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Is There a Topological
Bogomolov–Miyaoka–Yau Inequality?

János Kollár

Let S be a smooth, complex, projective, minimal surface of general type. The
Bogomolov–Miyaoka–Yau inequality states that c1(S)2 ≤ 3c2(S) [Bog78, Rei78,
Miy77, Yau77]. In this note I want to address the following question:

Is there a topological analog of the Bogomolov–Miyaoka–Yau inequality?

The 11/8-conjecture [Mat82, Fur01] can be viewed as such, but in Section 1 I
write down another possible variant. Section 2 explores its relationship with the
Montgomery–Yang problem on differentiable circle actions on S5 and Section 3
examines its connection with the H–cobordism group of 3–manifolds. Related
examples and questions on algebraic surfaces are discussed in Section 4. The last
section studies the remarkable series of hypersurfaces

(xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1 = 0)

in weighted projective spaces.

The aim of this note is two fold. On the one hand, I would like to call attention
to several questions about algebraic surfaces with quotient singularities that have
interesting connections with the topology of 3– or 5–manifolds. The study of
algebraic orbifolds led to many interesting examples in topology and differential
geometry (see, for instance, [Bri66, OW75] or the recent papers [BGK05, Kol05]),
but there should be many more connections.
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On the other hand, more speculatively, I hope that methods developed around
the Bogomolov–Miyaoka–Yau inequality can be adapted to the topological set-
ting, leading to progress on the questions mentioned in Sections 2 and 3.

1. The orbifold Bogomolov–Miyaoka–Yau inequality

The Bogomolov–Miyaoka–Yau inequality can be generalized to orbifolds. These
are normal projective surfaces whose singularities are locally analytically isomor-
phic to quotient singularities C2/G where G ⊂ GL(2,C) is a finite group whose
action is fixed point free outside the origin. Such a surface has finitely many
singular points, and locally at each of them S is topologically the cone over a
3–manifold S3/G where G ⊂ U(2,C) is a subgroup acting without fixed points.
This 3–manifold is called the link of s ∈ S and it is denoted by Ls. (The version
where a surface is allowed to have orbifold structure in codimension one is also
interesting [BGK05, Kol05], but it will not be considered here.)

An easy way to get such an orbifold is to take the quotient of a smooth pro-
jective surface X by a finite group G acting on X with only isolated fixed points.
The most interesting examples are, however, those that do not arise as a global
quotient. For a complex surface, c2(S) is the same as the topological Euler char-
acteristic. Following Thurston, we introduce the orbifold Euler characteristic

eorb(S) := e(S)−
∑

s∈Sing S

(
1− 1

|π1(Ls)|
)
.

The orbifold version of the Bogomolov–Miyaoka–Yau inequality is the following,
developed in the series of papers [Sak80, Miy84, KNS89, Meg92].

Theorem 1. Let S be a normal projective surface with quotient singularities such
that −c1(S) is ample (or at least nef). Then

c1(S)2 ≤ 3eorb(S). (1.1)

Since−c1(S) is nef, c1(S)2 ≥ 0, thus we also get the following weaker inequality,
which also holds when c1(S) is nef by [KM99]

0 ≤ eorb(S). (1.2)

While (1.2) gives nothing interesting for smooth surfaces, it has very interesting
consequences for singular surfaces.
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Let S be a normal projective surface with quotient singularities whose second
Betti number is 1. Then either ±c1(S) is ample or c1(S) = 0. Thus (1.2) applies
and so 0 ≤ eorb(S). It is easy to see (by looking at the Albanese map) that
b1(S) = 0, thus e(S) = 3 and so S is a rational homology CP2. Thus we get to
following expanded version of (1.2):

∑

s∈Sing S

(
1− 1

|π1(Ls)|
)
≤ 3. (1.3)

In particular, S has at most 6 singular points.

Let us now make the bold (or foolish) guess that the inequality (1.3) is topolog-
ical in nature. It may be more convenient to formulate the conjecture for smooth,
compact 4–manifolds M whose boundary components are spherical, that is, their
universal cover is S3. One can then attach cones to each boundary component
to get a 4–dimensional orbifold S. We are mainly interested in the cases when S

is a homology CP2. Correspondingly, H1(M,Z) = 0 and H2(M,Z) ∼= Z.

Conjecture 2 (Smooth Bogomolov–Miyaoka–Yau inequality). Let M4 be a smooth,
compact 4–manifold with spherical boundary components ∂M4 = ∪iLi. Assume
that H1(M,Z) = 0 and H2(M,Z) ∼= Z. Then

∑

i

(
1− 1

|π1(Li)|
)

< 3. (2.1)

In particular, M has at most 5 boundary components.

3 (The origins of the conjecture). While, to the best of my knowledge, the above
conjecture is new, various forms of it have been implicit in the works of several
authors.

Controlling the singularities of a variety by global invariants has been one of
the aims of the papers [Miy84, Meg92, KM99]. It is quite natural to go from an
algebraic formulation to a purely topological one as above.

On the topological side, the Montgomery–Yang problem on circle actions on
5–manifold was explicitly studied as a problem on 4–dimensional orbifolds in
[FS87]. As we discuss in Section 2, the relationship with (2) is close but the two
problems are not identical.

The history of the topological work on H–cobordisms of Seifert fibered 3–
manifolds is reviewed in [Sav02]. The same topic appears in singularity theory
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as the study of smoothings of quasihomogeneous surface singularities. The link
of such a singularity is a Seifert fibered 3–manifold, and each smoothing exhibits
the link as the boundary of the Milnor fiber. In this setting, (2) is closely related
to [Wah94, 3.10]. His results imply (2) for smoothings of negative weight.

4 (Comments and possible generalizations). 1. In the algebraic case, if equality
holds in (1.3) then c1(S) = 0 and S is the quotient of an Abelian or a K3 surface
by a cyclic group. In particular, H1(S \Sing S,Z) 6= 0. This is why the ≤ in (1.3)
was changed to a strict inequality in (2.1). An algebraic rational homology CP2

can never have 6 singular points and I don’t know any examples with 5 singular
points. There are, however, many examples with 4 singular points (31).

2. Unlike in the algebraic case, the restriction H1(M,Z) = 0 is not a conse-
quence of H2(M,Z) = Z. Indeed, attaching a 1–handle to M increases H1(M,Z)
while leaving H2(M,Z) unchanged.

3. The assumption H1(M,Z) = 0 is somewhat arbitrarily chosen. One could
require instead π1(M) = 1. The variant with H1(M,Z) = 0 is the relevant
condition for integral H–cobordism questions and π1(M) = 1 connects directly
with the Montgomery–Yang problem on circle actions.

4. In the algebraic case the inequality (2.1) holds even if we only assume that
H1(M,Q) = 0, but in the topological case this is not enough. There are lens
spaces which bound a rational homology ball, and taking connected sum of these
with CP2 gives examples with an arbitrary number of boundary components.

The simplest algebraic example is the following. Let C ⊂ CP2 be a smooth
conic and C ⊂ N a regular neighborhood with boundary L. Since the normal
bundle of C in CP2 has degree 4, we see that L is a Z/4-quotient of S3. Set
M := CP2 \ IntN . M is a rational homology ball with π1(M) = Z/2 which
bounds L.

There are many such examples, see, for instance, [CH81].

