsion free sheaf on a noncommutative ruled surface, (the
completion of) the quantized cotangent bundle T ∗~X of X, equipped with some
data along a divisor “at infinity”. In this setting micro-differential operators arise
geometrically as Laurent expansions of functions on the noncommutative surface
along this divisor. Moreover, there is a simple geometric description of the KP
flows directly on the space of micro-opers: in terms of the noncommutative ruled
surface, the flows act as modifications of bundles along the divisor by “changing
the transition function.”

In Section 5 we explain how a geometric Fourier transform provides the KP/CM
correspondence. Laumon [La2] and Rothstein [Ro2] enhanced the original Fourier–
Mukai transform for abelian varieties to a geometric integral transform that takes
D-modules on an abelian variety A to quasicoherent sheaves on a bundle Â\ over
the dual abelian variety Â. This enhanced Fourier–Mukai transform was then
used in work of Nakayashiki [N1, N2] and Rothstein [Ro1, Ro2] to describe the
algebro-geometric solutions of KP. We extend the enhanced Fourier–Mukai trans-
form to the case of singular genus one curves (see Theorem 5.2) and use it to con-
struct an isomorphism between moduli spaces of vector bundles on noncommu-
tative ruled surfaces over genus one curves and moduli spaces of spectral sheaves
on a (commutative) ruled surface. This gives a new proof of the classification
[BW2, BGK1] of ideals in the Weyl algebra by quiver data, the Calogero–Moser
pairs of matrices (this follows from the rank one, rational case of our result). The
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same technique in a degenerate case gives a new proof of the ADHM classification
of framed torsion-free sheaves on P2 by quiver data.

Our main result, described in Section 5.3, states that the Fourier transform
precisely identifies the phase space of KP solutions on a genus one curve with the
spectral data of the CM system, and the KP flows on the former with the CM
system on the latter:

Theorem 1.1 ([BN2]). The completed phase spaces of the rational, trigonomet-
ric, and elliptic Calogero-Moser systems are identified, via the extended Fourier-
Mukai transform, with the moduli spaces of rational, trigonometric, and elliptic
KP Lax operators (taken up to change of coordinate in ∂−1). This isomorphism
identifies the KP and CM hierarchies. The poles of the micro-opers correspond
to the positions of Calogero-Moser particles, extending the bijection of [Kr1, Kr2]
in the generic case and that of [W3] in the completed rational case.

The KP solutions with generic singularities, which are identified with con-
figurations of CM particles with distinct positions in [Kr1, Kr2], correspond to
micro-opers which only hit the codimension one strata of the Sato Grassman-
nian. The collisions of CM particles correspond to passing to more interesting
singularities of the micro-opers, i.e. deeper strata of the Grassmannian. In par-
ticular, we obtain that the correspondence extends to completed phase spaces
for the rational, trigonometric and elliptic systems, generalizing Wilson’s result
[W3] in the rational one-component case. (Here Wilson’s adèlic Grassmannian
appears naturally in its Cannings–Holland interpretation, as a parameter space
of D–modules.)

The same technique, applied to higher rank vector bundles or micro-opers,
identifies the completed phase spaces of the multicomponent generalizations of
KP with those for the spin generalizations of the Calogero–Moser systems, as is
described in [BN2].

We conclude in Section 6 with brief comments on further work on the rela-
tion with W1+∞ vertex algebras [BN6], the bispectral involution of Wilson, and
generalization of the results of [BN2] to the difference analog (Toda/Ruijsenaars
correspondence) [BN5].

1.4. Calogero–Moser Particles as Points on a Noncommutative Surface.
We have already discussed the role of noncommutative geometry in a geometric
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formulation of meromorphic solutions of KP. However, Theorem 1.1 also has
an interesting noncommutative geometric interpretation that is close in spirit to
familiar commutative constructions.

Namely, recall that the Hilbert scheme of points on the cotangent bundle T ∗X
of a curve X is isomorphic to (a component of) the moduli space of rank one
torsion-free sheaves on the smooth projective completion T ∗X = T ∗X ∪X that
are framed (trivialized) along the divisor at infinity. When one deforms T ∗X
to the quantized cotangent bundle T ∗~X of X it is this latter description of the
Hilbert scheme that deforms well; consequently one takes, as the Hilbert scheme
of points on T ∗~X, the moduli space of framed rank one torsion-free sheaves on the
projective completion T ∗~X (see [BN4] for more on the relationship to the Hilbert
scheme of T ∗X). Note that every micro-oper on X gives such a framed rank one
torsion-free sheaf on T ∗~X. On the other hand, the natural phase space for a many-
body system (such as the CM system) on an elliptic curve E is the configuration
space for collections of points on the cotangent bundle T ∗E with distinct E-
coordinates. We may seek to complete the phase space (and Hamiltonians) so as
to allow collisions of particles. An obvious candidate for a completed phase space
would be the Hilbert scheme of points on the cotangent bundle. The natural
dynamical system on the Hilbert scheme of points on T ∗E, however, is the trivial
many-body system, with zero potential between distinct particles.

In this language our result says that the Calogero–Moser system extends to the
Hilbert scheme of points on the quantized cotangent bundle of the curve. While
the quantized cotangent bundle does not have any points in the ordinary sense
(since DE has no finite-dimensional modules), the space of micro-opers provides
a natural candidate for this Hilbert scheme. We thus show that the natural
dynamics of “points on the quantized cotangent bundle” of E (that is, of micro-
opers on E) is the KP system, and identify this precisely with the Calogero-Moser
system. Moreover the positions of the Calogero–Moser particles are easily read
off from the micro-oper (as the E-coordinates of the putative points in T ∗~E), and
are identified with the poles of KP Lax operators.

From this point of view, both KP and Calogero–Moser systems naturally live
on the quantized cotangent bundle—the interpretation using spectral curves via
the Fourier–Mukai transform is then a tool to describe the relevant moduli spaces
and check that we are indeed getting the correct Hamiltonian system.
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2. Calogero–Moser Systems

We begin by reviewing the complexified Calogero-Moser systems associated
with the general linear group GLn, following [KKS, W3, Ne1]. See also [BN3] for
a treatment of the CM system adapted to our present needs.

2.1. The CM System. Recall that connected one-dimensional complex alge-
braic groups G fall into three classes: the additive group Ga = C, the multi-
plicative group Gm = C×, and the one-parameter family of elliptic curves E.
We denote the identity element of each of these groups by o. The complexified
Calogero–Moser systems are completely integrable Hamiltonian systems describ-
ing a collection of n identical particles on one of these groups G. Thus the phase
space of the Calogero–Moser system on the curveG is T ∗

(
G(n)\⋃{all diagonals}),

the configurations of n distinct unlabelled points qi ∈ G with momenta pi ∈ C.
They are described, in terms of coordinates on the complex line (the universal
cover of G) by the Hamiltonians

H =
1
2

n∑

i=1

p2
i +

∑

i<j

U(qi − qj),

with potential functions with a single second order pole at the origin of G, that
is

Rational :U(q) =
1
q2

Trigonometric :U(q) =
1

sin2(q)
Elliptic :U(q) = ℘(q)

where ℘(q) is the Weierstrass ℘-function attached to the elliptic curve E.
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2.1.1. The rational and trigonometric Calogero-Moser systems can be described
concretely by Hamiltonian reduction for the group GLn ([KKS]). Let O ⊂ gln
denote the conjugacy class of traceless matrices of the form Id+A with A a rank
one matrix (which we consider as a coadjoint orbit in gl∗n). It is convenient to
realize O as the orbit of either of the matrices

(2.1)




0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

... . . .
. . .

...
1 1 1 · · · 0




,




1− n 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

... . . .
. . .

...
0 0 0 · · · 1




.

Then the Hamiltonian reduction of T ∗gln by GLn with the moment condition O
is the space

CMn = {(X, Y ) ∈ T ∗gln
∣∣ [X, Y ] ∈ O}/GLn.

As proven in [W3], this space is a smooth irreducible affine variety of dimension
2n. This variety comes equipped with the Hamiltonian function H = 1

2 trY 2,
and all other invariant polynomials of Y give Hamiltonians in involution with
H, whence one deduces the complete integrability of the Calogero-Moser system
by a dimension count. On the open subset where X has distinct eigenvalues, we
may write coordinates (qi, pi) on (a finite cover of) CMn, using the first matrix
representative of O in 2.1:

X =




q1 0 0 · · · 0
0 q2 0 · · · 0
0 0 q3 · · · 0
...

... . . .
. . .

...
0 0 0 · · · qn




, Y =




p1
1

q1−q2

1
q1−q3

· · · 1
q1−qn

1
q2−q1

p2
1

q2−q3
· · · 1

q2−qn
1

q3−q1

1
q3−q2

p3 · · · 1
q3−qn

...
... . . .

. . .
...

1
qn−q1

1
qn−q2

1
qn−q3

· · · pn




.

It is easy to see that the Hamiltonian H in these coordinates recovers the rational
Calogero–Moser Hamiltonian above. Thus CMn provides a completion of the
phase space of the rational Calogero–Moser system, in which we allow the points
qi (the eigenvalues of X) to collide. The trigonometric Calogero-Moser system can
be described similarly from reduction of T ∗GLn: we consider conjugacy classes
of pairs of matrices (X, Y ) with X invertible and XY X−1 − Y ∈ O. As before,
we obtain explicit coordinates on the locus where X is diagonalizable and the
commuting Hamiltonians from the invariant polynomials of Y . In the next section
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we will see how the Calogero–Moser rank one matrices arise naturally from the
consideration of spectral curves over a singular elliptic curve.

