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1. Introduction

It was shown in [1] that every compact symplectic 4-manifold (X, ω) can be re-
alized as an approximately holomorphic branched covering of CP2 whose branch
curve is a symplectic curve in CP2 with cusps and nodes as only singularities
(however the nodes may have reversed orientation). Such a covering is obtained
by constructing a suitable triple of sections of the line bundle L⊗k, where L is
a line bundle obtained from the symplectic form (its Chern class is given by
c1(L) = 1

2π [ω] when this class is integral), and where k is a large enough integer.
Moreover, it was shown in [5] that the braid monodromy techniques introduced
by Moishezon and Teicher in algebraic geometry (see e.g. [12, 14, 20]) can be
used in this situation to derive, for each large enough value of the degree k, mon-
odromy invariants which completely describe the symplectic 4-manifold (X, ω)
up to symplectomorphism. These invariants are also related to those constructed
by Donaldson and arising from the monodromy of symplectic Lefschetz pencils
[9], which also are defined only for large values of k.

The monodromy invariants arising from branched coverings or symplectic Lef-
schetz pencils give, in principle at least, complete information about the topology
of a symplectic manifold. Given a suitable way to extract numerical invari-
ants from them, one can hope to use them to symplectically tell apart certain
pairs of mutually homeomorphic algebraic surfaces of general type, such as the
Horikawa manifolds, which no currently available symplectic invariant can distin-
guish. However, their practical usefulness is immensely limited by the difficulties
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involved in their calculation, even though the computations by Moishezon, Te-
icher and Robb of the braid monodromies for certain simple types of algebraic
surfaces (CP2, CP1 × CP1, complete intersections) [20] give some reason to be
hopeful (see also [4] for other examples). Moreover, the difficulty of comparing
two braid group or mapping class group factorizations up to Hurwitz equivalence
is a major obstacle. In fact, the general Hurwitz problem in braid groups is
known to be undecidable [11]; however the argument does not seem to apply to
the specific case where the factors are powers of half-twists.

One of the main technical problems arising in this program is that the mon-
odromy only becomes a symplectic invariant when the degree is large enough,
which makes it necessary to handle whole sequences of braid factorizations. Even
when the entire sequence can be obtained directly out of Moishezon-Teicher style
calculations [20, 4], it is very difficult to understand how to extract meaningful
information out of the monodromy data, due to the lack of a clear relationship
between the monodromies arising for different values of the twisting parameter
k.

The aim of this paper is to describe an explicit formula relating the braid
monodromy invariants obtained for a given degree k to those obtained for the
degree 2k. The interest of such a formula is obvious from the above considerations,
especially as direct computations of braid monodromy often become intractable
for large degrees. We also give a similar formula for the monodromy of symplectic
Lefschetz pencils; this formula, which may have even more applications than that
for braid monodromies, answers a question first considered by Donaldson and for
which a partial (non-explicit) result has been obtained by Smith [19]. Although
the formula for pencils is much simpler than that for branched coverings, the
currently available technology for monodromy calculations seems insufficient to
allow a direct proof.

The techniques introduced in this paper suggest a wide range of applications.
First of all, calculations similar to those in this paper appear in any situation
involving iterated branched coverings ; for example, the invariants defined by
Moishezon and Teicher should become effectively computable for a much larger
class of algebraic surfaces (see e.g. §7 of [4]).

An obvious class of applications is to study the properties of high-degree
branched coverings or Lefschetz pencils. For example, Smith has shown using
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a degree doubling argument that any compact symplectic 4-manifold admits a
symplectic Lefschetz pencil without reducible singular fibers [19]. Although this
specific result can be obtained just from the universality property of degree dou-
bling rather than from the actual formula, other applications require a more
detailed understanding of the degree doubling process.

More importantly, the degree doubling formula provides precise information
on the behavior of various monodromy-related invariants as the parameter k in-
creases. For example, it is in principle possible to describe how the fundamental
group of the complement of the branch curve, or more generally any other in-
variant directly related to the monodromy group of the branched covering or
Lefschetz pencil, depends on the parameter k. It is likely that the conjectures
formulated in [4] can be approached from this perspective.

In a similar direction, it is reasonable to expect the degree doubling formula to
yield a stability result for the “directed Fukaya categories” introduced by Seidel
as invariants of Lefschetz pencils [17]. Unlike the direct calculation methods fol-
lowing Moishezon and Teicher, our formula makes it immediately apparent how
Lagrangian spheres lying in standard position inside the degree k pencil auto-
matically lie inside the degree 2k pencil; the explicit description of the additional
vanishing cycles makes it possible to hope that, under certain assumptions, the
degree 2k pencil can be shown to contain no other such spheres.

Yet another question to which our result may give an answer is that of whether
every branched covering over CP2 (or every symplectic Lefschetz pencil) is “of
Donaldson type” (see the remark at the end of §1.2).

Finally, extensions to higher-dimensional settings of the stabilization proce-
dure described here are theoretically possible, even though it remains uncertain
whether it is actually possible to carry out the calculations.

The remainder of this section is devoted to an overview of braid monodromy
invariants (§1.1), followed by a sketch of our approach to the degree doubling
process and a statement of the main results (§1.2 and §1.3).

1.1. Braid monodromy invariants. We start by recalling the notations and
results (see [5] or [2] for details). Let f : X → CP2 be an approximately holomor-
phic branched covering map as in [1] and [5] : its topology is mostly described by
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that of the branch curve D ⊂ CP2, which is symplectic and approximately holo-
morphic. The only singularities of D are double points (with either orientation)
and cusps (with the complex orientation only) ; the branching is of order 2 at
every smooth point of D. Fix a generic projection π : CP2 − {pt} → CP1 whose
pole does not belong to D. We can assume that D is transverse to the fibers of
π everywhere except at a finite set of non-degenerate tangency points, where a
local model is x2 = y with projection to the x component ; moreover, we can
also assume that all the special points of D (tangencies and singular points) lie
in distinct fibers of π, and that none of them lies in the fiber above the point at
infinity in CP1.

The idea introduced by Moishezon in the case of a complex curve is that,
restricting oneself to the preimage of the affine subset C ⊂ CP1, the monodromy
of π|D around its critical levels can be used to define a map from π1(C−crit) with
values in the braid group Bd on d = deg D strings, called braid monodromy (see
e.g. [12]) ; this monodromy is encoded by a factorization of the central element
∆2

d of the braid group Bd. Namely, the monodromy around the point at infinity
in CP1, which is given by the central braid ∆2

d, decomposes as the product of the
monodromies around the critical levels of the projection to CP1, each of these
being conjugate to a power of a half-twist. This construction naturally depends
on the choice of an ordered set of generating loops for the free group π1(C−crit).

The same techniques extend almost immediately to the symplectic setting, and
the resulting braid factorizations are of the form

∆2
d =

∏

j

(Q−1
j X

rj

1 Qj),

where X1 is the first standard generator of Bd (a positive half-twist), Qj are
arbitrary braids and rj ∈ {−2, 1, 2, 3}.

The case rj = 1 corresponds to a tangency point, where the curve D is smooth
and tangent to the fiber of the projection π ; the case rj = 2 corresponds to
a nodal point of D ; the case rj = −2 is the mirror image of the previous one,
and corresponds to a negative self-intersection of D (this is the only type of
point which does not occur in the algebraic case) ; and finally the case rj = 3
corresponds to a cusp singularity of D.
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The above-described braid factorization completely determines the topology
of the curve D. However it is well-defined only up to the following two algebraic
operations. A Hurwitz move is the replacement of two consecutive factors A and
B by ABA−1 and A respectively (we will say that the factor A has been “moved
to the right”; the opposite move, which amounts to replacing A and B by B

and B−1AB respectively, will be referred to as “moving B to the left”). Another
possibility is global conjugation, i.e. conjugating all factors simultaneously by a
given braid. A Hurwitz move amounts to an elementary change in the choice
of generating loops for the free group π1(C − crit), while a global conjugation
amounts to a change of trivialization of the reference fiber of π|D. Two factoriza-
tions represent the same curve D if and only if they are Hurwitz and conjugation
equivalent.

To recover a map X → CP2 from the monodromy invariants we also need a
geometric monodromy representation. Let D ⊂ CP2 be a curve of degree d with
cusps and nodes (possibly negative), and let C ⊂ CP2 be a fiber of the projection
π : CP2−{pt} → CP1 which intersects D in d distinct points q1, . . . , qd. Then, the
inclusion of C−{q1, . . . , qd} into CP2−D induces a surjective homomorphism on
the fundamental groups. Small loops γ1, . . . , γd around q1, . . . , qd in C generate
π1(CP2 −D), with relations coming from the cusps, nodes and tangency points
of D. These d loops will be called geometric generators of π1(CP2 −D).

Recall that there exists a natural right action of Bd on the free group Fd =
π1(C− {q1, . . . , qd}) ; denote this action by ∗, and recall the following definition
[14] :

Definition 1. A geometric monodromy representation associated to a curve D ⊂
CP2 is a surjective group homomorphism θ from the free group Fd = π1(C −
{q1, . . . , qd}) to the symmetric group Sn of order n, such that the θ(γi) are trans-
positions (thus also the θ(γi ∗Qj)) and

θ(γ1 . . . γd) = 1,

θ(γ1 ∗Qj) = θ(γ2 ∗Qj) if rj = 1,

θ(γ1 ∗Qj) and θ(γ2 ∗Qj) are distinct and commute if rj = ±2,

θ(γ1 ∗Qj) and θ(γ2 ∗Qj) do not commute if rj = 3.
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In this definition, n corresponds to the number of sheets of the covering
X → CP2 ; the various conditions imposed on θ(γi ∗ Qj) express the natu-
ral requirements that the map θ : Fd → Sn should factor through the group
π1(CP2 −D) and that the branching phenomena should occur in disjoint sheets
of the covering for a node and in adjacent sheets for a cusp. The surjectivity of θ

corresponds to the connectedness of the 4-manifold X; more precisely, the image
of θ is a subgroup of Sn generated by transpositions and acting transitively on
{1, . . . , n}, which implies surjectivity.

Operations such as Hurwitz moves and global conjugations should be con-
sidered simultaneously on the level of braid factorizations and on that of the
corresponding geometric monodromy representations : a Hurwitz move does not
affect the geometric monodromy representation, but when performing a global
conjugation by a braid Q it is necessary to compose θ with the automorphism of
Fd induced by Q.

In the symplectic case the curve D can have negative nodes, and as a con-
sequence the uniqueness result obtained in [1] only holds up to cancellation of
pairs of nodes. An additional possibility is therefore a pair cancellation move
in the braid factorization, where two consecutive factors which are the exact in-
verse of each other are removed from the factorization. The converse move (a
pair creation) is also allowed, but only when it is compatible with the geometric
monodromy representation : adding (Q−1 X−2

1 Q).(Q−1 X2
1 Q) somewhere in the

braid factorization is only legal if θ(γ1 ∗Q) and θ(γ2 ∗Q) are commuting disjoint
transpositions.

Definition 2. Two braid factorizations (and the corresponding geometric mon-
odromy representations) are m-equivalent if there exists a sequence of operations
which turn one into the other, each operation being either a global conjugation, a
Hurwitz move, or a pair cancellation or creation.

We now summarize the main results of [5] :

Theorem 1 ([5]). The compact symplectic 4-manifold X is uniquely characterized
by the sequence of braid factorizations and geometric monodromy representations
corresponding to the approximately holomorphic coverings of CP2 canonically ob-
tained from sections of L⊗k for k À 0, up to m-equivalence.
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It was also shown in [5] that conversely, given a (cuspidal negative) braid
factorization and a geometric monodromy representation, one can recover in a
canonical way a symplectic 4-manifold (up to symplectomorphism).

1.2. The degree doubling process. We now turn to the topic at hand, namely
the phenomena that occur when the degree k is changed to 2k.

In all the following, we will assume that k is large enough for the uniqueness
properties of Theorem 1 to hold (if the considered coverings happen to be alge-
braic this assumption is unnecessary). This makes it possible to choose the most
convenient process for constructing the branch curve for degree 2k while ensur-
ing that the resulting branch curve is indeed equivalent to the canonical one.
As observed in [5], one especially interesting way to obtain the covering map
f2k : X → CP2 is to start with the covering map fk : X → CP2 and compose it
with the Veronese covering V2 : CP2 → CP2 given by three generic homogeneous
polynomials of degree 2 (this is a 4:1 covering whose branch curve has degree 6,
see below). The map V2 ◦ fk is clearly an approximately holomorphic covering
given by sections of L⊗2k, and its branch curve is the union of the image by V2 of
the branch curve Dk of fk and n = deg fk copies of the branch curve C2 of V2 (the
branch curve C2 is present with multiplicity n because branching occurs at every
preimage by fk of a branch point of V2). However at every point where V2(Dk)
intersects C2 the map V2 ◦ fk presents a non-generic singular behavior : e.g.,
composing the branched coverings (x, y) 7→ (x2, y) and (x, y) 7→ (x, y2) yields the
singular map (x, y) 7→ (x2, y2), which needs to be perturbed in order to obtain a
generic behavior. Further small perturbations are required in order to separate
the multiple copies of C2 ; nevertheless, f2k is obtained as a small perturba-
tion of V2 ◦ fk and its branch curve D2k is obtained as a small perturbation of
V2(Dk) ∪ nC2.

For all large enough values of k, the approximate holomorphicity and transver-
sality properties of the above-described perturbation of V2 ◦fk make it subject to
the uniqueness results in [1] and [5] : the coverings constructed directly and those
obtained by composition with V2 and perturbation therefore become isotopic. So,
for all large values of k we can indeed hope to compute the braid factorization of
f2k by this method.
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Also observe that a generic isotopy (1-parameter deformation family) of the
curve Dk behaves “nicely” with respect to the chosen Veronese covering V2, and
therefore yields a generic isotopy of the curve V2(Dk). Since generic isotopies do
not modify braid factorizations (up to Hurwitz and conjugation equivalences in
the algebraic category, or up to m-equivalence in the symplectic category), we
are allowed to perform a generic isotopy on the curve Dk to place it in the most
convenient position with respect to the ramification curve of V2, and this will not
affect the end result.

An important consequence of this observation is that the k → 2k formula we
are looking for is universal in the sense that it does not depend on the branch
curve Dk itself but only on its degree d and on the degree n of the covering fk.
Indeed, an isotopy can be used to make sure that all the special points of Dk

(cusps, nodes and tangencies) lie in a small ball B ⊂ CP2 located far away from
V −1

2 (C2), and that Dk looks like a union of d lines outside of the ball B. For
example, we can take V2 to be a small perturbation of the non-generic quadratic
map V 0

2 : (x : y : z) 7→ (x2 : y2 : z2), for which the ramification curve consists
of three lines (the coordinate axes), and we can use a linear transformation to
contract all the special points of D (tangencies, nodes, cusps) into an arbitrarily
small ball B centered at the point (1 : 1 : 1).

With this setup, the contribution of D2k ∩ V2(B) to the braid monodromy is
the same as that of Dk∩B, and the braid monodromy coming from D2k∩ (CP2−
V2(B)) does not depend on the curve Dk but only on its degree and on the
geometric monodromy representation θ. The braid factorization corresponding
to f2k is therefore of the form

Fk ·Ud,n,θ,

where Fk is the braid factorization for fk (after a suitable embedding of Bd into
the larger braid group Bd̄ corresponding to D2k) and Ud,n,θ is a word in Bd̄

depending only on d, n and θ (d̄ = 2d + 6n = deg D2k).

From the above considerations, the strategy for obtaining the formula giving
the braid factorization for D2k in terms of the braid factorization for Dk is the
following. First one needs to understand the braid factorizations corresponding
to the two curves V2(Dk) and C2 taken separately. More specifically, the braid
factorization for V2(Dk) is obtained from that for Dk via a “folding” formula
describing the effect of the quadratic map V2; the braid factorization for C2 (and
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consequently for n copies of C2) is obtained by degenerating it to the branch
curve of the map V 0

2 , which consists of three lines forming a triangle, giving rise
to three similar-looking contributions from their mutual intersections. Next, one
has to study the phenomena that arise near the intersections of C2 with V2(Dk) ;
these again give rise to three similar contributions (one for each line in the branch
curve of V 0

2 ). Finally more calculations are required in order to combine these
ingredients into a formula for D2k. The main result is the following (see §3 for
notations):

Theorem 2. Let fk : (X4, ω) → CP2 be an approximately holomorphic branched
covering given by three sections of L⊗k. Denote by Dk the branch curve of fk,
and let d = deg Dk and n = deg fk. Denote by Fk the braid factorization cor-
responding to Dk, and assume that d ≤ n(n − 1). Then, with the notations of
§3, the braid factorization corresponding to the branch curve D2k of f2k is given
up to m-equivalence by a formula of the following type, provided that k is large
enough:

(1) ∆2
2d+6n = Td · ι(Fk) · Iα

d,n,θ · Iβ
d,n,θ ·Vαβ

n ·Vαγ
n ·Vβγ

n · Iγ
d,n,θ.

In this formula, Fk is viewed as a factorization in B2d+6n using a certain natural
embedding ι : Bd ↪→ B2d+6n. The other terms correspond to universal contribu-
tions (depending only on d, n and θ): more precisely, Td arises from the folding
of Dk by the quadratic map V2, while Vαβ

n , Vαγ
n , Vβγ

n arise from the braid mon-
odromy of n parallel copies of the curve C2, and Iα

d,n,θ, Iβ
d,n,θ, Iγ

d,n,θ correspond
to the intersections of V2(Dk) with C2. The individual factors in each of these
expressions are described in §3.6. The asymmetry in the ordering of terms in (1)
is mostly a consequence of choices made to keep these individual factors as sim-
ple as possible, but can ultimately be traced to the choice of a specific projection
from CP2 to CP1.

The proof of Theorem 2 is carried out in Sections 2 and 3 of this paper:
the strategy of proof outlined above is carefully justified in §2 (cf. in particular
Propositions 1 and 2); general properties of the braid group and notations are
introduced in §3.1 ; §3.2 describes the folding formula which gives the braid
factorization for V2(Dk) ; the braid factorization of the branch curve C2 of V2

is computed in §3.3 ; the local perturbation procedure to be performed near
the intersections of C2 with V2(Dk) is described in §3.4 ; §3.5 deals with the
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assembling procedure that yields the braid factorization for D2k from the previous
ingredients ; finally, the calculation is completed in §3.6.

Remark. More generally, this procedure applies to any situation involving
iterated branched coverings : given two approximately holomorphic branched
covering maps f and g, the composed map h = g ◦ f has a non-generic behavior
at each of the intersection points of the branch curves of f and g ; however, the
perturbation procedure described in §3.4 also applies to this situation, and calcu-
lations similar to those of Section 3 can be used to compute the braid monodromy
of a “generic” perturbation h̃ of h.

Also observe that, in the case of complex surfaces, the manner in which we
perturb iterated coverings, even though it is not holomorphic, is very similar to
the corresponding construction in complex geometry. In particular, even though
our computations are always performed up to m-equivalence (allowing cancella-
tions of pairs of nodes), in the case of complex manifolds a formula very similar
to (1) holds up to Hurwitz and conjugation equivalence (without node cancella-
tions). The only issue requiring particular attention is the manner in which the
multiple copies of the curve C2 are perturbed away from each other (see §3.6),
where the most natural choice in the approximately holomorphic context may be
slightly different from a holomorphic perturbation; still, evidence suggests that
in practice Theorem 2 does hold up to Hurwitz and conjugation equivalence for
most complex surfaces (see the end of §3.6).

Remark. The branched coverings constructed in [5] and the symplectic Lef-
schetz pencils constructed by Donaldson enjoy transversality properties which
intuitively ought to make their topology very special among all possible cover-
ings or pencils. It is therefore interesting to ask for criteria indicating whether a
given covering map (or Leschetz pencil) is “of Donaldson type”; more precisely,
the question is to decide whether, after stabilizing by repeatedly applying the de-
gree doubling formula, the monodromy data of the given covering map X → CP2

eventually coincides with the invariants of X given by Theorem 1. This question
can be reformulated in two equivalent ways (similar statements about Lefschetz
pencils can also be considered) :
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1. Given two sets of monodromy invariants representing branched coverings of
CP2 with the same total space up to symplectomorphism, do they always become
m-equivalent to each other by repeatedly applying the degree doubling formula ?

2. Is the set of all compact symplectic 4-manifolds with integral symplec-
tic class up to scaling of the symplectic form in bijection with the set of all
possible braid factorizations and geometric monodromy representations up to
m-equivalence and stabilization by degree doubling ?

1.3. Degree doubling for symplectic Lefschetz pencils. A direct applica-
tion of the degree doubling formula for braid monodromies is a similar formula
for the monodromy of the symplectic Lefschetz pencils constructed by Donaldson
[10]. Indeed, recall from [10] that every compact symplectic 4-manifold admits a
structure of Lefschetz pencil determined by two sections of L⊗k for large enough
k. The monodromy of such a Lefschetz pencil is described by a word in the map-
ping class group of a Riemann surface. As explained in [5], Lefschetz pencils and
branched coverings are very closely related to each other, and the monodromy of
the Lefschetz pencil can be computed explicitly from the braid factorization and
the geometric monodromy representation describing the covering.