To get more algebraic ones, let u, v be relatively prime natural numbers. Then
the complement of a regular neighborhood of the curve

C := (xu+v − yz = 0) ⊂ P2(1, u, v).

is a rational homology ball M with π1(M) = Z/(u+v) which bounds a lens space
L with π1(L) = Z/(u + v)2.
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5. By [FS85, p.360], the Poincaré sphere is not H–cobordant to 0, thus one
can not use connected sums to get counter examples to (2).

6. It is possible that Conjecture 2 can be generalized to arbitrary H2(M,Z).
In this case, (2.1), should be replaced by

∑

i

(
1− 1

|π1(Li)|
)
≤ 2 + dim H2(M,Q). (2.2)

This may hold if π1(M) = 1 but – as pointed out to me by P. Hacking –
H1(M,Z) = 0 is not sufficient, not even for algebraic surfaces. The surfaces
in question arise as the minimal compactifications of Seifert C∗-bundles over P1.
These were studied by [Dol75, Pin77, Dem88, FZ03].

One of the simplest examples is the following.

Example 5. Rational surfaces Sm with H1(Sm,Z) = 0,H2(Sm,Z) ∼= Z2 and
with 2m quotient singularities.

Let us start with any minimal ruled surface f : S → P1. Pick points pi ∈ Fi ⊂ S

where the Fi are different fibers of f and natural numbers ri. Blow up (2 + ri)-
times each pi ∈ Fi and in each fiber contract all but the last (−1)-curve. We get
a singular ruled surface

g = g(r1, . . . , rm) : S(r1, . . . , rm) → P1 with H2(S(r1, . . . , rm),Q) ∼= Q2.

The fiber over f(pi) is a smooth rational curve with multiplicity ri. Moreover,
S(r1, . . . , rm) has 2 singular points along these fibers. They are cyclic quotients
of the form C2/ 1

ri
(1, 1) and C2/ 1

ri
(1,−1).

It is easy to see that the fundamental group of the smooth part is given by
generators and relations as:

π1(S(r1, . . . , rm)0) ∼= 〈a1, . . . , am : ar1
1 = · · · = arm

m = a1 · · · am = 1〉.

If the ri are pairwise relatively prime then H2(S(r1, . . . , rm),Z) ∼= Z2 but the
fundamental group is never trivial for m ≥ 3.

It is worth noting that (2) completely fails if M is only a topological manifold.
The number of boundary components can be arbitrary, see (25).
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2. The Montgomery–Yang problem

Fixed point free differentiable circle actions on S7 with finitely many nonfree
orbits are classified in [MY72], see also [Pet75]. Such actions are frequently called
pseudo-free. The main idea of their classification is the following.

We work on S7 and on the orbifold quotient X := S7/S1. Let Oi ⊂ S7 be a
nonfree orbit and xi ∈ X the corresponding orbifold point. Oi bounds a disk in
S7 whose image is a 2–sphere Si ⊂ X containing xi. Since dim X > 4, we can
arrange these Si to be disjoint. The classification now has 2 parts.

i) Describe the circle action over a neighborhood of each Si. These turn out
to be diffeomorphic to linear circle actions on S3 ×D4.

ii) Describe how these local models glue together.

By contrast, if we work on S5, then dimS5/S1 = 4, thus the different Si do
intersect, and we can not separate the local models from each other. (Note that if
a manifold M admits a fixed point free differentiable circle action, then e(M) = 0,
thus this theory is most interesting for odd dimensional manifolds.)

Montgomery and Yang found that it is difficult to construct examples of differ-
entiable circle actions on S5 with many nonfree orbits. This led to the following:

Conjecture 6 (Montgomery–Yang problem). [MY72, p.41] Let S1×S5 → S5 be
a differentiable circle action with only finitely many nonfree orbits. Then there
are at most 3 nonfree orbits.

(Note that the proposed partial solution in [FS87] is incorrect, see the review,
MR0874031.)

There are many different actions with 3 exceptional orbits. The simplest ones
are linear actions but there are many nonlinear examples too.

Example 7. Let S5 = (|x|2 + |y|2 + |z|2 = 1) ⊂ C3 be the unit sphere. Let
a, b, c ≥ 2 be pairwise relatively prime natural numbers. Then S1 × S5 → S5,
given by

(λ, x, y, z) 7→ (λbcx, λcay, λabz)

is a differentiable circle action with 3 nonfree orbits on the 3 coordinate axes.

Note that in this case the quotient S5/S1 can be thought of as the (complex)
weighted projective plane P2(a, b, c).
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In general, one can try to classify circle actions on 5–manifolds L in terms of
the 4–dimensional quotient orbifold L/S1.

Let L be a 5–manifold and S1 × L → L a differentiable circle action. Assume
that there are finitely many S1-orbits O1, . . . , Om such that the action is free on
L \ ∪iOi. For each Oi ⊂ L take an S1-invariant tubular neighborhood Oi ⊂ Ti ⊂
L. Then L0 := L \ ∪iTi is a compact 5–manifold with boundary and with a free
circle action. Thus M := L0/S1 is a compact 4–manifold with boundary, where
the boundary components are lens spaces.

The 4–manifold M uniquely determines L and the S1-action up to diffeomor-
phism in many cases. See [MY72, FS85] for the pseudo-free case and [Kol05] in
general. (While [Kol05] considers only the algebraic case, the result is valid in
general using the methods of [Kol06].) One of the simplest cases is pseudo-free
circle actions on 5–dimensional rational homology spheres.

Theorem 8. There is a one–to–one correspondence between:

(1) Pseudo-free differentiable circle actions on 5–dimensional rational homol-
ogy spheres L with H1(L,Z) = 0.

(2) Smooth, compact 4–manifolds M with boundary such that
(a) ∂M = ∪iLi is a disjoint union of lens spaces Li = S3/Zmi,
(b) the mi are relatively prime to each other,
(c) H1(M,Z) = 0 and H2(M,Z) ∼= Z.

Furthermore, L is diffeomorphic to S5 iff π1(M) = 1.

The smooth Bogomolov–Miyaoka–Yau–type conjecture 2 would give the fol-
lowing for circle actions:

Conjecture 9. Let L be a 5–dimensional rational homology sphere with H1(L,Z)=
0 admitting a pseudo-free differentiable circle action. Let O1, . . . , Ok be the non-
free orbits with stabilizers Z/m1, . . . ,Z/mk. Then

∑

i

(
1− 1

mi

) ≤ 3.

In fact, using [Kol06], one can generalize this to fixed point free actions which
are not pseudo-free. Let us say that an orbit O ⊂ L of an S1-action is exceptional
if the order of its stabilizer | stab(O)| is bigger than the least common multiple



210 János Kollár

of the orders of the stabilizers of nearby orbits, that is lcm{| stab(Op)| : p 6∈ O}.
It is easy to see that the quotient

m(O) := | stab(O)|/ lcm{| stab(Op)| : p 6∈ O}
is an integer which is also the order of the local fundamental group of L/S1 at the
image of O [Kol06, Prop.15]. Thus (2) would imply the following generalization
of (9):

Conjecture 10. Let L be a 5–dimensional rational homology sphere with H1(L,Z)=
0 admitting a fixed point free differentiable circle action. Let O1, . . . , Ok be the
exceptional orbits. Then ∑

i

(
1− 1

m(Oi)

) ≤ 3.

