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A Measurable Cartan Theorem
and Applications to Deformation Rigidity

in Complex Hyperbolic Geometry

Marc Burger and Alessandra Iozzi

To Grisha, who keeps inspiring so many of us

Abstract: We establish a version for measurable maps of a theorem of
E. Cartan [10] according to which a bijection of the boundary of complex
hyperbolic plane mapping chains into chains comes from an isometry.
As an application, we prove a global rigidity result which was originally
announced in [5] and [18] with a sketch of a proof using bounded cohomology
techniques and then proven by Koziarz and Maubon in [19] using harmonic
map techniques. As a corollary one obtains that a lattice in SU(p, 1) cannot
be deformed nontrivially in SU(q, 1), q ≥ p, if either p ≥ 2 or the lattice is
cocompact. This generalizes to noncocompact lattices a theorem of Goldman
and Millson, [14].

1. Introduction

The ideal boundary ∂H`
C of complex hyperbolic `-spaceH`

C carries a rich geom-
etry whose “lines”are the chains. A chain in ∂H`

C is by definition the boundary of
a complex geodesic in H`

C; as such it is a circle equipped with a canonical orienta-
tion, and it is uniquely determined by any two points lying on it. The “geometry
of chains” was first studied by E. Cartan who showed that, analogously to the
Fundamental Theorem of Projective Geometry [1, Theorem 2.26], any automor-
phism of the incidence graph of the geometry of chains comes, for ` ≥ 2, from an
isometry of H`

C, [10]. The main result of this paper is a consequence of an analog
of Cartan’s theorem (see Theorem 2.1) in the measurable setting. Namely we
prove the following:
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Theorem 1. Let p ≥ 2 and let ϕ : ∂Hp
C → ∂Hq

C be a measurable map such that
for almost every chain and almost every triple (ξ, η, ζ) of distinct points on it,
the triple ϕ(ξ), ϕ(η), ϕ(ζ) consists also of distinct points on a chain and has the
same orientation as (ξ, η, ζ). Then either

(1) there is a chain C ⊂ ∂Hq
C such that ϕ(ξ) ∈ C for almost every ξ ∈ ∂Hp

C,
or

(2) there is an isometric holomorphic embedding F : Hp
C → Hq

C such that the
map

∂F : ∂Hp
C → ∂Hq

C
induced on the boundary coincides with ϕ almost everywhere.

The precise meaning of the first “almost everywhere” condition in the above
theorem comes from the fact that the space of chains in ∂Hp

C is a homogeneous
space for SU(p, 1) and, as such, carries a canonical invariant measure class.

As a corollary of this result and of the results in [3] and [4], we obtain a rigidity
theorem for representations of lattices Γ in SU(p, 1) into PU(q, 1). To describe
this, let us recall the invariant iρ, first introduced in [5, 18], associated to any
such homomorphism ρ : Γ → PU(q, 1). LetHq

C be the complex hyperbolic q-space
endowed with the Riemannian metric of constant holomorphic sectional curvature
-1, and let ωq be the corresponding Kähler form. Let κq ∈ H2

c

(
PU(q, 1),R

)
be the continuous class which corresponds to ωq via the van Est isomorphism
[21]. Let M := Γ\Hp

C be the finite volume quotient and assume that either
p ≥ 2 or M is compact. Then the ÃL2-cohomology space H2

(2)(M) injects into

H2
dR(M) ' H2(Γ,R), and it is a fact that the pullback ρ(2)(κq), seen as an element

of H2
dR(M), belongs to the subspace H2

(2)(M), see [3].

Since M is at any rate locally Hermitian symmetric, we may identify Hk
(2)(M)

with the space of harmonic k-forms which are ÃL2 on M ; in particular H2
(2)(M)

comes with the natural inner product of ÃL2-forms, and the Kähler form ωM

coming from ωp defines then an element of H2
(2)(M). Our invariant iρ associated

to ρ is then defined by:

(1.1) iρ :=
〈ρ(2)(κq), ωM 〉
〈ωM , ωM 〉 ,

and, with the above normalization of hyperbolic metric, we have

|iρ| ≤ 1 .

Let us call a representation ρ : Γ → PU(q, 1) maximal if iρ = 1. We observe
that the study of representations with iρ = −1 reduces to the study of maximal
representations by conjugating ρ with an antiholomorphic isometry of Hq

C.
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Theorem 2. Let Γ < SU(p, 1) be a lattice and ρ : Γ → PU(q, 1) be a maximal
representation. Assume that p ≥ 2. Then there is an equivariant isometric
embedding

F : Hp
C → Hq

C
which is holomorphic.

V. Koziarz and J. Maubon gave in [19] a proof of Theorem 2 using harmonic
map techniques. We refer to the introduction of their article for an excellent
overview of the history and the context of the subject.

The invariant defined above has been introduced in [3] in a much more general
situation, in particular for a representation ρ : Γ → Iso(X )◦, where Γ < SU(p, 1)
is a lattice and X is now an arbitrary Hermitian symmetric space of noncompact
type. In this case iρ satisfies the inequality

|iρ| ≤ rank(X ),

and representations for which iρ = rank(X ) are coined maximal. The case where
p = 1, that is when Γ is a surface group, is the object of an ongoing study (see
[12, 13, 20, 16, 18, 8, 6, 7, 2]), and in this situation maximal representations
lead to new interesting Kleinian groups in higher rank. On the other hand, if
p ≥ 2, we expect maximal representations to come from totally geodesic, possibly
holomorphic, embeddings, as it is indeed the case when X = Hq

C.