More precisely, the geometric monodromy representation θ determines a group
homomorphism θ∗ from a subgroup B0

d(θ) of Bd to the mapping class group Mg of
a Riemann surface of genus g = 1−n+(d/2) ; the braid monodromy is contained
in B0

d(θ), and the monodromy of the Lefschetz pencil is obtained by composing
the braid monodromy with θ∗. It was shown in §5 of [5] that the nodes and
cusps of the branch curve do not contribute to the monodromy of the Lefschetz
pencil (the corresponding braids lie in the kernel of θ∗), while the half-twists
corresponding to the tangency points of the branch curve yield Dehn twists in
Mg.

Using this description, we derive in Section 4 a degree doubling formula for
Lefschetz pencils. The relation between braid groups and mapping class groups
of Riemann surfaces with boundary components is described in more detail in
§4.1, and the degree doubling formula is obtained in §4.2.

Acknowledgements. We are very grateful to S. Donaldson and M. Gromov
for their constant attention to this work. The second author would also like
to thank IHES for the extremely pleasant working conditions during part of the
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2. Stably quasiholomorphic coverings

2.1. Quasiholomorphic coverings and braided curves. We now describe in
more detail the geometric properties of the covering maps and branch curves that
we will be considering.

Definition 3. A real 2-dimensional singular submanifold D ⊂ CP2 is a braided
curve if it satisfies the following properties : (1) the only singular points of D

are cusps (with positive orientation) and transverse double points (with either
orientation) ; (2) the point (0 : 0 : 1) does not belong to D ; (3) the fibers of
the projection π : (x : y : z) 7→ (x : y) are everywhere transverse to D, except
at a finite set of nondegenerate tangency points where a local model for D in
orientation-preserving coordinates is z2

2 = z1 ; (4) the cusps, nodes and tangency
points are all distinct and lie in different fibers of π.

This notion is a topological analogue of the notion of quasiholomorphic curve
as described in [5]. In fact, a singular curve in CP2 can be described by a braid
factorization with factors of degree 1, ±2, and 3 if and only if it is braided. As
observed in [5], every braided curve is isotopic to a symplectic curve, as follows
immediately from applying the transformation (x : y : z) 7→ (x : y : εz), with ε

sufficiently small. However, the branch curves obtained from asymptotically holo-
morphic families of branched coverings satisfy much more restrictive geometric
assumptions.

More precisely, recall that the notion of quasiholomorphicity only makes sense
for a sequence of branch curves obtained for increasing values of the degree k, and
that the resulting geometric estimates improve when k increases. The geometric
properties that follow immediately from the definitions and arguments in [1] and
[5] are the following. Recall that (X, ω) is endowed with a compatible almost-
complex structure J and the corresponding metric g, and that we rescale this
metric to work with the metric gk = k g.
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Definition 4. A sequence of sections sk of complex vector bundles Ek over X

(endowed with Hermitian metrics and connections) is asymptotically holomor-
phic if there exist constants Cj independent of k such that |∇jsk|gk

≤ Cj and
|∇j−1∂̄sk|gk

≤ Cjk
−1/2 for all j.

The sections sk are uniformly transverse to 0 if there exists a constant γ > 0
such that, at every point x ∈ X where |sk(x)| ≤ γ, the covariant derivative ∇sk(x)
is surjective and has a right inverse of norm less than γ−1 w.r.t. gk (we then say
that sk is γ-transverse to 0).

If the sections sk are asymptotically holomorphic and uniformly transverse to 0
then for large k their zero sets are smooth asymptotically holomorphic symplectic
submanifolds.

Definition 5. A sequence of branched covering maps fk : X → CP2 determined
by asymptotically holomorphic sections sk = (s0

k, s
1
k, s

2
k) of C3 ⊗ L⊗k for k À 0

is quasiholomorphic if there exist constants Cj, γ, δ independent of k, almost-
complex structures J̃k on X, and finite subsets Fk ⊂ X, such that the following
properties hold (using J̃k to define the ∂̄ operator) :

(0) |∇j(J̃k − J)|gk
≤ Cjk

−1/2 for every j ≥ 0 ; J̃k = J outside of the 2δ-
neighborhood of Fk ; J̃k is integrable over the δ-neighborhood of Fk ;

(1) the norm of sk is everywhere bounded from below by γ ; as a consequence,
|∇jfk|gk

≤ Cj and |∇j−1∂̄fk|gk
≤ Cjk

−1/2 for all j ;

(2) |∇fk(x)|gk
≥ γ at every point x ∈ X ;

(3) the (2, 0)-Jacobian Jac(fk) = det ∂fk is γ-transverse to 0 ; in particular it
vanishes transversely along a smooth symplectic curve Rk ⊂ X (the ramification
curve).

(3′) the restriction of ∂̄fk to Ker ∂fk vanishes at every point of Rk ;

(4) the quantity ∂(fk|Rk
), which can be seen as a section of a line bundle over

Rk, is γ-transverse to 0 and vanishes at a finite subset Ck ⊂ Fk (the cusp points
of fk) ; in particular fk(Rk) = Dk is an immersed symplectic curve away from
the image of Ck ;

(5) fk is J̃k-holomorphic over the δ-neighborhood of Fk ;
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(6) the section (s0
k, s

1
k) of C2 ⊗L⊗k is γ-transverse to 0 ; as a consequence Dk

remains away from the point (0 :0 :1) ;

(7) letting φk = π ◦ fk : Rk → CP1, the quantity ∂(φk|Rk
) is γ-transverse to 0

over Rk, and it vanishes over the union of Ck with a finite set Tk (the tangency
points of Dk) ; moreover, ∂̄fk = 0 at every point of Tk ;

(8) the projection fk : Rk → Dk is injective outside the singular points of Dk,
and the branch curve Dk is braided.

The main result of [5] is the existence, for large enough values of k, of quasiholo-
morphic covering maps X → CP2 determined by sections of C3 ⊗L⊗k, canonical
up to isotopy. The braid monodromy invariants corresponding to these coverings
are those mentioned in Theorem 1.

2.2. Stably quasiholomorphic coverings. We wish to construct and study
branched covering maps which, in addition to being quasiholomorphic, behave
nicely when composed with a quadratic holomorphic map from CP2 to itself. For
this purpose, we extend in the following way the notions defined in the previous
sections :

Definition 6. We say that the image D ⊂ CP2 of a smooth curve R by a map
f is locally braided if there exists a finite number of open subsets Uj ⊂ R, whose
union is R, such that for all j the image f(Uj) ⊂ D is a braided curve in CP2.

In other words, a locally braided curve is similar to a braided curve except that
it is merely immersed outside its cusps, without any self-transversality property ;
although the cusps and tangencies of a locally braided curve are still nonde-
generate and well-defined, phenomena such as self-tangencies might occur. For
example, if the definition of a quasiholomorphic covering is relaxed by removing
condition (8), the branch curve Dk is only locally braided.

Although a locally braided branch curve does not have a well-defined braid
monodromy, an arbitrarily small perturbation ensures self-transversality and yields
a braided curve ; it is easy to check that the braid monodromies of all possible
resulting curves are m-equivalent, as the only phenomenon which can occur in a
generic 1-parameter family is the cancellation of pairs of double points.

Definition 7. A sequence of branched covering maps fk : X → CP2 determined
by asymptotically holomorphic sections sk = (s0

k, s
1
k, s

2
k) of C3 ⊗ L⊗k for k À 0
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is stably quasiholomorphic if, with the same notations as in Definition 5, the
following properties hold :

(1) the covering maps fk are quasiholomorphic ;

(2) the sections s0
k, s1

k and s2
k of L⊗k are γ-transverse to 0 ;

(3) the sections (s0
k, s

1
k), (s0

k, s
2
k) and (s1

k, s
2
k) of C2 ⊗ L⊗k are γ-transverse to

0 ;

(4) let π0, π1 and π2 be the projections (x : y : z) 7→ (y : z), (x : y : z) 7→ (x : z)
and (x : y : z) 7→ (x : y) respectively, and define φi

k = πi ◦ fk ; the quantity
∂((φi

k)|(si
k)−1(0)) is γ-transverse to 0 over (si

k)
−1(0) for i = 0, 1, 2 ;

(5) the quantity |∂φi
k|gk

is bounded from below by γ over (si
k)
−1(0) ;

(6) Fk = Ck ∪ Tk ∪ Ik, where Tk is the set of tangency points and Ik is the set
of points of Rk where one of the three sections si

k vanishes.

We have the following extension of the main results of [1] and [5], which will
be proved in §2.3 :

Proposition 1. For all large values of k, there exist asymptotically holomorphic
sections sk of C3⊗L⊗k such that the corresponding projective maps fk : X → CP2

are stably quasiholomorphic coverings. Moreover, for large k the topology of these
covering maps is canonical up to isotopy and cancellations of pairs of nodes in
the branch curve.

More precisely, the uniqueness statement means that, given two sequences of
stably quasiholomorphic coverings, it is possible for large k to find an interpolat-
ing 1-parameter family of covering maps, all of which are stably quasiholomorphic,
except for finitely many parameter values where a cancellation or creation of a
pair of nodes occurs in the branch curve.

The following result will be used in §3.2 to compute the braid monodromy of
the folded branch curve V ′

2(Dk):

Lemma 1. Consider the two maps V 0
2 : (x : y : z) 7→ (x2 : y2 : z2) and

ψa : (x : y : z) 7→ (x : ay + (1− a)x : az + (1− a)x) from CP2 to itself, and let fk

be a sequence of stably quasiholomorphic covering maps with branch curves Dk ⊂
CP2. Then the curves V 0

2 (Dk) are locally braided. Moreover, if we assume that
(0 : 1 : 1) 6∈ Dk and that none of the nodes of Dk lies on the line L0 = {(0 : y : z)},
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then for all sufficiently small non-zero values of a ∈ C the curves V 0
2 (ψa(Dk))

are locally braided and isotopic to V 0
2 (Dk) through locally braided curves.

Furthermore, these properties remain true if V 0
2 is replaced by any generic

holomorphic quadratic map V ′
2 from CP2 to itself which differs from V 0

2 by less
than γ′ (in C1 norm), for some constant γ′ independent of k.

(Since sections of O(2) form a finite-dimensional vector space, in the last state-
ment one can use any norm to estimate the difference between V ′

2 and V 0
2 ; but

as will be apparent from the proof, it is the C1-estimate that is geometrically
relevant.)

Proof. The ramification curve of V 0
2 consists of three lines L0 = {(0 : y : z)},

L1 = {(x : 0 : z)} and L2 = {(x : y : 0)}. Moreover, V 0
2 maps each fiber of

π to a fiber of π. Therefore, let C ⊂ CP2 be a locally braided curve satisfying
the following properties: (a) C is transverse to the lines L0, L1, L2 and avoids
their intersection points; (b) the cusps and tangency points of C lie away from
L0, L1, L2; (c) at any point p ∈ C ∩ Li, the curve C is transverse to the fiber of
the projection πi through p; (d) the curve C is holomorphic near its tangency
points and near its intersections with L0 ∪ L1. Then we conclude that V 0

2 (C) is
locally braided and holomorphic near its tangency points.

Indeed, conditions (a)− (c) imply that the restriction of V 0
2 to C is an immer-

sion, because V 0
2 is a local diffeomorphism away from Li, and C is transverse to

the kernel of the differential of V 0
2 at its intersection points with Li. Moreover,

(a) also implies that V 0
2 (C) avoids the point (0 : 0 : 1). The cusps of V 0

2 (C) are
exactly the images of those of C, while the tangency points of V 0

2 (C) are of two
types: on one hand, the images of the tangency points of C, and on the other
hand, the images of the intersection points of C with either L0 or L1. Property
(d) implies that V 0

2 (C) is holomorphic near its tangency points, and because C

is locally braided and transverse to L0∪L1, these tangencies are non-degenerate,
which implies that V 0

2 (C) is locally braided.

We now check that, as a consequence of Definition 7, the curves Dk satisfy
properties (a)− (d). Indeed, property (3) of Definition 7 implies that fk is a local
diffeomorphism wherever two of the components of sk are very small; therefore Dk

avoids the intersection points of L0, L1, L2. Moreover, property (2) of Definition
7 implies that (si

k)
−1(0) is smooth and Dk is transverse to Li for i = 0, 1, 2;
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so condition (a) is satisfied. This transversality requirement also implies that
the tangency points of Dk do not lie on L0 or L1; in the case of L2 we appeal to
property (5) of Definition 7 to reach the same conclusion (recall that by definition
∂φ2

k vanishes at tangency points). Furthermore, property (4) of Definition 7
means that the restriction of φi

k to (si
k)
−1(0) has non-degenerate critical points,

which implies that the intersection multiplicity of Rk with (si
k)
−1(0) at such a

point is always 1 and prevents a cusp of Dk from lying on Li. Therefore (b) holds.

Condition (c) is a direct consequence of property (5) of Definition 7, observing
that the points where Dk is tangent to the fiber of πi are precisely the critical
points of φi

k. Finally, condition (d) follows immediately from property (6) of
Definition 7. Therefore Dk satisfies (a) − (d), which implies that V 0

2 (Dk) is
locally braided and holomorphic near its tangency points.

We now consider the curve V 0
2 (ψa(Dk)). Observe that, when a → 0, the linear

map ψa fixes the points of L0 and collapses all other points towards p0 = (1 :
1 : 1). Moreover, ψa maps each fiber of π to a fiber of π. If we assume that
the nodes of Dk don’t lie on L0, then for sufficiently small values of a the curve
ψa(Dk) becomes arbitrarily close to a union of d = deg Dk lines, each joining
a point of Dk ∩ L0 to p0. The requirement (0 : 1 : 1) 6∈ Dk ensures that none
of these lines is a fiber of the projection π0. The cusps and tangency points of
ψa(Dk) are the images of those of Dk and hence all lie in a small ball centered at
p0; moreover the holomorphicity of Dk near the points of Dk ∩ L0 implies that
ψa(Dk) is holomorphic outside of a small ball centered at p0. Therefore ψa(Dk)
satisfies the conditions (a)− (d) listed above, and V 0

2 (ψa(Dk)) is locally braided
and holomorphic near its tangency points for all sufficiently small values of a.

Observing that properties (a)− (c) are open conditions, one easily checks that,
if the behavior of the curve Dk is generic (which can be ensured by a small
perturbation), then the curves ψa(Dk) (or small perturbations thereof) satisfy
(a) − (c) for all but a discrete set of values of a. Therefore, observing that
ψ1 = Id and choosing a suitable path a(t), there exists an isotopy between Dk

and ψa(Dk) through braided curves satisfying conditions (a) − (c). Although
the possible lack of holomorphicity of ψa(t)(Dk) near its intersections with L1

may prevent (d) from holding, this specific requirement is actually not needed to
ensure that V 0

2 (ψa(t)(Dk)) is locally braided. Therefore, V 0
2 (ψa(Dk)) is isotopic

to V 0
2 (Dk) through locally braided curves.
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Finally, we consider a holomorphic quadratic map V ′
2 sufficiently close to V 0

2 .
Our main observation is that the curves V ′

2(Dk) and V 0
2 (Dk) are C1-close to each

other. Therefore, because V 0
2 (Dk) is locally braided and holomorphic near its

tangency points (which are all non-degenerate), the curve V ′
2(Dk) is also locally

braided; indeed, if V ′
2 is sufficiently close to V 0

2 then every point where V ′
2(Dk)

fails to be transverse to the fibers of π necessarily lies close to a tangency point
of V 0

2 (Dk). Furthermore, choosing a continuous deformation of V 0
2 into V ′

2 , it is
clear that V 0

2 (Dk) and V ′
2(Dk) are isotopic to each other among locally braided

curves.

The reason why we can obtain a uniform estimate γ′ on the maximum admis-
sible value of ‖V ′

2 − V 0
2 ‖C1 is the existence of uniform estimates on the geometry

of Dk. Indeed, by carefully keeping track of the uniform estimates given by Defi-
nitions 5 and 7, it is possible to derive uniform lower bounds for all geometrically
relevant quantities, such as the distance from Dk to the intersection points of the
lines Li, the transversality angle at the intersections of Dk with Li, the distance
between Li and the cusps and tangency points of Dk, the second derivative of
π|Dk

at the tangency points of Dk and its first derivative away from these points,
... This yields uniform estimates on the geometry of V 0

2 (Dk) near its tangency
points and implies that the property of being locally braided remains valid up to
a certain size of perturbation of V 0

2 which can be estimated explicitly in terms of
the various bounds.

Moreover, recalling from above the behavior of ψa for small values of a, we can
similarly show that if a is sufficiently small then V ′

2(ψa(Dk)) is locally braided
and isotopic to V 0

2 (ψa(Dk)) through locally braided curves; one simply needs to
choose V ′

2 generic in order to ensure that the images by V ′
2 of the lines joining p0

to the points of Dk ∩ L0 are smooth conics.

We conclude in particular that the images by V 0
2 and V ′

2 of Dk and ψa(Dk) are
all mutually isotopic among locally braided curves, and their braid monodromies
are m-equivalent to each other. ¤

The following observation plays a crucial role in our strategy to prove Theorem
2: given a generic holomorphic quadratic map V ′

2 close to V 0
2 , the composed

maps V ′
2 ◦ fk already satisfy most of the properties expected of quasiholomorphic

coverings except at the points where the branch curve of fk intersects that of V ′
2 .
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Proposition 2. Let fk be a family of stably quasiholomorphic coverings, and let
V ′

2 be a generic holomorphic quadratic map close to V 0
2 . Then, given any fixed

constant d0 > 0, there exist constants Cj, γ, δ independent of k (but depending
on V ′

2 and on d0) such that the composed maps f ′2k = V ′
2 ◦ fk satisfy all the

properties of Definition 5, except for properties (3′) and (8), at every point of X

whose gk-distance to I ′k = Rk ∩ f−1
k (R′

2) is larger than d0 (Rk and R′
2 are the

ramification curves of fk and V ′
2 respectively).

Proof. The projective map f ′2k = V ′
2◦fk is defined by a section Q(sk) of C3⊗L⊗2k,

each of its three components being a quadratic expression Qi(sk) (0 ≤ i ≤ 2) in
the three sections defining fk. It is therefore easy to show that the sections Q(sk)
are asymptotically holomorphic.

Because the projective map V ′
2 induced by the polynomials Qi is well-defined,

the inequality |Q(s)| ≥ c |s|2 holds for some constant c > 0. Therefore, the
existence of a uniform lower bound on |sk| at every point of X implies that of a
uniform lower bound on |Q(sk)|, and so property (1) of Definition 5 is satisfied
everywhere.

As observed above, by property (2) of Definition 7 the branch curve of fk is
uniformly transverse to the ramification curve of V 0

2 and hence to that of V ′
2 .

Therefore, if a point x ∈ X lies close both to Rk and to f−1
k (R′

2) then it always
lies close to a point of I ′k.

Property (2) of quasiholomorphic coverings follows from the observation that,
since the differentials of fk and V ′

2 both have complex rank at least 1 everywhere,
∇f ′2k(x) can only be small if the Jacobians of fk at x and of V ′

2 at fk(x) are
both small. These quantities vanish transversely (fk is quasiholomorphic and V ′

2

is generic), so x must lie close to both branch curves, and hence, by the above
observation, close to I ′k (closer than d0 if |∇f ′2k(x)| is assumed small enough).
In fact, |∇f ′2k| remains bounded away from 0 even near I ′k, because, as observed
in the proof of Lemma 1, property (5) of Definition 7 implies that V 0

2 (and hence
also V ′

2) restricts to the branch curve of fk as an immersion.

We now turn to the third property. The (2, 0)-Jacobian of f ′2k is given by
Jac(f ′2k) = Jac(fk) ·f∗kJac(V ′

2). It can only be small when one of the two terms in
the product is small, i.e. near one of the two branch curves. Moreover, f∗kJac(V ′

2)
is bounded away from zero everywhere except near f−1

k (R′
2), so the transverse
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vanishing of Jac(fk) implies that of Jac(f ′2k) at these points. Similarly Jac(fk)
is bounded from below everywhere except near Rk, so the transverse vanishing
of f∗kJac(V ′

2) implies the desired property at these points. As a consequence the
transversality to 0 of Jac(f ′2k) holds everywhere except near I ′k (note that the
obtained transversality estimate has to be decreased when d0 becomes smaller).