2.2. Calogero–Moser Spectral Curves. In this section we present the geo-
metric construction of the Calogero–Moser systems in terms of spectral curves
on an algebraic surface (see [TV1, TV2, GN, DW, DM] for the elliptic case, and
[Ne1] for the rational and trigonometric cases). The connection with the explicit
description of the previous section is explained in Section 2.3 by interpreting both
as Hitchin systems.

A general paradigm for constructing integrable systems (see [DM] for a discus-
sion and references) involves fixing a symplectic algebraic surface and a family
of curves (specifically, a linear series) on this surface. The phase space of the
associated integrable system is the space of pairs (Σ,L) of a curve Σ in the fam-
ily and a line bundle (or, for singular Σ, a rank one torsion–free sheaf) L on Σ
(i.e. the family of generalized Jacobians of the curves in the linear series). The
Hamiltonians of the system are given by coordinates on the space of curves Σ,
and the flows of the system are linear flows on the Jacobians, modifying L while
fixing Σ.

In the case of the rational, trigonometric and elliptic Calogero–Moser systems,
the relevant symplectic surface E\ is a special affine bundle over a cuspidal,
nodal or smooth elliptic curve E, respectively. Recall that an irreducible reduced
algebraic curve E of arithmetic genus one, i.e. a Weierstrass cubic curve, falls
into one of three classes:

• Elliptic: E is a smooth elliptic curve (in particular a group), and may
be described by an equation of the form y2 = x3 + ax + b.

• Trigonometric: E = Gm is a nodal cubic, and is isomorphic to the
curve y2 = x2(x − 1). Its normalization P1 → E identifies two points 0
and ∞ to a node on E, and defines a group structure Gm

∼= Esm ⊂ E on
the smooth locus.

• Rational: E = Ga is a cuspidal cubic, and is isomorphic to the curve
y2 = x3. Its normalization P1 → E collapses 2 · ∞ to a cusp on E, and
defines a group structure Ga

∼= Esm ⊂ E on the smooth locus.

In each of the cases we have canonical isomorphisms Esm = G ∼= Pic0 E of
the corresponding group G with the Jacobian of E, and of E itself with the
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compactified Jacobian of E, the moduli of torsion free sheaves of rank one and
degree zero on E (trivialized at the identity).1

An elliptic curve E carries a unique nontrivial rank 1 affine bundle E\ → E.
Let At denote the Atiyah bundle on E, the unique nontrivial extension of OE by
itself. The (Stein) algebraic surface E\ may be identified with the complement of
the unique section E∞ = P(O) ∼= E of the projectivization of the Atiyah bundle,
E\ ⊂ E

\ = P(At) ⊂ E∞. E\ is also naturally identified with the moduli space
of line bundles with a holomorphic connection on E.2 Finally, E\ may also be
identified as a twisted cotangent bundle of E, namely as the affine bundle of
connections on the line bundle O(o) on E. In particular it inherits a symplectic
form.

For a singular cubic curve, one defines an affine bundle E\ → E with analogous
properties, taking account of the behavior at the singularity (effectively replacing
the tangent sheaf of the curve by its trivial line subbundle generated by the
invariant vector field on the group G)—see [BN2] for a detailed account. In each
case, the projective bundle E

\ → E has a unique section E∞, whose complement
is the affine bundle E\.

The open (Stein) surface E\ does not contain any complete curves, so that any
curve in E

\ must intersect the divisor E∞. So it is natural to consider the simplest
linear series on E\, consisting of curves with only one point of intersection with
E∞ (taken for convenience to be the origin o ∈ E∞), and degree n over E for
some positive integer n. This linear series (denoted |n ·E∞+F |) on E

\ is studied
in detail in [TV1]. In particular, it is equivalent for a curve Σ ∈ |n · E∞ + F | to
be irreducible and to have a unique point of intersection with the section E at
infinity (which is then automatically transversal). Moreover the collection of such
curves Σ is the complement of a hyperplane in the projective space |n ·E∞ + F |.
There is also a bijection between such Σ ↪→ E

\ → E and tangential covers of E,
corresponding to maps E → JacΣ which are tangent at o to the Abel–Jacobi line
of Σ at the distinguished point Σ ∩ E∞.

Thus we consider the integrable system, the completed Calogero–Moser system,
with phase space given by line bundles, and more generally rank one torsion–free
sheaves, supported on such curves:

1In particular, there is a universal sheaf P → E × E, the Poincaré sheaf.
2The pullback of the Poincaré bundle to E × E\ carries a canonical connection relative to

the second factor.
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Definition 2.1. Let Oo denote the skyscraper sheaf at o. A CM spectral sheaf is
a coherent sheaf L on E

\ of pure dimension one, equipped with an isomorphism
φ : L|E∞ → Oo, and with first Chern class n ·E∞+F (where F denotes the fiber
over o).3 The space of CM spectral sheaves is denoted by CMn(E).

The Hamiltonian flows of the completed Calogero–Moser system preserve the
underlying curve Σ while modifying the spectral sheaf (linearly) along the gen-
eralized Jacobian of Σ. We may generate all such flows by modifying L only at
the distinguished point o at infinity (as in [BL, BF]). Let (L,Σ) ∈ CMn(E) be
a Calogero-Moser spectral sheaf, and let KΣ,∞ denote the field of Laurent series
along Σ at Σ ∩ E∞. Then there is a canonical identification End(L ⊗ KΣ,∞) =
KΣ,∞. It easily follows that the abelian Lie algebra KΣ,∞ acts (linearly and
formally transitively) on the compactified Picard of Σ by formally changing the
transition function of L at Σ ∩ E∞.

2.3. CM and Hitchin. In this section we sketch the description of the Calogero–
Moser systems as Hitchin systems following [Ne1, DM] (see also [BN3]).

Let Bunn(E, o) denote the moduli space of rank n semistable vector bundles
of degree zero on a cubic curve E, equipped with a trivialization of the fiber at
the identity; for singular E, we impose the (open) condition that the bundle have
trivial pullback to the normalization P1. The cotangent fiber T ∗Bunn(E, o)|V
at a bundle V consists of pairs (V, η), where η is a meromorphic Higgs field
η ∈ Γ(EndV (o)) on V with only a simple pole at o. We may perform Hamil-
tonian reduction of T ∗Bunn(E, o) with respect to the action of GLn changing
the trivialization at o, with moment map taking values in an arbitrary coadjoint
orbit in gln. Thus we define the Calogero–Moser–Hitchin space by

(2.2) T ∗Bunn(E, o) //O GLn =
{
(V, η) : reso(η) ∈ O}

/ GLn,

that is, as the space of Higgs bundles on E having residue at o in the Calogero–
Moser orbit O. The description as a reduction endows the Calogero–Moser–
Hitchin space with a symplectic form and with n algebraically independent Pois-
son commuting Hamiltonians given by the invariant polynomials in η (the Hitchin
hamiltonians).

3One must also impose (generic) normalization conditions, see [BN2, Definition 2.3]. More-

over, if E is singular we add the technical condition that M is locally free over the singular

point.
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In the rational and trigonometric cases one has concrete descriptions of the
moduli spaces: since our bundles have trivial pullback to the normalization P1,
they are completely described by the descent data from P1 to E. This descent
data in the nodal case is the identification of the two fibers over the inverse image
of the node, hence Bunn(Gm, o) = GLn. In the cuspidal case these two points
are infinitesimally nearby, and the descent data becomes a “connection matrix”
identifying these two nearby fibers—thus we have Bunn(Ga, o) = gln. It follows
immediately that the Calogero–Moser–Hitchin space for Ga is isomorphic with
the completed rational Calogero–Moser phase space CMn introduced in Section
2.1.1, and similarly in the trigonometric case. In the elliptic case we may recover
the elliptic Calogero–Moser particles and Hamiltonians as follows. There is a
dense open subvariety of Bunn(E, o) that is identified with the configuration
space of n distinct points qi on E, via the assignment

(2.3) {qi} 7→ ⊕O(qi − o).

Writing the Hitchin Hamiltonian in these coordinates gives the elliptic Calogero-
Moser flow on the qi.

Hitchin’s integrable system on a curve X is naturally described in terms of
spectral curves, this time embedded in the symplectic surface T ∗X. In our case,
the minimal (rank one) condition for the matrix A in the coadjoint orbit condi-
tion on the Calogero–Moser matrices [X, Y ] = Id +A matches up precisely with
the minimal (one-point) intersection condition on the Calogero–Moser spectral
curves, yielding the following:

Proposition 2.2. The n particle Calogero–Moser phase space on E is canonically
identified with an open subset of the space CMn(E) of Calogero–Moser spectral
sheaves with support of degree n over E. Under this isomorphism, the CM flows
are identified with linear flows along the generalized Jacobians of CM spectral
curves.