A different way of looking at iρ as a foliated Toledo number was suggested to us
by F. Labourie, and goes as follows. The space of configurations of points lying
on chains can be seen as the space at infinity of the space of configurations

GHp
C =

{
(x, Y ) : Y is a complex geodesic and x ∈ Y ⊂ Hp

C

}

of points lying on complex geodesics. This is the total space of a foliation whose
leaves are the fibers of the map

pr2 : GHp
C → Gp

(x, Y ) 7→ Y ,

where Gp is the set of complex geodesics; the leaves of this foliation are transverse
to the fibers of

pr1 : GHp
C → Hp

C
(x, Y ) 7→ x

which, incidentally, are compact. Given now Γ < PU(p, 1) a torsionfree lattice,
since pr1 is Γ-equivariant, we get a foliated space pr1 : GM → M lying above M =
Γ\Hp

C, where GM = Γ\GHp
C is foliated by complex geodesics. The restriction to

the complex geodesics of the pullback pr(2)1 (ωM ) of the Kähler form ωM of M ,
defines a tangential form ωGM . If then ρ : Γ → PU(q, 1) is a homomorphism
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and ω′ρ is a bounded closed representative of the class ρ(2)(κq) ∈ H2
dR(M) (which

always exists by [3]), then the tangential form Ω′ρ, obtained by restricting pr(2)1 (ω′ρ)
to the leaves of the foliations, differs from ωGM by a bounded function, whose
integral over GM gives iρ.

Application to Deformation Rigidity. If Γ is a discrete finitely generated group
and L is a topological group, the space of homomorphisms Rep(Γ, L) of Γ into L
is topologized naturally as a closed subset of LS , where S is a finite generating
set of Γ. Let BL be the classifying space of continuous principal L-bundles, and
c ∈ H•(BL,R) a characteristic class in degree •. It is a standard observation that
the map

Rep(Γ, L) → H•(Γ,R)

ρ 7→ ρ•B(c) ,

where ρ•B : H•(BL,R) → H•(BΓ,R) = H•(Γ,R) denotes the pullback, is constant
on connected components of Rep(Γ, L).

Assume now that L is simple of Hermitian type and let K be a maximal
compact subgroup of L. It follows from the Iwasawa decomposition that BK is
homotopy equivalent to BL, and by Chern–Weil theory H•(BK,R) is described
by the K-invariant polynomials on the Lie algebra k of K, [11, 17]. Since L is sim-
ple Hermitian, the center Z(k) is one dimensional and the orthogonal projection
of k on Z(k) gives rise to an invariant linear form which, via Chern–Weil theory,
gives rise to a class in H2(BK,R) = H2(BL,R). This class corresponds then
via the natural homomorphism H2(BL,R) → H2

c(L,R) to the Kähler class κY ,
where Y is the symmetric space associated to L, and hence the commutativity of
the diagram

H2(BL,R)
ρ
(2)
B //

²²

H2(BΓ,R)

=

²²
H2

c(L,R)
ρ(2)

// H2(Γ,R)

implies that the map
Rep(Γ, L) → H2(Γ,R)

ρ 7→ ρ(2)(κY)

is constant on connected components of Rep(Γ, L).

To turn to our immediate application, let us assume that p ≤ q and let ρ0 :
SU(p, 1) → PU(q, 1) be a standard homomorphism, that is a homomorphism
associated to any isometric holomorphic embedding

F : Hp
C → Hq

C .
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Observe that any two such embeddings Hp
C → Hq

C are conjugate in PU(q, 1);
moreover, the stabilizer in PU(q, 1) of the image of F is the almost direct product
of the image ρ0(SU(p, 1)) and its centralizer Z(ρ0) in PU(q, 1), which is compact.

Corollary 3. Let ρ0 : SU(p, 1) → PU(q, 1) be a standard representation, let
Γ < SU(p, 1) be a lattice and assume that p ≥ 2. Then any representation
ρ : Γ → PU(q, 1) in the path connected component of ρ0|Γ in the representation
variety Rep(Γ,PU(q, 1)) is, modulo conjugation by PU(q, 1), of the form ρ0 × χ,
where χ is a homomorphism of Γ into the compact group Z(ρ0).

Remark 4. We recall that if Γ < SU(p, 1) is cocompact, this was proved by
Goldman and Millson in [14]. On the other hand, Gusevskii and Parker found
nontrivial deformations of the standard representation ρ0|Γ : Γ → PU(2, 1) of a
noncocompact lattice: in addition these deformations are quasi-Fuschsian in the
sense that they are injective and with discrete image, [15].

2. The Measurable Cartan Theorem

Let V be a complex vector space of dimension ` + 1 with a Hermitian form h
of signature (`, 1). The complex hyperbolic `-space H`

C is the cone of negative
lines in P(V ) equipped with the distance

cosh2 d
(
[v], [w]

)
:=

h(v, w)h(w, v)
h(v, v)h(w, w)

,

which turns it into a simply connected Riemannian manifold with sectional curva-
ture −4 ≤ κ ≤ −1 whose connected component of the isometry group is PU(`, 1).

If 0 ≤ k ≤ `, any (k + 1)-dimensional nondegenerate indefinite linear subspace
W ⊂ V gives rise to a k-plane, that is a totally geodesic holomorphically em-
bedded isometric copy of Hk

C. In particular, a 1-plane is a complex geodesic in
H`
C.

The boundary ∂H`
C consists of equivalence classes of asymptotic geodesic rays

and can be identified with a (2` − 1)-dimensional sphere corresponding to the
projectivization of the null cone of h. Boundaries of k-planes are called k-chains
and boundaries of complex geodesics in H`

C are simply referred to as chains. A
chain is completely determined by any two points that belong to it, and hence
two distinct chains are either disjoint or meet in exactly one point.

Since the diagonal action on PU(`, 1) on (∂H`
C)(3) is not transitive1, in the

following it will be useful to associate to triples of points in (∂H`
C)(3) a full

1Throughout the paper, given a set X and a positive integer n ∈ N, we use the notation X(n)

to indicate the subset of Xn of n-ples consisting of distinct points.
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invariant which does not have any analog in real hyperbolic spaces except on the
hyperbolic plane. Namely, if

〈 · , · , · 〉 :
(
C`+1

)3 → C
is the Hermitian triple product defined by

〈z1, z2, z3〉 = h(z1, z2)h(z2, z3)h(z3, z1) ,

define Cartan’s invariant angulaire

c` : (∂H`
C)(3) → [−1, 1]

by

c`(ξ1, ξ2, ξ3) :=
2
π

Arg〈z1, z2, z3〉 ,
where the points zi ∈ C`+1 projects onto ξi ∈ ∂H`

C, and where we choose the
convention that Arg(z) ∈ [−π

2 , π
2

]
, [10]. Then c` extends to a PU(`, 1)-invariant

alternating cocycle on (∂H`
C)3; in this section, however, the relevant property of c`

is that it detects exactly when three points lie of a chain. Namely, |c`(ξ1, ξ2, ξ3)| =
1 if and only if ξ1, ξ2, ξ3 lie on a chain, and c`(ξ1, ξ2, ξ3) = 1 if and only if the
triple (ξ1, ξ2, ξ3) is positively oriented with respect to the canonical orientation
of the chain.