We now look at property (4). Away from I ′k the branch curve of f ′2k consists
of two separate components, Rk and f−1

k (R′
2), so we work separately on each

component. We first look at Rk: we know that ∂(fk|Rk
) is uniformly transverse

to 0, and given a point p ∈ Rk at distance more than d0 from I ′k, the complex
linear map ∇V ′

2 is an isomorphism at fk(p), with norm bounded from below (the
constant depends on d0). Composing ∂(fk|Rk

) with ∇V ′
2 , we obtain that ∂(f ′2k|Rk

)
is also uniformly transverse to 0 at all points of Rk at distance more than d0

from I ′k (again, the constant depends on d0). The argument works similarly
on f−1

k (R′
2) : away from I ′k, ∂fk is an isomorphism with norm bounded from

below (the constant depends on d0), and because V ′
2 has been chosen generic the

quantity ∇(V ′
2|R′2) vanishes transversely, so ∂(f ′

2k|f−1
k (R′2)

) is uniformly transverse

to 0 at all points of f−1
k (R′

2) at distance more than d0 from I ′k.
Observe by the way that all cusp points of fk and of V ′

2 lie away from I ′k.
Indeed, for the cusp points of fk it follows from property (4) in Definition 7 that
they lie away from the branch curve of V 0

2 and hence from that of V ′
2 , as observed

in the proof of Lemma 1. On the other hand, is easy to see that the cusp points
of V ′

2 all lie close to one of the three singular points of V 0
2 , while property (3)

in Definition 7 implies that the branch curve of fk remains far away from these
points.

Property (5) is easy to check: since compatible almost-complex structures on
X are sections of a bundle with contractible fiber, it is sufficient to work locally
near a cusp point. The points we have to consider are either cusp points of fk

or the preimages by fk of those of V ′
2 . In the first case, it is sufficient to choose

the same almost-complex structure J̃k as for fk, because V ′
2 is holomorphic. In

the second case, consider the pull-back f∗kJ0 of the standard complex structure of
CP2 via the map fk. Since all cusp points of V ′

2 lie far from the branch curve of
fk, the differential of fk is locally an isomorphism and satisfies a uniform lower
bound. Therefore the asymptotic holomorphicity of the sections defining sk is
enough to ensure that f∗kJ0 differs from J by at most O(k−1/2) in any Cr norm.
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A standard argument involving a smooth cut-off function can be used in order
to define a smooth almost-complex structure which coincides with f∗kJ0 near the
cusp point and with J outside a small ball.

We now turn to property (6). Consider a point x ∈ X where the first two
sections defining f ′2k, namely Q0(sk) and Q1(sk), are both very small. Because
the quadratic map V ′

2 is close to V 0
2 , and because the only preimage of (0 : 0 : 1)

by V 0
2 is (0 : 0 : 1) itself, the quantities s0

k(x) and s1
k(x) are also small. So,

if we assume that |V ′
2 − V 0

2 |C1 is sufficiently small, the uniform transversality
property of (s0

k, s
1
k) provides a lower bound on Jac(fk)(x). On the other hand, if

V ′
2 is chosen generic, then its branch curve avoids the point (1 : 0 : 0) by a certain

distance ρ > 0. Therefore, if Q0(sk) and Q1(sk) are sufficiently small, then f ′2k(x)
lies at distance at least ρ/2 from the branch curve of V ′

2 . and we can obtain a
uniform lower bound (depending on ρ only) on the Jacobian of V ′

2 at fk(x). It
follows that Jac(f ′2k)(x) = Jac(fk)(x) Jac(V ′

2)(fk(x)) is bounded from below by
a fixed constant independently of k. Because of the C1 bounds on Qi(sk), we
conclude that the covariant derivative of (Q0(sk), Q1(sk)) at x is surjective and
bounded from below by a uniform constant. So property (6) holds.

We finally look at property (7), which actually is equivalent to the requirement
that the branch curve be locally braided. Most of the work has already been
done in the proof of Lemma 1. More precisely, after removing the intersection
I ′k, the branch curve of f ′2k splits into the two components Rk and f−1

k (R′
2), and

we consider them separately. The critical points of ψ0
k = (π ◦ V 0

2 ◦ fk)|Rk
and

ψ′k = (π ◦ f ′2k)|Rk
correspond to the cusps and tangency points of V 0

2 (Dk) and
V ′

2(Dk), respectively. Therefore, we have seen in the proof of Lemma 1 that
all the critical points of ψ0

k, and hence those of ψ′k, are non-degenerate, with a
uniform estimate; moreover, they all lie in a neighborhood of Ck ∪ Tk ∪ Ik, which
implies that fk is locally holomorphic with respect to a suitable almost-complex
structure.

We now look at the component f−1
k (R′

2) away from the points of I ′k : since fk

is a local diffeomorphism at all such points, the expected uniform transversality
of ∂(π ◦ f ′2k) is equivalent to the same property for ∂(π ◦ V ′

2) restricted to R′
2.

However it is easy to check that such a transversality property holds as soon as
V ′

2 is chosen generic (actually, as soon as V ′
2(R

′
2) is locally braided). Of course

the transversality estimate on ∂(π ◦ f ′2k) depends on the distance d0, because a
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lower bound on ∂fk is used when lifting the transversality property from π ◦ V ′
2

to π◦f ′2k. Also observe that the holomorphicity of V ′
2 implies that the differential

of π ◦ V ′
2|R′2 vanishes completely at the tangency points of the branch curve of V ′

2

(these are genuine tangencies); this clearly implies the same property for π ◦ f ′2k

at the tangency points coming from f−1
k (R′

2). This concludes the proof. ¤

Proposition 2 implies that we can proceed in the following way to construct
quasiholomorphic coverings given by sections of L⊗2k for large k : first construct
stably quasiholomorphic coverings fk as given by Proposition 1 ; then, define
f ′2k = V ′

2 ◦ fk for a generic perturbation V ′
2 of V 0

2 ; and finally perturb f ′2k in
order to get quasiholomorphic coverings.

Following the arguments in [1] and [5] (see also [2] and the argument in §2.3
below), we can make the following observations concerning the process by which
the maps f ′2k are perturbed and made quasiholomorphic. The first step of the
construction of quasiholomorphic coverings is to ensure that all the required uni-
form transversality properties are satisfied over all of X. This process is a purely
local iterative construction, so that when one starts with f ′2k it is sufficient to
perturb the given sections of L⊗2k near the points of I ′k, or equivalently near the
points of Ik ; the required perturbation can be chosen smaller than any fixed
given constant (independent of k), so that it does not significantly affect the
topology of f ′2k away from the points of I ′k. The next step in order to construct
quasiholomorphic coverings is to ensure property (5) of Definition 5 at the cusp
points as well as the last requirement of property (7) at the tangency points ;
since the necessary perturbation is bounded by a fixed multiple of k−1/2, it has
no effect whatsoever on braid monodromy outside of a fixed small neighborhood
of I ′k.

At this point in the construction, the branch curves are already locally braided
and therefore have well-defined braid monodromies up to m-equivalence ; ensur-
ing the remaining conditions (3′) and (8) has no effect on the monodromy data.
More precisely, the self-transversality of the branch curves (condition (8)) is ob-
tained by an arbitrarily small perturbation, which is precisely how one defines the
braid factorization associated to a locally braided curve. Meanwhile, condition
(3′) is obtained by a perturbation process which does not affect the branch curve
(see [5]). Finally, notice that, once the covering maps f ′2k are perturbed and made
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quasiholomorphic, the braid monodromy invariants associated to them must co-
incide with those associated to f2k, at least provided that k is large enough : this
is a direct consequence of the uniqueness result of [5].

As a consequence of these observations, by computing the braid factorization
corresponding to the branch curve of f ′2k (very singular, with components of large
multiplicity), a great step towards computing the braid factorization for f2k is
already accomplished : the only remaining task is to understand the effect on
braid factorizations of the perturbation performed near the points of I ′k. This
justifies the strategy of proof used in §3.

2.3. Proof of Proposition 1. Proposition 1 can be proved using the same tech-
niques as in [1] and [5] (see also [2]) ; however, the result of [3] can be used to
greatly simplify the argument. Observe that the properties expected of sk are of
two types : on one hand, uniform transversality properties, which are open con-
ditions on the holomorphic part of the jet of sk, and on the other hand, compat-
ibility properties, involving the vanishing of certain antiholomorphic derivatives
along the branch curve. The proof therefore consists of two parts. In the first
part, successive perturbations of sk are performed in order to achieve the various
required transversality properties ; each perturbation is chosen small enough in
order to preserve the previously obtained transversality properties. In the second
part, sk is perturbed along the curve Rk by at most a fixed multiple of k−1/2 in
order to obtain the compatibility conditions.

The first part of the argument can be either carried out as in [1] and [5], or
more efficiently by using the result of [3] in the following manner.

Let Ek = C3 ⊗ L⊗k, and consider the holomorphic jet bundles J 2Ek = Ek ⊕
T ∗X(1,0) ⊗ Ek ⊕ (T ∗X(1,0))⊗2

sym ⊗ Ek. We define the holomorphic 2-jet j2s of
a section s ∈ Γ(Ek) as (s, ∂s, ∂(∂s)sym), discarding the antiholomorphic terms
or the antisymmetric part of ∂∂s (these terms are bounded by O(k−1/2) for
asymptotically holomorphic sections). Recall from [3] the notion of finite Whitney
quasi-stratification of a jet bundle :

Definition 8. Let (A,≺) be a finite set carrying a binary relation without cycles
(i.e., a1 ≺ · · · ≺ ap ⇒ ap 6≺ a1). A finite Whitney quasi-stratification of J 2Ek

indexed by A is a collection (Sa)a∈A of smooth submanifolds of J 2Ek, transverse
to the fibers, not necessarily mutually disjoint, with the following properties : (1)
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∂Sa = Sa − Sa ⊆ ⋃
b≺a Sb ; (2) given any point p ∈ ∂Sa, there exists b ≺ a such

that p ∈ Sb and such that either Sb ⊂ ∂Sa and the Whitney regularity condition is
satisfied at all points of Sb, or p 6∈ ΘSb, where ΘSb ⊂ Sb is the set of points where
the 2-jet of a section of Ek can intersect Sb transversely (in particular ΘSb = ∅
whenever codimC Sb > 2).

As in [3], say that a sequence of finite Whitney quasi-stratifications Sk of J 2Ek

is asymptotically holomorphic if all the strata are approximately holomorphic
submanifolds of J 2Ek, with uniform bounds on the curvature of the strata and
on their transversality to the fibers of J 2Ek.

It was shown in [3] that, given asymptotically holomorphic finite Whitney
quasi-stratifications Sk of J 2Ek, it is always possible for large enough k to
construct asymptotically holomorphic sections of Ek whose 2-jets are uniformly
transverse to the strata of Sk ; moreover, these sections can be chosen arbitrarily
close to any given asymptotically holomorphic sections of Ek. The result also
holds for one-parameter families of sections, which implies that the constructed
sections are, for large k, canonical up to isotopy.

Using local approximately holomorphic sections of L⊗k and coordinates over
X, the fibers of J 2Ek can be identified with the space J 2

2,3 of jets of holomorphic
maps from C2 to C3. It was observed in [3] that, if a sequence of finite Whitney
quasi-stratifications of J 2Ek is such that by this process the restrictions of Sk

to the fibers of J 2Ek are all identified with a fixed given finite Whitney quasi-
stratification of J 2

2,3 by complex submanifolds, then the quasi-stratifications Sk

are asymptotically holomorphic.

We define finite Whitney quasi-stratifications of J 2Ek in the following way.
Consider the symmetric holomorphic part j2s(x) of the 2-jet of a section s =
(s0, s1, s2) ∈ Γ(Ek) at a point x ∈ X ; if s(x) 6= 0, denote by f the corre-
sponding CP2-valued map, and by φi (i ∈ {0, 1, 2}) its projections to CP1 along
coordinate axes if they are well-defined. Finally, if Jac f(x) = ∧2∂f(x) = 0 and
∂Jac f(x)sym = (∂∂f(x))sym ∧ ∂f(x) 6= 0, call Rx the kernel of the (1, 0)-form
∂Jac f(x)sym ; one easily checks that Rx is well defined in terms of j2s only and
that it differs from the tangent space at x to the ramification curve of f by at
most O(k−1/2). We define the following submanifolds of J 2Ek (in the last two
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definitions, {i, j, k} = {0, 1, 2}) :

Z ={j2s(x), s(x) = 0} (codim. 3)

Zij ={j2s(x), si(x) = sj(x) = 0} (codim. 2)

Zi ={j2s(x), si(x) = 0} (codim. 1)

Σ2 ={j2s(x), s(x) 6= 0, ∂f(x) = 0} (codim. 4)

Σ1 ={j2s(x) 6∈ Z, ∂f(x) 6= 0, Jac f(x) = 0} (codim. 1)

Σ1
s ={j2s(x) ∈ Σ1, ∂Jac f(x)sym = 0} (codim. 3)

Σ1,1 ={j2s(x) ∈ Σ1 − Σ1
s, ∂f(x)|Rx

= 0} (codim. 2)

Σ1
t ={j2s(x) ∈ Σ1 − Z01, ∂φ2(x) = 0} (codim. 2)

Σ1,1
t =Σ1,1 ∩ Σ1

t (codim. 3)

Si ={j2s(x) ∈ Zi − Zjk, ∂φi(x) = 0} (codim. 3)

S′i ={j2s(x) ∈ Zi − Zjk, ∂si(x) 6= 0, ∂φi(x)|Ker ∂si(x) = 0} (codim. 2)

One easily checks that all these subsets are smooth submanifolds of J 2Ek.
Moreover, Z, Zi and Zij are closed ; ∂Σ2 ⊆ Z ; ∂Σ1 and ∂Σ1

s are contained
in Σ2 ∪ Z ; ∂Σ1,1 ⊆ Σ1

s ∪ Σ2 ∪ Z ; ∂Σ1
t ⊆ Σ2 ∪ Z ∪ (Z01 − ΘZ01) ; ∂Σ1,1

t ⊆
Σ1

s ∪Σ2∪Z∪ (Z01−ΘZ01) ; ∂Si ⊆ (Zjk−ΘZjk
) ; ∂S′i ⊆ (Zjk−ΘZjk

)∪ (Zi−ΘZi).
Therefore, these submanifolds define quasi-stratifications Sk of J 2Ek. Note that,
because Σ1

s = Σ1 − ΘΣ1 , the stratum Σ1
s can in fact be eliminated from this

description. Moreover, if one uses local approximately holomorphic coordinates
and asymptotically holomorphic sections of L⊗k to trivialize J 2Ek, it is easy to
see that the resulting picture is the same above every point of X : the subman-
ifolds in Sk are identified with holomorphic submanifolds of J 2

2,3 defined by the
same equations. Therefore, by [3] the quasi-stratifications Sk are asymptotically
holomorphic.

It is easy to see that conditions (1), (2), (3), (4) and (6) of Definition 5 are
equivalent to the uniform transversality of j2sk to Z, Σ2, Σ1, Σ1,1 and Z01,
respectively. Similarly, conditions (2) and (3) of Definition 7 correspond to the
uniform transversality of j2sk to Zi and Zij respectively. Observing that ∂(φk|Rk

)
can only vanish at a point x ∈ Rk if either ∂φk(x) = 0 or ∂(fk|Rk

) vanishes at x,
we can rephrase condition (7) of Definition 5 in terms of uniform transversality
to the singular submanifold of J 2Ek consisting of the union of Σ1,1 (cusp points)
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and Σ1
t (tangencies), intersecting regularly along Σ1,1

t (“vertical” cusp points).
Therefore, it is equivalent to the uniform transversality of j2sk to Σ1,1, Σ1

t , and
Σ1,1

t . Finally, conditions (4) and (5) of Definition 7 correspond to the uniform
transversality of j2sk to S′i and Si respectively.

So, the uniform transversality of j2sk to the quasi-stratifications Sk, as given by
the main result of [3] provided that k is large enough, is equivalent to the various
transversality requirements listed in Definitions 5 and 7. Moreover, the sections of
C3⊗L⊗k constructed in this manner are canonical up to isotopy, as follows from
Theorem 3.2 of [3] : given any two sequences of such sections, it is possible for
large enough k to find one-parameter families of sections of C3⊗L⊗k interpolating
between them and enjoying the same uniform transversality properties for all
parameter values.

We now turn to the second part of the argument, namely obtaining the other
required properties by perturbing the sections sk by at most O(k−1/2), which
clearly affects neither holomorphicity nor transversality properties. The argument
is exactly the same as in [5] ; the only difference is that the set Fk of points where
the map fk must made holomorphic with respect to a slightly perturbed almost-
complex structure is now slightly larger : one now sets Fk = Ck ∪ Tk ∪Ik instead
of Fk = Ck.

As in [1] and [5], one first chooses suitable almost-complex structures J̃k differ-
ing from J by O(k−1/2) and integrable near the finite set Fk. It is then possible
to perturb fk near these points in order to obtain condition (5) of Definition
5, by the same argument as in §4.1 of [1]. Next, a generic small perturbation
yields the self-transversality of Dk (property (8) of Definition 5). Finally, a suit-
able perturbation of fk, supported near Rk and vanishing near the points of Fk,
yields property (3′) of Definition 5 along the branch curve, without modifying Rk

and Dk, and therefore without affecting the previously obtained compatibility
properties. As shown in [5] these various constructions can be performed in one-
parameter families, except for property (8) of Definition 5 where cancellations of
pairs of nodes must be allowed ; this yields the desired result of uniqueness up to
isotopy, and completes the proof of Proposition 1.
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3. The degree doubling formula for braid monodromies

3.1. Generalities about the braid group. We begin by recalling general def-
initions and notations concerning the braid group on d strings. Consider a set
P = {p1, . . . , pd} of d points in the plane, and recall that Bd = π0 Diff+

c (R2, P ) is
by definition the group of equivalence classes of compactly supported orientation-
preserving diffeomorphisms of the plane which leave invariant the set P , where
two diffeomorphisms are equivalent if and only if they induce the same automor-
phism of π1(R2 − P ). Equivalently Bd can be considered as the fundamental
group of the configuration space of d points in the plane : a braid corresponds to
a motion of the points p1, . . . , pd such that they remain distinct at all times and
eventually return to their original positions (but possibly in a different order) up
to homotopy. An important subgroup of Bd is the group of pure braids Pd (the
braids which preserve each of the points p1, . . . , pd individually) ; it is clear that
Bd/Pd is the symmetric group Sd.

We will place the points p1, . . . , pd in that order on the real axis, and denote
by Xi the positive (counterclockwise) half-twist along the line segment joining
pi to pi+1, for each 1 ≤ i ≤ d − 1. It is a classical fact that Bd is generated by
the d− 1 half-twists Xi, and that the relations between them are XiXj = XjXi

whenever |i−j| > 1 and XiXi+1Xi = Xi+1XiXi+1. The center of the braid group
is generated by the element ∆2

d = (X1 . . . Xd−1)d, which corresponds to rotating
everything by 2π.

We will be especially interested in the half-twists

Zij = Xj−1 · . . . ·Xi+1 ·Xi ·X−1
i+1 · . . . ·X−1

j−1 (1 ≤ i < j ≤ d).

In this expression of Zij as a conjugate of Xi, when j = i + 1 the conjugat-
ing element is a trivial product (ranging over the empty set), and we just have
Zi,i+1 = Xi.

The braid Zij is a positive half-twist along a path joining the points pi and pj

and passing above all the points inbetween :

q q q q q qp p p p p p
1 i j d

Zij
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Note that Zij commutes with Zkl whenever i < j < k < l or i < k < l < j.
Other useful relations are ZijZik = ZikZjk = ZjkZij whenever i < j < k (these
three expressions differ by a Hurwitz move).

The following factorization of ∆2 as a product of half-twists corresponds to
the braid monodromy of a smooth curve of degree d in CP2 (see [12]) :

∆2
d = (X1 . . . Xd−1)d.

Another important factorization is

(2) ∆2
d =

d−1∏

i=1

d∏

j=i+1

Z2
ij =

d∏

i=2

i−1∏

j=1

Z2
ji

(these two expressions are clearly Hurwitz equivalent). This factorization corre-
sponds to the braid monodromy of a union of d lines in generic position (see [12]).

We now turn to geometric monodromy representations. Consider the branch
curve D of an n-sheeted branched covering over CP2, and fix geometric generators
γ1, . . . , γd of π1(CP2 −D) (small loops going around the d = deg D intersection
points of D with a given generic fiber of the projection π). It is then possible to
define as in §1.1 the geometric monodromy representation θ : Fd → Sn associated
to the covering. As observed in §1.1, the fact that the product γ1 · · · · ·γd is trivial
in π1(CP2−D) implies that the product of the d transpositions θ(γ1), . . . , θ(γd) in
Sn is also trivial, and the connectedness of the considered covering of CP2 implies
that these transpositions act transitively on {1, . . . , n} and hence generate Sn.