Remark 2.3. See [DW] for a geometric description of this identification via the
CM Hitchin system. One begins by describing the meromorphic Hitchin system
in terms of spectral curves Σ̃ in the total space of the line bundle ΩE(0) = OE(0)
of differentials with simple pole at 0. One then obtains a CM spectral curve
through a birational transformation, blowing up the point in the fiber over 0
corresponding to the eigenvalue 1, and blowing down the proper transform of the
fiber.
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3. The KP Hierarchy

In this section we briefly review the definition of the KP hierarchy and its
interpretation via flows on the Sato Grassmannian. General references for this
section are [Mu2], [S] and [SW].

3.1. Introducing KP. Let E denote the algebra of formal microdifferential op-
erators (or pseudodifferential symbols) with coefficients in C[[t]]. An element of
E is a Laurent series

(3.1) M =
∑

N¿∞
aN∂N ai ∈ C[[t]]

in the formal inverse ∂−1 of the derivation ∂ = ∂t of C[[t]]. The composition in
E is determined by the Leibniz rule,

(3.2) ∂n · f =
∑

i≥0

(
n

i

)
f (i)∂n−i,

where
(
n
i

)
is defined for n < 0 by taking

(
n

i

)
=

n(n− 1) · · · (n− i + 1)
i(i− 1) · · · 2 · 1 .

The ring D = C[[t]]〈∂〉 of differential operators is a subring of E . We also have
a commutative subring Γ = C((∂−1)) of constant coefficient microdifferential
operators.

Consider a microdifferential operator of the form

L = ∂ + u1∂
−1 + u2∂

−2 + · · · ∈ E ,

which is called a KP Lax operator. The space L of such operators is an infinite-
dimensional affine space (with coordinates the coefficients of the ui). The KP
hierarchy is the collection of compatible evolution equations on a Lax operator
L defined as follows:

(3.3)
∂L

∂tn
= [L, (Ln)+],

where (M)+ =
∑

N≥0 aN∂N ∈ D ⊂ E denotes the differential part of a microdif-
ferential operator M as in (3.1). That is, we let the operator L = L(t, t1, t2, . . . )
depend on the infinitely many time variables tn and then require that the depen-
dence of L on tn (i.e. its “evolution along the nth time”) satisfies (3.3).
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This may be immediately reinterpreted in terms of a collection of vector fields
on L: we define the nth vector field on the affine space L by taking its value at
L to be the commutator [L, (Ln)+]. A solution L of the equations (3.3) of the
KP hierarchy is then just an operator L(t, t1, t2, . . . ) that gives (formal) integral
curves of all these vector fields simultaneously. Note that the first KP time t1

is naturally identified with translation along the original variable t. From the
compatibility of the equations (3.3) in x = t2 and y = t3 (i.e. the fact that the
corresponding vector fields on the space of Lax operators commute) one derives
that u = u1 satisfies the Kadomtsev–Petviashvili equation

(3.4)
3
4
uxx = (uy − 1

4
(6uut + uttt))t.

As Sato demonstrated (and we recall in the next section), the flows of the KP
hierarchy (i.e. our vector fields on the space of Lax operators) may be refor-
mulated in terms of a natural abelian Lie algebra action on (the big cell of) an
infinite-dimensional Grassmannian. As a consequence, the full hierarchy (3.3)
is easier to understand formally than the original KP equation (3.4) (though,
as the unique solvability of the initial-value problem [Mu1] indicates, there is a
close relationship between solutions u = u(t, x, y) of the single equation 3.4 and
solutions L = L(t, t2, t3, . . . ) of the full KP hierarchy).

3.2. The Sato Grassmannian. For simplicity we concentrate here on the case
of the usual KP hierarchy—see Section 6.1 for comments on the extension to the
multicomponent KP hierarchies.

Consider the vector space V = C((∂−1)) of Laurent series in ∂−1, or constant
coefficient microdifferential operators. It is convenient to identify V with E/E · t,
the quotient of E by the left ideal generated by t (i.e. the fiber of E at t = 0
as a module for C[[t]] acting by right multiplication). The vector space V has a
decomposition

V = V+ ⊕ V− = C[∂]⊕ ∂−1C[[∂−1]].

Let Gr(V) denote the Sato Grassmannian: this is a space that parametrizes all
subspaces W ⊂ V whose projections on V/V− have finite dimensional kernel and
cokernel (equivalently, W is transversal to a subspaceW ′ which is commensurable
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with V−—one thinks of W as being “of the same size as V+”).4 The Sato Grass-
mannian has a natural structure of a scheme of infinite type (see e.g. [AMP]),
and has connected components labelled by an integer, the index of a subspace
W ⊂ V with respect to V−. A special role is played by an open subset Gr◦(V)
of the Sato Grassmannian known as the big cell: this parametrizes subspaces W
that are transversal to V− itself, i.e.

Gr◦(V) =
{W ∈ Gr(V) : W ⊕C[[∂−1]] = C((∂−1))

}
.

The algebra E acts on V by left multiplication. We distinguish two pieces of
the resulting symmetries of Gr(V). First, the constant coefficient microdifferential
operators Γ = C((∂−1)) act by continuous endomorphisms of V, hence give rise
to an infinite family of commuting vector fields on Gr(V). Second, consider the
Volterra group

E×− = {W = 1 + w1∂
−1 + w2∂

−2 + · · · } ⊂ E
(where the wi are formal power series in t).5 The group E×− acts by continuous
automorphisms on V, hence algebraically on Gr(V); it also acts on the space
L of Lax operators via conjugation. We will be interested in the action of the
commutative subgroup

Γ×− = E×− ∩ Γ = 1 + ∂−1C[[∂−1]]

of constant coefficient operators (which commutes with the Lie algebra action of
Γ).

Theorem 3.1 (Sato).

(1) The action of E×− on the big cell Gr◦(V) of the index zero Grassmannian
is simply transitive, i.e. every W has the form W = W · V+ for a unique
W ∈ E×− .

(2) The action of E×− on the space L of Lax operators L = ∂ + · · · by con-
jugation is transitive with stabilizer Γ×− = 1 + ∂−1C[[∂−1]], i.e. every L

is written in the form L = W∂W−1 with W ∈ E×− unique up to constant
coefficient operators.

4In terms of the natural topology of V giving it the structure of Tate vector space ([BD1]),

Gr(V) parametrizes the d-lattices in V.
5Note that the Volterra group is a pro-unipotent algebraic group with Lie algebra E− ⊂ E

consisting of purely negative microdifferential operators.
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(3) The resulting isomorphism

Γ×−\Gr◦(V) ∼−→ L

taking W · V+ 7→ W∂W−1 identifies the infinitesimal action of ∂n ∈
C[∂] ⊂ Γ on Gr◦ /Γ×− with the nth KP flow

∂

∂tn
on Lax operators.

The operator W ∈ E×− associated to a subspace or Lax operator is known as the
associated wave operator.

Sato’s discovery of the matching of Lax operators with subspaces passes through
a useful intermediary, namely a D-module model of the big cell of Gr(V+): the
big cell is identified with the space of right D-submodules M ⊂ E that satisfy the
transversality property E = M ⊕ E−. The identification of such D-submodules
with points of the Sato Grassmannian comes by sending M to its fiber at t = 0,
i.e. the subspace M/M · t ⊂ V = E/E · t (note that this subspace no longer carries
any D-module structure in general).

A D-submodule M ⊂ E with the transversality property E = M ⊕ E− is
automatically a cyclic D-module, M ∼= D. There is therefore a unique monic
microdifferential operator (“wave operator”) W ∈ E×− as above with the property
that W ·M = D. The Lax operator associated to M is then W∂W−1. One of our
aims in Section 4.3 will be to extend this D-module description of the big cell to
the full Grassmannian.

4. D-Bundles, Micro-Opers and Noncommutative Geometry

4.1. Noncommutative Geometry of D-Modules. In this section we describe
the noncommutative geometry approach to D-modules on a curve that motivates
most of our constructions; see also Section 6.5 for relations with noncommutative
gauge theory. Fix a curve X over an algebraically closed field of characteristic
zero, and let DX denote the sheaf of differential operators on X. We assume for
simplicity that X is smooth, although a similar discussion will apply in the case
of nodal or cuspidal curves if DX is replaced by the appropriate “log” version;
we refer to [BN2] for more details.

To an algebraic variety one may associate an abelian category, namely its cat-
egory of (quasi)coherent sheaves, that encodes the fundamental geometry of the
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variety. In noncommutative algebraic geometry one takes the abelian category6

itself as the starting point—see [St, StV] for an introduction to this point of view.
For example, a fundamental construction of noncommutative algebraic geometry
associates, to a sheaf of noncommutative algebras A on a variety, the category of
A-modules.

Starting with the sheaf DX of differential operators on a smooth curve this con-
struction defines a noncommutative variety, the category of (quasicoherent) DX -
modules. The algebraDX is a deformation of the commutative algebra Sym•(TX),
the sheaf of symbols of differential operators. Since the latter is the pushforward
to X of the algebra of functions on the cotangent bundle T ∗X of X, one thinks of
DX as the algebra of functions on a “quantization of the cotangent bundle of X”,
a noncommutative algebraic surface that we will denote by Spec(D) = T ∗~X. It
turns out that the intuition provided by thinking of the category of DX -modules
in this way is an excellent guide to many interesting questions and useful con-
structions concerning D-modules.