The goal of this section is to prove Theorem 1. This will be achieved by proving
in § 2.1 the following

Theorem 2.1. Let p ≥ 2 and let ϕ : ∂Hp
C → ∂Hq

C be a measurable map such
that:

(i) for almost every chain C and almost every triple (ξ, η, ζ) of distinct points
on C, the triple ϕ(ξ), ϕ(η), ϕ(ζ) consists also of distinct points which lie
on a chain and have the same orientation as (ξ, η, ζ);

(ii) for almost every triple of points ξ, η, ζ not on a chain, ϕ(ξ), ϕ(η), ϕ(ζ)
are also not on a chain.

Then there is an isometric holomorphic embedding F : Hp
C → Hq

C such that the
map

∂F : ∂Hp
C → ∂Hq

C
induced on the boundary coincides with ϕ almost everywhere.

The reduction of Theorem 1 from Theorem 2.1 lies in the following proposition,
which will be proven in § 2.2.

Proposition 2.2. Let ϕ : ∂Hp
C → ∂Hq

C be a measurable map satisfying (i) but
not (ii) of Theorem 2.1. Then there exists a chain C ⊂ ∂Hq

C such that for almost
every ξ ∈ ∂Hp

C, ϕ(ξ) ∈ C.
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2.1. Proof of Theorem 2.1. The structure of the proof of Theorem 2.1 goes as
follows. We first show by induction that the statement of the theorem for a fixed p
follows from the analogous statement in one lower dimension, provided p ≥ 3; this
leaves us to show the statement for p = 2. The next step is to show that if p = 2
any map ϕ : ∂H2

C → ∂Hq
C satisfying the hypotheses of Theorem 1 essentially

takes values in a two-chain; this will be achieved by an appropriate convex hull
argument. The last step is hence to show the assertion for p = q = 2, for which
we follow a strategy devised by Goldman for a different proof of E. Cartan’s
theorem.

2.1.1. Configuration spaces, I. In the sequel we will have to deal with various
configuration spaces and maps between them. Typically, we will have the situa-
tion

p : W → V ,

where W,V are one of the following configuration spaces below and p is a “pro-
jection”. In all cases, these configuration spaces are manifolds and the maps p
are fibrations. Thus W , V and every fiber of p will be equipped with its canoni-
cal Lebesgue measure class, so that the following Fubini-type statement holds: a
measurable subset A ⊂ W is of full measure if and only if for almost every v ∈ V
the set p−1(v) ∩A is of full measure in p−1(v).

We list here for future reference some of the configuration spaces occurring in
the part of the proof dealing with the reduction to the case in which p = q = 2.
Let us start by observing that if Grassk1,k2(p) denotes the Grassmannian of k1-
planes in k2-planes in Hp

C, we have

Grassk1,k2(p) ' SU(p, 1)/S
(
U(p− k2)×U(k2 − k1)×U(k1, 1)

)
.

Moreover we will use:

– if 1 ≤ k ≤ p, the space Pk,p of k-planes in Hp
C and the space Ck,p of

k-chains in ∂Hp
C are both isomorphic to Grassk,k(p);

– the space
{
(X, x) : X ∈ Pp−1,p, x ∈ X

}
of points on a (p − 1)-plane

is isomorpic to Grass0,p−1(p), and the fibers of the projection onto the
second factor are the k-planes Pk,p(x) through x ∈ Hp

C, where

Pk,p(x) ' S
(
U(p)×U(1)

)
/S

(
U(p− k)×U(k)×U(1)

)
;

– the space
{
(X, C) : X ∈ Pp−1,p, C ∈ Ck,p and C ⊂ ∂X

}
of chains in the

boundary of (p− 1)-planes is isomorphic to Grass1,p−1(p);
– the space of points in the boundary of a (p− 1)-plane

Isp−1(p) :=
{
(X, ξ) : X ∈ Pp−1,p, ξ ∈ ∂X

}

can be identified with
{
W ⊂ X : X ∈ Pk,p, W ⊂ X is an isotropic line

}
,
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and as such is isomorphic to

SU(p, 1)/S
(
U(p− k)×Qk

)
,

where Qk < SU(k, 1) is a parabolic subgroup stabilizing an isotropic line;
– the space

{
(X, ξ1, ξ2, ξ3) : X ∈ Pp−1,p, ξ1, ξ2, ξ3 ∈ ∂X

}
of triples of

points on the boundary of a (p− 1)-plane is the threefold fibered product(
Isp−1(p)

)3

f
of the configuration space Isp−1(p) with respect to the first

projection; it turns out to be a manifold, as one can easily see using a
standard transversality argument since the projection if submersive;

– the space
{(

C, (ξ1, ξ2)
)

: C ∈ C1,p and (ξ1, ξ2) ∈ C(2)
}

is an open set in
the twofold fibered product

(
Isp−1(p)

)2

f
which, as in the previous case, is

a manifold.

2.1.2. Reduction to the case p = 2. We now let p ≥ 3, we assume that the theorem
holds for p−1 and we will now show that it holds for p. Let us start by observing
that a simple verification using Fubini’s theorem applied to the configuration
spaces {

(X, C) : X ∈ Pp−1,p, C ∈ C1,p, C ⊂ ∂X
}

and {
(X, ξ1, ξ2, ξ3) : X ∈ Pp−1,p, and ξ1, ξ2, ξ3 ∈ ∂X

}

shows that, for almost every X ∈ Pp−1,p, the restriction ϕ|∂X of ϕ to ∂X is
measurable and satisfies respectively the hypotheses (i) and (ii) of Theorem 2.1.