It is a well-known fact that any two factorizations of the identity element in
Sn as a product of the same number of transpositions generating Sn are equiv-
alent by a succession of Hurwitz moves (this can be seen e.g. by comparing the
two corresponding n-sheeted simple branched covers of CP1). Therefore, after a
suitable reordering of the sheets of the covering π : D → CP1 (which amounts to
a global conjugation of the braid factorization), one may freely assume that the
permutations θ(γi) are equal to certain predetermined transpositions. Our choice
of transpositions in the case of the branch curve of fk will be made explicit in
§3.6.
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3.2. The folding process. We now compute the braid monodromy of the curve
V ′

2(Dk), where Dk is the branch curve of one of the stably quasiholomorphic maps
fk given by Proposition 1 and V ′

2 is a generic perturbation of V 0
2 as in §2.2. The

idea is to use Lemma 1 to reduce oneself to the easy case where Dk is a union of
d = deg Dk lines through a point in CP2. In that case, V ′

2(Dk) becomes a union
of d conics through a point, and its braid monodromy can be computed explicitly.
The result is the following:

Proposition 3. The braid factorization corresponding to the curve V ′
2(Dk) is

given by the formula

(3) ∆2
2d =

(d−1∏

i=1

d∏

j=i+1

Z2
i′j′

)
·

d∏

i=1

Zii′ · Fk ·
(d−1∏

i=1

d∏

j=i+1

Z2
i′j′

)2
·

d∏

i=1

Zii′ ,

or equivalently

(4) ∆2
2d =

d∏

i=1

Ẑii′ · Fk ·
(d−1∏

i=1

d∏

j=i+1

Z2
i′j′

)3
·

d∏

i=1

Zii′ ,

where Fk is the image of the braid factorization for Dk via the embedding of the
braid group Bd in B2d obtained by considering a ball containing only the first d

points, and Ẑii′ is a half-twist along the following path :

q q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
1 i d 1′ i′ d′

Equation (4) is an identity in the braid group B2d acting on 2d points labelled
1, . . . , d, 1′, . . . , d′ (each pair i, i′ corresponds to one of the d conics).

Consider as in Lemma 1 the linear contraction map ψa : (x : y : z) 7→ (x :
ay +(1− a)x :az +(1− a)x). When a converges to 0, the images of all the points
outside of the line L0 : {x = 0} converge towards the point p0 = (1 : 1 : 1). Since
ψa maps fibers of π to fibers of π, the curves ψa(Dk) are braided for all values
of a. Moreover, ψa restricts to the line L0 : {x = 0} as the identity, and when
a → 0 the image of any line intersecting L0 transversely at a point p = (0 :y : z)
converges to the line through p and p0.

By an arbitrarily small perturbation, and without losing the other properties
of Dk, we can easily assume that the point (0 : 1 : 1) does not belong to Dk,
and that none of the nodes of Dk lies on L0. Therefore, by Lemma 1 the curve
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V 0
2 (ψa(Dk)) is locally braided for sufficiently small a 6= 0, and isotopic to V ′

2(Dk)
through locally braided curves. This implies that the braid factorizations for
V 0

2 (ψa(Dk)) and for V ′
2(Dk) are m-equivalent (in fact, when Dk is a complex

curve the isotopy can be carried out inside the complex category, so in that case
the braid factorizations are even Hurwitz and conjugation equivalent).

When a is sufficiently close to 0, outside of a small ball centered at p0 the
curve ψa(Dk) is arbitrarily close to the union of d = deg Dk lines joining the
points of Dk ∩ L0 with p0, and by construction the images by V 0

2 of these d

lines are distinct non-degenerate conics in CP2. Moreover, the restriction of V 0
2

to a neighborhood of p0 is a diffeomorphism mapping fibers of π to fibers of π.
Therefore, the braid factorization of V 0

2 (ψa(Dk)), or equivalently that of V ′
2(Dk)

can be obtained by plugging the braid factorization of Dk into the formula for
the braid monodromy of a union of d conics passing through the point p0, i.e.
by deleting a neighborhood of p0 from this configuration and replacing it with
a braided curve isotopic to the affine part of Dk (suitably rescaled into a small
ball).

As a first step, we therefore need to compute the braid monodromy of a union of
d conics passing through p0. Observe that any configuration of d non-degenerate
conics in CP2 intersecting each other transversely at p0 gives rise to a well-defined
braid factorization as soon as none of the conics passes through the pole of the
projection π : any such configuration is a locally braided curve, and can be per-
turbed into a braided curve (a union of conics in general position) by an arbitrarily
small perturbation. The connectedness of the space of configurations of conics
implies that, up to Hurwitz and conjugation equivalence, it does not actually
matter which conics are used for the computation of the braid monodromy.

Following Moishezon, the calculation can be carried out by simultaneously “de-
generating” all the conics to pairs of lines, i.e. by considering a limit configuration
where each of the conics is very close to a union of two lines [14]. However, for
the purpose of proving Theorem 2 it is more efficient to perform a direct cal-
culation using a specific configuration of conics. We consider d conics with real
coefficients, intersecting at the point p0, and with their other mutual intersections
lying close to three given points p1, p2, p3, as in the following diagram (repre-
senting the intersection of the configuration with R2 ⊂ C2, with the fibers of π

corresponding to vertical lines).
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d

1

1′
d′

q
p0

p1 p2 p3

t1 td t′1 t′d

All the special points are sent to the real axis by the projection π; from left to
right, there are d tangency points t1, . . . , td, followed by d(d−1)/2 nodes near p1,
the multiple point p0, nodes near p2, nodes near p3, and finally d tangency points
t′1, . . . , t

′
d. The base point is chosen on the real axis, immediately to the right of

π(p1); the d conics intersect the reference fiber of π in 2d points (all along the
real axis in the fiber), labelled 1, . . . , d, 1′, . . . , d′.

The system of generating loops that we use to define the braid factorization is
given by paths joining the base point to the projections of the various tangencies
and nodes as shown in the following diagram representing the base of the fibration
π :

q q q q q q q q qq qj q qj q qjp p p p p p p p p p p p p p
t1 td p1

p0 p2 p3 t′1 t′d

We order the various generating loops for π1(C−crit) counterclockwise around
the base point, starting with the first of the arcs joining the base point to the
projection of a node near p1, and ending with the arc joining the base point to
π(td).

The contribution of each node or tangency point to braid monodromy can be
calculated using a two-step process: first, one computes the local braid mon-
odromy, i.e. the monodromy action on a fiber of π very close to the critical point;
this is the power of a half-twist exchanging two immediately adjacent intersec-
tion points of the considered fiber of π with the configuration of d conics. Next,
the local configuration is brought back to the chosen fixed reference fiber of π

along a prescribed arc, and the desired braid is obtained as the image of the
local monodromy under this “parallel transport” operation; for the purpose of
the calculation, it is often efficient to perform a suitable homotopy in order to
break down the given arc into a succession of half-circles centered on other critical
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values along the real axis, since parallel transport along such a half-circle can be
explicitly described as a square root of the local monodromy.

The monodromy around the multiple intersection point p0 is easily seen to be
a full twist of a disc containing the d intersection points labelled 1, . . . , d in the
reference fiber of π; we use the notation ∆2

d for this element of B2d, which is
actually the image of the central element ∆2

d ∈ Bd under the natural embedding
Bd ↪→ B2d.

In the case of the nodes near p1, the braid monodromy can be computed
directly from the local picture; for a generic choice of the conics, the intersection
points labelled 1′, . . . , d′ behave as in the case of d lines in general position, and
their d(d− 1)/2 intersections give rise to the braid monodromy factorization

L′d =
d−1∏

i=1

d∏

j=i+1

Z2
i′j′

or any Hurwitz equivalent expression (compare with equation (2)).

For the nodes near p2, the local monodromy is the same as in the case of
p1, except that the ordering of the points 1, . . . , d is reversed compared to the
reference fiber of π (these points are not affected by the local monodromy any-
way). Since parallel transport along a half-circle around p0 precisely amounts to
a half-rotation of a disc containing the points labelled 1, . . . , d, the contribution
to braid monodromy remains given by the same expression L′d as above. Near
π(p3), the local configuration is the same as for p2 up to reversing the ordering
of the points 1′, . . . , d′ inside the fibers of π; this discrepancy is taken care of by
parallel transport along a half-circle centered at p2, and so the contribution to
braid monodromy is again L′d.

In the case of the tangency point td, the intersection of the d conics with the
fiber of π above a point immediately to the right of π(td) consists of 2d points in
the order 1, . . . , d, d′, . . . , 1′ on the real axis, and the local monodromy is a half-
twist exchanging the consecutive points d, d′. Parallel transport along a clockwise
half-circle around π(p1) induces a half-rotation of the disc containing d′, . . . , 1′ in
the clockwise direction, and therefore transforms this half-twist into Zdd′ .

More generally, in a fiber immediately to the right of ti, the local picture
consists of 2i points 1, . . . , i, i′, . . . , 1′ on the real axis, while the points d, . . . , (i+
1), (i+1)′, . . . , d′ have moved to the pure imaginary axis, and the local monodromy
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around ti is a half-twist exchanging the consecutive points i and i′. Parallel
transport along a clockwise half-circle around π(tj) for each j > i rotates the two
points j and j′ clockwise by π

2 , which eventually yields the following half-twist in
a fiber immediately to the right of π(td):

q q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
1 i d d′ i′ 1′

Finally, going around π(p1) we need to perform a clockwise half-rotation of a disc
containing d′, . . . , 1′, which yields the half-twist Zii′ in the reference fiber of π.
Therefore, the contribution of ti to the braid factorization is Zii′ .

The tangencies t′1, . . . , t
′
d are handled in the exactly the same manner; the cal-

culations are slightly more tedious because of the more complicated choices of arcs
joining π(t′i) to the base point, but one easily checks that the braid monodromy
around t′i is again the half-twist Zii′ .

Putting the various contributions together in the correct order, we obtain that
the braid monodromy for the chosen configuration of conics can be expressed by
the factorization

(5) ∆2
2d = L′d ·

d∏

i=1

Zii′ ·∆2
d · (L′d)2 ·

d∏

i=1

Zii′ .

As explained at the beginning of this section, in order to get the braid fac-
torization for V ′

2(Dk) we need to replace in (5) the factor ∆2
d, corresponding to

the local monodromy at the intersection point p0, with the braid factorization
corresponding to Dk, embedded into B2d in the natural way by considering a
disc containing the points 1, . . . , d (see also the remark below). This immediately
yields the formula (3).

The equivalent expression (4) is obtained from (3) by a sequence of Hurwitz
moves, or equivalently, by a change in the choice of generators for π1(C − crit).
Indeed, moving the factors in the first L′d to the right across

∏
Zii′ and Fk affects

these latter factors by a conjugation by the inverse of the product of all the factors
in L′d, i.e. by a clockwise full twist of the disc containing the points 1′, . . . , d′. As
a result, Zii′ is transformed into Ẑii′ , while the factors in Fk commute with those
in L′d and remain unaffected. This completes the proof of Proposition 3.
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Remark. As observed in §1.1, the braid factorization Fk is only defined up to
certain algebraic operations, among which global conjugation by an element of
Bd. At first glance, the expressions obtained from (3) and (4) by replacing Fk

with its conjugate (Fk)Q by some braid Q ∈ Bd appear to be inequivalent to the
original unconjugated ones. Nonetheless, as suggested by the geometric intuition,
all possible choices yield equivalent results for the braid factorization of V ′

2(Dk).
More precisely, defining Xr = Zr,r+1 and X ′

r = Zr′,(r+1)′ for any 1≤r≤d−1, we
claim that replacing Fk by (Fk)Xr in the r.h.s. of (4) yields an expression which
is Hurwitz and conjugation equivalent to the original one. This is proved by
observing that the conjugated expressions (L′d)X′

r
, (

∏
Ẑii′)XrX′

r
and (

∏
Zii′)XrX′

r

are Hurwitz equivalent to the unconjugated ones (checking these identities is an
easy task left to the reader), so that a global conjugation by XrX

′
r and a sequence

of Hurwitz moves can compensate for the conjugation of Fk.

3.3. The V2 branch curve. We now compute the braid factorization corre-
sponding to the branch curve C2 of the quadratic map V ′

2 (or more generally of
any generic quadratic holomorphic map from CP2 to itself). Elementary calcula-
tions show that C2 is a curve of degree 6 with nine cusps, no nodal points, and
tangent to the fibers of π in three points.

The braid factorizations for branch curves of generic polynomial maps from
CP2 to itself in any degree have been computed by Moishezon [15] (see also [16]),
using a very technical and intricate argument. For the sake of completeness, we
provide a direct calculation in the degree 2 case.

Proposition 4. The braid factorization for the branch curve of V ′
2 is given by

the formula

(6) ∆2
6 =

(
Z3

13Z
3
14Z12;(34)Z

3
23

) · (Z3
15Z

3
16Z12;(56)Z

3
25

) · (Z3
35Z

3
36Z34;(56)Z

3
45

)
,

where Zab;(cd) = (Z2
bcZ

2
bd)Zab(Z2

bcZ
2
bd)

−1 is a half-twist interchanging a and b along
a path that goes around the points labelled c and d, as follows:

q q q qp p p p p p p p p p p p p p p p p p p p p p p p
a b c d

Proposition 4 is proved by studying the effect of a generic small deformation
of the degenerate map V 0

2 : (x : y : z) 7→ (x2 : y2 : z2) on its branch curve.
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The ramification locus of V 0
2 in the source CP2 consists of three lines, which

map two-to-one to three lines in the target CP2 : the branching divisor of V 0
2

therefore consists of three lines with multiplicity 2 (this behavior is extremely
non-generic). The perturbation of V 0

2 into the generic map V ′
2 in particular

affects the local behavior of the branch curve near the three points where the
lines in the branch curve of V 0

2 intersect. It also affects the branch curve in a
more global manner, since the multiplicity 2 lines making up the branch divisor
of V 0

2 are deformed into a configuration without multiplicities; roughly speaking,
away from the intersection points each line of multiplicity 2 is separated into two
distinct lines lying close to each other (even though one must keep in mind that
the curve C2 is irreducible).

In order to avoid the pole of the projection π, we compose the map V 0
2 with

the linear transformation (x : y : z) 7→ (x + ηz : y + ηz : z), for η > 0 small. The
resulting branch divisor still consists of three multiplicity 2 lines, intersecting the
real slice R2 ⊂ C2 in the following manner:

¢
¢
¢
¢
¢¢

A
A

A
A

AA

q1 = (1:0 :0) (0 :1 :0) = q3

(η :η :1) = q2

5612

34

On this diagram, the fibers of π correspond to vertical lines. We choose the
reference fiber of π far to the left on the real axis; after a generic perturbation,
each of the three lines gives rise to two intersection points between C2 and the
reference fiber of π, for a total of 6 intersection points, all lying close to the real
axis in the fiber. We label these points from 1 to 6 in the natural order along the
real axis, namely we label 1 and 2 the two intersection points corresponding to
the line y = 0 ; we label 3 and 4 those corresponding to z = 0, and finally 5 and
6 those corresponding to x = 0.

The braid factorization is computed by considering the three intersection points,
which obviously play very similar roles. The first intersection point q1, for which
we study the braid monodromy by considering paths close to the real axis in the
base, involves the double lines 1− 2 and 3− 4, the first of which has the greatest
slope ; computations in local coordinates yield a word in the braid group B4,
which needs to be embedded into B6 simply by considering a disc containing the
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points 1, 2, 3, 4 and centered on the real axis (the “parallel transport” operation
is trivial in this case).

The second intersection point q2 involves 1 − 2 and 5 − 6, the first of which
again has the greatest slope ; because the local picture is the same, the local
computation yields the same word in B4 as for q1. In the base of the fibration π,
we choose to join π(q2) to the reference fiber via a path passing above the real
axis; one easily checks that parallel transport along this path (going around π(q1)
in the counterclockwise direction) amounts to a counterclockwise half-rotation of
the points 1−2 around 3−4. As a consequence, we must now use an embedding of
B4 into B6 corresponding to a domain containing the points 1, 2, 5, 6 and passing
above the real axis near the points 3, 4. Finally, the third point q3 involving 3− 4
and 5−6 again corresponds to the same local picture. We choose to join π(q3) to
the base point by a path passing above the real axis, and one easily checks that,
after parallel transport around π(q1) and π(q2), the relevant embedding of B4

into B6 is simply that given by a disc containing the points 3, 4, 5, 6 and centered
on the real axis.

Consider any of the three intersection points q1, q2, q3, where we want to com-
pute the local contribution to braid monodromy after a small generic perturba-
tion. Above such a point, the map V 0

2 is given in local affine coordinates by
(x, y) 7→ (x2, y2) ; we choose to perturb it into the map

f : (x, y) 7→ (x2 + αy, y2 + βx),

where α and β are small nonzero constants. The ramification curve is given by
the vanishing of the Jacobian of f , which is 4xy − αβ ; the branch curve of f is
therefore parametrized as

{(
x2 +

α2β

4x
,
α2β2

16x2
+ βx

)
, x ∈ C− {0}

}
.

We also need to specify the projection map in the local coordinates : it can be
assumed to be (z1, z2) 7→ z1 + εz2 for a small nonzero value of the constant ε.

With this setup, the branch curve of f presents one tangency point and three
cusps, and its braid monodromy can be determined explicitly by plotting the
intersections of the branch curve with various fibers of the projection. The cor-
responding factorization in B4 can be expressed as

(7) Z3
13 · Z3

14 · Z12;(34) · Z3
23,
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where Z12;(34) = (Z2
23Z

2
24)Z12(Z2

23Z
2
24)

−1 is the following half-twist :

q q q q
1 2 3 4

One can easily check that the product of the factors in (7) is equal to Z12Z34Z
2
13

Z2
14Z

2
23Z

2
24, which amounts to the double lines 1− 2 and 3 − 4 intersecting each

other while the two lines in each double line (1 and 2 on one hand, 3 and 4 on the
other hand) twist by a half-turn around each other : this is exactly the expected
contribution (the presence of the half-twists is due to the fact that each double
line is the image of a 2 : 1 covering branched at the singular point).

It is worth mentioning that the expression (7) is Hurwitz equivalent to its
conjugates under the action of the half-twists Z12 or Z34 (or any combination of
them). This “invariance property” is suggested by the geometric intuition, since
the two points of each pair 1 − 2 or 3 − 4 arising from the perturbation of a
double line play interchangeable roles; in fact, the diffeomorphisms Z12 or Z34 of
the reference fiber of π are induced by suitable changes in the parameters of the
perturbation (from β to −β via (eiθβ)0≤θ≤π, and similarly for α, respectively).
This observation explains why, although the three embeddings B4 → B6 described
above are in fact naturally determined only up to certain conjugations, we need
not worry about the lack of canonicality of our choices.

Finally, one obtains the braid factorization for C2 by putting together the
contributions of the three intersection points q1, q2, q3, using the embeddings
B4 → B6 described above. The images of (7) under these embeddings are exactly
the three expressions appearing in the r.h.s. of (6). One easily checks that all
the special points of C2 are accounted for, either by using the Plücker formulas
to show that C2 only has 9 cusps and 3 tangency points, or by verifying directly
that the product of the factors in the r.h.s. of (6) is equal to the central element
∆2

6. This completes the proof of Proposition 4.

Let us point out that, although (7) looks very similar to the formula obtained
by Moishezon for the braid monodromy at what he calls a “3-point” [13], the
two geometric situations are very different : Moishezon’s 3-points correspond
to a generic projection of a very degenerate algebraic surface, with locally a
covering map of degree 3, while the points we describe here correspond to a very
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degenerate projection of a smooth algebraic surface, with locally a covering map
of degree 4. The fact that two very different geometric descriptions of the curve
C2 yield identical braid factorizations is one of the many remarkable properties
of quadratic maps from CP2 to itself.

We finish this section by briefly describing the geometric monodromy repre-
sentation θV2 : π1(CP2 − C2) → S4 corresponding to the factorization (6). Each
double line in the branch curve of V 0

2 corresponds to two disjoint transpositions
in S4, while the transpositions corresponding to lines in different double lines are
adjacent. Therefore, after a suitable reordering of the four sheets of the covering
V ′

2 , one may assume that the six geometric generators γ1, . . . , γ6 (small loops go-
ing around each of the six points labelled 1, . . . , 6 in the reference fiber of π) are
mapped to the transpositions (1 2), (3 4), (1 3), (2 4), (1 4) and (2 3) respectively.
One easily checks that all the braids appearing in the factorization (6) satisfy the
compatibility relations stated in the introduction (e.g., for the first factor Z3

13,
the transpositions θV2(γ1) = (1 2) and θV2(γ3) = (1 3) are indeed adjacent).

3.4. Regeneration of the mutual intersections. We now describe the con-
tribution to the braid monodromy of D2k of an intersection point of V ′

2(Dk) with
C2. As observed in §2.2, the behavior of the map f ′2k = V ′

2 ◦ fk above such a
point is not generic, and a perturbation is needed in order to obtain the generic
map f2k. The local description of this perturbation is the following :

Lemma 2. Over a neighborhood of a point where Rk intersects f−1
k (R′

2), up
to an isotopy of the branch curve among locally braided curves we can assume
that f ′2k and f2k are given by the following models in local complex coordinates:
f ′2k(x, y) = (−x2 + y,−y2), and f2k(x, y) = (−x2 + y,−y2 + εx), where ε is a
small non-zero constant, π being the projection to the first component.