4.1.1. Completion. In studying moduli problems for sheaves, one prefers to work
with a projective (or proper) variety. In particular, moduli problems of torsion-
free sheaves on the open surface T ∗X or on its deformation T ∗~X (i.e. of D-
bundles) will not be well behaved, even if we assume (as we do in the rest of
the section) that the curve X is projective. Thus it is convenient to compactify
to a proper variety by adding a divisor X∞ at infinity and then consider framed
sheaves, namely sheaves that are trivialized at infinity. Such framing conditions
can be considered as “asymptotic decay conditions at infinity.” Indeed, framing
conditions arise naturally in Yang-Mills theory when one studies connections on
a noncompact 4-manifold that have suitable decay conditions at infinity on their
curvature: such connections often admit extensions to connections on the complex
projective surface that automatically are trivialized at infinity.

In the case of the vector bundle T ∗X there is a standard completion to a
projective bundle T ∗X ⊂ T ∗X = P(T ∗X ⊕ O) ⊃ X∞, by adding the curve
X∞ = P(T ∗X) ∼= X itself at infinity. Thus we consider the projective bundle
with homogeneous coordinate rings S• = Sym•(TX ⊕OX) = ⊕k(Sym≤k TX) · tk.

6In fact, it may be better to replace the category of quasicoherent sheaves on a variety by its

derived category as a differential graded category, [Dr], and take DG categories as the starting

point.
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The category of coherent sheaves on T ∗X = Proj(S•) is equivalent to the quotient
of the category of finitely generated graded S•-modules modulo its subcategory of
bounded modules. Furthermore, restriction of a coherent sheaf M̃ on T ∗X to the
curve X∞ = Proj(Sym• TX) at infinity is given by taking the graded S•-module
M to the graded Sym•(TX)-module M/tM .

The natural quantization of the algebra S•, and hence of the projective comple-
tion T ∗X of T ∗X, is given by the Rees ring R(DX) = ⊕kDk

X ·tk of DX , where Dk
X

denotes differential operators of order at most k. A graded module over the Rees
ring gives a filtered module over the filtered ring DX and conversely. Since we
are interested in such modules modulo bounded modules, we should consider D-
modules which are eventually filtered, in other words only sufficiently high filtered
pieces are defined (more precisely, morphisms are only required to respect the fil-
tration eventually). This leads us to consider the (derived) category of eventually
filtered D-modules as the completion T ∗~X of the noncommutative variety T ∗~X.
The associated graded ring of D is just the commutative ring gr(D) = Sym• TX .
It follows that our noncommutative variety is described by adjoining to T ∗~X the
commutative curve X∞ = Proj(gr(D)) ∼= X. The restriction of an eventually fil-
tered D-module M to X∞ is determined by its asymptotics, i.e. by the coherent
sheaf grN M for N À 0.

4.1.2. The noncommutative variety T ∗~X has the same K-group and deRham
cohomology (i.e. cyclic homology) as the variety T ∗X of which it is a deformation.
(In fact Laumon [La1] shows that T ∗~X, i.e. the derived category of D-modules,
has the same K-group as well). Therefore filtered D-modules have the same
numerical invariants as coherent sheaves on the completed cotangent bundle. In
particular it makes sense to speak of the Chern classes of a filtered D-bundle, and
to try to deform moduli spaces of sheaves with fixed numerical invariants (such
as Hilbert schemes of points) from T ∗X to T ∗~X.

It is interesting to note that the “surface” T ∗~X exhibits both one and two-
dimensional features, accounting for some of the peculiarities of noncommuta-
tive instantons. In particular, it has (cohomological) dimension one, and every
torsion-free sheaf on it (DX -module) is projective, and so may be considered a
vector bundle. However these “bundles” are similar to torsion-free sheaves in the
commutative limit, and their moduli provide (flat) deformations of the moduli
spaces of the latter. In particular they carry a “second Chern class” (or instanton
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number) c2(M), which may be defined cohomologically, algebraically (using the
filtration), or geometrically (using the associated graded sheaf on T ∗X).

4.1.3. Microlocalization. In order to interpret the microdifferential Lax operators
of the KP hierarchy geometrically, we will use the interpretation of microlocaliza-
tion in terms of the noncommutative space T ∗~X—for more on microlocalization,
see for example the books [Ka, Sh] and the papers [Sp, EO, AVV]. Recall that the
sheaf D embeds in a sheaf of algebras E , the sheaf of microdifferential operators,
defined as follows. First we adjoin to D (in local coordinates) the formal inverse
∂−1 of a nonvanishing vector field ∂ satisfying the Leibniz rule (3.2), and then we
complete with respect to powers of ∂−1, so that in local coordinates E is given by
(noncommutative) Laurent series in ∂−1 over OX . The sheaf E is Z-filtered by
order in ∂, extending the filtration on D, and the completed associated graded al-
gebra is the commutative algebra given in local coordinates by OX((ξ−1)), where
ξ is the symbol of ∂. The subsheaf of microdifferential operators of degree at most
zero forms a subalgebra E− ⊂ E which is complete with respect to the natural
topology.

The geometric interpretation of E is clear once we note that the completed
associated graded algebra of E is naturally identified with Laurent series along
the section at infinity X∞ ⊂ T ∗X of the compactified cotangent bundle, while the
associated graded of the subalgebra E− consists of Taylor series along the same
section. Informally, while ∂ plays the role of coordinate “along the fibers” on
T ∗~X, its inverse ∂−1 plays the role of coordinate near the section X∞ at infinity,
so we may consider E− as functions in the formal neighborhood of X∞ ⊂ T ∗~X

and E as Laurent series along this section.7 In particular, for a (right) D-module
M (sheaf on T ∗~X) we have an associated E-module ME = M ⊗D E , which is the
restriction of M to the punctured formal neighborhood of X∞, while for a filtered
D-module (sheaf on T ∗~X) we have an associated E−-module M− = (ME)≤0, the
piece of nonpositive filtration with respect to the induced filtration of ME , which
is the restriction of M to the formal neighborhood of X∞.

Remark 4.1 (Higher-Dimensional Microlocalization). For a smooth n-dimensional
variety X, microdifferential operators E form a sheaf on the projectivized cotan-
gent bundle X∞ := P(T ∗X), which is isomorphic to X for n = 1. Here again X∞
appears as the divisor at infinity in the projective completion of T ∗X or of its

7See [PRo] for a discussion in the context of Kapranov’s formal NC schemes.
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noncommutative deformation T ∗~X on which D-modules live, and microdifferen-
tial operators are again formal Laurent series along this divisor in the quantized
cotangent bundle.

4.2. D-Bundles. In this section we introduce D-bundles on a curve.

Definition 4.2. [BD2] A D-bundle M on X is a locally projective, coherent right
DX -module.

On a smooth (or more generally cuspidal) curve X, any torsion-free DX -module
is locally projective. However a general rank 1 D-bundle M on a curve X is not
locally free, but only generically free: away from finitely many points of X, M is
isomorphic to D.8

Example 4.3 (Right ideals in DX). Every right ideal in DX is torsion-free,
hence a D-bundle of rank 1. However, ideals in DX are typically not locally free.
Consider for example X = A1, so that DX is the Weyl algebra C〈z, ∂〉/{∂z−z∂ =
1}. The right ideal generated by z2 and 1 − z∂ is not locally free near z = 0.
However, a right ideal of DX is generically locally free over DX , and in fact is
equivalent (under rescalings by DX) to a right ideal in DX which agrees with
DX generically. Following [CH1] (see also [BD2, BW2, BN1]), such an ideal is
determined by the (finite) collection of points x at which it differs from DX and
choices of subspaces of Ôx at those points x; for example, the right ideal above
corresponds to the subspace C + (z2) in C[[z]]. (These collections of subspaces
form the adèlic Grassmannian, see Section 4.5.)

If M is a rank 1 D-bundle on X, we refer to the finite subset S of X consisting
of points s ∈ S such that M is not isomorphic to D in any neighborhood of s,
as the set of cusps of M . The terminology is motivated by the description of
D-modules developed in [CH2], and amplified and generalized in [BN1], in terms
of coherent sheaves on singular varieties.

In order to construct moduli spaces for D-bundles on X, it is important to
“compactify” the surface T ∗~X to the noncommutative P1-bundle T ∗~X as ex-
plained in Section 4.1, in other words to consider filtered D-bundles (we require
the graded components to be vector bundles on X). Moreover, we would like to

8Since D has a skew field of fractions it follows that locally projective D-modules have well-

defined ranks.
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fix the geometry of the D-bundle along the (commutative) curve X∞ at infinity
in T ∗~X, in other words to consider framed D-bundles:

Definition 4.4 (See Definition 3.2 of [BN2]).

(1) For a filtered D-module M , we denote by M |X∞ the coherent sheaf on
X∞ = Proj(gr(D)) associated to the graded gr(D)-module gr(M).

(2) A (trivially) framed D-bundle is a filtered D-bundle M equipped with an
isomorphism M |X∞ → OX∞ .

We let Mn(T ∗~X) denote the moduli stack of framed D-bundles of second Chern
class n. The precise definition of the moduli stack Mn(T ∗~X) (as well as its gener-
alization to other framings) appears in [BN2]; for a projective curve X, Mn(T ∗~X)
is an algebraic stack, and in the case of an elliptic curve will be described explicitly
using the Fourier–Mukai transform in Section 5.