11. A positive answer to Conjecture 2 would come close to settling the Montgomery–
Yang problem. Indeed, first we enumerate all sequences of pairwise relatively
prime natural numbers m1, . . . , mk such that

k∑

i=1

(
1− 1

mi

) ≤ 3.

The list turns out to be very short and we get one of the following cases:

(1) k ≤ 3, as required by the Montgomery–Yang problem,
(2) (2, 3, 5, n) for any (n, 30) = 1,
(3) (2, 3, 7, n) for n ∈ {11, 13, 17, 19, 23, 25, 29, 31, 37, 41}, or
(4) (2, 3, 11, 13).

So, right away we get that there are at most 4 nonfree orbits (assuming Conjecture
2).

I do not know any 4–manifolds M with H1(M,Z) = 0 corresponding to the
cases (2–4) above but I can not exclude these even in the algebraic case. (See,
however, (31) for some examples where one of the singularities is not a cyclic
quotient.)

Even if such a manifold exists, it leads to a counterexample to the Montgomery–
Yang problem only if it is simply connected.

The methods to prove (8) lead to a complete characterization of compact,
simply connected 5–manifolds which admit a fixed point free differentiable circle
action. Before we state the result, we need to define an invariant for 5–manifolds.
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Definition 12. For any manifold L, write its second homology as a direct sum
of cyclic groups of prime power order

H2(L,Z) = Zk +
∑

p,i

(
Z/pi

)c(pi) for some k = k(L), c(pi) = c(pi, L). (12.1)

The numbers k, c(pi) are uniquely determined by H2(L,Z). One can choose the
decomposition such that the second Stiefel–Whitney class map

w2 : H2(L,Z) → Z/2

is zero on all but one summand Z/2n. This value n is unique and it is denoted
by i(L) [Bar65]. Alternatively, i(L) is the smallest n such that there is an α ∈
H2(L,Z) such that w2(α) 6= 0 and α has order 2n.

By [Sma62, Bar65], a compact, simply connected 5–manifolds is determined
by the invariants k(L), c(pi, L) and i(L).

Theorem 13. [Kol06, Thm.3] Let L be a compact, simply connected 5–manifold
with invariants k(L), c(pi, L), i(L) as in (12.1). Then L admits a fixed point free
differentiable circle action iff the following conditions hold:

(1) for every prime p, there are at most k + 1 nonzero c(pi),
(2) i(L) ∈ {0, 1,∞}, and
(3) if i(L) = ∞ then there are at most k nonzero c(2i).

14 (Comments). 1. The above result gives a complete characterization of those
manifolds that admit a fixed point free circle action, but it does not describe
all possible circle actions. For any L satisfying the above assumptions, infin-
itely many topologically distinct circle actions are constructed in [Kol06] and a
complete classification seems unlikely.

2. The circle actions constructed in [Kol06] have 2–parameter families of non-
free orbits. Pseudo free actions exist only if H2(L,Z) is torsion free (cf. [Kol06,
Prop.28]).

3. H-cobordism of 3–manifolds

Definition 15. Let Σ be an integral homology sphere, that is H∗(Σ,Z) =
H∗(S3,Z). Σ is H–cobordant to zero if there is a smooth 4–dimensional homology
cell W with boundary ∂W = Σ. Similarly, one can study rational homology
spheres which are rationally H–cobordant to zero.
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It is an interesting and difficult question to decide which integral/rational
homology spheres are H–cobordant to zero; see [Sav02, Chap.7] for a survey.

The case when Σ is Seifert fibered is very much connected with the Bogomolov–
Miyaoka–Yau inequality.

Definition 16 (Seifert fiber spaces).

A Seifert fibered 3–manifold is a proper morphism of a 3–manifold to a surface
f : M → S such that every point s ∈ S has a neighborhood s ∈ Ds ⊂ S such that
the pair f−1(Ds) → Ds is fiber preserving homeomorphic to one of the normal
forms fc,d defined as follows.

Let S1(z), D2(z) ⊂ C denote the unit circle (resp. open unit disk) where (z)
indicates the name of the coordinate. For a pair of integers c, d satisfying 0 ≤
c < d and (c, d) = 1, define

fc,d : S1(u)×D2(z) → D2 by fc,d(u, z) = uczd.

fc,d restricts to a fiber bundle S1 × (D2 \ {0}) → D2 \ {0}. The fiber of fc,d over
the origin is still S1, but f−1

c,d (0) has multiplicity d.

A Seifert fibered 3–manifold M → F is determined by the location of the
singular fibers pi ∈ F , the above numbers (ci, di) at each point pi and by a
global invariant, see [Sei32, ST80, Sco83]. For us the following consequence of
the classification is more important:

Proposition 17. Given pairwise relatively prime natural numbers d1, . . . , dk,
there is a unique integral homology sphere Σ(d1, . . . , dk) which has a Seifert fibered
structure over S2 with fiber multiplicities d1, . . . , dk.

18 (Seifert disk bundles). Let ε be a fixed dth root of unity and µd ⊂ C the group
of dth roots of unity. Consider the quotient

D2(x)×D2(y)/µd(ε, εc),

where we use this shorthand to denote the quotient of D2(x) × D2(y) be the
µd-action (x, y) 7→ (εx, εcy). The second projection map y → yd descends to

Fc,d : D2(x)×D2(y)/µd(ε, εc)→D2(y)/µd(εc) ∼= D2(yd).

Restricting to S1(x)×D2(y) we get isomorphisms

S1(x)×D2(y)/µd(ε, εc) ∼= S1(x)×D2(x−cy)/µd(ε, 1) ∼= S1(xd)×D2(x−cy),
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and setting u = xd, z = x−cy the projection map Fc,d becomes

(u, v) 7→ uczd = (xd)c(x−cy)d = yd.

Thus we conclude that fc,d can be extended to the projection map Fc,d.

We can glue these together and obtain that every Seifert fibered 3–manifold
M → F can be obtained as the boundary of a Seifert disk bundle D(M).
The multiple fibers of multiplicity m correspond to cyclic quotient singularities
C2/µd(ε, εc) on D(M).

Note that the zero section gives an embedding F ↪→ D(M) and D(M) retracts
to F . The description of M can also be given in terms of the self intersection of
F ⊂ D(M).

Lemma 19. Let M → F = S2 be a Seifert fibered 3–manifold with pairwise rel-
atively prime fiber multiplicities d1, . . . , dk and corresponding Seifert disk bundle
D(M). Then

(F · F ) = ±|H1(M,Z)|
d1 · · · dk

.

There are several series of examples of Seifert fibered homology spheres which
are H–cobordant to zero [AK79, CH81, Ste78, Neu80], but for all of them the
number of singular fibers is ≤ 3. (See also [Ore97].) Let us make the lack of
known examples into a formal conjecture:

Conjecture 20. Let M → S2 be a Seifert fibered rational homology sphere with
fiber multiplicities d1, . . . , dk.

(1) If M is rationally H–cobordant to zero then
∑

(1− 1
di

) < 3.
(2) If M = Σ(d1, . . . , dk) and M is H–cobordant to zero then k ≤ 3.

It was observed in [FS87] that this problem is closely related to the existence
of 4–manifolds whose boundary components are lens spaces, and hence to Con-
jecture 2.