Proof. Provided that k is large enough and given a point p ∈ Rk ∩ f−1
k (R′

2), the
argument in §3 of [1] (see also [5],[3]) implies that a small perturbation term,
localized near p, can be added to f ′2k in order to make it generic and achieve the
required transversality properties near p ; the other transversality properties of
f ′2k are not affected if the perturbation is chosen small enough. Moreover, the
one-parameter construction used in [1] to prove uniqueness up to isotopy implies
that the space of admissible perturbations is path connected (once again provided
that k is large enough).
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Local models for the various maps can be obtained as follows. First observe
that there exist local holomorphic coordinates (z1, z2) on CP2 near fk(p) in which
V ′

2 can be expressed as (z1, z2) 7→ (z1,−z2
2). Moreover, it was shown in [1] that

there exist local approximately holomorphic coordinates (x, y) on X and (z̃1, z̃2)
on CP2 in which fk is given by (x, y) 7→ (x2, y).

Recall that fk satisfies properties (2) and (5) of Definition 7. Therefore, pro-
vided that V ′

2 is chosen sufficiently close to V 0
2 (which is always assumed to be the

case), we know two things : first, by property (2), the branch curve Dk = fk(Rk)
intersects the ramification curve R′

2 of V ′
2 transversely ; second, by property (5),

the tangent space to Dk at fk(p) does not lie in the kernel of the differential of V ′
2 ,

i.e. the image by V ′
2 of the branch curve of fk is locally immersed. Therefore, Dk,

given by the equation z̃1 = 0, is transverse at fk(p) to both axes of the coordinate
system (z1, z2) on CP2.

A first consequence is that (z̃1, z2) are local approximately holomorphic co-
ordinates on CP2 ; replacing the coordinate y on X by ỹ = f∗k (z2), we ob-
tain that the expression of fk in the local coordinates (x, ỹ) and (z̃1, z2) remains
(x, y) 7→ (x2, y).

Another consequence is that the coefficients of z̃1 and z2 in the expression of
z1 as a function of z̃1 and z2 are both non-zero. Therefore, near the origin we can
write z1 = z̃1φ(z̃1, z2)+z2ψ(z2)+O(k−1/2), where φ and ψ are non-vanishing holo-
morphic functions and the last part corresponds to the antiholomorphic terms.

Working with coordinates (z1, z2) on CP2, the expression of fk becomes (x, y) 7→
(x2φ(x2, y) + yψ(y) + O(k−1/2), y). Performing the coordinate change (x, y) 7→
(ixφ(x2, y)1/2, y) on X, we can reduce the model for fk to the simpler expression
(x, y) 7→ (−x2 + yψ(y) + O(k−1/2), y). Decomposing ψ into even and odd degree
parts, we can write

f ′2k(x, y) = (−x2 + yψ0(y2) + y2ψ1(y2) + O(k−1/2),−y2).

Composing with the coordinate change (u, v) 7→ (u+vψ1(−v), vψ0(−v)2) on CP2,
we reduce to f ′2k(x, y) = (−x2 + yψ0(y2) + O(k−1/2),−y2ψ0(y2)2). Finally, the
coordinate change (x, y) 7→ (x, yψ0(y2)) on X yields the expression f ′2k(x, y) =
(−x2 + y + O(k−1/2),−y2). This expression differs from the desired one only
by antiholomorphic terms, which are bounded by O(k−1/2) and therefore can be
discarded without affecting the local braid monodromy computations.
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We know that for large enough k the space of admissible asymptotically holo-
morphic local perturbations of f ′2k near p (i.e. perturbations satisfying the re-
quired uniform transversality properties) is path connected. Therefore, we are
free to choose the perturbation which suits best our purposes ; fixing a constant
ε 6= 0, we set f2k to be of the form (x, y) 7→ (−x2+y,−y2+εx). One easily checks
that, provided that the chosen value of ε is bounded from below independently
of k, this map locally satisfies all the required properties.

Concretely, this perturbation of f ′2k can be performed in the same manner as
in [1], by considering the very localized asymptotically holomorphic sections sref

k,p

of L⊗k with exponential decay away from p first introduced by Donaldson in [8].
It is easy to check that, by adding to one of the sections of L⊗2k defining the
covering map f ′2k a small multiple of x · sref

2k,p, where x is the first coordinate
function on X near p, the map f ′2k itself is affected by a perturbation which
coincides at the first order with the desired one. In view of the local models,
this is sufficient to ensure that the branch curve agrees with the prescribed one
up to isotopy among locally braided curves, and hence to ensure that the braid
monodromy is as desired. In fact, replacing the coefficient in front of sref

2k,p by a
suitable polynomial of higher degree in the coordinates, we can even make the
perturbation of f ′2k coincide with the desired one up to arbitrarily high order.

We finally consider the projection π used to define braid monodromy. Recall
that the various hypotheses made on V ′

2 and fk ensure that the branch curve of V ′
2

remains locally transverse to the fibers of π. Furthermore, over a neighborhood
of the considered point, the tangent space to the branch curve of f ′2k in CP2

remains very close to the direction determined by the branch curve of V ′
2 (in our

local model, the first coordinate axis) ; an easy calculation shows that the same
property remains true for f2k (see also below). It follows that the local braid
monodromy does not depend at all on choice of the projection π as long as its
fibers are locally transverse to the first coordinate axis. Therefore, performing if
necessary an isotopy among locally braided curves by means of a suitable rotation,
we can safely assume π to be the projection to the first coordinate axis. ¤

By Lemma 2 we know that the local braid monodromy of f2k can be computed
using for f2k the local model

(x, y) 7→ (−x2 + y,−y2 + εx)
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where ε is a small non-zero constant. The Jacobian of this map is 4xy − ε, and
its branch curve can be parametrized as

{(
−x2 +

ε

4x
,− ε2

16x2
+ εx

)
, x ∈ C− {0}

}
.

The signs have been chosen in such a way that, taking ε along the positive real
axis and taking the base point at a large negative real value of the first coordinate,
the intersection of the branch curve with the reference fiber of π consists of three
points aligned along the real axis, the left-most one corresponding to the branch
curve of fk while the two others correspond to the branch curve of V ′

2 .

Projecting to the first component (or choosing any other generic projection),
the only remarkable features of the branch curve near the origin are three cusps,
and the corresponding braid factorization can be expressed as

(8) Z3
12 · Z3

13 · Z3
12;(3),

where the point labelled 1 corresponds to the branch curve of fk while the points
labelled 2 and 3 correspond to the branch curve of V ′

2 , and where Z12;(3) =
Z2

23Z12Z
−2
23 is a half-twist exchanging 1 and 2 along a path that goes around 3 :

q q q
1 2 3

A short calculation in B3 shows that the product of the factors in (8) is equal
to Z23(Z2

12Z
2
13)

2, which amounts to the line labelled 1 twisting twice around 2 and
3 while these two lines undergo a half-twist. This is consistent with the geometric
intuition, since the branch curve of fk, folded onto itself by V ′

2 , hits the branch
curve of V ′

2 in a manner that can be represented by the following picture:

1

3
2

The line labelled 1 intersects 2 and 3 with multiplicity 2 because the image of Dk

by V ′
2 is necessarily tangent to the branch curve of V ′

2 wherever they intersect ;
the lines 2 and 3 twist around each other by a half-turn because they arise as the
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two sheets of a 2:1 covering branched at the origin (they correspond to the two
preimages by fk of each point where V ′

2 is ramified).

It is also worth observing that the expression (8) is easily shown to be Hurwitz
equivalent to its conjugates under the action of the group generated by the half-
twist Z23 exchanging the two points labelled 2 and 3, in agreement with the
geometric intuition suggesting that their roles are interchangeable.

In order to understand how the braid monodromy given in (8) fits in the global
picture, we now need to explain the labelling of the various components making
up D2k and the corresponding geometric monodromy representation.

Notations. As described above the branch curve D2k is obtained by deforming
the union of V ′

2(Dk) and n copies of C2. Its degree is therefore d̄ = 2d + 6n. For
braid group calculations in B2d+6n, the 2d + 6n intersection points of D2k with
the reference fiber of π will be labelled as follows: we assign labels 1, . . . , d and
1′, . . . , d′ to the 2d intersection points which correspond to V ′

2(Dk) (in the same
manner as in §3.2), and iα, i′α, iβ, i′β , iγ , i′γ for 1 ≤ i ≤ n to the 6n intersection
points corresponding to the n copies of C2. More precisely, recall that the branch
curve of V ′

2 is obtained as a perturbation of the branch curve of V 0
2 , which consists

of three double lines : therefore the n copies of C2 can be thought of as three
groups of 2n lines. These three groups correspond to the three subscripts α, β

and γ ; for each value of i the two labels iα and i′α correspond to the perturbation
of a double line in the i-th copy of the branch curve of V 0

2 .

We will choose the reference fiber of π and the configuration of the branch curve
in such a way that the 2d + 6n intersection points of the reference fiber with D2k

all lie on the real axis, in the order 1, . . . , d, 1′, . . . , d′, 1α, 1′α, 2α, 2′α, . . . , nα, n′α,

1β, 1′β, . . . , nβ , n′β, 1γ , 1′γ , . . . , nγ , n′γ ; in fact, we will actually choose a reference
fiber yielding a slightly different configuration of intersection points, and then
conjugate the obtained monodromy by a suitable braid. In any case, when using
Zij notations it will be understood that the 2d + 6n intersection points of D2k

with the reference fiber of the projection π are to be placed on the real axis in
the above-given order.

In order to describe the geometric monodromy representation morphism θ2k :
π1(CP2 − D2k) → S4n, we first need to choose a set of geometric generators of
π1(CP2−D2k). We choose the base point for π1(CP2−D2k) to lie in the reference
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fiber of π, far above the real axis which contains the 2d + 6n intersection points
with D2k, and we use a system of 2d+6n generating loops, each joining the base
point to one of the intersection points along a straight line, circling once around
the intersection point, and going back to the base point along the same straight
line.

The 4n sheets of the covering f2k can be thought of as four groups of n sheets,
which we will label as ia, ib, ic, id for 1 ≤ i ≤ n. Consider a situation similar to
that of §3.2, where most of the branch curve of fk is concentrated into a small
ball far away from the branch curve of V ′

2 : this results in a picture where the
parts of the branch curve corresponding to V ′

2(Dk) connect to each other the n

sheets of a single group (1a, . . . , na for example), while the copies of C2 connect
the various groups of n sheets to each other. In particular, the transpositions
in S4n corresponding to the geometric generators around 1, . . . , d, 1′, . . . , d′ are
directly given by the geometric monodromy representation θk associated to Dk :
for any 1 ≤ r ≤ d, if θk maps the r-th geometric generator to the transposition
(ij) in Sn then, calling γr and γr′ the geometric generators in π1(CP2 − D2k)
corresponding to r and r′, one gets θ2k(γr) = θ2k(γr′) = (iaja). Finally, each of
the n copies of C2 connects four sheets to each other, one in each group of n, in
the same manner as for V ′

2 itself : therefore θ2k maps the geometric generators
around iα, i′α, iβ , i′β, iγ and i′γ to (iaib), (icid), (iaic), (ibid), (iaid) and (ibic)
respectively, for all 1 ≤ i ≤ n.

A suitable choice of geometric configuration and reference fiber of π yields a
situation in which θ2k is as described above. Our choice of configuration will
be made explicit in §3.5. A different set of geometric choices would lead to a
different description of the braid monodromy and of θ2k, but the final answer
always remains the same up to Hurwitz and conjugation equivalence.

With this understood, we now describe the contribution to the braid mon-
odromy of a point where a piece of V ′

2(Dk), say e.g. the portion of conic labelled
r′ for some 1 ≤ r ≤ d, hits one of the three groups of 2n lines making up the n

copies of C2, say e.g. the lines labelled 1α, 1′α, . . . , nα, n′α.

If one just considers the composed map V ′
2 ◦fk, the n copies of the branch curve

C2 of V ′
2 all lie in the same position, and the curve V ′

2(Dk) hits them tangently
(and therefore with local intersection multiplicity +2). To obtain the generic
map f2k we add a small perturbation, which affects the situation by moving the
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n copies of C2 apart from each other and also by modifying the intersection of Rk

with f−1
k (R′

2) in the manner explained above. More precisely, R′
2 admits 2n− 2

local lifts to X which do not locally intersect the branch curve of fk (because
they lie in different sheets of the covering) and thus do not require any special
treatment, while the two other sheets of fk give rise to “lifts” of R′

2 intersecting
the branch curve of fk and each other. Therefore, when computing the braid
factorization of D2k, we can locally consider the n copies of C2 as consisting of
2n− 2 parallel lines, each intersected twice by V ′

2(Dk) (giving rise to two nodes),
and two “lines” parallel to the others which are hit by V ′

2(Dk) in the manner
previously explained.

The geometric monodromy representation θ2k maps the geometric generator
around r′ to a transposition of the form (paqa), for some 1 ≤ p, q ≤ n. The two
lines hit in a non-trivial manner are those labelled pα and qα, which under the
map θ2k correspond respectively to the transpositions (papb) and (qaqb) in S4n.
The other 2n− 2 lines (iα for i 6∈ {p, q} and i′α for all i) lie in different sheets of
the covering and their intersections with r′ simply remain as nodes in the branch
curve D2k.

Parallel transport of the local configuration along a given arc in the base of the
fibration π reveals the important role played by two specific paths in the reference
fiber, namely the path along which the point labelled r′ approaches the group of
2n points 1α, . . . , n′α and the path along which two of these 2n points approach
each other. To phrase things differently, these two paths determine an embedded
triangle with vertices at r′, pα, qα in the reference fiber, which collapses as one
moves from the reference fiber towards the intersection point.

We assume the configuration to be such that, after parallel transport of the
local configuration into the reference fiber of π, the path along which the point
labelled r′ approaches the 2n other points is the simplest possible one passing
above the real axis, while the two points pα and qα approach each other along
a path isotopic to an arc contained in the upper half-plane. Equivalently, inside
the reference fiber of π, we assume that the embedded triangle with vertices r′,
pα and qα which collapses as one approaches the considered singular point is
the simplest possible one lying in the upper half-plane. Whether this is truly the
case or whether the formula needs to be adjusted by a suitable global conjugation
will be determined later on, when the contributions of the various points are put
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together into a global braid factorization in B2d+6n; if the motions of r′, pα and
qα are different from the (purely arbitrary) above choice, then the formula giving
the local monodromy will need to be conjugated by a certain element of B2d+6n

(any braid that maps the triangle joining r′, pα, qα into the correct position can
be used, as they all yield Hurwitz equivalent factorizations).

Proposition 5. The braid monodromy for the intersection of the portion of conic
labelled r′ with the 2n lines 1α, 1′α, . . . , nα, n′α is Hurwitz and conjugation equiva-
lent to the following factorization :

(9)
1∏

i=n

(
Ź2

r′i′α

[
Ź2

r′iα
]
i6∈{p,q}

)
· Z3

r′pα
· Z3

r′qα
· Z3

r′pα;(qα)·

1∏

i=n

(
Z̀2

r′i′α

[
Z̀2

r′iα
]
i6∈{p,q}

)
,

where Źr′τ and Z̀r′τ are half-twists along the following paths:

Źr′τ q q q qp p p p p p p p p p p p p p p p p p p p p p p p
r′ d′

1α τ Z̀r′τ q q q qp p p p p p p p p p p p p p p p p p p p p p p p
r′

τ

1β

and Zr′pα;(qα) is a half-twist along the path

q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
r′ pα qα

In (9), the products are to be performed in the reverse order (first i = n,
finishing with i = 1), and the notation [. . . ]i6∈{p,q} means that the enclosed factor
is not present for i = p or i = q.

Proof. We start by considering a slightly simpler setup where, instead of being
in their normal positions, the points pα and qα have been moved to the right of
the 2n − 2 other points 1α, . . . , n′α (i.e., further along the positive real axis in
the reference fiber of π). More precisely, we assume that the points pα and qα

have been moved into these positions along arcs in the upper half-plane, so that
the point r′ still reaches them by passing above the real axis and the vanishing
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cycle is the line segment joining pα to qα. The situation is then described by the
following picture in R2 ⊂ C2:

r′

pα

qα

1α

n′αp p p p p p pppppp

The reference fiber is once again placed to the left of the diagram, and the
vertical direction corresponds to the real axis in the fibers of π.

Recalling that V ′
2(Dk) hits C2 tangently, the expected total contribution to

the braid monodromy corresponds to r′ twisting twice around each of the lines
1α, 1′α, . . . , nα, n′α. For the reasons explained above, a half-twist between the lines
pα and qα is also to be expected.

In order to compute the braid monodromy, we observe that in the chosen
configuration the singular fibers of π all lie along the real axis, and choose the
following system of generating paths in the base of the fibration π: the first
path connects the base point (far away on the negative real axis) to the first
intersection of r′ with n′α by passing below the real axis; the second one similarly
joins the base point to the first intersection of r′ with nα by passing below the
real axis; and so on, going from right to left, until all 2n − 2 nodes in the left
half of the diagram have been considered. The following three paths join the
base point to the three cusp singularities arising from the perturbation of the
singular point in the middle of the diagram, passing above the real axis. Finally,
the remaining 2n − 2 paths join the base point to the intersections in the right
half of the diagram, passing above the real axis, and going from left to right (the
first of these paths ends at the second intersection of r′ with n′α, the last one ends
at the second intersection with 1α). As should always be the case, the paths are
ordered counterclockwise around the base point.

Observing that the conic labelled r′ behaves similarly to the graph of the
identity function in the left half of the diagram and similarly to the graph of −Id
in the right half, one easily obtains the following expression for the local braid
monodromy of our configuration:

(10)
1∏

i=n

(
Ź2

r′i′α

[
Ź2

r′iα
]
i6∈{p,q}

)
· Fr′pαqα ·

1∏

i=n

(
Z̀2

r′i′α

[
Z̀2

r′iα
]
i6∈{p,q}

)
,
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where the notation Fr′pαqα represents an expression similar to (8), and Źr′iα and
Z̀r′iα are the same half-twists as in the statement of Proposition 5.

We now bring the two points pα and qα back to their respective positions,
moving them along paths passing above the real axis. The half-twists Źr′τ and
Z̀r′τ are not affected by this motion; whereas Fr′pαqα is changed into Z3

r′pα
·Z3

r′qα
·

Z3
r′pα;(qα). Therefore, the expression (10) turns into (9). ¤

Observe that the conjugates of the expression (9) by certain elements of B2n

(acting on 1α, . . . , n′α) are Hurwitz equivalent to (9). Indeed, consider the sub-
group B2n−2×B2 ⊂ B2n of braids which globally preserve the triangle formed by
r′, pα and qα. The factor B2 is generated by the half-twist Zpαqα interchanging
pα and qα, while the factor B2n−2 is generated by half-twists interchanging two of
the 2n−2 other points along a path passing below the real axis. Conjugating (9)
by Zpαqα simply amounts to a modification of the three central degree 3 factors of
(9) by two Hurwitz moves. Similarly, conjugation by one of the half-twists gener-
ating B2n−2 (interchanging two consecutive points among the 2n−2) is equivalent
to two Hurwitz moves, one among the Ź2

r′τ factors and the other among the Z̀2
r′τ

factors. This is in agreement with the geometric intuition suggesting that, since
all these conjugations do not affect the triangle joining r′, pα and qα, they do not
modify the braid monodromy in any significant way.

However, as already pointed out above, conjugating (9) by an element of B2n

lying outside of B2n−2 × B2 affects non-trivially the path along which pα and
qα approach each other, and therefore yields an expression which is not Hurwitz
equivalent to the original one (this can be seen directly by observing that the
product of all factors in (9) is modified by the conjugation).

3.5. The assembling rule. We now study how the various elements described
above fit together to provide the braid factorization for D2k. We will start by
considering, as a toy model, a curve made up of d conics and three lines, corre-
sponding to the following diagram (drawn for d = 2) :
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α γ

β

2 1

1′ 2′

The d conics play the role of V ′
2(Dk), while the three lines correspond to the C2

part. As usual, the vertical direction corresponds to the real axis in the fibers of
π, and the reference fiber is to the left of the diagram ; in the reference fiber the
points are placed on the real axis in the order 1, . . . , d, 1′, . . . , d′, α, β, γ. Although
the space of all configurations of d conics and three lines tangent to them in CP2

is connected, thus making all possible choices equally suitable, the choice of the
configuration represented above is motivated by its remarkable similarity to the
configurations chosen in §3.2 and §3.3 for V ′

2(Dk) and C2 respectively. In partic-
ular, one easily checks that the braid monodromy for the chosen configuration of
the d conics is exactly the one computed in §3.2 (equation (5) and Proposition
3).

The braid monodromy for this configuration of d conics and three lines can be
computed explicitly in coordinates. However this calculation is tedious and not
very illuminating, so we first motivate the formula by deriving it by a different
method : we start from a situation where the lines are in general position with
respect to the conics, and we follow on the level of braid factorizations the de-
formation of such a generic configuration into the specific desired one. In fact,
keeping track of the deformation amounts to performing a sequence of Hurwitz
moves with the aim of bringing next to each other the two factors arising from
the intersections of each line with each conic ; the resulting braid factorization
contains consecutive identical degree 2 factors, so that merging the intersections
becomes a trivial task.