Applying the induction hypothesis we get for almost every X ∈ Pp−1,p an
isometric holomorphic embedding

FX : X → Hq
C

such that ∂FX = ϕ|∂X almost everywhere. To extend FX to a well defined
function on Hp

C, let us consider the set
{
(x,X) : X ∈ Pp−1,p(x) and there is FX : X → Hq

C as above

with ∂FX = ϕ|∂X almost everywhere
}

which is thus of full measure in the configuration space
{
(x,X) : X ∈ Pp−1,p(x)

}
,

and let us define for almost every x ∈ Hp
C and almost every X ∈ Pp−1,p(x) the

function
f(x,X) := FX(x) .

Using again Fubini’s theorem, one checks that for almost every X1, X2 ∈
Pp−1,p(x),

(2.1) ∂FX1 |∂X1∩∂X2 = ϕ|∂X1∩∂X2 = ∂FX2 |∂X1∩∂X2 .
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For such X1 6= X2, since X1 ∩ X2 is nonempty, it is then a (p − 2)-plane, and
since p− 2 ≥ 1, we have that

∂X1 ∩ ∂X2 = ∂(X1 ∩X2) 6= ∅ ,

which implies, using (2.1), that f(x,X1) = f(x,X2). Thus f(x,X) is almost
everywhere independent of X ∈ Pp−1,p(x) and gives rise to a well defined map f :
Hp
C → Hq

C which by construction preserves the distances of almost every pair of
points. It is then easy to see that f coincides almost everywhere with an isometric
embedding Hp

C → Hq
C. This, together with the fact that ∂f = ϕ preserves the

orientation on chains, implies that the embedding must be holomorphic. ¤

2.1.3. Reduction to the case p = q = 2. Recall that any two distinct chains are
either disjoint or intersect in a point, and hence every pair of distinct points
(ξ, η) ∈ (∂Hp

C)(2) determines a unique chain C(ξ, η).

Lemma 2.3. Let ϕ : ∂Hp
C → ∂Hq

C be a measurable map satisfying the hypothesis

(i) of Theorem 2.1 and let c` : (∂H`
C)3 → [−1, 1] be the Cartan cocycle. Then for

almost every (ξ1, ξ2) ∈ (∂Hp
C)(2), we have that

(1) ϕ(ξ1) 6= ϕ(ξ2), and
(2) for almost every ξ3 ∈ C(ξ1, ξ2), we have

ϕ(ξ3) ∈ C
(
ϕ(ξ1), ϕ(ξ2)

)

and
cq

(
ϕ(ξ1), ϕ(ξ2), ϕ(ξ3)

)
= cp(ξ1, ξ2, ξ3) .

As a consequence we obtain:

Corollary 2.4. Let ϕ : ∂Hp
C → ∂Hq

C be a measurable map satisfying the hy-
pothesis (i) of Theorem 2.1. Then there is a measurable map

(2.2) Φ : C1,p → C1,q

such that

(2.3) Φ
(
C(ξ1, ξ2)

)
= C

(
ϕ(ξ1), ϕ(ξ2)

)

for almost every (ξ1, ξ2) ∈ (∂Hp
C)(2).

Proof of Lemma 2.3. Consider the measure class preserving bijection

(∂Hp
C)(2) → {

(C, ξ1, ξ2) : C ∈ C1,p, (ξ1, ξ2) ∈ C(2)
}

(ξ1, ξ2) 7→ (
C(ξ1, ξ2), ξ1, ξ2

)
.

Then the hypothesis (i) of Theorem 2.1 implies by Fubini that for almost every
C ∈ C1,p, for almost every (ξ1, ξ2) ∈ C(2) and for almost every ξ3 ∈ C we have

(2.4) cq

(
ϕ(ξ1), ϕ(ξ2), ϕ(ξ3)

)
= cp(ξ1, ξ2, ξ3)
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which, using the above bijection, is equivalent to the fact that for almost every
(ξ1, ξ2) ∈ (∂Hp

C)(2) and for almost every ξ3 ∈ C(ξ1, ξ2), (2.4) holds, which shows
that ϕ(ξ1) 6= ϕ(ξ2) and that (2) holds. ¤

Proof of Corollary 2.4. It is clear that if C ∈ C1,p is such that (2.4) holds for
almost every (ξ1, ξ2) ∈ C(2) and for almost every ξ3 ∈ C, then in particular if
(ξ1, ξ2) ∈ C(2) and (η1, η2) ∈ C(2) are such that the equalities

cq

(
ϕ(ξ1), ϕ(ξ2), ϕ(ξ3)

)
= cp(ξ1, ξ2, ξ3)

cq

(
ϕ(η1), ϕ(η2), ϕ(η3)

)
= cp(η1, η2, η3)

hold for almost every ξ3, η3 ∈ C, we have that

ϕ(ξ1) 6= ϕ(ξ2) ,

ϕ(η1) 6= ϕ(η2) and

C
(
ϕ(ξ1), ϕ(ξ2)

) ∩ C
(
ϕ(η1), ϕ(η2)

) ⊃ EssIm(ϕ|C) ,

where EssIm(ϕ|C) denotes the essential image of ϕ|C . Since EssIm(ϕ|C) cannot
be reduced to a point, we have that

C
(
ϕ(ξ1), ϕ(ξ2)

)
= C

(
ϕ(η1), ϕ(η2)

)
,

which leads to the map

Φ : C1,p → C1,q(
C(ξ1, ξ2)

) 7→ C
(
ϕ(ξ1), ϕ(ξ2)

)

which is then well defined and satisfies (2.3). ¤

In the sequel we will need a concrete way to choose a probability measure on
each chain C which is in the class of the Lebesgue measure. Fix a Riemannian
metric on ∂Hp

C, for instance the K-invariant one, where K is a maximal compact
subgroup in SU(p, 1): for every ξ 6= η in ∂Hp

C, if S1 denotes the unit circle in C,
let

fξ,η : S1 → ∂Hp
C ,

be the unique parametrization of C(ξ, η) such that

– fξ,η(1) = ξ;
– fξ,η is orientation preserving, and
– fξ,η is a parametrization proportional to the arclength.