Assume that Σ(d1, . . . , dk) is the boundary of a homology cell W . Above we
wrote Σ(d1, . . . , dk) as the boundary of a Seifert disk bundle D(Σ(d1, . . . , dk)).
Gluing them together, we get a 4–dimensional orbifold S. The Mayer–Vietoris
sequence shows that H∗(S,Z) = H∗(CP2,Z). Thus (2) implies that we have at
most 4 singular points.



214 János Kollár

Note, however, that (20.2) is not equivalent to (2). If S is a 4–dimensional
orbifold then usually one can not find an embedded copy of S2 passing through
all singular points whose regular neighborhood is a Seifert disk bundle.

Example 21 (H–cobordisms of lens spaces). We give 2 algebraic constructions
showing that the lens spaces

L(n2,nc−1) := S3/(Z/n2)(1, nc− 1)
:= (|x|2 + |y|2 = 1)/(x, y) 7→ (εx, εnc−1y) where εn2

= 1,

are rationally H–cobordant to 0 for any (c, n) = 1.

The first construction uses deformation of singularities as in [Wah80] or [KSB88,
Sec.3]. Under the action

(x, y) 7→ (εx, εnc−1y) where εn2
= 1,

the subgroup of nth roots of unity acts as (x, y) 7→ (εnx, ε−ny), and the quotient
is

(uv − wn = 0) ⊂ C3 where u = xn, v = yn, w = xy.

The induced quotient action of Z/n ∼= (Z/n2)/(Z/n) is given by

(u, v, w) 7→ (εnu, ε−nv, εncw)

The Euler characteristic of the Milnor fiber (uv − wn = 1) is n, hence the Euler
characteristic of the quotient Milnor fiber (uv − wn = 1)/(Z/n) is 1. Therefore
it is a rational homology ball.

The second construction uses the curve

C := (xy = za+b) ⊂ P2(a, b, 1).

C is smooth, rational and passes through 2 quotient singularities. Thus the
bounday M(a, b) of its tubular neighborhood is Seifert fibered over C with 2
multiple fibers, hence it is a lens space. Since (C ·C) = (a + b)2/ab, we see from
(19) that |H1(L,Z)| = (a + b)2.

One needs some explicit computations to decide which lens space. The chart
z 6= 0 is isomorphic to C2 with coordinates X := xz−a, Y := yz−b. The affine
equation of C is (XY = 1).

P2(a, b, 1)\ (x = 0)∪C is isomorphic to C∗×C and one can choose the isomor-
phism such that in the X, Y -coordinates the corresponding coordinate functions
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are

(XY − 1)aX−a−b and Xb′−a′(XY − 1)−b′

where aa′ + bb′ = 1. Correspondingly, P2(a, b, 1) \ (y = 0) ∪ C is also isomorphic
to C∗ × C and the corresponding coordinate functions are

(XY − 1)bY −a−b and Y a′−b′(XY − 1)−a′ .

These determine how the two charts are patched together along

C∗ × C∗ ∼= P2(a, b, 1) \ (xy = 0) ∪ C

with coordinate functions

XY (XY − 1)−1 and XbY −a.

A somewhat messy explicit computation gives that one gets the lens space

M(a, b) ∼= L(a+b)2,(a′−b′)(a+b)−1.

Since aa′ + bb′ = 1, we get that (a + b)a′ − (a′ − b′)b = 1, thus a + b and a′ − b′

are relatively prime.

It is easier to see this by putting together the two descriptions as follows.
Fix n and a, c such that ac ≡ 1 mod n. Consider the family of weighted affine
hypersurfaces

X(λ) := (xy − zn + λt = 0) ⊂ P(a, n− a, 1, n) \ (t = 0).

For λ = 0 we get

X(0) = (xy − zn = 0)/ 1
n(a, n− a, 1) ∼= (xy − zn = 0)/ 1

n(1,−1, c).

For λ 6= 0 we can eliminate t to get that

X(λ) ∼= P(a, n− a, 1) \ (xy − zn = 0).

Thus the quotient Milnor fiber of the first constructions is isomorphic to the
complement of the curve C in the second construction.

The following series of [Wah81, 5.9.2] gives an algebraic realization of the
rational H–cobordisms constructed in [Neu80, p.132]. See (41) for its projective
version.



216 János Kollár

Example 22. Let a, b, c ≥ 1 be integers. Set Sabc := (xay +ybz +zcx = 0) ⊂ C3.
Sabc is quasi homogeneous with weights (bc−c+1, ca−a+1, ab−b+1), thus its link
is a Seifert fibered 3–manifold Labc → S2 with 3 multiple fibers of multiplicities
ab− b + 1, bc− c + 1, ca− a + 1. The Milnor fiber is

Mabc := (xay + ybz + zcx = 1) ⊂ C3,

and its Euler characteristic is abc + 1. Let ω be a primitive (abc + 1)st root of
unity. The cyclic group Z/(abc + 1) acts freely on Mabc by

(x, y, z) 7→ (ωx, ω−ay, ωabz).

The quotient Mabc/
(
Z/(abc + 1)

)
has Euler characteristic 1, thus it is a rational

homology ball. It bounds the Seifert fibered 3–manifold Labc/
(
Z/(abc+1)

)
which

also has 3 multiple fibers of multiplicities ab− b + 1, bc− c + 1, ca− a + 1.

The following remarkable example of [Wah83] shows that there are even ex-
amples with 4 singular fibers. Further such examples are in [SSW06].

Example 23 (J. Wahl). A Seifert fibered rational homology sphere with 4 mul-
tiple fibers which is rationally H–cobordant to 0.

The classification of all finite subgroups of O(n) which act freely on the sphere
Sn−1 is the spherical space form problem. See [Wol67, Part III] for a thorough
treatment. One such action is obtained as follows (cf. [Wol67, 5.5.6]).

Fix an integer u ≥ 2 and set

m := 3u2 − 3u + 1, n := 9u, r := 3u2 − 6u + 2, a := 3u− 1.

Let ζ (resp. ω) be a primitive mth (resp. 3uth) root of unity and consider the
subgroup G ⊂ GL(3,C) generated by

A := (x, y, z) 7→ (ζx, ζry, ζr2
z) and B := (x, y, z) 7→ (ω−1z, x, y).

G is nilpotent, its order is nm and it is given by the relations

〈A,B : Am = Bn = 1, BAB−1 = Ar〉.
Consider now the function

f(x, y, z) := xay + yaz + ωzax.

Claim. Notation as above.
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(1) The link of the singularity (f = 0)/G is Seifert fibered with 4 singular
fibers of multiplicities (3, 3, 3,m).

(2) The Milnor fiber (f = 1)/G is a rational homology ball.

Proof. The singularity (f = 0) can be resolved by 1 blow up. The exceptional
curve C is smooth of genus

(
a
2

)
.

Note that B3 = ω1 acts trivially on C. The group G/〈B3〉 acts on C with 4
nonfree orbits. These are:

– the orbits of (1 : λω : λ2ω) where λ3ω = 1; these have order 3 stabilizers,
and

– the orbit of (1 : 0 : 0); this has order m stabilizer.

The Hurwitz formula now shows that C/G ∼= P1. Moreover B0C3/G has 4 sin-
gular points, three have index 3 and one has index m. This shows the first part.

To see the second part, note that by explicit computation, the Milnor number
of f is

dimC[x, y, z]/(∂f/∂x, ∂f/∂y, ∂f/∂z) = a3.