4.3. Micro-Opers and Lax Operators. In this section we introduce enhanced
versions of D-bundles, the micro-opers, which give a geometric form to the Lax
operators of the KP hierarchy. On a (commutative) variety, functions act by
O-module endomorphisms of any O-module. Analogously, we will need a slight
enhancement of the structure of framed D-bundle, giving the action of a com-
mutative subalgebra of “functions” as endomorphisms. Throughout this section,
(X, ∂) will denote a curve with a fixed nowhere-vanishing vector field (so that X

is an elliptic curve or affine).

Definition 4.5. A micro-oper structure on an O-framed D-bundle M is the data
of an E-module endomorphism ∂M of ME = M ⊗D E , with principal symbol ∂

with respect to the induced filtration of ME .

Remark 4.6. See Section 6.1 and [BN2] for discussion of the higher-rank version
of multi-opers, which will give (matrix) Lax operators for multicomponent KP
hierarchies.

The endomorphism ∂M commutes with the right action of E , and is required
to perturb the degree of the filtration by one, ∂M : (ME)i → (ME)i+1, inducing
an isomorphism gr(∂M ) : grn ME → grn+1 ME on the graded pieces compatible
with the framing. Thus a micro-oper structure consists of a lifting of the vector
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field ∂ to ME , which we may think of as (part of) a connection9 that satisfies a
strict form of Griffiths transversality.

We see that micro-opers are closely analogous to the opers introduced by Beilin-
son and Drinfeld [BD1] following Drinfeld and Sokolov [DS]. A GLn-oper on X

is a rank n bundle V with a full flag {Vi} and a connection, which satisfies
strict Griffiths transversality: ∇∂ : Vi → Vi+1, and induces an isomorphism
Vi/Vi−1 → Vi+1/Vi. It is easy to see that GLn-opers are naturally identified
with monic nth order differential operators acting between line bundles on the
curve X. Thus GLn opers give a coordinate-free form of the Lax operators of the
nth KdV hierarchy, which is amenable to generalizations to arbitrary reductive
groups. (See Section 4.4 for more on the parallels of micro-opers with opers.)

The importance of micro-opers comes from the following theorem, extending
Sato’s description of the KP flows on Lax operators on the disc to micro-opers on
a curve (X, ∂). Let Γ×− denote the multiplicative group 1 + ∂−1C[[∂−1]] ⊂ E(X)
and Γ+ = C[∂] considered as an abelian Lie algebra. For x ∈ X, we let Ex

denote the fiber of E at x with respect to the right O-module structure, i.e.
Ex = E/E ·mx.10

Theorem 4.7 (Section 3.5 of [BN2]).

(1) The quotient Γ×−\Gr(Ex) of the Sato Grassmannian is in bijection with
micro-opers on the formal disc at x.

(2) For any x ∈ X, we have a canonical embedding of the space MOp(X) of
micro-opers on X into the quotient of the Sato Grassmannian Γ×−\Gr(Ex),
preserved by the KP flows (given by the action of Γ+ on Γ×−\Gr(Ex)).

(3) The D-bundle M underlying a micro-oper is locally free near x if and only
if the image of M in Γ×−\Gr(Ex) is in the image of the big cell.

It follows that a micro-oper on X defines (and is determined by) a canonical
KP Lax operator on the dense open subset U ⊂ X on which the associated point
of the Grassmannian is in the big cell, i.e. where the D-bundle is locally free. In
this sense the structure of micro-oper gives precise meaning to the singularities

9To be more precise, we may think of the action of ∂ as a part of an additional left action of

D on ME .
10This vector space is isomorphic to the vector space V = C((∂−1)) from Section 3.2 using

any local coordinate at x, in particular the coordinate coming from the vector field ∂ near x.
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of a microdifferential operator. Thus the space MOp(X) provides the natural
completed phase space for solutions of the KP hierarchy whose dependence on
the first KP time is meromorphic on X.

4.3.1. Trivialized Micro-Opers. The proof of Theorem 4.7 breaks down into two
parts: relating the full Sato Grassmannian with a parameter space of D-modules,
the trivialized micro–opers, and reducing a micro-oper to an “abelian gauge”.

Let U ⊂ X denote an open subset.

Definition 4.8. A trivialization of a micro-oper M on U is the data of an iso-
morphism η̃ : M ⊗D E → E on X, or equivalently of a full embedding η : M ↪→ E
(i.e. an embedding inducing such an isomorphism), compatible with the framing
on M .

Note that a micro-oper M determines an E−-module M−, the zeroth filtered
piece of the filtered E-module ME = M ⊗D E . A trivialization of a micro-oper
can equivalently be described as an isomorphism of E−-modules M− → E−. From
the noncommutative geometry point of view, a trivialization of a micro-oper M

is a formal framing, i.e. an extension of the trivialization (framing) of M on the
section X∞ at infinity to its formal neighborhood. Such extensions form a torsor
for the pro-unipotent Volterra group E×− on X and can be shown to exist on any
affine open U .

Let x ∈ X. To a trivialized micro-oper M ↪→ E on X we assign its fiber
Mx = M/(M · mx) → Ex = E/E · mx. One checks that Mx is a d-lattice in the
vector space Ex, i.e. a point of the Sato Grassmannian Gr(Ex). This defines a
map from trivialized micro-opers to the Sato Grassmannian. On the formal disc,
we show that this map is an isomorphism of moduli functors between trivialized
micro-opers and the full Sato Grassmannian. When the D-module M ↪→ E is
cyclic, we recover Sato’s description of the big cell Gr◦. This provides the analog
of Theorem 4.7 for trivialized micro-opers.

It follows from Sato’s identification of the big cell with jets of microdifferential
operators that a trivialized micro-oper (M, η) on U defines a canonical element
of the Volterra group, the wave operator WM ∈ E×− (U ′), on the open subset
U ′ ⊂ U where M is locally free. We may use the vector field ∂ to define a formal
coordinate on the formal disc D̂x at x. This coordinate induces an isomorphism
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from the Sato Grassmannian Gr = Gr(V) to the Sato Grassmannian at x, Gr(Ex),
and hence to trivialized micro-opers on D̂x. Thus any trivialized micro-oper on
X defines by restriction to D̂x a point of Gr.

The algebra E(X) acts on the left of E by endomorphisms of E as a right
E-module and hence on the collection of right D-submodules of E . Thus E(X),
considered as a Lie algebra, acts on trivialized micro-opers on X. It is then
automatic from Sato’s description of the KP flows as the action of C[∂] on Gr
that the action of the vector field ∂n restricts to the action of ∂n ∈ C[∂] on the
image of MOp(X) in Gr. Note that the first KP time, the action of ∂ itself,
simply translates infinitesimally along X.

4.3.2. Gauging Micro-Opers. To complete the proof of Theorem 4.7, we show
that every micro-oper has a canonical Γ×−-orbit of local coordinatizations on M ,
namely the trivializations in which the action of ∂M on ME is identified with the
left action of ∂ on E . To see this pick any filtered local trivialization η̃ : ME → E ,
and note that since ∂M is acting by right E-module endomorphisms of ME , η̃(∂M )
must act on E by left multiplication by an operator of the form ∂+a0+a1∂

−1+· · · .
Changing the trivialization by the left action of E×− on E , we can conjugate η̃(∂M )
to ∂, and do so uniquely up to the centralizer of ∂ in E×− , namely Γ×−. This defines
the desired Γ×−-orbit of trivialized micro-oper, which is the inverse to the forgetful
map from trivialized micro-opers. The rest of Theorem 4.7 follows easily.

4.4. KdV and Affine Opers. The point of view on micro-opers and the main
construction in Theorem 4.7 are closely parallel to the interpretation in [BF]
of the Drinfeld–Sokolov generalized KdV hierarchies [DS]. Namely the micro-
opers are the KP analogues of the loop group bundles with connection called
affine opers in [BF]. We provide a quick overview of the description of the KdV
hierarchies in [BF], which will not be needed in what follows11. We then show
how micro-opers satisfying an n-periodicity condition are naturally identified with
GLn affine opers.

Recall that GLn–affine opers on a curve X are quadruples (V,∇, V ·∞) consisting
of a vector bundle V on X×P1, a connection ∇ along X on the bundle of sections
VD× of V on the punctured disc D× at ∞ times X, and a flag V ·∞ on the fiber V∞

11We restrict our attention to the nth KdV hierarchy, associated to GLn; the construction

of [BF] applies to the Drinfeld-Sokolov hierarchies associated to any semisimple group.
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of V at X ×∞, satisfying two conditions. First, ∇ preserves the subbundle V 1
A

of regular sections of V on A1. Second, ∇ satisfies strict Griffiths transversality
(i.e. the oper condition) with respect to the filtration V ·

D× on VD× refining the
filtration by order of pole at infinity using the flag V ·∞. Namely the connection
perturbs the filtration by one,

∇∂ : V i
D× → V i+1

D× ,

and induces isomorphisms on graded pieces

∇∂ : V i
D×/V i−1

D× ' V i+1
D× /V i

D× .