If we denote by µξ,η ∈ M1(∂Hp
C) the probability measure supported on C(ξ, η)

defined by

µξ,η(F ) :=
1
2π

∫ 2π

0
F

(
fξ,η(eiθ)

)
dθ ,
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then the map

(∂Hp
C)(2) →M1(∂Hp

C)

(ξ1, ξ2) 7→ µ(ξ1,ξ2) ,

is clearly continuous for the weak-∗ topology on M1(∂Hp
C). Then we have:

Lemma 2.5. Let λ be the K-invariant probability measure on ∂Hp
C. Then for

every ξ1 ∈ ∂Hp
C, the probability measure on ∂Hp

C × ∂Hp
C defined by

f 7→
∫

∂Hp
C

∫

∂Hp
C

(µ(ξ1,ξ2) ⊗ µ(ξ1,ξ3))(f)dλ(ξ2)dλ(ξ3)

for any continuous function f on ∂Hp
C × ∂Hp

C, is equivalent to λ⊗ λ.

Proof. The measure defined above is the product with itself of the measure on
∂Hp

C given by

f 7→
∫

∂Hp
C

1
2π

∫ 2π

0
f
(
fξ1,η(eiθ)

)
dθdλ(η) ,

which is equivalent to λ since the chains through ξ1 give a smooth foliation of
∂Hp

C \ {ξ1}. ¤

Lemma 2.6. Let ξ1 ∈ ∂Hp
C. For almost every (ξ2, ξ3) ∈ (∂Hp

C)(2), for almost every
(a, b) ∈ C(ξ1, ξ2)× C(ξ1, ξ3) and for almost every c ∈ C(a, b), we have that:

ϕ(a) ∈ C
(
ϕ(ξ1), ϕ(ξ2)

)
;

ϕ(b) ∈ C
(
ϕ(ξ1), ϕ(ξ3)

)
;

ϕ(c) ∈ C
(
ϕ(a), ϕ(b)

)
.

Proof. According to Lemma 2.3(2), the set

E :=
{
(a, b) ∈ (

∂HC)2 : for almost every c ∈ C(a, b),

we have ϕ(c) ∈ C
(
ϕ(a), ϕ(b)

)}

is of full λ⊗ λ-measure. Thus, by Lemma 2.5, we have

1 =
∫

∂Hp
C

∫

∂Hp
C

(µ(ξ1,ξ2) ⊗ µ(ξ1,ξ3))(E)dλ(ξ2)dλ(ξ3)

which, taking into account that all measures involved are probability measures,
is equivalent to the conclusion of Lemma 2.6. ¤

Corollary 2.7. Let ϕ : ∂H2
C → ∂Hq

C be a measurable map satisfying the hy-
pothesis (i) of Theorem 2.1. Then the essential image of ϕ is contained in a
2-chain.



192 Marc Burger and Alessandra Iozzi

Proof. Fix (ξ1, ξ2, ξ3) not on a chain, for which Lemma 2.6 holds. Let E ⊂ ∂H2
C

be the set of c ∈ ∂H2
C such that there are (a, b) ∈ C(ξ1, ξ2) × C(ξ1, ξ3) with

c ∈ C(a, b) and Lemma 2.6 holds for a, b, c. Then E ⊂ ∂H2
C is of full measure.

Moreover,

ϕ(c) is in the C-linear span of ϕ(a) and ϕ(b),

ϕ(a) is in the C-linear span of ϕ(ξ1) and ϕ(ξ2), and

ϕ(b) is in the C-linear span of ϕ(ξ1) and ϕ(ξ3) ,

so that for all c ∈ E, ϕ(c) is in the 2-chain determined by the 3-dimensional space
ϕ(ξ1)⊕ ϕ(ξ2)⊕ ϕ(ξ3). ¤

2.1.4. Configuration spaces, II. In the last part of the proof we will need some
more configuration spaces which, as manifolds, will come equipped as before with
a natural Lebesgue measure class. We will use:

– the space Π of circles of positive radius in C, isomorphic to Aff(C)/C?
1 '

C∗ nC/C?
1;

– the space of points on a circle ∆ =
{
(S, z); z ∈ S, S a circle in C

}
, iso-

morphic to Aff(C);
– the space of triples of distincts points on a circle, which is an open set in

the fibered product

(∆)3f :=
{
(S, z1, z2, z3) : C is a circle in C, (z1, z2, z3) ∈ C3

}

with respect to the projection on the second component.

Since circles through a point correspond to affine lines via an inversion, we will
also use the following configurations:

– the space D of lines in C, which is isomorphic to Aff(C)/R∗ nR;
– the space D(w) of lines in C through the point w ∈ C;
– the space K0 :=

{
(d, L) : L ∈ d, d ∈ D}

of points on a line, isomorphic
to Aff(C);

– the space K :=
{
(d,A, B, C) : d ∈ D, and (A,B, C) ∈ d(3)

}
is an open

set in the manifold
{
(d,A, B, C) : d ∈ D, and (A,B, C) ∈ d3

} ' (K0)3f ,

where the fibered porduct is with respect to the projection on the first
component p1;

– the space

K1 :=
{
(d′, d, A,B,C, M) : (d,A, B, C) ∈ K, (d′, A) ∈ K0,

d′ 6= d, M /∈ d′ ∪ d
}

,
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which is an open set in

(K ×K0)f × C :={
(d′, A, B, C, d, M) : (d,A, B, C) ∈ K, (d′, A) ∈ K0,

}

where
(K ×K0)f :=

{(
(d,A, B, C), (d′, L)

) ∈ K ×K0 :

p2(d,A, B, C) = p2(d′, L)
}

.

2.1.5. The Case p = q = 2.

Proof of Theorem 2.1. Let us denote by C1,2(ξ) the set of chains through the
point ξ ∈ ∂H2

C and let now ϕ : ∂H2
C → ∂H2

C be a measurable map satisfying the
hypotheses of Theorem 2.1 for p = q = 2. Let Φ : C1,2 → C1,2 be the map induced
almost everywhere on the set of chains defined in (2.2), and let E ⊂ ∂H2

C be the
subset of full measure such that for every ξ ∈ E and almost every C ∈ C1,2(ξ),
also Φ(C) ∈ C1,2(ϕ(ξ)). Fix ξ ∈ E; composing with an element from SU(2, 1),
we may assume that ϕ(ξ) = ξ. The idea of the proof consists in considering a
quotient map

πξ : ∂H2
C \ {ξ} → C

whose fibers are the chains through ξ (with ξ removed). Then, if gξ : C → C
denotes the induced measurable map such that the diagram

(2.5) ∂H2
C \ {ξ}

ϕ //

πξ

²²

∂H2
C \ {ξ}

πξ

²²
C

gξ // C
commutes, information about the behavior of the map ϕ in the direction trans-
verse to the fiber of πξ will allow to conclude that gξ is an affine map of C. From
this, adjusting appropriately the map ϕ via elements of SU(2, 1), we will conclude
that ϕ = Id almost everywhere, and hence obtain the conclusion of the theorem.