Thus the Euler characteristic of the Milnor fiber (f = 1) is 1 + a3 = mn = |G|.
Therefore the Euler characteristic of the quotient Milnor fiber (f = 1)/G is 1,
and hence it is a rational homology ball. ¤

24 (Smoothing surface singularities). Let (0 ∈ S) be a normal surface singularity
with link L and let M be the Milnor fiber of a smoothing of S. With suitable
care, M is a 4–manifold whose boundary is L. We are especially interested in the
case when M is a rational homology ball.

This imposes a very strong restriction on (0 ∈ S). For instance, it seems to
have been known for some time that (0 ∈ S) is a rational singularity, cf. [SSW06,
Sec.2.3]. The latter also shows that (20.1) holds for the link of a normal surface
singularity which has a smoothing whose Milnor fiber is a rational homology ball.

For other relationships between the algebraic geometry of a surface singular-
ity and the Seiberg-Witten theory of its link see [NW90, Wah90, NN05, NN04,
NN02].
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Remark 25. By the results of [Fre82], every integral homology sphere bounds
a topological homology 4–cell. By the above construction this implies that there
are topological integral homology CP2-s with any number of singular points.

4. Open problems on algebraic surfaces

On the algebraic geometry side, all of the questions can be gathered into one
central problem:

Problem 26. Classify all integral/rational homology CP2-s with quotient singu-
larities.

I do not expect this to be feasible. The case when the canonical class is
anti ample, that is, we are looking at log–Del Pezzo surfaces, received a lot of
attention, but there seem to be too many cases for a complete structure theorem;
see [Miy01, KM99, Sho00].

The case where the canonical class is numerically trivial should be hard but
there is a clear path to follow. If mKS ∼ 0 then S has a degree m cover which
is either an Abelian surface or a K3 surface with Du Val singularities. Thus the
problem reduces to the classification of cyclic group actions on Abelian and K3
surfaces. The 7 cases where the Picard number of the K3 surface is maximal are
classified in [OZ99].

Very little is known about the case when the canonical class is ample. The
recent classification in the smooth case [PY05] is very significant, but it probably
says very little about the singular case.

The following examples are worked out in (43).

Example 27. Let a1, a2, a3, a4 be natural numbers such that a2a3a4−a3a4+a4−1
and a1a2a3a4 − 1 are relatively prime. (This holds in at least 75% of all cases.)
Let S be the surface

S := S(a1, . . . , a4) := (xa1
1 x2 + xa2

2 x3 + xa3
3 x4 + xa4

4 x1 = 0) ⊂ P(w1, . . . , w4)

where, using subscripts modulo 4,

wi = ai+1ai+2ai+3 − ai+2ai+3 + ai+3 − 1.
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Note that S contains the curves (x1 = x3 = 0) and (x2 = x4 = 0) and they can
be contracted. Thus we obtain a surface S∗ = S∗(a1, a2, a3, a4). We compute in
Section 5 that:

(1) S∗ is a rational surface with quotient singularities,
(2) H∗(S∗,Q) = H∗(CP2,Q),
(3) if ai ≥ 4 then the canonical class of S∗ is ample, and
(4) (K2

S∗) converges to 1 as min{ai} → ∞.

Let us also note that in positive characteristic one can get examples with many
quotient singularities.

Example 28 (Characteristic p). Let k be a field of characteristic p. For some
q = pm, blow up all the Fq-points of P2. The birational transforms of the Fq-lines
become disjoint, smooth, rational curves with self intersection −q. They can be
contracted to obtain a surface Xq defined over Fq with q2 + q +1 singular points.
These are quotient singularities of the type A2/µq where µq is the subgroup
scheme of qth roots of unity Spec k[t, t−1]/(tq − 1). (Note that in characteristic p

it is the Z/q quotients that behave very badly (cf. [Art75]) and the µq-quotients
are the correct characteristic p analogs of characteristic 0 quotient singularities.)

X2 is a Del Pezzo surface of degree 2, but the canonical class is ample for q ≥ 3.

Below I list some special cases of Problem 26 which are of interest either as
partial steps in the classification or as having immediate topological consequences.

Conjecture 29. [Kol05, 4.17] Let S be a rational homology CP2 with quotient
singularities. If S0 := S \ Sing S is simply connected then S is rational.

This is similar in spirit to the result that in dimension 2, all algebraic Q–
homology cells are rational [GP99]. (29) was verified by [Keu05] when the singu-
larities are not very complicated.

Conjecture 30 (Algebraic Montgomery–Yang problem). Let S be a rational
homology CP2 with quotient singularities. If S0 := S \Sing S is simply connected
then S has at most 3 singular points.

Example 31. Let G ⊂ SL(2,C) be subgroup which contains no quasi–reflections
such that its image in PSL(2,C) is the icosahedral group I (see [Bri68] for a
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complete list and the corresponding quotient singularities). Let Z ⊂ G be its
center, then G/Z ∼= I. Extend the G–action on C2 to CP2. The center acts
trivially on the line at infinity and CP2/Z is a cone over the rational normal curve
of degree |Z|. Then SG := CP2/G = (CP2/Z)/I has 4 quotient singularities, one
of type C2/G at the origin, 3 of types C2/Z2,C2/Z3,C2/Z5 at infinity. The
fundamental group of S0

G is I, thus SG is an integral homology CP2.

These examples can also be obtained by starting with a minimal ruled surface
and blowing up inside 3 of the fibers.

Problem 32. Classify all integral/rational homology CP2-s with 4 or more quo-
tient singularities.

It is also of considerable interest to study algebraic surfaces that lead to H–
cobordisms of Seifert fibered manifolds. If we want to stay completely algebraic,
then we are lead to the following

Problem 33. Classify all pairs (S,C) such that

(1) S is a rational homology CP2,
(2) C is a rational curve, homeomorphic to S2.

In this case S \C is a rational homology plane or a Q-acyclic surface. That is
a (nonproper) surface X such that H∗(X,Q) = H∗(C2,Q).

There is a huge body of literature devoted to classifying integral/rational ho-
mology planes. See [Fuj82, MT87, tDP89, GS89a, GS89b, FZ94, GP99, DR01a,
DR01b, DR04] and the many references there. Nonetheless, most rational ho-
mology planes can not be compactified to get a rational homology CP2, thus (33)
may be a much easier problem.

Problem 34. Topological smoothings of surfaces with quotient singularities.

Let S be a proper surface with quotient singularities pi ∈ S. Let pi ∈ Mi be
small conical neighborhoods. For each singularity (pi ∈ Mi) choose a 4–manifold
such that ∂Ni = ∂Mi. For instance, Ni could be the general fiber of a smoothing
of Mi. In general, there need not be an algebraic deformation of S which realizes
these local smoothings. However, one can always get a differentiable manifold by
replacing each singular Mi with the smooth Ni.
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It is interesting to find this way differentiable manifolds which are not algebraic.
This idea, though formulated purely topologically, was used in [SS05, PSS04,
FS04] to construct exotic differentiable structures on CP2 blown up at ≥ 5 points.

It is especially interesting to work with the case when each Ni is a rational
homology ball. In the early seventies, Casson, Gordon and Conway (unpublished)
found 3 such classes:

(1) C2/ 1
n2 (1, na− 1) where (n, a) = 1,

(2) C2/ 1
n2 (1, d(n− 1)) where d|n− 1 is odd, and

(3) C2/ 1
n2 (1, d(n− 1)) where d|2n + 1.