Alternatively, the reader may jump ahead to the statement of Proposition 6 and
the outline of proof given afterwards for a description of the direct monodromy
calculation.
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The standard braid factorization assembling formula for the union of two tran-
versely intersecting curves of respective degrees p and q is given by

(11) ∆2
p+q = ∆2

p ·
p∏

i=1

p+q∏

j=p+1

Z2
ij ·∆2

q ,

where the points are labelled 1, . . . , p for the first curve and p+1, . . . , p+q for the
second, and ∆2

p and ∆2
q stand for the braid factorizations of the two components.

The braid groups Bp and Bq are implicitly embedded into Bp+q by considering
two disjoint disks containing the p first points and the q last points respectively.
The formula (11) can be easily checked by applying a suitable isotopy to the
two components so that, outside of two mutually disjoint balls, they behave like
respectively p and q mutually transverse lines.

In our case we want the three lines to be tangent to the conics, so we need to
perform Hurwitz moves on this factorization so that the two intersections of each
line with each conic can be brought together. Our starting point is the formula
(11), together with a suitable braid monodromy factorization for a union of d

conics. For this we rely on Proposition 3, viewing the d conics as the images of
d lines by a quadratic map; using the standard expression

Ld =
d−1∏

i=1

d∏

j=i+1

Z2
ij

for the braid monodromy of a configuration of d lines, we obtain that the braid
monodromy of a configuration of d conics is given by substituting Ld in the place
of Fk in equation (4). Thus the formula (11) gives the factorization

(12) ∆2 =
( d∏

i=1

Ẑii′ · Ld · (L′d)3 ·
d∏

i=1

Zii′
)
·

d∏

i=1

(
Z2

iαZ2
iβZ2

iγ

) ·
d∏

i=1

(
Z2

i′αZ2
i′βZ2

i′γ
) · (Z2

αβZ2
αγZ2

βγ

)
.

Moving the Zii′ factors to the right, one replaces the central Z2
iαZ2

iβZ2
iγ terms by

Z2
i′αZ2

i′βZ2′iγ ; then, moving the rightmost terms to the left, one obtains the new
expression

∆2 =
( d∏

i=1

Ẑii′ · Ld · (L′d)3
)
·
( d∏

i=1

(
Z2

i′αZ2
i′βZ2

i′γ
))2

· (Z2
αβZ2

αγZ2
βγ

) ·
d∏

i=1

Žii′
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where Žii′ is a half-twist along the following path :

q q q q q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
1 i d 1′ i′ d′ α β γ

To shorten notations, we will write this factorization in the form

(13) ∆2 =
d∏

i=1

Ẑii′ · Ld ·Θ ·
d∏

i=1

Žii′ ,

and work only with the central part Θ, which geometrically corresponds to the
upper half of the considered diagram. Using the commutativity rules in the
central part, one can rewrite Θ as

Θ = (L′d)
3 ·

( d∏

i=1

Z2
i′α

d∏

i=1

Z2
i′β

d∏

i=1

Z2
i′γ

)2
· (Z2

αβZ2
αγZ2

βγ

)
.

Moving the second set of Z2
i′α and Z2

i′β factors to the left, one can rewrite this
expression as

Θ = (L′d)
3 ·

( d∏

i=1

Z2
i′α

)2
·

d∏

i=1

Z2
i′β;{α} ·

d∏

i=1

Z2
i′β ·

d∏

i=1

Z2
i′γ;{β} ·

d∏

i=1

Z2
i′γ ·

(
Z2

αβZ2
αγZ2

βγ

)

where Zi′β;{α} and Zi′γ;{β} are half-twists along the following paths :

q q q q q q qp p p p p p p p p p p p p p p
d 1′ i′ d′ α β γ

Zi′β;{α}

q q q q q q qp p p p p p p p p p p p p p p
d 1′ i′ d′ α β γ

Zi′γ;{β}

A succession of Hurwitz moves to the right makes it possible to rewrite Θ as

(L′d)
3 ·

( d∏

i=1

Z2
i′α

)2
·

d∏

i=1

Z2
i′β;{α} · Z̃2

αβ,0 ·
d∏

i=1

Z2
i′β ·

d∏

i=1

Z2
i′γ;{β} · Z̃2

αγZ̃2
βγ ·

d∏

i=1

Z2
i′γ

where Z̃αβ,0, Z̃αγ and Z̃βγ are half-twists along the following paths :

q q q q q qp p p p p p p p p
d 1′ d′

α

β γ

Z̃αβ,0

q q q q q qp p p p p p p p p
d 1′ d′

α

β γ

Z̃αγ

q q q q q qp p p p p p p p p
d 1′ d′ α β γ

Z̃βγ
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Moving Z̃2
αβ,0, Z̃2

αγ and Z̃2
βγ to the left, one can rewrite Θ as

Θ = (L′d)
3 ·

( d∏

i=1

Z2
i′α

)2
· Z̃2

αβ,0 ·
( d∏

i=1

Z2
i′β

)2
· Z̃2

αγZ̃2
βγ ·

( d∏

i=1

Z2
i′γ

)2
.

Moving the Z2
i′β factors to the left, one obtains the new expression

Θ = (L′d)
3 ·

( d∏

i=1

Z2
i′α

)2
·
( d∏

i=1

Z2
i′β

)2
· Z̃2

αβ · Z̃2
αγZ̃2

βγ ·
( d∏

i=1

Z2
i′γ

)2
,

where Z̃αβ is a half-twist along the path

q q q q q qp p p p p p p p p
d 1′ d′

α

β γ

Observing that each factor Z2
i′j′ in L′d commutes with the products

∏
Z2

i′α and∏
Z2

i′β and also with Z̃2
αβ , Z̃2

αγ and Z̃2
βγ , a sequence of Hurwitz moves to the left

makes it possible to rewrite Θ as

(14) L′d ·
( d∏

i=1

Z2
i′α

)2
· L′d ·

( d∏

i=1

Z2
i′β

)2
· Z̃2

αβZ̃2
αγZ̃2

βγ · L′d ·
( d∏

i=1

Z2
i′γ

)2
.

We now study more in detail the first part of (14), namely

Θα = L′d ·
( d∏

i=1

Z2
i′α

)2
=

d−1∏

i=1

d∏

j=i+1

Z2
i′j′ ·

( d∏

i=1

Z2
i′α

)2
.

A sequence of Hurwitz moves to the right makes it possible to rewrite this ex-
pression as

Θα =
d−1∏

i=1

d∏

j=i+1

Z2
i′j′ ·

d∏

i=1

(
Z2

i′αẐ2
i′α

)
,

where Ẑi′α is a half-twist along the path

q q q q qp p p p p pp p p p p p
1′ i′ d′ α
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Using commutation relations, more Hurwitz moves yield the identity

Θα =
d∏

i=1

( d∏

j=i+1

Z2
i′j′ · Z2

i′αẐ2
i′α

)
.

Next we move Z2
i′α to the left and obtain

Θα =
d∏

i=1

(
Z2

i′α ·
d∏

j=i+1

Z2
i′j′;(α) · Ẑ2

i′α

)
,

where Zi′j′;(α) = Z−2
i′αZi′j′Z

2
i′α is a twist along the path

q q q q q qp p p p p p p p p p p p p p p p p p
i′ j′ d′ α β γ

Finally, moving the Z2
i′j′;(α) factors to the left, one obtains the identity

Θα =
d∏

i=1

(
(Z2

i′α)2 ·
d∏

j=i+1

Z2
i′j′;(α)

)
.

Geometrically this expression corresponds to the following picture :

α

1′ 2′
...
d′

Proceeding similarly with the pieces involving β and γ in the expression (14),
and letting Zi′j′;(β) = Z−2

i′β Zi′j′Z
2
i′β and Zi′j′;(γ) = Z−2

i′γ Zi′j′Z
2
i′γ (these twists cor-

respond to the same picture as Zi′j′;(α) but going around β or γ instead of α),
the factorization (14) rewrites as

Θ =
d∏

i=1

(
(Z2

i′α)2 ·
d∏

j=i+1

Z2
i′j′;(α)

)
·

d∏

i=1

(
(Z2

i′β)2 ·
d∏

j=i+1

Z2
i′j′;(β)

)
·

Z̃2
αβZ̃2

αγZ̃2
βγ ·

d∏

i=1

(
(Z2

i′γ)2 ·
d∏

j=i+1

Z2
i′j′;(γ)

)
.

We have finally achieved our goal of bringing next to each other the two inter-
sections of each conic with each line. Therefore, going back to (13), we finally
obtain :
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Proposition 6. The braid factorization corresponding to the union of d conics
and three lines tangent to them is given by

(15) ∆2 =
d∏

i=1

Ẑii′ · Ld ·
d∏

i=1

(
Z4

i′α ·
d∏

j=i+1

Z2
i′j′;(α)

)
·

d∏

i=1

(
Z4

i′β ·
d∏

j=i+1

Z2
i′j′;(β)

)
·

Z̃2
αβZ̃2

αγZ̃2
βγ ·

d∏

i=1

(
Z4

i′γ ·
d∏

j=i+1

Z2
i′j′;(γ)

)
·

d∏

i=1

Žii′ .

As explained above, the connectedness of the space of configurations of mu-
tually tangent conics and lines implies that, for a different choice of the initial
configuration, the braid factorization remains the same up to Hurwitz equiva-
lence and global conjugation. For instance, using different expressions as starting
points for the above geometric derivation of (15) leads to formulas in which the
half-twists Ẑii′ and Žii′ are replaced by slightly different half-twists with the same
end points; these formulas are equivalent to (15) up to suitable Hurwitz moves
and conjugations.

For completeness, we now describe how the reader may re-obtain the formula
(15) by a direct calculation from the diagram presented at the beginning of this
section (we describe the case d = 2, the extension to all values of d is trivial). We
start again from the diagram representing the intersection of the configuration
with R2 ⊂ C2.

α γ

β

2 1

1′ 2′

All the special points are sent to the real axis by the projection π, and labelling
them in the obvious manner they are, from left to right, in the following order
(after slightly deforming the projection in a manner which clearly doesn’t affect
the braid factorization) : 11′, 22′ (tangencies), 12, 1′α, 1′2′, 2′α, αβ, 2′β, 1′2′, 1′β,
αγ, βγ, 1′γ, 1′2′, 2′γ (nodes and double nodes), 11′, 22′ (tangencies). (Note that,
of the four intersections between the two conics, only one involves the portions
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labelled 1 and 2, while the three others involve the portions labelled 1′ and 2′;
hence in the above list 12 appears only once and 1′2′ appears three times.)

The base point is placed on the real axis, immediately to the right of the
first two tangencies (and to the left of all other points). The intersection with
the reference fiber differs from the expected one by a permutation of the points
labelled 1′ and 2′ (the points are in the order 1, 2, 2′, 1′, α, β, γ) ; this is taken care
of by conjugating all computed monodromies by a half-twist, namely the point
labelled 1′ is brought back to the left of 2′ by moving it counterclockwise along a
half-circle passing above 2′.

The system of generating loops that we use to define the braid factorization is
given by paths joining the base point to the various other points in the following
manner (one easily checks that these paths are ordered counterclockwise around
the base point). The first two paths join the base point to the points 11′ and 22′

on its left, starting below the real axis and rotating twice clockwise around 11′

and 22′ (see diagram below). The four following paths join the base point to the
points 12, 1′α, 1′2′ and 2′α on its right, passing above the real axis. The next
four paths reach the points 1′β, 1′2′, 2′β and αβ in that order, starting above
the real axis and crossing it between 1′β and αγ to reach their end points from
below, as shown on the diagram. The following two paths join the base point to
αγ and βγ, simply passing above the real axis. The next three paths have 1′γ,
1′2′ and 2′γ as end points, passing above the real axis but circling once clockwise
around the three points before reaching them. Finally, the last two paths connect
the base point to the two rightmost points 11′ and 22′, passing above the real
axis and circling twice clockwise around them. The picture is as follows :

q q q q q q q q q q q q q q q q q q
11′ 22′ 12 1′α 1′2′ 2′α

αβ 2′β 1′2′1′β
αγ βγ 1′γ 1′2′ 2′γ 11′ 22′

The monodromy around each point is computed using the following observa-
tion : placing oneself along the real axis, close to the image in the base of one of
the special points, the intersection points of the curve with the fiber of π all lie
along the real axis (except at the outermost tangencies where some points have
moved off the axis), and the two points involved in the monodromy lie next to
each other. The monodromy then corresponds to a twist along a line segment
between these two points ; more importantly, restricting oneself to a half-circle
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around the considered point in the base amounts to rotating the two points in the
fiber around each other by half the total angle. With this understood, and de-
composing each path into half-circles around the various points, the computations
simply become a tedious task of careful accounting.

After suitably conjugating by a half-twist between 1′ and 2′, it turns out that
the braid monodromies along the various given loops are exactly the factors
appearing in (15), except in the case of the tangency points 11′ and 22′ at either
extremity. In fact, the monodromies around the tangency points differ from Ẑii′

and Žii′ by a conjugation by Z4
12 (or more generally the square of ∆2

d when d > 2) ;
a global conjugation of all factors by this braid eliminates the discrepancy and
yields the desired formula.

(The choices made for the two sets of d tangencies may seem rather artificial,
and indeed other choices would lead in a slightly more direct manner to equally
valid expressions – Hurwitz and conjugation equivalent to (15) – involving dif-
ferent half-twists instead of Ẑii′ and Žii′ . The choices made here are motivated
by consistency with the geometric derivation outlined before the statement of
Proposition 6, where these half-twists come up as a consequence of the use of
Proposition 3 as a starting point for the calculation.)

3.6. The degree doubling formula. We finally turn to our main objective,
computing the braid factorization for D2k. Recall from §2.2 that the generic
covering map f2k can be obtained as a small perturbation of f ′2k = V ′

2 ◦ fk,
where V ′

2 is a generic quadratic holomorphic map obtained by slightly perturbing
V 0

2 : (x : y : z) 7→ (x2 : y2 : z2). More precisely, Proposition 2 states that, away
from the intersection points of the two branch curves Rk and f−1

k (R′
2), the map f ′2k

satisfies almost all expected properties, the only problem for the definition of braid
monodromy invariants being that its branch curve is not everywhere transverse
to itself ; of course, it is also necessary to perturb f ′2k near the intersection points
in order to obtain a generic local model.

Recall that, by the main result of [5], f ′2k can be made generic near the points
of I ′k = Rk ∩ f−1

k (R′
2) by adding to it small perturbation terms (see also the

argument at the end of §2.2). Provided that the perturbations are chosen small
enough, the transversality properties satisfied by f ′2k away from these points
are not affected. Moreover, recall that for large k the one-parameter argument
proving the uniqueness up to isotopy of quasiholomorphic coverings also implies
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the connectedness of the space of admissible perturbations of f ′2k near a given
point of I ′k. Therefore, the perturbation of f ′2k affects the braid monodromy near
each point of I ′k exactly as described in §3.4.

It is important to observe that these perturbations of f ′2k only significantly af-
fect the branch curve near the points of I ′k : away from I ′k, the branch curve of the
perturbed map remains C1-close to that of f ′2k (the perturbation terms are very
small in comparison with the transversality estimates satisfied by f ′2k). There-
fore, no unexpected changes can take place in the braid monodromy, although
some pairs of nodes may be created when self-transversality is lost.

Another seemingly crucial point to be understood is the manner in which the
n copies of the branch curve of V ′

2 are moved into mutually transverse positions.
Indeed, as explained at the end of §3.4 this information directly determines the
contribution to the braid monodromy of the points of I ′k by modifying the local
configuration of vanishing cycles. Similarly, the braid monodromy arising near
the points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) from the cusps and tangency points
in the n copies of C2 is strongly related to the local configuration in each group
of 2n lines. Therefore, our lack of control over the manner in which each of the
three groups of 2n lines is arranged may seem rather disturbing.

Fortunately, up to m-equivalence this does not affect the final outcome of the
calculations. Indeed, in most places the 2n components labelled 1α, . . . , n′α (or
similarly the two other groups of 2n lines) all lift into different sheets of the
covering f2k : X → CP2 ; the only exceptions are near the intersection points
of C2 with V ′

2(Dk), where two of the 2n curves actually meet each other (e.g.,
those labelled pα and qα in §3.4), and similarly near the points of intersection
between two groups of 2n lines, where the two curves coming from the same copy
of C2 (e.g., those labelled iα and i′α) also merge. In any case, we are free to move
the various lines across each other, as long as the two distinguished components
are kept together ; in this process, the braid factorization only changes when
pairs of intersections are created or cancelled, which always amounts to an m-
equivalence. Observe moreover that all possible configurations can be deformed
into each other in this way ; this follows e.g. from the fact that all the curves under
consideration, whether self-transverse or not, are locally braided. We conclude
that up to m-equivalence the braid monodromy does not depend on the chosen
configuration.
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Another more algebraic way to express the same idea is the following. As
observed at the end of §3.4, the manner in which the local braid monodromy
arising from a point of I ′k depends on the local configuration is a conjugation by
an element Q of B2n which after multiplication by an element of B2n−2×B2 can
easily be assumed to be a pure braid. Denoting by Φ the factorized expression
corresponding to the standard configuration and by ΦQ its conjugate by the braid
Q, we have the chain of m-equivalences

ΦQ ∼ Q ·Q−1 · ΦQ ∼ Q · Φ ·Q−1 ∼ Q ·Q−1
Φ · Φ,

where the first operation is a pair creation and the two others are Hurwitz moves ;
therefore, conjugating Φ by Q is equivalent to inserting the two factors Q and
Q−1

Φ , which are both pure braids in B2n. A similar phenomenon occurs near
the intersection points between two groups of 2n lines : the choice of a specific
configuration amounts to a conjugation by a pure braid in B2n×B2n, which after
a suitable m-equivalence simply amounts to inserting some pure braids into the
factorization. Finally, some intersections between the 2n lines also occur outside
of these points, which means that, independently of the issue of the local configu-
rations, some pure braids in B2n appear as factors. Collecting all the pure braids
in B2n we have obtained in this description, we get that the choice of a specific
configuration amounts to the choice of a set of pure braid factors in B2n (or more
precisely, three such sets of factors, one for each of the groups of lines labelled
α, β and γ). The product of these factors is always the same independently of
the chosen configuration, because in the end we only consider factorizations of
∆2. The result then follows from the following observation : given a pure braid
Q ∈ B2n, any two decompositions of Q into products of positive and negative
twists differ from each other by Hurwitz moves and pair cancellations. This can
be seen by realizing a factorization of Q as the braid monodromy of a curve
with 2n components in C2 and by observing that any two such configurations are
deformation equivalent. This is in fact a trivial case of the “symplectic isotopy
problem”, in which the components are sections of the projection, and the ho-
motopy is allowed to create and cancel pairs of intersections between them. It is
easy to convince oneself that for given Q any two configurations are homotopic:
for example, when Q = 1 the components can be unknotted simply by translating
them. See also [6] for a more general result.
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As explained in §3.2, we can deform the curve Dk so that its image by V 0
2

becomes arbitrarily close to a union of d conics, at which point the braid factor-
ization for V 0

2 (Dk), or equivalently V ′
2(Dk), is given by (4). First consider the

singular map V 0
2 ◦fk, whose branch curve is the union of V 0

2 (Dk) with three lines
(each of which has multiplicity 2n). These three lines always intersect V 0

2 (Dk)
tangently. Therefore, after slightly deforming the map V 0

2 so that the three lines
composing its branch curve avoid the pole of the projection π, the braid factor-
ization for the branch curve of V 0

2 ◦ fk is very close to that given by Proposition
6 ; keeping in mind the result of §3.2, the only difference between the braid mon-
odromy for V 0

2 ◦ fk and (15) is that the Ld term in (15) should be replaced by
the braid factorization Fk for Dk.

The discussion at the beginning of this section gives a description of the mod-
ifications that occur when V 0

2 is replaced by V ′
2 and f ′2k is perturbed into the

generic map f2k. In this situation, the lines labelled α, β and γ in §3.5 each need
to be replaced by a set of 2n lines. As we know from our study of the structure
of f2k near the points of I ′k, the factors Z4

i′α, Z4
i′β and Z4

i′γ in (15) need to be
replaced by expressions similar to (9) ; as explained above we do not have to
worry about the details of the local configurations.

Moreover, the factors Z̃2
αβ , Z̃2

αγ and Z̃2
βγ in (15) need to be replaced by the

factorizations describing the behavior of n copies of C2 near one of the points
where two groups of 2n lines intersect each other. The contribution of each copy
of C2 has been computed in §3.3, but we must also take into account the mutual
intersections between the various components. Fortunately, as explained above
we do not have to worry about the exact local configuration, so we can choose
one that simplifies calculations.