To this purpose, let P be the stabilizer in SU(2, 1) of ξ, and let N be its
unipotent radical. Then ∂H2

C \ {ξ} is a principal homogeneous N -space, and the
orbits of the center Z(N) are the chains through ξ (with the point ξ removed).
Since N/Z(N) can be identified with C, the quotient map N → N/Z(N) induces
a map

πξ : ∂H2
C \ {ξ} → C

whose fibers are the chains through ξ and which enjoys the following properties:

(P1) It is equivariant with respect to the homomorphism

ωξ : P ³ Aff(C)
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induced from the identification

P/Z(N)
∼= // Aff(C) .

(P2) for every chain C ⊂ ∂H2
C \ {ξ}, πξ|C is injective with image a circle in C;

(P3) for every circle S ⊂ C and any s ∈ ∂H2
C \ {ξ} with πξ(s) ∈ S, there is a

(unique) chain C ⊂ ∂H2
C \ {ξ} through s such that πξ(C) = S.

Moreover, gξ induces a measurable map Gξ : Π → Π from the set Π of circles
in C into itself. To continue, we are going to need the following result, whose
proof we postpone.

Proposition 2.8. Let g : C → C be a measurable map and let us assume that
there exists a measurable map G : Π → Π such that for almost every circle S ⊂ C,
there is a circle G(S) ⊂ C such that:

(i) for almost every z ∈ S, g(z) ∈ G(S);
(ii) for almost every z1, z2, z3 ∈ S distinct, g(z1), g(z2), g(z3) ∈ G(S) are

distinct and in the same cyclic order;
(iii) for almost every z ∈ C the set{

(S1, S2) : z ∈ Si, i = 1, 2, G(S1) = G(S2)
}

is of measure zero.

Then g coincides almost everywhere with an affine map z 7→ λz+c, where λ ∈ C×
and c ∈ C.

Continuation of the proof of Theorem 2.1. Since two chains which intersect in
two points must coincide, and because of properties (P1), (P2) and (P3), then gξ

satisfies the hypotheses of the above proposition and hence gξ ∈ Aff(C).

Thus composing ϕ with an element h−1 ∈ P such that ωξ(h) = gξ almost
everywhere, we may assume that gξ = Id almost everywhere, that is, for almost
every C ∈ C1,2(ξ) and almost every ζ ∈ C, ϕ(ζ) ∈ C. Now pick such a C and
η ∈ C ∩ E, where E has been defined at the beginning of the proof. Composing
with an element from Z(N), we may assume that ϕ(η) = η. But then the map
gη : C → C fixes πη(ξ), and since ϕ leaves invariant all chains through ξ, then
gη leaves invariant all circles through πη(ξ); this, together with the fact that by
Proposition 2.8 again gη coincides almost everywhere with an affine map, implies
that gη = IdC. But πη is injective when restricted to every chain C ∈ C1,2(ξ)
different from C(ξ, η) and, since gη = IdC, it follows that ϕ|C = Id |C . Since
the chains through ξ but not through η foliate a set of ∂H2

C of full measure, we
conclude that ϕ coincides almost everywhere with the identity. ¤

Proof of Proposition 2.8. By Fubini’s theorem, the set E of z ∈ C such that
(i), (ii) and (iii) hold for almost every circle through z is of full measure in C;
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fixing z ∈ E and composing with an affine map, we may assume that g(z) = z.
Conjugating g with an inversion i : Ĉ→ Ĉ with respect to a circle with center z,
we get a map f : C→ C which induces a map F : D → D on the set D of affine
R-lines in C, satisfying the following properties:

(i)’ for almost every d ∈ D and almost every P ∈ d, we have that f(P ) ∈ F (d);
(ii)’ for almost every d ∈ D and almost every A,B, C ∈ d distinct, the points

f(A), f(B), f(C) are distinct and lie on F (d);
(iii)’ for almost every point w ∈ C, the set

{
(d1, d2) ∈ D(w)2 : F (d1) = F (d2)

}

is of measure zero in
(D(w)

)2.

Notice that in (ii)’ one could have stated also a condition corresponding to the
preservation of the cyclic ordering. However this is never used for the maps f
and F themselves and comes into play only at the very end of the proof when we
return to the map g, so that we chose to ignore it.

The main point of the proof is the following claim, which we assume for the
moment and prove later:

Claim. If f and F are as above, then f preserves almost everywhere the property
for four-tuples to be in anharmonic position: namely, if

[z1, z2, z3, z4] :=
(z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

denotes the crossratio, and if, as in § 2.1.4,

K :=
{
(d,A, B, C) : d ∈ D, and A,B, C are distinct points on d

}
,

then for almost every (d,A, B, C) ∈ K, if D ∈ d and D′ ∈ F (d) are points such
that [A,B, C, D] = −1 and

[
f(A), f(B), f(C), D′] = −1, then

f(D) = D′ .

Observe here that K is a manifold and, as such, is endowed with the Lebesgue
measure class. Assuming this claim, let us define

V−1 :=
{
(z1, z2, z3, z4) ∈ C4 : [z1, z2, z3, z4] = −1

}
.

Then V−1 is a three-dimensional complex manifold isomorphic to C(3) via any of
the four projections

pri : V−1 ³ C(3)

consisting of dropping the i-th coordinate, for i = 1, . . . , 4. The original map g
has the property that

(2.6)
for a. e. (z1, z2, z3, z4) ∈ V−1

we have that
(
g(z1), g(z2), g(z3), g(z4)

) ∈ V−1 ,
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where the almost everywhere statement is with respect to the natural Lebesgue
measure on V−1.