Recently [Lis07] proved that these are in fact all, if we also take into account two
elementary observations:

(4) replacing the generator of Z/p by its inverse shows that C2/1
p(1, q) ∼=

C2/1
p(1, q′) for qq′ ≡ 1 mod p, and

(5) conjugating one of the coordinates shows that C2/1
p(1, q) is diffeomorphic

to C2/1
p(1, p− q).

Two algebraic realizations of the first series were given in (21). I do not know
algebraic descriptions of the other two.

Let S be a proper rational homology CP2 with quotient singularities pi ∈ S

which are on the list (4.1–5). The resulting topological smoothing is then a
smooth 4–manifold which is also a rational homology CP2.

In an earlier version of this note I raised the possibility that such surfaces
could lead to a fake CP2, that is, a smooth 4–manifold homeomorphic but not
diffeomorphic to CP2. Moreover, I was hoping to do this with smoothings that
are locally complex analytic. To this end, one needs to find rational homology
CP2-s with singularities of the form C2/ 1

n2 (1, na− 1).

If S has such singularities and −KS is ample, then the local deformations of
the singular points can be globalized, and S is the degeneration of smooth Del
Pezzo surfaces. These were studied and partially classified in [Man91, HP05].
The general type examples, however, have a tendency to be rigid (cf. [FZ94,
6.12]), and they may lead to new differentiable 4–manifolds. Unfortunately, we
get nothing interesting.
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Theorem 35 (P. Hacking). Let S be a rational homology CP2 with singularities
of the form C2/ 1

n2
i
(1, niai − 1) for some (ni, ai) = 1. If KS is nef then S is

smooth.

Proof. Since KS is nef, we have the orbifold BMY inequality c1(S)2 ≤ 3eorb(S).

Noether’s formula χ(OS) = 1
12(c1(S)2 + e(S)) usually needs a correction term

for each quotient singularity, but for our singularities the correction term vanishes,
cf. [HP05, Prop.3.5]. Thus c1(S)2 = 9 and so 3 ≤ eorb(S) thus S is smooth. ¤

If we also allow the other singularities on the list (4.1–5), there are interesting
examples. For instance

(
u2 = (x2 + y2 − z2)(x2 + 2y2 − z2)

) ⊂ P3(1, 1, 1, 2)

is a degree 2 Del Pezzo surface with Picard number 2 and two singular points of
type A3, that is, C2/1

4(1, 3). Topological smoothing creates out of it a 4–manifold
with b2 = 2 (which is probably not simply connected).

It would be interesting to start a systematic study of such examples.

5. Examples of rational homology projective spaces

In this section we investigate hypersurfaces in weighted projective spaces given
by an equation

H(a1, . . . , an) := (xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1 = 0) ⊂ P(w1, . . . , wn).

These hypersurfaces, or rather, the corresponding cones, play a fundamental role
in the classification of quasi–homogeneous singularities [OR77, Kou76], but they
have many other remarkable properties as well.

The best known examples arise when a1 = · · · = an = a, giving hypersurfaces
in ordinary projective space

H(a) := (xa
1x2 + xa

2x3 + · · ·+ xa
n−1xn + xa

nx1 = 0) ⊂ Pn−1.

These have been studied for their large group of automorphisms among others.
(The case a = n = 3 is Klein’s curve of genus 3 with a simple group of order 168
as automorphisms.)

It turns out, however, that this case is completely misleading and for general
a1, . . . , an we get very different behavior.
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The closely related examples of [Lib77, BD94]

(xa
1x

d−a
2 + x2x

d−1
3 + · · ·+ xn−1x

d−1
n + xd

n+1 = 0) ⊂ Pn

give hypersurfaces with (non–quotient) isolated singularities which have the same
integral homology as CPn−1 if gcd(a, d(d− 1)) = 1.

36 (Summary of the results). Let H = H(a1, . . . , an) be as above. Then H has
only cyclic quotient singularities for n ≥ 4. Under a mild but not very explicit
restriction on a1, . . . , an (38) we show that

(1) H is birational to CPn−2, but
(2) if every ai ≥ n and n ≥ 4 then the canonical class KH is ample and its

self intersection (Kn−2
H ) converges to 1 as min{ai} → ∞.

Moreover, if n is odd then

(3) H is a rational homology CPn−2, and
(4) P(w1, . . . , wn) \H is a rational homology Cn−1.

For n = 3 this gives many examples of Seifert fibered rational homology spheres
which are rationally H-cobordant to 0, see (22).

If n = 2m is even then Hn−2(H,Q) has dimension 3. However, if n = 4,
then H contains 2 disjoint contractible curves and after contracting them we get
H → H∗ and in (27) we show that

(6) H∗ is a rational homology CPn−2, and
(7) if every ai ≥ 4 then the canonical class KH∗ is ample.

Remark 37. In singularity theory and in topology the Brieskorn–Pham singu-
larities

(xa1
1 + xa2

2 + · · ·+ xan
n = 0) ⊂ Cn

are much better known. When the link of a Brieskorn–Pham singularity is a
homology sphere, then the corresponding projective hypersurface is isomorphic to
a weighted projective space [Bri66] and all the intricate geometry is concentrated
in the corresponding Seifert bundle structure (see, for instance, [OW75]).

By contrast, for the singularities

(xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1 = 0) ⊂ Cn
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the projective hypersurfaces are also very interesting and the Seifert bundle struc-
ture is usually simple.

38 (Numerical conditions). The exponents a1, . . . , an, the weights w1, . . . , wn and
the degree d are related by the equations

aiwi + wi+1 = d for i = 1, . . . , n,

where we write all subscripts modulo n. Let us fix the exponents ai and assume
that

∏
ai 6= (−1)n. Using (40) the system can be solved explicitly. Set

Wi :=
n∑

j=1

(−1)j−1
i+n−1∏

`=i+j

a` and D :=
n∏

`=1

a` + (−1)n−1,

where D is the determinant of the system. It is easy to check that

aiWi + Wi+1 = D for i = 1, . . . , n. (38.1)

We would like to have a well formed weighted projective space, thus we have to
divide the weights by their greatest common divisor

w∗ := gcd(W1, . . . , Wn). (38.2)

Note that the equations (38.1) imply that

w∗ = gcd(Wi, D) ∀i and w∗ = gcd(Wi,Wi+1) ∀i. (38.3)

It turns out that the cases with w∗ = 1 have many special properties that are
not shared by the examples with w∗ > 1.

It is not clear to me how to determine whether w∗ = 1, other than actually
computing it. It is, however, easy to see that w∗ = 1 happens frequently.

Note that we can write Wn = an−1A ± 1 and D = anan−1B ± 1 where A,B

depend on a1, . . . , an−2 only. Fix a prime p and a1, . . . , an−2. No matter what
A,B are, there is at most one choice for an−1 modulo p such that p divides Wn

and then at most one choice for an modulo p such that p divides D. By the
Chinese remainder theorem, the conditions for different primes are independent.
Thus the proportion of the n-tuples with w∗ = 1 is asymptotically at least

∏
p

(
1− 1

p2

)
=

1
ζ(2)

=
6
π2

= 0.607...
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Note that D =
∏

ai ± 1 is divisible by 2 only if all the ai are odd, and then
wi ≡ n mod 2. This allows us to conclude that the above 0.607 can be improved
to 0.8 if n is odd and to 0.75 if n is even.