Every affine oper has a canonical reduction—the Drinfeld–Sokolov gauge—to
an abelian (Heisenberg) subgroup A of the loop group. In this gauge there is an
evident action of the Heisenberg group on the space of affine opers is evident,
and this action defines the KdV hierarchy of commuting flows. It is proven in
[BF] that affine opers on the disc are parametrized by the quotient Grn/A<

of the GLn (thick) loop Grassmannian Grn = GLn(C((z−1)))/GLn(C[z]) by
the positive half A<

12 of A. Generic affine opers, the image Gr◦n/A< of the
big cell in the above Grassmannian, correspond to triples (V,∇, V ·) with V a
trivial vector bundle. The generic affine opers are then identified with KdV
Lax operators, i.e. nth order differential operators with power series coefficients
L = ∂n+u1∂

n−1+· · ·+un ∈ D. The description as a quotient of the Grassmannian
by a torus in the loop group results in an identification of the KdV phase space
with a space of vector bundles equipped with germs of Higgs fields, or equivalently
germs of spectral curves. This gives an algebraic approach to the association of
spectral curves (which are formal branched covers of P1) to these Lax operators,
and establishes a natural bijection between the moduli space of spectral data and
that of differential operators.

Proposition 4.9. There is a natural identification between affine GLn–opers on
X and micro-opers (M, ∂M ) such that ∂n

M preserves the submodule M ⊂ ME . The
identification preserves big cells: M is locally free if and only if the corresponding
affine oper is generic.

Proof. To a micro–oper we assign an affine oper as follows. Let VD× = M l
E =

ME ⊗ ω−1
X , considered as an OX((z−1))–module via the endomorphism z = ∂n

M .

12A+ in the notation of [BF].
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The right D–module structure on ME defines the desired connection ∇ on VD× .
The vector bundle V is defined by gluing the OX [z]–module V 1

A = M l and the
OX [[z−1]]–module VD = M l

< (again with z acting as ∂n
M ) using the identifications

M l ⊗OX [z] OX((z−1)) = M l
E = M l

< ⊗OX [[z−1]] OX((z−1)).

The flag V ·∞ is induced by the filtration on M<. The D–module structure on VD×

preserves the D–submodule V 1
A = M l, and perturbs the good filtration on VD×

as required by the very definition of a good filtration.

Conversely, reversing the above assignments we obtain the right D–module
ME = VD× ⊗ ωX , which is automatically an E–module since the connection
operator is invertible. The rest of the structure of micro–oper on M = V 1

A ⊗ ωX

follows easily.

It is easy to see that the big cell condition for M matches precisely the triviality
of the vector bundle V on P1, i.e. the transversality of V 1

A and z−1VD. ¤

4.5. Micro-Opers and the Adèlic Grassmannian. Micro-opers also give rise
to solutions of the KP hierarchy by a completely different route, that is closely
related to the description of ideals in the Weyl algebra and more general projective
D-modules developed in [CH1, CH2, BW1, BGK2] (see [BN1] for a different
approach, closer in spirit to the current work, as well as generalizations to higher
dimensions).

It is easy to check (see [BN2]) that a framed D-bundle on X carries a canonical
trivialization (identification with D) on the open set where it is smooth (i.e. the
local data lie in the big cell). Note that the existence of this canonical generic
trivialization is to be expected from the point of view of bundles on a ruled
surface. If S → X is a (commutative) ruled surface with section X∞ ⊂ S, then
a framed vector bundle on S has a well-defined generic splitting type. If this
generic type is trivial, then the additional data of a framing determines a unique
trivialization of the bundle away from finitely many jumping fibers.

The isomorphism classes of D-bundles on a curve X equipped with a generic
trivialization, i.e. embedding as an ideal in rational differential operatorsD(C(X)),
are in natural bijection, via the deRham functor M 7→ M ⊗D O, with the adèlic
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Grassmannian Grad(X) of Wilson [W3]. 13 The latter parametrizes certain sub-
spaces of the rational functions C(X) on X, defined by independent conditions
at finitely many points of X. Equivalently, Grad(X) parametrizes torsion-free
sheaves of rank one (with generic trivialization) on cuspidal quotients of X, singu-
lar curves having X as their bijective normalization. (The D-module is obtained
from the torsion-free sheaf by a variant of the induction functor from O-modules
on X to D-modules, M 7→ M ⊗O D.)

In this way we can see that Grad(X) appears as a phase space for algebro-
geometric solutions (à la Krichever) of the KP hierarchy, attached to all cuspidal
quotients of X. Namely, to a rank one torsion-free sheaf on a curve, equipped with
a trivialization near a smooth point ∞, one assigns its vector space of sections
away from ∞, which (using the trivialization and a local coordinate z−1) define
a subspace of C((z−1)), i.e. a point in the Sato Grassmannian Gr(C((z−1))).

Thus we have a construction of algebro-geometric solutions of KP from micro-
opers on X (which depends only on the underlying D-bundle). Note that here
X and its cuspidal quotients are playing the role of the spectral curve of KP,
while in our construction in Theorem 4.7 the curve X corresponds to the first
time of KP, i.e. the (usually formal) curve where Lax operators live. For a
curve of genus greater than one, there is no intersection between these spaces
of “algebraic” (Krichever) and “differential” (micro-oper) solutions to KP. In the
rational, trigonometric and elliptic cases, it follows from Theorem 5.8 that all dif-
ferential solutions (i.e. micro-opers on cubic curves) are in fact algebro-geometric
solutions, assigned to tangential covers. In the rational case, furthermore, there is
a symmetry of spectral and differential variables, namely the Fourier transform,
giving rise to the bispectral involution of Wilson [W1] identifying the two classes
of solutions—see Section 6.2.

5. Fourier Duality

5.1. The Fourier–Mukai Transform. We recall the Fourier–Mukai transform
for abelian varieties, in the special case of an elliptic curve E:

Theorem 5.1. Let E denote an elliptic curve and P the Poincaré sheaf on E×E.

13More precisely, one obtains the adèlic Grassmannian by also requiring that M ⊗D O has

index 0 in C(X) at every point.
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(1) (Mukai [Muk]) The functor F : M 7→ Rp2∗(p∗1M ⊗ P) defines an autoe-
quivalence of the bounded derived category of coherent sheaves on E (and
likewise for quasicoherent sheaves).

(2) (Laumon [La2], Rothstein [Ro2]) F induces an equivalence F : Db(DE) →
Db(E\) of bounded derived category of coherent D-modules on E and of
coherent sheaves on E\. 14

Morally, F describes a coherent sheaf on E as a “direct integral” of degree
zero line bundles, which are parametrized by points of the dual abelian variety,
E itself. The extension in the second part writes a D-module on E as a “direct
integral” of flat bundles on E, which are parametrized by points of E\. From the
noncommutative geometry point of view, the first part defines an automorphism
of the “noncommutative variety” Db(E) defined by E, while the second identifies
the noncommutative variety T ∗~E with that underlying the commutative variety
E\.

In [BN2] we extend the Fourier–Mukai transform to arbitrary Weierstrass cu-
bics; see [FM] for the case of semistable bundles of degree zero. We also generalize
the Fourier–Mukai transform for D-modules to the singular setting, utilizing re-
sults of [PRo] on Fourier transforms for D-algebras. More precisely, we consider
the sheaf Dlog of log-differential operators with respect to the singularity of the
cubic: this is the subsheaf of all differential operators generated by OE and
the translation-invariant vector fields coming from the action of the group G on
E. We introduce the surface E\ → E as the affine bundle classifying rank one
torsion-free sheaves with a log connection (Dlog-action). Reformulating the above
theorems in this setting (with extra care taken along the singularities) we obtain:

Theorem 5.2. [BN2] Let E denote a cubic curve and P the Poincaré sheaf on
E × E.

(1) The functor F : M 7→ Rp2∗(p∗1M ⊗ P) defines an autoequivalence of the
bounded derived category of coherent sheaves on E (and likewise for qua-
sicoherent sheaves).

(2) F induces an equivalence F : Db(Dlog
E ) → Db(E\) of bounded derived

category of coherent Dlog-modules on E and of coherent sheaves on E\.

14We consider coherent sheaves on E\ as π∗OE\ -modules on E.
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The Fourier–Mukai transform is compatible with filtrations on D-modules and
OE\-modules; as a result, it may be used (as we will see below) to relate framed
D-bundles to coherent sheaves on E

\.

Remark 5.3. It is useful to note that a degenerate case of the extended Fourier
transform gives an autoequivalence of the derived category of the surface E×A1,
i.e. of the derived category of modules over the sheaf of algebras OE [s]. This
latter algebra arises as the common degeneration of D and of the coordinate ring
OE\ .

5.2. Torsion-Free Sheaves and Spectral Sheaves. In this section we would
like to describe the effect of the extended Fourier–Mukai transform on framed
torsion-free sheaves on T ∗~E, that is, on framed D-bundles (see Definition 4.4).

Remark 5.4. The same techniques apply to the commutative limit E × P1, and
can be used to give a new proof of the ADHM classification of framed torsion-free
sheaves on P2 by quiver data. Namely, we replace the completion P2 of A2 by
the completion Ga ×P1, and the Koszul duality and Beilinson spectral sequence
by the Fourier–Mukai transform on Ga.

We will consider torsion-free sheaves on T ∗~E, i.e. D-bundles, trivialized along
the section E∞ (and more generally in [BN2] sheaves framed by an arbitrary
semistable vector bundle V on E∞ of degree 0). We let Mc2(T ∗~E) denote the
moduli space of these framed D-bundles.

On the Fourier dual side, we will consider coherent sheaves on E
\ whose restric-

tion to the section E∞ is identified with the skyscraper sheaf Ob at the basepoint.
It follows that such a sheaf has support of dimension at most one. Imposing ap-
propriate normalization conditions, these are precisely the CM spectral sheaves
on E

\ from Definition 2.1. These are automatically rank one torsion-free sheaves
supported on a curve Σ ⊂ E

\ of some degree n over E.