By Fubini’s theorem, one can fix z4 ∈ C such that if

V(z4)
−1 :=

{
(z1, z2, z3) ∈ C : [z1, z2, z3, z4] = −1

}
,

then for almost every (z1, z2, z3) ∈ V(z4)
−1 the quadruple

(
g(z1), g(z2), g(z3), g(z4)

)
is in V−1. Consider the composition

g̃ := i ◦ g ◦ j ,

where i and j are inversions with j(∞) = z4 and i
(
g(z4)

)
= ∞. Then (2.6)

holds with g replaced by g̃ and z4 replaced by ∞, so that, using the definition of
crossratio, one has that for almost every (z1, z2) ∈ C2

(2.7) 2g̃

(
z1 + z2

2

)
= g̃(z1) + g̃(z2) .

We claim that this implies that g̃ is an R-affine transformation of C. To this
purpose, define h : C× C→ C by

h(z1, z2) := g̃(z1)− g̃(z2) .

Using equation (2.7), one can easily see that for almost every (z1, z2) ∈ C2, the
map

C −→ C
u 7→ h(u + z1, u + z2)

is almost everywhere constant, which implies that there exists a measurable map
h̃ : C→ C such that

(2.8) h̃(z1 − z2) = g̃(z1)− g̃(z2)

for almost every (z1, z2) ∈ C2.

Applying this equation (2.8) to the pairs (z1, z2), (z2, z3) and (z1, z3), one sees
that h̃ is a measurable homomorphism of the additive group (C,+), and hence
coincides almost everywhere with an R-linear map, which in turns, in view of
(2.8), implies that g̃ is R-affine. But since g̃ sends circles to circles, it is either
C-affine or C-affine, so that g is either a homography or an antihomography. But
then, using that g has to preserve cyclic order on circles, one concludes that g is
C-affine. ¤

Proof of Claim. If f : C → C were an everywhere defined map which satisfies
(i)’, (ii)’, and (iii)’ pointwise, then the statement of the claim would be nothing
but an application of la méthode du quadrilatère complet which we recall here [9].

Let A,B, C be three distinct points on a line d and, given another line d′ 6= d,
and a point M /∈ d∪d′, we construct a fourth point D ∈ d such that [A,B, C, D] =
−1. To this purpose, let P := dCM ∩d′, where dCM is the line determined by the
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M

d

d’

N

Q

Figure 1. La méthode du quadrilatère complet.

points C and M , and let Q := dBM ∩ d′. If N := dPB ∩ dAM , then D := dQN ∩ d
is the unique point such that [A,B, C, D] = −1. Repeated applications of the
properties (i)’, (ii)’, and (iii)’ imply that [f(A), f(B), f(C), f(D)] = −1.

For a measurable function f : C → C for which all of the above statements
are true almost everywhere, the first thing to verify is that the statement of the
claim makes sense. This is however true since properties (i)’ and (ii)’ imply that
for almost every (d,A, B, C) ∈ K, one has that

(2.9)
(
F (d), f(A), f(B), f(C)

) ∈ K
as well.

Let, as in § 2.1.4,
K0 :=

{
(d,A); d ∈ D, A ∈ d

}

and let

K1 :=
{
(d′, d, A,B,C, M) : (d,A, B, C) ∈ K, (d′, A) ∈ K0

and d′ 6= d, M /∈ d′ ∪ d
}

.

Like K, the spaces K0 and K1 are manifolds and are hence endowed with their
Lebesgue measure class. First we observe that properties (ii)’ and (iii)’ together
with a repeated use of Fubini’s theorem imply that there is a subset E1 ⊂ K1 of
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full measure such that for all (d′, d, A, B,C, M) ∈ E1, then
(
F (d′), F (d), f(A), f(B), f(C), f(M)

) ∈ K1 .

Now consider the following maps

mi : K1 → K ,

for i = 1, . . . , 7, given by

m1 : (d′, d, A, B,C, M) 7→ (
dCM , C, M, P

)

m2 : (d′, d, A, B,C, M) 7→ (
dBM , B, M,N

)

m3 : (d′, d, A, B,C, M) 7→ (
dAM , A, Q, M

)

m4 : (d′, d, A, B,C, M) 7→ (
dPB, P, Q,B

)

m5 : (d′, d, A, B,C, M) 7→ (d′, A, P,N)

m6 : (d′, d, A, B,C, M) 7→ (
dNQ, N,Q, D

)

m7 : (d′, d, A, B,C, M) 7→ (d,A, B, D) ,

Let T ⊂ K be the subset consisting of quadruples (d,A, B, C) such that the triple(
f(A), f(B), f(C)

)
consists of pairwise distinct points and belongs to F (d), that

is
(
F (d), f(A), f(B), f(C)

) ∈ K. Then, because of (2.9), the set T is of full
measure and it is easy to verify that then m−1

i (T ) ⊂ K1 is of full measure for
i = 1, . . . , 7. Thus the same is true for

E′
1 :=

7⋂

i=1

m−1
i (T ) ∩ E1 .

But then the previous pointwise argument shows that for all confgurations of
points and lines (d′, d, A, B,C, M) ∈ E′

1,

if D ∈ d is such that [A,B, C, D] = −1

and D′ ∈ F (d) is such that
[
f(A), f(B), f(C), D′] = −1

then f(D) = D′. ¤

2.2. Proof of Proposition 2.2. We start with the following

Lemma 2.9. Let B ⊂ ∂Hp
C be a measurable set of positive measure such that

for almost every (ξ, η) ∈ B(2), the set C(ξ, η) ∩ B is of full measure in the chain
C(ξ, η). Then B is a set of full measure in ∂Hp

C.

Proof. We may pick a density point ξ ∈ B such that for almost every η ∈ B, the
set C(ξ, η) ∩B has full measure in C(ξ, η). Now let

CB :=
{
C ∈ C(ξ) : C ∩B has positive measure in C

}
.
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Then by Fubini’s theorem we have that for almost every C ∈ CB and almost
every η ∈ C ∩ B, the set C(ξ, η) ∩ B is of full measure in C(ξ, η) and hence, for
all C ∈ CB, we have that

(2.10) C ∩B is of full measure in C .