Set
wi := 1

w∗Wi and d := 1
w∗D. (38.4)

From (38.3) we conclude that

gcd(wi, d) = 1 ∀i and gcd(wi, wi+1) = 1 ∀i. (38.5)

Note that H can also be viewed as a general element of the linear system

|H| = |xa1
1 x2, x

a2
2 x3, · · · , x

an−1

n−1 xn, xan
n x1|.

Indeed, take any λi 6= 0 and consider

H(λ) := (λ1x
a1
1 x2 + λ2x

a2
2 x3 + · · ·+ λn−1x

an−1

n−1 xn + λnxan
n x1 = 0)

Choose µi such that µai
i µi+1 = λ−1

i . Such a choice is possible since we can view
these equations as a linear system for the log µi whose determinant is D 6= 0.
Thus H and H(λ) differ only by a coordinate change.

Theorem 39. Assume that
∏

ai 6= (−1)n and write all subscripts modulo n.
Define wi, d and w∗ as in (38.4). Then

(1) P(w0, . . . , wn) is a well formed weighted projective space whose singular
set has dimension ≤ bn/2c − 1.

(2) The hypersurface

H(a1, . . . , an) := (xa1
1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1 = 0) ⊂ P(w1, . . . , wn)

is quasi–smooth.
(3) P(w1, . . . , wn) \H(a1, . . . , an) is smooth.
(4) If w∗ = 1 then H is birational to CPn−2.
(5) KH is ample if min{ai} ≥ n and (Kn−2

H ) → 1 as min{ai} → ∞.
(6) If n is odd and w∗ = 1 then

H∗(H(a1, . . . , an),Q) ∼= H∗(CPn−2,Q) and
H∗(P(w1, . . . , wn) \H(a1, . . . , an),Q) ∼= H∗(Cn−1,Q).

(7) If n = 2m is even and w∗ = 1 then

Hj(H(a1, . . . , an),Q) ∼= Hj(CPn−2,Q) for j 6= n− 2, and
Hn−2(H(a1, . . . , an),Q) ∼= Q3.



226 János Kollár

The middle homology is spanned by the the complete intersection class
c1(OP(1))m−1 ∩ [H] and the two disjoint weighted linear subspaces

(x1 = x3 = · · · = x2m−1 = 0) and (x2 = x4 = · · · = x2m = 0).

Proof. The singular locus of P(w1, . . . , wn) is a union of weighted linear sub-
spaces LI where I ⊂ {1, . . . , n} is a subset such that gcd{wi : i ∈ I} 6= 1 and

LI := {(x1, . . . , xn) : xj = 0 ∀ j 6∈ I}.

As we noted in (38.5), I does not contain any pair of indices whose difference is
1. Thus |I| ≤ n/2 and so dimLI ≤ bn/2c− 1. We also see that LI ⊂ H for every
such I. This shows (39.1) and (39.3).

Outside (
∏

xi = 0) the hypersurface H is smooth by Bertini. Assume that
H is not quasi–smooth at the point (p1, . . . , pn) and pi = 0. Then ∂h/∂xi = 0
shows that pi−1 = 0 and by repeating the argument we get that all the pj = 0.
Thus H is quasi–smooth, proving (39.2).

Assuming that w∗ = 1, we show that the linear system

|H| = |xa1
1 x2, x

a2
2 x3, · · · , x

an−1

n−1 xn, xan
n x1|

maps P(w1, . . . , wn) birationally to Pn−1 and so H is mapped birationally to a
hyperplane in Pn−1. Note that |H| restricts to a homomorphism between the tori

η : (C∗)n
x → (C∗)n

y given by η∗yi = xai
i xi+1,

where (y1, . . . , yn) are coordinates on the target Pn−1. The degree of η is the
determinant of the matrix of exponents, which we already computed to be D =∏

i ai + (−1)n−1.

Let us now restrict η to the 1–parameter subgroup (λw1 , . . . , λwn). We get a
homomorphism of degree d:

η : (λw1 , . . . , λwn) → (λd, . . . , λd).

Note that w∗ = 1 iff d = D, thus if w∗ = 1 then η descends to an isomorphism

(C∗)n
x/(λw1 , . . . , λwn) → (C∗)n

y/(λ, . . . , λ).

This is exactly the map given by |H|, proving (39.4).
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Although it is not needed for our purposes, one can also write down the inverse
of the map given by |H|. First we get the formulas

xD
i =

∏n−1
j=0 y

bij

i+j where bij := (−1)j+1
∏i+n−1

`=i+j−1 a` and
x

wi+1

i x−wi
i+1 = xD

i y−wi
i .

Then one can easily check that the monomials xD
i and x

wi+1

i x−wi
i+1 generate the

subring C(x1, . . . , xn)(D) of those elements whose degree is divisible by D. Thus
we get an explicit isomorphism

|H|∗ : C(y1, . . . , yn) ∼= C(x1, . . . , xn)(D).

Nevertheless, I found it very difficult to compute anything based on these formu-
las.

For n ≥ 5 the singular set of P(w1, . . . , wn) has codimension ≥ 3, thus the
canonical class of H is given by the adjunction formula,

KH = (KP + H)|H = OP(d−
∑

wi)|H .

The minor modifications needed in the few cases when n = 4 and P(w1, . . . , wn)
has 1–dimensional singular set are discussed in (43). If w∗ = 1 then the two
highest terms in the coefficient of KH are

( ∏
ai

)(
1−

∑
1
ai

)
,

which is positive as soon as min{ai} ≥ n. In fact it is easy to see that d−∑
wi > 0

if min{ai} ≥ n. The self intersection of KH is computed asymptotically by

(Kn−2
H ) = (OP(d−

∑
wi)n−2 · OP(d)) ∼ dn−1

∏
wi

∼ w∗.

We compute the homology groups of H using the Milnor–Orlik formula [MO70].

Let f(x1, . . . , xn) be a weighted homogeneous polynomial of weighted degree
d where the variable xi has weight wi. Assume that (f = 0) has an isolated
singularity at the origin and let L = L(f) := (f = 0)∩S2n−1(1) be its link. Then
L is (n− 3)–connected and the rank of the middle homology groups is given by

dimHn−2(L,Q) =
∑

I⊂{1,...,n}
(−1)n−|I|

∏
i∈I(d/wi)

lcm{ui : i ∈ I} ,

where we write d
wi

= ui
vi

in lowest terms.
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In our case (d,wi) = 1 for every i (38.5) an so ui = d. Thus lcm{ui : i ∈ I} = d

save for I = ∅. Thus the formula becomes
∑

I⊂{1,...,n}(−1)n−|I|
∏

i∈I(d/wi)

lcm{ui:i∈I} =

= (−1)n + (−1)n−1

d + 1
d

∑
I⊂{1,...,n}(−1)n−|I|∏

i∈I
d
wi

= (−1)n + (−1)n−1

d + 1
d

∏
i

(
d
wi
− 1

)

= (−1)n + (−1)n−1

d + 1
d

∏
i

(
ai−1wi−1

wi

)

= (−1)n + (−1)n−1

d + 1
d

∏
i ai

= (−1)n + w∗,

where at the last step we took into account that dw∗ = D =
∏

i ai + (−1)n−1.