The Fourier transform of a framed D-bundle is a priori a complex of sheaves,
whose restriction to E∞ is identified with the torsion sheaf Ob, the Fourier trans-
form of O. We then prove that the Fourier transform is itself in fact a sheaf, in
cohomological degree one, and of pure dimension one, and thus defines a framed
spectral sheaf. We obtain the following theorem:
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Theorem 5.5. [BN2] Fix a cubic curve E. The Fourier–Mukai transform induces
an isomorphism of the moduli space Mn(T ∗~E) of framed D-bundles with c2 = n

and the Calogero-Moser space CMn(E), identified as the space of framed spectral
curves of degree n over E.

This is the special case of a result describing moduli of D-bundles with general
framing at infinity in terms of spectral sheaves on E

\. Again, one has an analogous
result if one replaces both T ∗~E and E

\ by E × P1—however, in that case one
should naturally replace the commutative analog of D-bundles, i.e. torsion-free
sheaves, by the larger class of perverse bundles [BN4].

Thus we obtain a description of the completed phase space of the Calogero–
Moser n-particle system as a “configuration space of n points on the quantized
cotangent bundle”. Note that this is a stronger statement than the natural iden-
tification of the (uncompleted) phase space of distinct particles with a configura-
tion space on the cotangent bundle, or more generally the birational identification
of Hitchin systems with Hilbert schemes of points on (commutative) cotangent
bundles, à la Hurtubise [Hu].

Recall that the Hilbert scheme of n points on A2 has an elementary description,
as the set of conjugacy classes of pairs of commuting n × n matrices [X, Y ] = 0
with a common cyclic vector C[X, Y ] · v = Cn (the associated ideal is the kernel
of the projection C[X, Y ] → Cn). Theorem 5.5 in the rational (cuspidal) case
E = Ga, combined with the elementary description of the rational Calogero–
Moser phase space, has the following immediate consequence:

Corollary 5.6. The set of isomorphism classes of finitely generated, rank 1,
torsion-free right modules for the first Weyl algebra DA1 is in natural bijective
correspondence with the union, over all n ≥ 0, of the spaces

CMn = {(X, Y ) ∈ gln × gln
∣∣ [X, Y ] ∈ O}/GLn.

This result is immediately implied by combining the two descriptions of the
adèlic Grassmannian in [W3] and [CH1], and was proven in [BW2, BGK1, BGK2]
using calculations in noncommutative algebraic geometry. Our approach also
gives concrete descriptions of ideals in D over Gm and over an elliptic curve, as
well as higher rank versions.
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See also [BN4] for an approach via Koszul duality (in the form of a “fiberwise
Beilinson equivalence”) that works for curves of arbitrary genus.

Remark 5.7. What we describe in this section is the Fourier transform for D-
modules on the projective curve Ga. There is another Fourier transform for
D-modules on A1 = Ga, which we discuss in Section 6.2, and which in particular
gives a convenient realization of Wilson’s bispectral involution.

5.3. The KP/CM Correspondence. As we have mentioned earlier, an impor-
tant special class of solutions to the KP equation, first investigated by Krichever
[Kr1, Kr2] and the Chudnovskys [CC], consists of functions u = u(t, x, y) which
are rational, trigonometric or elliptic functions of the first KP time t, i.e. ex-
tend to rational functions on the additive group C, the multiplicative group C×

or an elliptic curve E. An analogous question for the KP hierarchy (studied in
[Shi, W3] in the rational case) seeks to describe KP Lax operators L which are
rational, trigonometric or elliptic as functions of the first KP time, namely those
L whose orbit under the vector field ∂

∂t closes up to (a Zariski open subset of) an
additive, multiplicative or elliptic group.

A complete description of the rational, trigonometric and elliptic solitons of
KP follows from the Fourier-Mukai transform, specifically Theorem 5.5 identify-
ing framed D-bundles with second Chern class n with the nth Calogero-Moser
phase space. Indeed, we have identified KP Lax operators with micro-opers,
which are framed D-bundles with an additional endomorphism ∂M of their mi-
crolocalizations. As we explain in [BN2, Section 3.6.1], the collection of such
additional choices of microlocal endomorphisms assembles into a Lie algebroid,
the KP algebroid, over the moduli space of D-bundles. Similarly, the Hamilton-
ian flows on the CM phase space are invariantly captured by the action of a Lie
algebroid, the Lie algebroid of tweaking flows [BN2, BN3] on the CM phase space.

Theorem 5.5 then allows us to identify these two Lie algebroids, intertwining
their actions. Thus, we identify the flows on micro-opers, i.e. meromorphic KP
Lax operators, with the flows in the Calogero–Moser particle system:

Theorem 5.8 ([BN2], Theorem 3.25). Let E denote an arbitrary cubic curve.

(1) The isomorphism between the moduli space of D-bundles on E with c2 =
n and the nth Calogero-Moser space CMn(E) provided by Theorem 5.5
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identifies the algebroid of KP flows with the algebroid of Calogero-Moser
flows.

(2) This isomorphism identifies the positions of the cusps of a D-bundle (or
poles of a KP Lax operator) and of the corresponding Calogero–Moser
particles.

The proof of the first part of the theorem is immediate from the descriptions
of both KP flows and CM flows, via the actions of the KP and CM algebroids,
as modifications of sheaves along the divisor at infinity. Indeed, let L denote
a CM spectral sheaf, supported on a curve Σ ⊂ E

\ with unique, transversal
intersection o with the curve E∞, and M the D-bundle corresponding to L. The
CM flows act on L through modifications at the point o (“tweaking flows”):
restricting L to the formal punctured neighborhood of E∞, we obtain a sheaf
whose endomorphism algebra is isomorphic to the field of Laurent series; the polar
parts of Laurent series act as infinitesimal deformations of L. This commutative
algebra of endomorphisms is identified by the Fourier–Mukai transform with the
algebra of endomorphisms of the E-module ME = M ⊗D E (the restriction of M

to the “formal punctured neighborhood” of the section E∞ ⊂ T ∗~E). But we
have described the KP flows on micro-opers precisely through the action of these
endomorphisms, more specifically of endomorphisms induced by powers of the
endomorphism ∂M , so that the identification of the flows is straightforward.

The statement about locations of the poles is also easy using the Fourier–
Mukai transform: recall (equation 2.3) that a configuration of n Calogero–Moser
particles with distinct positions is described, in the Hitchin system description, by
a spectral sheaf that pushes forward to the direct sum of line bundles O(qi−o) on
E. These line bundles correspond to the n points qi under the Fourier transform,
and these points determine the positions at which one creates cusps in the micro-
oper.

Remark 5.9. It is instructive to compare the above description of elliptic solitons
with the D-module description of the Krichever construction due to Nakayashiki
and Rothstein [N1, N2, Ro1, Ro2]. Assume for simplicity that the micro-oper
M on E corresponds to a spectral sheaf which is a line bundle L on a smooth
spectral curve Σ → E. The dual to the map JacΣ → E is a map E → JacΣ,
which is tangent to Σ ↪→ JacΣ at the point x = Σ ∩ o—in other words Σ → E

is a tangential cover ([TV1, DM]). The D-bundle M on E is then the restriction
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to E of the Krichever D-module Krich(L) on Jac Σ, obtained (as explained in
[Ro2]) as the Fourier–Mukai transform of the Abel–Jacobi pushforward of L(∗x)
from Σ to JacΣ. The cusps of the D-bundle M correspond to the intersection
points of E with the theta divisor of Jac Σ.

6. Further Topics

In this section we sketch some further applications of the techniques described
in the previous directions.

6.1. The Multicomponent KP/Spin Calogero–Moser Correspondence.
The description and extension of the KP/CM correspondence outlined in this
paper are worked out in greater generality in the paper [BN2]. In particular,
we extend the correspondence to a relation between the multicomponent KP
hierarchy and the spin generalizations of the Calogero–Moser system, generalizing
and refining the results of [BBKT, T1] in several directions.

The multicomponent KP hierarchy is the matrix generalization of the KP hier-
archy, where we replace the algebra E with gln(E), the algebra of n by n matrices
over E , and the Sato Grassmannian with the n-component Grassmanian Gr(V⊕n)
– see, for example, [LM, P] for more details. The geometric interpretation of KP
in terms of micro–opers is extended to this setting by replacing D-line bundles by
higher rank D-bundles, with framing by a general semistable vector bundle of de-
gree 0. Higher rank micro–opers are a Higgs refinement of this structure, namely
they carry actions of commutative algebras of matrix microdifferential operators.
On the Fourier dual side one obtains general spectral curves in E

\, whose geom-
etry is determined by the framing conditions at infinity. In the case of trivially
framed D–bundles, we obtain precisely the spin generalization of the Calogero–
Moser system, [GH], and thus obtain an extension of Wilson’s description of pole
collisions to a spin CM/multicomponent KP correspondence, in rational, trigono-
metric and elliptic settings. For other kinds of framings we obtain “multicolored”
spin Calogero–Moser systems, describing pole motion of different reductions of
multicomponent KP.

Among the reductions of multicomponent KP are the 2D Toda lattice hierar-
chies. Using a difference analog of the techniques of this paper, we develop in
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[BN5] an extension of the geometric picture described above to a Toda/Ruijsenaars-
Schneider correspondence, extending the results of [KrZ].