Finally, we also need consider the mutual intersections of the 2n lines labelled
1α, . . . , n′α (and similarly in the two other groups) ; although the possibility of
moving the lines across each other gives a lot of freedom, the manner in which
they intersect is largely determined by the twisting phenomena arising at the
points of intersection with V ′

2(Dk) or with the other groups of 2n lines. Indeed,
since the total braid monodromy for the branch curve of f2k has to be ∆2, the
amount of twisting of any two lines around each other, and more precisely the
product of all the degree ±2 factors involving 1α, . . . , n′α, is entirely determined
by the chosen configurations at the intersection points with V ′

2(Dk) and the other
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groups of 2n lines. As observed above, the various possible decompositions of this
product into degree ±2 factors are all m-equivalent to each other, so that once
again we can choose one freely (more geometrically, it is quite clear that any
two configurations of the lines that are compatible with the local configurations
chosen at the intersection points can be deformed into one another and hence
yield m-equivalent results).

We now need to explicitly describe the geometric monodromy representation
θ : Fd → Sn for fk. Recalling from §3.1 that all geometric morphisms θ : Fd → Sn

are equivalent to each other up to conjugation, we are free to choose the one most
suited to our purposes ; since the choice that we now make is in some particular
cases not the most practical one, we will also explain how to adapt the formula
for a different choice of θ.

Let us assume from now on that n = deg fk and d = deg Dk satisfy the
inequality d ≤ n(n − 1). This inequality is satisfied in almost all examples ; in
particular, given any symplectic 4-manifold, it is satisfied as soon as k is large
enough. Consider geometric generators γ1, . . . , γd of π1(CP2 −Dk) : the loops γi

are contained in the reference fiber of the projection to CP1, in which, assuming
that the base point and the d intersection points with Dk all lie on the real axis,
they join the base point to the i-th intersection point by passing above the real
axis, circle once counterclockwise around the intersection point, and return to
the base point along the same path.

Performing a suitable global conjugation of the braid monodromy of fk if nec-
essary, we can assume that the geometric monodromy representation is such that
the transpositions θ(γ1), . . . , θ(γd) are respectively equal to the d first terms of
the factorized expression

Id =
n−1∏

i=1

n∏

j=i+1

(ij) (ij)

in the symmetric group Sn. This choice is legal because d is even and d ≥ 2n−2.
For each 1 ≤ i ≤ n(n − 1) we define the two indices 1 ≤ p(i) < q(i) ≤ n such
that the i-th factor of this expression in Sn is the transposition (p(i)q(i)) ; in
particular θ(γi) = (p(i)q(i)) for all i ≤ d.

We first consider the contribution of the intersection points of V ′
2(Dk) with C2.

Making the same choice of local configurations as in §3.4, each factor Z4
i′α in (15)
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needs to be replaced by

(16)
1∏

j=n

(
Ź2

i′j′α

[
Ź2

i′jα

]
j 6∈{p(i),q(i)}

)
· Z3

i′p(i)α
· Z3

i′q(i)α
· Z3

i′p(i)α;(q(i)α)·
1∏

j=n

(
Z̀2

i′j′α

[
Z̀2

i′jα

]
j 6∈{p(i),q(i)}

)
,

and similarly for the Z4
i′β and Z4

i′γ factors.

We next consider the intersections of the 2n lines labelled 1α, . . . , n′α with the
2n lines labelled 1β, . . . , n′β . We choose as local configuration a situation consist-
ing of n identical copies of C2 shifted away from each other by generic translations.
The amounts by which the various copies are translated away from each other are
assumed to be much larger than the distance between the two lines in a pair (e.g.,
iα and i′α) ; although this configuration can no longer be considered as a very
small perturbation of f ′2k, it is quite clear that the translation process preserves
the property of being locally braided, so that in terms of braid monodromy this
configuration is m-equivalent to that obtained by a small perturbation of f ′2k.
This choice of configuration can be represented on the following diagram :

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

p p p p

s
s

s
β

α

In this picture each intersection along the diagonal corresponds to a copy of C2,
yielding an expression similar to that in (7), while all other intersections occur
between different copies of C2 and simply yield nodes. However, recall from the
computations in §3.5 that, when inserted into the expression for the global braid
monodromy, all local braid monodromy contributions need to be conjugated in
such a way that the various twists are performed along paths similar to the
one appearing in the definition of Z̃αβ . Therefore, if we momentarily ignore the
specificities of the intersections along the diagonal, the braid monodromy for
nodal intersections between the two sets of 2n lines should be given by

n∏

i=1

n∏

j=1

(
Z̃2

iαjβ
Z̃2

iαj′β
Z̃2

i′αjβ
Z̃2

i′αj′β

)
,
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where for any τ ∈ {1α, 1′α, . . . , nα, n′α} and υ ∈ {1β , 1′β, . . . , nα, n′β} the notation
Z̃τυ represents a half-twist along the path

p p p p p p q
d

q
1′

p p p p p p q
d′

q
1α

p p p p p p q
τ

p p p p p p q
n′α

q
1β

p p p p p p q
υ

p p p p p p q
n′β

q
1γ

p p p p p p

However, according to the calculations performed in §3.3, the intersections
corresponding to i = j consist of three cusps and one tangency point set up as
in (7) rather than four nodes. Therefore, the correct contribution to the braid
factorization of f2k is given by the expression

(17)
n∏

i=1

(i−1∏

j=1

(
Z̃2

iαjβ
Z̃2

iαj′β
Z̃2

i′αjβ
Z̃2

i′αj′β

)
· Z̃3

iαiβ
Z̃3

iαi′β
Z̃iαi′α;(iβi′β)Z̃

3
i′αiβ

·

n∏

j=i+1

(
Z̃2

iαjβ
Z̃2

iαj′β
Z̃2

i′αjβ
Z̃2

i′αj′β

))
,

where Z̃iαi′α;(iβi′β) = (Z̃2
i′αiβ

Z̃2
i′αi′β

)Ziαi′α(Z̃2
i′αiβ

Z̃2
i′αi′β

)−1 is a half-twist exchanging iα

and i′α along a path that goes around iβ and i′β (the α points being connected to
the β points along the same type of path described above).

The factors Z̃2
αγ and Z̃2

βγ in (15) are treated similarly, and give rise to expres-
sions similar to (17), except that the paths along which the Z̃2

τυ factors twist now
follow the model of Z̃2

αγ or Z̃2
βγ instead of Z̃2

αβ .

Our choice of local configuration for the α−β intersection is rather arbitrary ;
however, a different choice would only affect the braid factorization by conju-
gation by a pure braid in B2n × B2n (each factor acting on one group of lines,
while the path along which the groups are connected to each other necessarily
remains that of Z̃αβ). By the argument at the beginning of this section, such a
conjugation amounts up to m-equivalence to inserting some pure braid factors in
B2n ×B2n into the global braid monodromy, which has been shown not to affect
the outcome of the computations, so that we can safely ignore this issue.

We now look at the remaining nodal intersections between the 2n lines 1α, 1′α,

. . . , nα, n′α. The product of all these contributions to the braid monodromy is
determined in the following manner by the previously chosen configurations at
intersection points with V ′

2(Dk) and with the other groups of 2n lines. If we
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consider only the relative motions of the 2n points labelled 1α, . . . , n′α induced by
the various braids in the factorization, it is easy to check from the above formulas
that the tangent intersection with the line labelled i′ in V ′

2(Dk) contributes a half-
twist Zp(i)αq(i)α

for all 1 ≤ i ≤ d, while the intersection of iα and i′α with iβ and
i′β (or similarly iγ and i′γ) contributes the half-twist Ziαi′α . Therefore, the total

contribution of intersection points is equal to
∏d

i=1 Zp(i)αq(i)α
· (∏n

i=1 Ziαi′α
)2.

On the other hand, recalling that we are looking for the braid factorization of a
curve in CP2, the overall relative motions of the 2n points 1α, . . . , n′α around each
other must amount exactly to the central element ∆2

2n in B2n ; the contribution of
the additional nodal intersections is therefore exactly the difference between the
contribution of intersection points and ∆2

2n. Moreover, recall from the discussion
at the beginning of this section that the decomposition of this contribution into
a product of positive and negative twists is unique up to m-equivalence. In order
to explicitly compute this decomposition, we first derive a suitable expression of
∆2

2n. Viewing the 2n points 1α, 1′α, . . . , nα, n′α as n groups of two points, it is easy
to check that the full twist ∆2

2n can be expressed as

(18) ∆2
2n =

n−1∏

i=1

n∏

j=i+1

(Z2
iαjα

Z2
iαj′αZ2

i′αjα
Z2

i′αj′α) ·
n∏

i=1

Z2
iαi′α .

Note that the two parts of this expression can be exchanged by Hurwitz moves.
The second part of (18) corresponds exactly to the contribution of the inter-
section points with the two other groups of 2n lines ; meanwhile, the first d/2
factors Z2

iαjα
correspond to the contribution of the points of I ′k (recall the choice

of geometric monodromy representation made above). Therefore, the nodal in-
tersections correspond exactly to the remaining factors in (18). Inserting these
braids at their respective positions in the factorization, and bringing the Žii′

factors back to the beginning of the factorization by Hurwitz moves, we finally
obtain the following result :

Theorem 3. Let X be a compact symplectic 4-manifold, and let fk : X → CP2 be
an approximately holomorphic branched covering given by three sections of L⊗k.
Denote by Dk the branch curve of fk, and let d = deg Dk and n = deg fk. Assume
that d ≤ n(n−1). Denote by Fk the braid factorization corresponding to Dk, and
assume that the geometric monodromy representation θ : π1(CP2 − Dk) → Sn

is as described at the beginning of §3.6, i.e. θ(γi) = (p(i)q(i)). Then, with the
notations described in §3.4, the braid factorization corresponding to the branch
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curve D2k of f2k is given up to m-equivalence by the following formula, provided
that k is large enough :

(19) ∆2
2d+6n = Td · ι(Fk) · Iα

d,n,θ · Iβ
d,n,θ ·Vαβ

n ·Vαγ
n ·Vβγ

n · Iγ
d,n,θ,

where ι : Bd ↪→ B2d+6n is the natural embedding given by considering a disc
containing the d leftmost points (labelled 1, . . . , d),

Td =
d∏

i=1

Žii′ ·
d∏

i=1

Ẑii′ ,

Iα
d,n,θ =

d∏

i=1

(
1∏

j=n

(
Ź2

i′j′α

[
Ź2

i′jα

]
j 6∈{p(i),q(i)}

)
· Z3

i′p(i)α
· Z3

i′q(i)α
·

Z3
i′p(i)α;(q(i)α) ·

1∏

j=n

(
Z̀2

i′j′α

[
Z̀2

i′jα

]
j 6∈{p(i),q(i)}

)
·

d∏

j=i+1

Z2
i′j′;(α) ·

[
Z2

p(i)αq(i)′α
Z2

p(i)′αq(i)α
Z2

p(i)′αq(i)′α

]
i≡0 mod 2

)
·

n(n−1)/2∏

i=(d/2)+1

(
Z2

p(2i)αq(2i)α
Z2

p(2i)αq(2i)′α
Z2

p(2i)′αq(2i)α
Z2

p(2i)′αq(2i)′α

)
,

Iβ
d,n,θ =

d∏

i=1

(
1∏

j=n

(
Ź2

i′j′β

[
Ź2

i′jβ

]
j 6∈{p(i),q(i)}

)
· Z3

i′p(i)β
· Z3

i′q(i)β
·

Z3
i′p(i)β ;(q(i)β) ·

1∏

j=n

(
Z̀2

i′j′β

[
Z̀2

i′jβ

]
j 6∈{p(i),q(i)}

)
·

d∏

j=i+1

Z2
i′j′;(β) ·

[
Z2

p(i)βq(i)′β
Z2

p(i)′βq(i)β
Z2

p(i)′βq(i)′β

]
i≡0 mod 2

)
·

n(n−1)/2∏

i=(d/2)+1

(
Z2

p(2i)βq(2i)β
Z2

p(2i)βq(2i)′β
Z2

p(2i)′βq(2i)β
Z2

p(2i)′βq(2i)′β

)
,



A Degree Doubling Formula 301

Iγ
d,n,θ =

d∏

i=1

(
1∏

j=n

(
Ź2

i′j′γ

[
Ź2

i′jγ

]
j 6∈{p(i),q(i)}

)
· Z3

i′p(i)γ
· Z3

i′q(i)γ
·

Z3
i′p(i)γ ;(q(i)γ) ·

1∏

j=n

(
Z̀2

i′j′γ

[
Z̀2

i′jγ

]
j 6∈{p(i),q(i)}

)
·

d∏

j=i+1

Z2
i′j′;(γ) ·

[
Z2

p(i)γq(i)′γ
Z2

p(i)′γq(i)γ
Z2

p(i)′γq(i)′γ

]
i≡0 mod 2

)
·

n(n−1)/2∏

i=(d/2)+1

(
Z2

p(2i)γq(2i)γ
Z2

p(2i)γq(2i)′γ
Z2

p(2i)′γq(2i)γ
Z2

p(2i)′γq(2i)′γ

)
,

Vαβ
n =

n∏

i=1

(
i−1∏

j=1

(
Z̃2

iαjβ
Z̃2

iαj′β
Z̃2

i′αjβ
Z̃2

i′αj′β

)
· Z̃3

iαiβ
Z̃3

iαi′β
Z̃iαi′α;(iβi′β)Z̃

3
i′αiβ

·

n∏

j=i+1

(
Z̃2

iαjβ
Z̃2

iαj′β
Z̃2

i′αjβ
Z̃2

i′αj′β

))
,

Vαγ
n =

n∏

i=1

(
i−1∏

j=1

(
Z̃2

iαjγ
Z̃2

iαj′γ Z̃2
i′αjγ

Z̃2
i′αj′γ

)
· Z̃3

iαiγ Z̃3
iαi′γ Z̃iαi′α;(iγ i′γ)Z̃

3
i′αiγ ·

n∏

j=i+1

(
Z̃2

iαjγ
Z̃2

iαj′γ Z̃2
i′αjγ

Z̃2
i′αj′γ

))
,

Vβγ
n =

n∏

i=1

(
i−1∏

j=1

(
Z̃2

iβjγ
Z̃2

iβj′γ Z̃2
i′βjγ

Z̃2
i′βj′γ

)
· Z̃3

iβiγ Z̃3
iβi′γ Z̃iβi′β ;(iγ i′γ)Z̃

3
i′βiγ

·

n∏

j=i+1

(
Z̃2

iβjγ
Z̃2

iβj′γ Z̃2
i′βjγ

Z̃2
i′βj′γ

))
.

In these expressions, the notation [. . . ]i≡0 mod 2 means that the enclosed factors
are only present for even values of i; the notations p(i)α, p(i)′α, and so on repre-
sent the labels jα, j′α, etc where j = p(i) ∈ {1, . . . , n}; and the various notations
for braids correspond to half-twists along the following paths :
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Remark : in the expression (19) we have made use of our specific choice of
geometric monodromy representation for fk, which requires the inequality d ≤
n(n− 1) to hold in counterpart for the relative simplicity of the resulting factors.
Also, we have chosen to insert some of the pure braid factors involving the 2n
lines 1α, . . . , n′α amid the contributions of the intersection points of these lines
with V ′

2(Dk), in order to avoid the need for a rewriting of (18) using Hurwitz
moves to isolate these contributions.

In general, if one wishes to get rid of the assumption made on the structure
of the geometric monodromy representation θ and to remove the constraint d ≤
n(n − 1), the necessary modifications are rather easy and only involve finding a
different expression of ∆2

2n to replace (18). Namely, denote by (τ(i)υ(i)) ∈ Sn

the image by θ of the i-th geometric generator of π1(CP2 −Dk) (in the standard
situation of (19) one has τ(i) = p(i) and υ(i) = q(i) but we now want to lift
this assumption). Then, if we keep our choice of the simplest local geometric
configurations at points of I ′k, the contribution of these points to the twisting
among the lines 1α, . . . , n′α is given by the pure braid

∏d
i=1 Zτ(i)αυ(i)α

. We know
that the total contribution of nodal intersections between the 2n lines must be
equal to

Qα =
( d∏

i=1

Zτ(i)αυ(i)α

)−1
·∆2

2n ·
( n∏

i=1

Z2
iαi′α

)−1
.

Since Qα is a pure braid it can be decomposed into a product of positive and
negative twists involving 1α, . . . , n′α. The resulting modification of the factors in
Iα
d,n,θ is as follows : in the first two lines, p(i) and q(i) should be replaced by
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τ(i) and υ(i) respectively ; the third line, consisting only of nodal intersections
inserted amid the other contributions, should be deleted ; and the last line,
containing the main group of nodal intersections, should be replaced by the chosen
factorization of Qα. Similar modifications are also required in Iβ

d,n,θ and Iγ
d,n,θ.

As explained previously, the independence of the braid factorization upon the
choice of local configurations and the fact that any two geometric monodromy
representations differ from each other by a global conjugation imply that the
expression obtained for a non-standard choice of θ is m-equivalent to the standard
one. In particular, the possible presence of negative twists in the factorization of
Qα should not be considered as an indication of the existence of non-removable
negative nodes.

Remark : when X is a complex projective manifold, braid monodromy be-
comes well-defined up to Hurwitz equivalence and global conjugation only, since
no negative nodes may appear in the (holomorphic) branch curve. However, (19)
only gives the answer up to m-equivalence even in this case. If one looks more
closely, the deformation process described in §3.2 can be performed algebraically
provided that L⊗k is sufficiently positive, and therefore remains valid in the com-
plex setting ; in fact, all the braid monodromy computations described in §§3.2–
3.5 are valid not only up to m-equivalence but also up to Hurwitz equivalence
and conjugation. However, what is not clear from an algebraic point of view is
the exact configuration in which the lines 1α, . . . , n′α are placed by a generic alge-
braic perturbation performed near the points of I ′k. Determining this information
now becomes an important matter, since our argument to show that all possible
configurations are m-equivalent involves cancelling pairs of nodal intersections.

More precisely, provided that d ≤ n(n − 1), by applying formula (19) we
obtain a braid factorization without negative twists, which is m-equivalent to the
braid factorization describing a generic algebraic map in degree 2k, but we don’t
know for sure whether the m-equivalence can be realized without creating pairs
of nodal intersections between the 2n lines 1α, . . . , n′α (resp. β, γ). In fact, the
perturbation of V ′

2 ◦ fk that we perform near the points of I ′k is isotopic through
m-equivalence to a generic algebraic perturbation of V ′

2 ◦ fk, which itself would
yield the usual algebraic braid monodromy invariants as defined by Moishezon
and Teicher.
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Still, it seems very unlikely that such pair creation operations are ever needed,
and it is reasonable to formulate the following conjecture :

Conjecture. When X is a complex algebraic manifold, the degree doubling for-
mula (19) is valid up to Hurwitz equivalence and global conjugation.

Motivation for this conjecture comes from the following observation. Assume
that identifying the braid monodromy given by (19) with that of a generic al-
gebraic map requires the creation of pairs of nodes. Then, considering only the
relative motions of the 2n points labelled 1α, . . . , n′α (resp. β, γ), we obtain two
factorizations of ∆2

2n as a product of positive twists and half-twists in B2n which
are inequivalent in a certain sense. These two factorizations can be thought of as
describing the braid monodromy of two symplectic nodal curves in CP2, both irre-
ducible and of identical degree and genus. The braid factorization in B2n arising
from (19) is easily checked to be that of an algebraic nodal curve. Therefore, the
inequivalence of the two factorizations would be a strong indication of the possi-
bility of constructing by purely complex algebraic methods a counterexample to
the nodal symplectic isotopy conjecture ; this would be extremely surprising.

4. The degree doubling formula for Lefschetz pencils

4.1. Braid groups and mapping class groups. We now expand on the ideas
in §5 of [5] to provide a description of the relations between the braid monodromy
of a branch curve and the monodromy of the corresponding Lefschetz pencil.

Recall that the Lefschetz pencils determined by approximately holomorphic
sections of L⊗k are obtained from the corresponding branched coverings simply
by forgetting one of the three sections, or equivalently by composing the covering
map with the projection π : CP2 − {pt} → CP1. In particular the curves making
up the pencil are precisely the preimages of the fibers of π by the branched
covering, and the base points of the pencil are the preimages of the pole of the
projection π.

Consider as previously the branched covering fk : X → CP2. Call n its degree
and d the degree of its branch curve Dk, and let θ : Fd = π1(C−{q1, . . . , qd}) → Sn
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be the corresponding geometric monodromy representation. The map θ de-
termines a simple n-fold covering of CP1 branched at q1, . . . , qd ; we will de-
note this covering by u : Σg → CP1, where Σg is a Riemann surface of genus
g = 1− n + (d/2).

It is important for our purposes to observe that the Riemann surface Σg nat-
urally comes with n marked points, corresponding to the base points of the Lef-
schetz pencil : these n points are precisely the preimages by u of the point at
infinity in CP1. In particular, rather than simply working in the mapping class
group Mg of Σg in the usual way, we will consider the mapping class group Mg,n

of a Riemann surface of genus g with n boundary components, i.e. the set of
isotopy classes of diffeomorphisms of the complement of n discs centered at the
given points in Σg which fix each of the n boundary components (or equivalently,
diffeomorphisms of Σg which fix the n marked points and whose tangent map at
each of these points is the identity). Describing a Lefschetz pencil by a word in
Mg,n provides a more complete picture than the usual description using Mg, as
it also accounts for the relative positions of the base points of the pencil with
respect to the various vanishing cycles.