On the other hand, using that ξ is a density point, it is easy to see that CB has
full measure in C(ξ) and hence, again by (2.10) and Fubini’s theorem, B has full
measure in ∂Hp

C. ¤

Proof of Proposition 2.2. If (ii) fails, then the set

{(ξ, η, ζ) : ϕ(ξ), ϕ(η), ϕ(ζ) are on a chain}
is of positive measure in ∂Hp

C. Observing by (i) that for almost every (ξ, η) ∈
(∂Hp

C)2 we have that ϕ(ξ) 6= ϕ(η), we deduce by Fubini’s theorem that there
exists (ξ, η) such that

(1) ϕ(ξ) 6= ϕ(η), and
(2) the set of

{
ζ ∈ ∂Hp

C such that ϕ(ξ), ϕ(η), ϕ(ζ) are on a chain
}

is of pos-
itive measure.

Denoting by C the chain through ϕ(ξ) and ϕ(η), we conclude that B := ϕ−1(C)
is of positive measure and, in view of the hypothesis (i), satisfies the assumptions
of Lemma 2.9, which shows that ϕ−1(C) is of full measure. ¤

3. Proof of Theorem 2

Let Γ < SU(p, 1) be a lattice, ρ : Γ → PU(q, 1) a homomorphism with nonele-
mentary image and let ϕ : ∂Hp

C → ∂Hq
C be the Γ-equivariant measurable bound-

ary map. For almost every chain C ∈ C1,p let us denote by ϕC the restriction of
ϕ to C. Denoting by µ the SU(p, 1)-invariant probability measure on Γ\SU(p, 1),
we established in [4] the following formula which gives a measure of how much
the boundary map ϕ distorts a typical chain:

Theorem 3.1 ([4, Theorem 5.6 and Corollary 5.7]). Let Γ < SU(p, 1) be a lattice,
ρ : Γ → PU(q, 1) a homomorphism with nonelementary image and ϕ : ∂Hp

C →
∂Hq

C be the associated Γ-equivariant measurable boundary map. For almost every
chain C ∈ C1,p and almost every triple (ξ, η, ζ) ∈ C3, we have

∫

Γ\SU(p,1)
cq

(
ϕC(gξ), ϕC(gη), ϕC(gζ)

)
dµ(ġ) = iρcp(ξ, η, ζ) ,

where iρ is defined in (1.1), and cq, cp are the Cartan cocycles.
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If iρ = 1 then for almost every C ∈ C1,p and almost every (ξ1, ξ2, ξ3) ∈ C3

(3.1) cq

(
ϕC(ξ1), ϕC(ξ2), ϕC(ξ3)

)
= cp(ξ1, ξ2, ξ3) .

Proof of Theorem 2. We start by observing that since iρ = 1, then ρ(Γ) <
PU(q, 1) is nonelementary. In fact, if ρ(Γ) were elementary, it would be con-
tained in a closed amenable subgroup of PU(1, 1). Since the class κq is bounded,
its restriction to any closed amenable subgroup vanishes; thus elementarity of
ρ(Γ) would imply that ρ(2)(κq) = 0, and hence iρ = 0.

Let now ϕ : ∂Hp
C → ∂Hq

C be a Γ-equivariant measurable map. Then equation
(3.1) implies that ϕ satisfies the hypothesis of Theorem 1. Let us show by con-
tradiction that (2) holds. So assume that (1) holds, in particular we may assume
that q = 1. Let us observe that if I ⊂ S1 = ∂H1

C is any interval such that ϕ−1(I)
is of positive measure, then ϕ−1(I) contains, up to a null set, an open subset of
∂Hn

C: indeed for any α 6= β such that [α, β] ∈ ϕ−1(I), the interval
{
ζ ∈ ∂Hp

C : cp(α, ζ, β) = 1
} ⊂ C(α, β)

belongs of ϕ−1(I) (up to sets of measure zero), which easily implies the assertion.

Now we claim that ker ρ is finite and Γ is cocompact. To prove the claim,
assume that N := ker ρ < Γ is infinite. Being discrete, its limit set in ∂Hp

C
is nonvoid, hence equals ∂Hp

C, which implies that N acts minimally on ∂Hp
C.

Pick any interval I ⊂ S1 such that ϕ−1(I) has positive measure and let O ⊂
∂Hp

C be an open set such that O is included in ϕ−1(I) up to a set of measure
zero. Then ϕ being N -invariant, and N acting minimally on ∂Hp

C, we have that
∂Hp

C = ∪n∈NnO is contained in ϕ−1(I), up to measure zero. But since ϕ is not
essentially constant, one might find two disjoint intervals I1 and I2 such that
ϕ−1(I1) and ϕ−1(I2) are of positive measure and hence of full measure, which is
a contradition. This shows that ker ρ is finite. If Γ were not cocompact, then
– since p ≥ 2 – it would contain an integer Heisenberg group which would be
sent, almost injectively, into PU(1, 1). Since this is impossible, it follows that Γ
is cocompact.

Thus Γ and ρ(Γ) are commensurable, and hence their virtual cohomological
dimensions coincide; thus ρ(Γ) has virtual cohomological dimension 4 and hence
cannot be discrete in PU(1, 1). Being Zariski dense, ρ(Γ) is therefore dense in
PU(1, 1). Passing to a subgroup of finite index of Γ, we may in addition assume
that Γ is torsionfree and ρ is injective. Since the set of elliptic elements is open
in PU(1, 1), we may pick γ 6= Id , with ρ(γ) elliptic. Since Γ is cocompact and
torsionfree, then γ is necessarily hyperbolic. Now pick a pair of open intervals
∅ 6= I ⊂ I ′ such that the complement of I ′ is of nonvoid interior. Let O ⊂ ∂Hp

C
be a nonvoid open subset such that O ⊂ ϕ−1(I) up to a set of measure zero.
Conjugating by an element of Γ, we may assume that the repulsive fixed point
of γ is in O. Let now {nk}k∈N be a divergent sequence of integers such that
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limk→∞ ρ(γ)nk = Id in PU(1, 1); we may assume that ρ(γ)nkI ⊂ I ′ for all k ≥ 1.
Then ∪k≥1γ

nkO = ∂Hp
C \ {ξ}, where ξ is the attractive fixed point, and hence

ϕ−1(I ′) equals ∂Hp
C up to a set of measure zero. Since I ′ was arbitrary, this is a

contradiction. ¤
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9. E. Cartan, Leçons sur la géométrie projective complexe, Gauthier-Villars, Paris, 1931.
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