The link L is a Seifert S1-bundle over X := (f = 0) ⊂ P(w1, . . . , wn) and the
resulting Leray spectral sequence is easy to compute (with rational coefficients),
see, e.g. [OW75]. This gives (39.6–7) except for the precise identification of
Hn−2(H,Q) in the n = 2m case.

We use this only for n = 4, where it is worked out in (43). ¤

Lemma 40. Assume that
∏

ai 6= (−1)n and write all subscripts modulo n. Then
the system

aivi + vi+1 = 1 i = 1, . . . , n

has determinant
∏n

`=1 a` + (−1)n−1 and a unique solution given by

vi =
Wi

D
:=

∑n
j=1(−1)j−1

∏i+n−1
`=i+j a`∏n

`=1 a` + (−1)n−1
. ¤

Next we consider in greater detail the two low dimensional cases.

41 (Quasi–smooth rational curves). The case n = 3 gives quasi–smooth rational
curves in weighted projective planes. Here we have a system

a1w1 + w2 = a2w2 + w3 = a3w3 + w1 = d

with solutions

w1 =
a2a3 − a3 + 1

w∗
, w2 =

a3a1 − a1 + 1
w∗

, w3 =
a1a2 − a2 + 1

w∗
, d =

a1a2a3 + 1
w∗

.

We can also compute the genus of the general member of the linear system

C ∈ |xa1
1 x2, x

a2
2 x3, x

a3
3 x1|
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using the adjunction formula (42.4). By explicit computation

d(d− w1 − w2 − w3)
w1w2w3

= w∗ − 1
w1

− 1
w2

− 1
w3

,

Thus by (42.4), the genus of C is (w∗ − 1)/2. Thus C is a smooth rational curve
iff w∗ = 1, that is, when a2a3−a3+1, a3a1−a1+1 and a1a2−a2+1 are relatively
prime.

The Kodaira dimension of the pair (P := P(w1, w2, w3), C) is determined by
the sign of

deg(C + KP ) = a1a2a3 + 1− (a1a2 − a2 + 1 + a2a3 − a3 + 1 + a3a1 − a1 + 1)
= (a1 − 1)(a2 − 1)(a3 − 1)− 1.

This is negative if one of a1, a2, a3 is 1. If say a3 = 1 then we get weighted
projective planes P2(a2, 1, a1a2 − a2 + 1) with only 2 singular points and the
corresponding link is a lens space.

If a1 = a2 = a3 = 2 then the relatively prime conditions is not satisfied. In all
other cases (a1 − 1)(a2 − 1)(a3 − 1)− 1 > 0 so the Kodaira dimension is 2. ¤

As a side remark we note that (22) lists all interesting quasi–smooth rational
curves in weighted projective planes.

Proposition 42. Let P := P(u, v, w) be a well formed weighted projective plane
and C = Cd ⊂ P a quasi–smooth rational curve of degree d. Then, up to permut-
ing the coordinates and isomorphism, the pair d,C is one of the following

(1) d = w and C = (z = 0).
(2) d = u+ v, w|u+ v and C ∈ |xy, z(u+v)/w, . . . | where the existence of other

degree d monomials depends on further numerical coincidences.
(3) (P, C) is as in (22).

Proof. Let C ⊂ S be a quasi–smooth curve on a surface S which passes through
the singular points Pi which are cyclic quotients by Z/mi. The adjunction formula
(cf. [Cor92]) says that

C(C + KS) = 2g(C)− 2 +
∑(

1− 1
mi

)
. (42.4)

Assume now that S = P is a weighted projective plane, C is rational of degree
d and it passes through at most 2 singular points of indices u, v, where u = 1 or
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v = 1 are allowed. Then we get that

d(d−u−v−w)
uvw = − 1

u − 1
v .

Thus d < u + v + w and so if z is the coordinate with the biggest weight then
it appears in one of the monomials z, z2, zy, zx. The rest follows by an easy case
analysis, giving the first two possibilities.

It remains to consider the case when C passes through all 3 singular points
and u, v, w ≥ 2. This gives the equation

d(d−u−v−w)
uvw = 1− 1

u − 1
v − 1

w .

Aside from the case {u, v, w} = {2, 3, 5}, the right hand side is positive and there
is no easy upper bound for d.

The quasi–smoothness conditions show that, up to permuting the coordinates,
we have monomials

xay, ybz, zcx or xay, ybx, zcx.

The first of these leads to (22) and to our last possibility. (In fact one can check
that in the 3 singular point case, there are no other monomials with the same
weighted degree.)

Finally we exclude the case xay, ybx, zcx. All of these are divisible by x, thus
we also must have another monomial zc′y. Thus (c− c′)w = v−u and so w|u−v.
Up to interchanging x, y we can assume that u ≥ w + 1.

From d = ua + v = bv + u we obtain that (a− 1)u = (b− 1)v. Since (u, v) = 1
we get that d = muv+u+v for some m ≥ 1. Substituting into the genus formula
and rearranging we get (mu + 1)(mv + 1) = (m + 1)w. But mu + 1 ≥ u + 1 > w

and mv + 1 ≥ 2m + 1 give a contradiction. ¤

43 (Examples of rational homology CP2-s). For n = 4 we get a surface

S = S(a1, a2, a3, a4) := (xa1
1 x2 + xa2

2 x3 + xa3
3 x4 + xa4

4 x1 = 0) ⊂ P(w1, w2, w3, w4),

where the ai and wi satisfy a system of equations

a1w1 + w2 = a2w2 + w3 = a3w3 + w4 = a4w4 + w1 = d

with solutions

w1 =
a2a3a4 − a3a4 + a4 − 1

w∗
, . . . and d =

a1a2a3a4 − 1
w∗

.
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If w∗ = 1 then S(a1, a2, a3, a4) is a rational surface with 4 quotient singularities
at the coordinate vertices and with H2(S,Q) ∼= Q3.

Note that S contains the two rational curves

C1 := (x1 = x3 = 0) and C2 := (x2 = x4 = 0).

Both of these are quasi–smooth in S. Thus by the adjunction formula (42.4),

(KS + C1) · C1 = − 1
w2

− 1
w4

and (KS + C2) · C2 = − 1
w1

− 1
w3

.

This implies that both curves have negative intersection with KS+(1−ε)(C1+C2)
for 0 < ε ¿ 1, and so they are are extremal rays for the KS + (1 − ε)(C1 + C2)
minimal model program. (See [KM98] for an introduction.) Thus C1 and C2 are
both contractible to quotient singularities and we get rational surfaces

π : S → S∗ = S∗(a1, a2, a3, a4).

If the {wi} are pairwise relatively prime, then the canonical class of S is

KS = OP(
∏

ai − 1−∑
wi).

If the pairwise relatively prime assumption fails then the general adjunction for-
mula [Cor92] says that

KS +
(
1− 1

gcd(w1, w3)

)
C1 +

(
1− 1

gcd(w2, w4)

)
C2 = OP(

∏
ai − 1−∑

wi).

Note that if a1, a2, a3, a4 ≥ 4 then KS∗ is ample. One can write down an
explicit formula for the self intersection of KS∗ , but it is rather complicated. In
any case, one sees that it also converges to 1 as a1, a2, a3, a4 →∞.
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(János Kollár, ed.), Société Mathématique de France, 1992, Papers from the Second

Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake
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