Recall the following construction from [5] : let Cn(q1, . . . , qd) be the (finite) set
of all surjective group homomorphisms Fd → Sn which map each of the geometric
generators γ1, . . . , γd of Fd to a transposition and map their product γ1 · · · γd to
the identity element in Sn. Each element of Cn(q1, . . . , qd) determines a simple
n-fold covering of CP1 branched at q1, . . . , qd.

Denote by Xd the space of configurations of d distinct points in the plane.
The set of all simple n-fold coverings of CP1 with d branch points and such that
no branching occurs above the point at infinity can be thought of as a covering
X̃d,n above Xd, whose fiber above the configuration {q1, . . . , qd} identifies with
Cn(q1, . . . , qd). The braid group Bd identifies with the fundamental group of Xd,
and therefore Bd acts on the fiber Cn(q1, . . . , qd) by deck transformations of the
covering X̃d,n.

Define the subgroup B0
d(θ) as the set of all the loops in Xd whose lift at the

point pθ ∈ X̃d,n corresponding to the covering described by θ is a closed loop in
X̃d,n, i.e. the set of all braids which act on Fd = π1(C−{q1, . . . , qd}) in a manner
compatible with the covering structure defined by θ. Denoting by Q∗ the action
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of a braid Q on Fd, it is easy to check that B0
d(θ) is the set of all braids Q such

that θ ◦Q∗ = θ.

There exists a natural (tautologically defined) bundle Yd,n over X̃d,n whose
fiber is a Riemann surface of genus g. Each of these Riemann surfaces comes
naturally as a branched covering of CP1, and carries n distinct marked points –
the preimages of the point at infinity in CP1 by the covering.

Given an element Q of B0
d(θ) ⊂ Bd, it can be lifted to X̃d,n as a loop based at

the point pθ, and the monodromy of the fibration Yd,n around this loop defines
an element of the mapping class group Mg,n of a Riemann surface of genus g with
n boundary components, which we will call θ∗(Q). More intuitively, viewing Q

as a compactly supported diffeomorphism of the plane preserving {q1, . . . , qd},
the fact that Q ∈ B0

d(θ) means that the diffeomorphism representing Q can be
lifted via the covering u : Σg → CP1 to a diffeomorphism of Σg, whose class in
the mapping class group is θ∗(Q).

It is easy to check that the image of the braid monodromy homomorphism is
contained in B0

d(θ) : this is because the geometric monodromy representation
θ factors through π1(CP2 − Dk), on which the action of the braids arising in
the monodromy is clearly trivial. Therefore, we can take the image of the braid
factorization by the map θ∗ and obtain a factorization in the mapping class group
Mg,n. As observed in [5], all the factors of degree ±2 or 3 in the factorization lie
in the kernel of θ∗ ; therefore, the only remaining terms are those corresponding
to the tangency points of the branch curve Dk, and each of these is a Dehn twist.

Recall from [5] that the image in the mapping class group Mg,n of a half-twist
Q ∈ B0

d(θ) can be constructed as follows. Call γ the path in C joining two of
the branch points (say qi and qj) which describes the half-twist Q (γ is the path
along which the twisting occurs). Among the n lifts of γ to Σg, only two hit
the branch points of the covering ; these two lifts have common end points, and
together they define a loop δ in Σg. Equivalently, one may also define δ as one
of the two non-trivial lifts of the boundary of a small tubular neighborhood of γ

in C. In any case, one easily checks that the element θ∗(Q) in Mg,n is a positive
Dehn twist along the loop δ (see Proposition 4 of [5]).

As a consequence, one obtains the usual description of the monodromy of the
Lefschetz pencil as a word in the mapping class group whose factors are positive
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Dehn twists. However, as observed by Smith in [19], the product of all these Dehn
twists is not the identity element in Mg,n, because after blowing up the pencil at
its base points one obtains a Lefschetz fibration in which the exceptional sections
have the non-trivial normal bundle O(−1). Instead, the product of all the factors
is equal to θ∗(∆2

d), which is itself equal to the product of n positive Dehn twists,
one along a small loop around each of the n base points of the pencil.

It follows from the above considerations that we can lift the degree doubling
formula for braid monodromies obtained in §3 and obtain a similar formula for
Lefschetz pencils. The task is made even easier by the fact that we only need to
consider the tangency points of the branch curves.

We now introduce the general setup for the degree doubling formula. To start
with, recall that the branch curve D2k is of degree d̄ = 2d + 6n, while the degree
of the covering f2k is 4n. Recall from §3.4 the relation between the geometric
monodromy factorizations θ2k : Fd̄ → S4n and θk : Fd → Sn : as previously, view
the 4n sheets of f2k as four groups of n sheets labelled ia, ib, ic, id, 1 ≤ i ≤ n,
and use the same labelling of the branch points as in §3. With these nota-
tions, the transpositions in S4n corresponding to the geometric generators around
1, . . . , d, 1′, . . . , d′ are directly given by the geometric monodromy representation
θk associated to Dk : given 1 ≤ r ≤ d, if θk maps the r-th geometric generator
to the transposition (ij) in Sn then, calling γr and γr′ the geometric generators
in Fd̄ corresponding to r and r′, one gets θ2k(γr) = θ2k(γr′) = (iaja). Moreover,
each of the n copies of V2 connects four sheets to each other, one in each group
of n : the geometric generators around iα, i′α, iβ , i′β , iγ and i′γ are mapped by
θ2k to (iaib), (icid), (iaic), (ibid), (iaid) and (ibic) respectively, for all 1 ≤ i ≤ n.

As a consequence, θ2k determines a 4n-fold branched covering ū : Σḡ → CP1,
with ḡ = 2g + n − 1, whose structure is as follows. First, the preimage of a
disc D containing the d points labelled 1, . . . , d consists of 3n + 1 components.
One of these components (the sheets 1a, . . . , na) is a n-fold covering identical
to the one described by θk, i.e. it naturally identifies with the fiber Σg of the
Lefschetz pencil associated to fk, with n small discs removed. These punctures
correspond to the preimages of a small disc around the point at infinity in the
covering u : Σg → CP1, i.e. they correspond to small discs around the base points
in Σg. The other 3n components of ū−1(D), in which no branching occurs, are
topologically trivial.
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The same picture also describes the preimage of a disc D′ containing the d

points labelled 1′, . . . , d′ : there is one non-trivial component which can be iden-
tified with Σg punctured at its base points, and the other 3n components are just
plain discs.

Finally, the preimage by ū of the cylinder CP1 − (D ∪ D′) consists of n com-
ponents, each of which is a four-sheeted covering branched at six points, i.e.
topologically a sphere with eight punctures. Actually, each of these n compo-
nents may be thought of as the fiber of the Lefschetz pencil corresponding to
the covering V2 (since we restrict ourselves to a cylinder we get eight punctures).
For each i ∈ {1, . . . , n} the corresponding component of ū−1(CP1 − (D ∪ D′))
connects together the non-trivial components of ū−1(D) and ū−1(D′) with the
trivial components corresponding to the sheets ib, ic and id.

In the end the Riemann surface Σḡ can be thought of as two copies of Σg glued
together at the n base points. This description coincides exactly with the one
obtained by Smith in [19] via more direct methods.

4.2. The degree doubling formula for Lefschetz pencils. In order to sim-
plify the description of the degree doubling formula for Lefschetz pencils, we want
to slightly modify the setup of §3.

First, we want to choose a different picture for θk : recall that global conjuga-
tions in Bd make it possible to choose the most convenient geometric monodromy
representation θk : Fd → Sn. As a consequence we chose in §3 a setup that made
the final answer (19) relatively easy to express, but as observed in the remark
at the end of §3.6 we could just as well have worked with any other choice of
θk, the only price being a slightly more complicated expression for the degree
doubling formula. Note that the change of θk only affects factors of degree ±2
in the formula, and therefore the half-twists which are relevant for our purposes
are not affected.

Here we want to choose θk in such a way that the i-th geometric generator γi

is mapped to the transposition (1, 2) if i ≤ d − 2(n − 1) = 2g, and θk(γd−2j) =
θ(γd−2j−1) = (n−j−1, n−j) for all j ≤ n−2. In other words, the transpositions
θk(γi) correspond to the factorization

Id = (1, 2)2g ·
n−1∏
i=1

(i, i + 1)2
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in Sn. Another change that we want to make is in the ordering of the d̄ = 2d+6n

points that appear in the diagrams of §3 along the real axis. Namely, we want to
replace the ordering 1, . . . , d, 1′, . . . , d′, 1α, . . . , n′γ used in §3 by the new ordering
1, . . . , d, 1α, . . . , n′γ , d′, . . . , 1′. This is done by first moving the d points 1′, . . . , d′

clockwise around the points 1α, . . . , n′γ by a half-turn, and then by rotating a disc
containing the d points 1′, . . . , d′ counterclockwise by a half-turn.

Finally, in order to better visualize the positions of the base points of the pencil
(the 4n marked points on Σḡ), we want to move the fiber in which they lie from
the point at infinity in CP1 back into our picture. We choose to move the base
points so that they correspond to the preimages of a point b on the real axis lying
inbetween the point labelled d and the point labelled 1α. The motion bringing
the point at infinity to b is performed along a vertical line in the upper half-plane
(this motion of course affects some of the braids, but it was chosen in such a way
that the resulting changes are minimal).

The effect of all these changes is to make the covering ū : Σḡ → CP1 easier
to visualize, while simplifying the paths corresponding to the half-twists in (19).
The picture is the following :

2 3

(d-1)’

1 2g

d-1 d d’

2g+3 (2g+3)’2g+4 (2g+4)’

2g+1 2g+2 (2g+2)’(2g+1)’ (2g)’ 3’ 2’ 1’1

2 2

1

n

In this picture, the labels in italics correspond to branch points and those in
boldface correspond to the sheets of the covering ; for simplicity we have omitted
the branch points 1α, . . . , n′γ , which should be placed in the necks joining the two
halves, and the 3n other sheets which do not contribute to the topology. When
the 3n sheets 1b, . . . , nd are collapsed, the corresponding base points are brought
back to the sheets 1a, . . . , na near the branch points 1α, . . . , n′γ ; therefore, on the
picture each × mark corresponds to four base points.
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In order to understand the Lefschetz pencil corresponding to f2k, we need to
place the various half-twists appearing in the braid factorization of D2k on this
picture. A first set of half-twists comes from the braid factorization of Dk. These
half-twists correspond exactly to the Dehn twists appearing in monodromy of
the Lefschetz pencil for fk, after a suitable embedding of Mg,n into the mapping
class group Mḡ,4n. Recall that the braid factorization in Bd corresponding to
Dk is embedded into Bd̄ by considering a disc D containing the d points labelled
1, . . . , d. Therefore, the corresponding embedding of the mapping class group
Mg,n into the larger mapping class group Mḡ,4n is geometrically realized by the
embedding into Σḡ of the main connected component of ū−1(D), which as we
know from §4.1 naturally identifies with the Riemann surface Σg punctured at
each of the n base points. On the above picture of Σḡ this corresponds to the left
half of the diagram.

Observe that all the other half-twists appearing in the braid factorization for
D2k are completely standard and depend only on d and n rather than on the
actual topology of the manifold X. Therefore, the degree doubling formula for
Lefschetz pencils is once again a universal formula : the word in Mḡ,4n describing
the Lefschetz pencil in degree 2k is obtained by embedding the word describing
the pencil in degree k via the above-described map from Mg,n into Mḡ,4n and
adding to it a completely standard set of Dehn twists which depends only on g

and n but not on the actual topology of the manifold X. This observation was
already made by Ivan Smith in [19].

The extra half-twists appearing in the degree doubling formula for braid mon-
odromies are Žii′ and Ẑii′ for 1 ≤ i ≤ d, and Z̃iαi′α;(iβi′β), Z̃iαi′α;(iγ i′γ) and Z̃iβi′β ;(iγ i′γ)

for 1 ≤ i ≤ n, as described in §3.6 (their total number 2d + 3n is in agreement
with an easy calculation of Euler-Poincaré characteristics). We will now describe
the Dehn twists corresponding to these half-twists.

After the global conjugation described above, Žii′ becomes a half-twist along
the following path :

q
1

p p p p p p q
i

p p p p p p q
d

×b q1α p p p p p p qn
′
γ qd′ p p p p p p qi′ p p p p p p q1′
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Its lift to the mapping class group Mḡ,4n is a Dehn twist that we will call τ̌i,
and which can be represented as follows when i is even and i ≤ 2g :

i (i-1)’i-1 i’

For i odd and i ≤ 2g + 1, the picture describing τ̌i becomes the following :

i i+1 i’(i+1)’

When i = 1 the undrawn parts on both sides of the picture are just discs and
the picture can therefore be slightly simplified ; conversely, when i = 2g + 1 the
points labelled (i + 1) and (i + 1)′ are immediately on both sides of the central
neck rather than as pictured.

For i even and i ≥ 2g+2, τ̌i is described by the following picture (the two necks
shown correspond to the sheets numbered s and s+1, where s = 1

2(i− 2g) ≥ 1) :

ii-1 (i-1)’i’

s+1

s

Finally, when i is odd and i ≥ 2g + 3, the picture describing τ̌i becomes the
following (the two necks shown correspond to the sheets numbered s and s + 1,
where s = 1

2(i + 1− 2g) ≥ 2) :
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s+1

i’i
i+1

(i+1)’
s

We now turn to Ẑii′ , which after the above-described global conjugation be-
comes a half-twist along the following path :

q
1

p p p p p p q
i

p p p p p p q
d

×b q
1α

p p p p p p q
n′γ

q
d′

p p p p p p q
i′

p p p p p p q
1′

This path can be homotoped into the following one, which goes through the
point at infinity in CP1 :

q
1

p p p p p p q
i

p p p p p p q
d

×b q1α p p p p p p qn
′
γ qd′ p p p p p p qi′ p p p p p p q1′

ppp
ppp
ppp
ppp
ppp
pp

Therefore, the Dehn twists τ̂i ∈ Mḡ,4n obtained by lifting Ẑii′ only differ from τ̌i

by a twisting in each of the necks joining the two halves of Σḡ. As a result, we
get the following pictures (using the same notations as for τ̌i) :

i (i-1)’i-1 i’

i i+1 i’(i+1)’
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The first picture corresponds to the case i even, i ≤ 2g ; the second one to i

odd, i ≤ 2g + 1. In each of the two necks, the vanishing loop circles around the
base point corresponding to the sheet labelled 1a (resp. 2a), but not around those
corresponding to sheets 1b, 1c and 1d (resp. 2b, 2c, 2d). When i ≥ 2g + 2, the
pictures become the following (the left one is for even i, the right one for odd i) :

ii-1 (i-1)’i’

s+1

s

i’i
i+1

s
(i+1)’

s+1

We now turn to the half-twists Z̃iαi′α;(iβi′β), Z̃iαi′α;(iγ i′γ) and Z̃iβi′β ;(iγ i′γ) (1 ≤ i ≤
n). To simplify the diagrams we only represent the relevant points, i.e. we forget
jα, j′α, jβ , j′β, jγ , j′γ for j 6= i as these points do not play any role. Moreover, we
use the observation that, for the purposes of computing the corresponding Dehn
twists, we are allowed to move a path across a branch point if the corresponding
sheets of the covering are distinct. Finally, we further simplify the diagrams by
allowing ourselves to draw paths which go through the point at infinity in CP1.
With all these simplifications, we get the following diagrams :

Z̃iαi′α;(iβi′β)
q
1

p p p p p p q
d

×b qiα qi′α qiβ q
i′β q

iγ
q

i′γ
qd′ p p p p p p q1′

Z̃iαi′α;(iγ i′γ)
q
1

p p p p p p q
d

×b q
iα

q
i′α

q
iβ

q
i′β

q
iγ

q
i′γ

qd′ p p p p p p q1′

Z̃iβi′β ;(iγ i′γ)
q
1

p p p p p p q
d

×b q
iα

q
i′α

q
iβ

q
i′β

q
iγ

q
i′γ

qd′ p p p p p p q1′
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It is now clear that the only relevant parts of Σḡ are the sheets labelled ib, ic,
id of the covering, as well as the part of the sheet labelled ia that lies inbetween
the points 1, . . . , d and d′, . . . , 1′. In particular, the loops we obtain are entirely
located in the i-th neck joining the two halves of Σḡ ; if we forget about the
base points, the Dehn twists τi,αβ , τi,αγ and τi,βγ corresponding to the half-twists
Z̃iαi′α;(iβi′β), Z̃iαi′α;(iγ i′γ) and Z̃iβi′β ;(iγ i′γ) are equal to each other, and are twists along
a loop that simply goes around the i-th neck joining the two halves of Σḡ.

In the presence of the four base points lying in the sheets ia, ib, ic and id of
the covering, we have to be more careful, but it can be checked that the Dehn
twists τi,αβ , τi,αγ and τi,βγ are respectively given by the following diagrams (only
the i-th neck is shown ; the base points are labelled a, b, c, and d) :

i a
b

c

d

i a
b

c

d

i a
b

c

d

τi,αβ τi,αγ τi,βγ

Summarizing, we get the following result :

Theorem 4. Let X be a compact symplectic 4-manifold, and consider the struc-
ture of symplectic Lefschetz pencil on X given by two sections of L⊗k. Let g be the
genus of the fiber Σg, and let n be the number of base points. Let d = 2g−2+2n,
and call Ψg the word in the mapping class group Mg,n describing the monodromy
of this pencil.

Let ḡ = 2g + n− 1, and view a Riemann surface Σḡ of genus ḡ as obtained by
gluing together two copies of Σg at the base points. Call ι : Mg,n → Mḡ,4n the
inclusion map discussed above.

Then, provided that k is large enough and using the notations described above,
the monodromy of the symplectic Lefschetz pencil structure obtained on X from
sections of L⊗2k is given by the word Ψḡ in the mapping class group Mḡ,4n, where

(20) Ψḡ =
d∏

i=1

τ̌i ·
d∏

i=1

τ̂i · ι(Ψg) ·
n∏

i=1

τi,αβ ·
n∏

i=1

τi,αγ ·
n∏

i=1

τi,βγ ,

and the Dehn twists τ̌i, τ̂i, τi,αβ, τi,αγ and τi,βγ are as described above.
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Remark. One must be aware of the fact that, in the formula (20), composition
products are written from left to right. This convention, which is the usual one
for braid groups, is the opposite of the usual notation for composition products
when working with diffeomorphisms (the order of the factors then needs to be
reversed).

It is also worth observing that the product of the factors in ι(Ψg) is almost
exactly the twist by which τ̂i differs from τ̌i, the only difference being in the
position of the base points with respect to the vanishing cycle. Therefore, if we
forget about the base points, a sequence of Hurwitz moves in (20) yields the
following slightly simpler formula (in Mḡ,0 instead of Mḡ,4n, and observing that
τi,αβ , τi,αγ and τi,βγ are equal in Mḡ,0):

Ψḡ =
d∏

i=1

τ̌i · ι(Ψg) ·
d∏

i=1

τ̌i ·
n∏

i=1

τ3
i,αβ .

This expression contains many pairs of identical factors; by a result of Seidel (cf.
section (16g) of [18], see also §8 of [7]), this means that the Lefschetz fibration with
total space a blow-up of X and monodromy Ψḡ contains many Lagrangian (−2)-
spheres, obtained by connecting pairs of isotopic vanishing cycles (among those
introduced by the degree doubling procedure). However these spheres collapse
when the Lefschetz fibration is blown down along its exceptional sections, as they
intersect non-trivially two such sections.

The correctness of the formula (20) can be checked easily in some simple exam-
ples : for instance, a generic pencil of conics on CP2 has three singular fibers, and
can be considered as obtained from a pencil of lines by the procedure described
above. This corresponds to the limit case where n = 1, d = 0, g = 0 and the word
Ψg is empty. The three Dehn twists τ1,αβ , τ1,αγ and τ1,βγ in M0,4 then coincide
with the well-known picture.

Another simple example that can be considered is the case of a pencil of curves
of degree (1, 1) on CP1 ×CP1. The generic fiber of this pencil is a rational curve
(d = 2, n = 2, g = 0), and there are two singular fibers. The corresponding word
in M0,2 is τ ·τ , where τ is a positive Dehn twist along a simple curve separating the
two base points. The degree doubling procedure yields a word in M1,8 consisting
of 12 Dehn twists. Forgetting the positions of the base points, one easily checks
that the reduction of this word to M1,0 ' SL(2,Z) is Hurwitz equivalent to the



A Degree Doubling Formula 317

well-known monodromy of the elliptic surface E(1), which is exactly what one
obtains by blowing up the eight base points of a pencil of curves of degree (2, 2)
on CP1 × CP1.
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