6.2. Bispectrality. Let us recall the notion of bispectrality of differential op-
erators, introduced by Duistermaat and Grünbaum [DG]. Differential operators
L(t, ∂t) and Λ(z, ∂z) in two variables t, z are said to be bispectral if there exists
a function ψ(z, t) which is simultaneously a parametric family of eigenfunctions
for L and Λ,

L · ψ(z, t) = f(z)ψ(z, t), Λ · ψ(z, t) = g(t)ψ(z, t)

with nonconstant f, g. G. Wilson [W1] discovered a remarkable symmetry of the
collection of rational solitons (decaying at infinity) of KP, the bispectral involu-
tion, which expresses the bispectrality of these solutions. Namely to each point
W in Wilson’s adèlic Grassmannian (the parameter space of the rational solitons)
is associated a Baker function ψW (z, t), depending on the spectral parameter z

and the KP times t, which is a parametric family of joint eigenfunctions for a
commutative ring of differential operators (this is the ring of functions on the as-
sociated spectral curve). The bispectral involution W 7→ b(W ) is characterized by
the property that it interchanges the spectral parameter with the first KP time,
ψb(W )(z, t) = ψW (t, z) (though it is by no means clear from this characterization
that the desired involution exists). It follows that the KP solution correspond-
ing to W is bispectral: it is an eigenfunction for ordinary differential operators
both z and in t. In [BW1], Berest and Wilson use the Cannings–Holland bijec-
tion between the adèlic Grassmannian and ideals in the Weyl algebra D(A1) to
give a simpler description of the bispectral involution and derivation of its main
properties. Namely they identify it with the action of the antiautomorphism

F : D(A1) → D(A1), t 7→ ∂t, ∂t 7→ t

of the Weyl algebra, i.e. the geometric Fourier transform composed with the map
t 7→ −t.15

Our description of the rational KP solutions in terms of micro-opers gives a
simple conceptual framework for bispectrality in rational KP. The crucial obser-
vation is that micro-opers on A1 define KP solutions in two independent fash-
ions, as was explained in Section 4.5, which are interchanged by the geometric

15See the beautiful survey articles [W2, W4, W5] for overviews of the work of Wilson and

Berest–Wilson.
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Fourier transform. More precisely, we consider micro-opers on P1 that are lo-
cally free as D-modules near ∞—such micro-opers are in bijection with points
of Grad. We then define natural embeddings of this space in the Sato Grass-
mannians Gr(C((∂−1

t ))) and Gr(C((t−1))). The first map from micro-opers to
the Sato Grassmannian uses Theorem 4.7: a micro-oper on P1, when expanded
near z = 0, gives a KP Lax operator and thus by Sato’s construction a point of
the Grassmannian Gr(C((∂−1

t ))). The second map uses a micro-oper to define a
torsion-free sheaf on a cuspidal quotient of A1, which (using natural trivializa-
tion data at ∞) defines a subspace of C((t−1)), i.e. a point in Gr(C((t−1))). The
geometric Fourier transform, which defines an autoequivalence of the category
of D-modules on A1, induces an involution of this space of micro-opers on P1.
The Fourier transform also identifies C((z−1)) and C((∂−1

t )), their two Grass-
mannians, and the collections of KP flows on these Grassmannians given by the
action of C[∂t] and C[t], respectively. It is easy to see that this identification
interchanges the role of the spectral parameter and of the first KP time, and
hence gives the bispectrality of the rational KP solutions.

6.3. W1+∞ and the Adelic Grassmannian. In [BN6] we describe vertex alge-
bra structures associated toD-bundles through the adelic Grassmannian. Namely,
for a finite set I, the functor of flat families of D-bundles trivialized away from
I points forms an ind-scheme of ind-finite type over XI . The directed system of
these spaces over I, together with factorization isomorphisms describing the de-
composition of these spaces with respect to disjoint unions I

∐
J , make the adelic

Grassmannian into a factorization ind-scheme ([BD2]). Moreover the (twisted)
delta-functions at the trivial bundle form a factorization algebra, which we iden-
tify with the W1+∞-vertex algebra (the enveloping vertex algebra of the central
extension of the Lie algebra D(K)). It follows that the moduli stacks of D-bundles
are uniformized by W1+∞-vertex algebra, and that we obtain a localization for
representations of the latter algebra (in other words a definition of sheaves of
twisted conformal blocks). If we replace trivializations of D-bundles by identi-
fications with some nontrivial D-bundle, we obtain a new continuous family of
chiral algebras, parametrized by geometry of cusps of D-bundles, all of which
localize on D-moduli spaces. This provides a starting point for the development
of the so-called “W-geometry” from string theory.
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6.4. Hilbert Schemes and Separation of Variables. The space CMn(E) of
Calogero–Moser spectral sheaves may be identified birationally with the Hilbert
scheme of n points on E

\, as in [Hu] and in [GNR], where this description is inter-
preted as Sklyanin’s separation of variables. A remarkable feature of the KP/CM
correspondence, however, is that on the D-side the entire space CMn(E) is re-
alized biregularly as a Hilbert scheme of points (moduli of rank one torsion-free
sheaves) on the noncommutative cotangent bundle of E. The description of po-
sitions and “momenta” of the cusps of a generic D-bundle M (the latter being
coordinates on the one-dimensional Schubert cells in the adelic Grassmannian),
which give the Calogero–Moser particles, determine a canonical birational iden-
tification with a Hilbert scheme of points on a (commutative) twisted cotangent
bundle. This picture demonstrates that in order to allow collisions, the proper
completion of the phase space is the noncommutative Hilbert scheme, to which
the flows extend, rather than the commutative one. Also our description of the
noncommutative separation of variables as a Fourier–Mukai transform establishes
the speculation of [GNR] that separation of variables is a T-duality (see also [KS]).

6.5. Noncommutative Instantons. D-bundles on a curve X, namely holomor-
phic bundles on the quantized cotangent bundle T ∗~X (see Section 4.1), are part of
the subject of noncommutative gauge theory ([Ne2]): one expects a noncommu-
tative version of the Donaldson–Uhlenbeck–Yau Theorem to identify D-bundles
with noncommutative Yang–Mills instantons. In the rational case, i.e. on the
quantum plane T ∗~A

1, such a correspondence is provided a posteriori by the ex-
plicit description of D-bundles by matrices in Corollary 5.6, and its higher rank
generalizations. Namely, D-bundles on A1 are classified by the deformed ADHM
data, which was shown by Nekrasov and Schwarz [NeS] to describe the Yang–
Mills instantons on noncommutative R4 (see also [W3, KKO, BrNe, BGK2]).
These noncommutative instantons were proposed as a gauge-theoretic substitute
for the moduli spaces of torsion-free sheaves, resolving the pointlike instanton
singularities of the commutative instanton moduli spaces on P2. The moduli
of noncommutative instantons (i.e. D-bundles on A1) are algebraically nontriv-
ial (albeit diffeomorphic) deformations of the classical instanton moduli spaces.
More generally, bundles on T ∗~X (i.e. D-bundles on X) appear to be a good alge-
braic model for the systems of D0 branes bound to a D4 brane by a background
B-field [NeS, KS, GNR]. While the D-bundles are projective, making possible
their noncommutative instanton interpretation (e.g. [Fu]), they are not locally
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free, with singularities (cusps) at special points which correspond to the posi-
tion and momenta of the corresponding Calogero–Moser particles, so that the
D0 branes in the D4 brane are naturally modeled by a many-body system. The
noncommutativity of T ∗~X, however, masks these singularities within projective
modules.
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[AMP] A. Álvarez, J. Muñoz and F. Plaza, The algebraic formalism of soliton equations

over arbitrary base fields. In Workshop on Abelian Varieties and Theta Functions

(Morelia 1996), Aportaciones Mat. Investig. 13, 3–40, Soc. Mat. Mexicana, 1998. alg-

geom/9606009.

[BB] O. Babelon and D. Bernard, The Sine–Gordon solitons as a N–body problem, Phys.

Lett. B 317 (1993), no. 3, 363–368. arXiv:hep-th/9309154.

[BBKT] O. Babelon, E. Billey, I. Krichever and M. Talon, Spin generalization of the Calogero–

Moser system and the matrix KP equation. In Topics in Topology and Mathematical

Physics, Amer. Math. Soc. Trans. Ser.2 170, 83–119, Amer. Math. Soc., Providence,

RI, 1995.

[BGK1] V. Baranovsky, V. Ginzburg, and A. Kuznetsov, Quiver varieties and a noncommutative

P2, Compositio Math. 134 (2002), no. 3, 283–318. arXiv:math.AG/0103068.

[BGK2] V. Baranovsky, V. Ginzburg, and A. Kuznetsov, Wilson’s Grassmannian and a noncom-

mutative quadric, Int. Math. Res. Not. 21 (2003), 1155–1197. arXiv:math.AG/0203116.

[BL] A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions, Comm.

Math. Phys. 164 (1993), 385-419. arXiv:math.AG/9309003.

[BD1] A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke

eigensheaves, in preparation, available at www.math.utexas.edu/∼benzvi.

[BD2] A. Beilinson and V. Drinfeld, Chiral algebras, in preparation, available at

www.math.utexas.edu/∼benzvi.
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